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? Instituto de Mateḿatica Multidisciplinar

\ Instituto de Instrumentación para Imagen Molecular

† Instituto de Telecomunicaciones y Aplicaciones Multimedia

Universitat Polit̀ecnica de Val̀encia, Spain

{edefez, mtung}@imm.upv.es, jjibanez@dsic.upv.es, jorsasma@iteam.upv.es

Abstract

Differential matrix models are an essential ingredient of many important
scientific and engineering applications. In this work, we propose a procedure
to represent the solutions of first-order matrix differential equationsY ′(x) =
f(x, Y (x)) with approximate matrix splines. For illustration of the method,
we choose one scalar example, a simple vector model, and finally a Sylvester
matrix differential equation as test.

Keywords and phrases.Higher-order matrix splines, first-order matrix dif-
ferential equations.

1 Introduction

In this paper we propose a novel algorithm to tackle matrix differential equations
of the first order. Matrix differential models are relevant for the description of
many phenomena in physics and engineering, ranging from such diverse appli-
cations as control theory to game theory [1]. In particular, we will develop in
this work a method for the numerical integration of first-order matrix differential
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equations with initial conditions. For different examples of this class of problems,
we also refer to Ref. [2].

In their seminal work, Loscalzo and Talbot introduce spline function approx-
imations for solutions of scalar differential equations [3]. These spline solutions
S(x) are of degreem = 2, 3 and continuity classCm−1. Recently, this method has
been used in the resolution of other scalar problems as discussed in Ref. [4]. The
corresponding generalizations to the matrix framework have been carried out in
Refs. [5,6].

Unfortunately, as detected by Loscalzo and Talbot, their scalar procedure is
divergent when higher-order spline functions are used [3, p. 444–445]. They have
explicitly shown by numerical computations that the equationy′ = y, y(0) = 1
contains noticeable divergences for splines of orderm > 3. However, our new
method avoids these problems with divergences for splinesS(x) of orderm but
only require them to be of differentiability classC1.

Throughout this work, we will adopt the notation for norms and matrix cubic
splines as in the previous work [5] and common in matrix calculus. Following this
nomenclature, we recall that the 2-norm of a rectangularr× s matrixA ∈ Cr×s is

‖A‖ = sup
z 6=0

‖Az‖
‖z‖ ,

where, as usual, for a vectorz ∈ Cs the Euclidean norm is‖z‖ = (ztz)
1
2 . Simi-

larly, the1-norm is given by‖z‖1 =
s∑

i=1

|zi|.
The Kronecker productA⊗B of A = (aij) ∈ Cm×n andB ∈ Cr×s is defined

by the following block matrix

A⊗B =




a11B . . . a1nB
...

...
am1B . . . amnB


 .

The column-vector operator on a matrixA ∈ Cm×n is denoted by

vec(A) =




A•1
...

A•n


 , whereA•k =




a1k
...

amk


 .

Here and in the following, we denote vectors and vector-valued functions by bold-
face characters.
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If Y = (yij) ∈ Cp×q andX = (xij) ∈ Cm×n, then the derivative of a matrix
with respect to a matrix is defined by [11, p.62 and 81]:

∂Y

∂X
=




∂Y

∂x11

. . .
∂Y

∂x1n
...

...
∂Y

∂xm1

. . .
∂Y

∂xmn




, where
∂Y

∂xrs

=




∂y11
∂xrs

. . .
∂y1q
∂xrs

...
...

∂yp1
∂xrs

. . .
∂ypq
∂xrs




.

If X ∈ Cm×n, Y ∈ Cn×v, Z ∈ Cp×q, then the following rule for the derivative of
a matrix product with respect to another matrix applies [11, p.84]:

∂XY

∂Z
=

∂X

∂Z
[Iq ⊗ Y ] + [Ip ⊗X]

∂Y

∂Z
, (1.1)

whereIq andIp denote the identity matrices of dimensionsq andp, respec-
tively. If X ∈ Cm×n, Y ∈ Cu×v, Z ∈ Cp×q, the following chain rule [11, p.88] is
valid :

∂Z

∂X
=

[
∂ [vec(Y )]t

∂X
⊗ Ip

] [
In ⊗ ∂Z

∂ [vec(Y )]

]
. (1.2)

This paper is organized as follows. In Section 2, we give a description of
the proposed method and give details of the corresponding procedure. Section 3
concludes the discussion with some numerical examples for the scalar, vector and
matrix cases, respectively.

2 Description of the method

As usual, let us consider the following first-order matrix problem

Y ′(x) = f(x, Y (x))

Y (a) = Ya



 , a ≤ x ≤ b, (2.1)

where the unknown matrix isY (x) ∈ Rr×q with initial condition Ya ∈ Rr×q.
The matrix-valued functionf : [a, b] × Rr×q → Rr×q is of differentiability class
f ∈ Cs (T ), s ≥ 1, with

T =
{
(x, Y ); a ≤ x ≤ b, Y ∈ Rr×q

}
, (2.2)
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andf fulfills the global Lipschitz’s condition

‖f (x, Y1)− f (x, Y2)‖ ≤ L ‖Y1 − Y2‖ , a ≤ x ≤ b, Y1, Y2 ∈ Rr×q (2.3)

to guarantee the existence and uniqueness of the continuously differentiable solu-
tion Y (x) of problem (2.1), see Ref. [7, p.99].

The partition of the interval[a, b] shall be given by

∆[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a+kh, k = 0, 1, . . . , n, (2.4)

wheren is a positive integer with the corresponding step sizeh = (b− a)/n. We
will construct in each subinterval[a + kh, a + (k + 1)h] a matrix splineS(x) of
orderm ∈ N with 1 ≤ m ≤ s, wheres is the order of the differentiability class of
f . This will approximate the solution of problem (2.1) so thatS(x) ∈ C1 ([a, b]).

In the first interval[a, a+ h], we define the matrix spline as

S|[a,a+h]
(x) = Y (a) + Y ′(a)(x− a) +

1

2!
Y ′′(a)(x− a)2 +

1

3!
Y (3)(a)(x− a)3

+ · · ·+ 1

(m− 1)!
Y (m−1)(a)(x− a)m−1 +

1

m!
A0(x− a)m, (2.5)

whereA0 ∈ Rr×q is a matrix parameter to be determined. It is straightforward to
check

S|[a,a+h]
(a) = Y (a), S ′

|[a,a+h]
(a) = Y ′(a) = f(a, Y (a)),

and therefore the spline satisfies the differential equation Eq. (2.1) atx = a.
We must obtain the valuesY ′′(a), Y (3)(a), . . . , Y (m−1)(a), andA0 in order to

determine the matrix spline (2.5). To compute the second-order derivativeY ′′(x),
we follow the procedure given in Ref. [6] and use the nomenclature as already
outlined in the introduction. We then obtain

Y ′′(x) =
∂f(x, Y (x))

∂x
+
[
[vec f(x, Y (x))]T ⊗ Ir

] ∂f(x, Y (x))

∂ vec Y (x)

= g1 (x, Y (x)) , (2.6)

whereg1 ∈ Cs−1 (T ). We are now in the position to evaluateY ′′(a) = g1 (a, Y (a))
using (2.6). Similarly, we can assume thatf ∈ Cs (T ) for s ≥ 2. Then, the second
partial derivatives off exist and are continuous. This yields the third derivative:

Y (3)(x) =
∂2f(x, Y (x))

∂x2
+
(
[vec f(x, Y (x))]T ⊗ Ir

) ∂

∂x

(
∂f(x, Y (x))

∂ vec Y (x)

)
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+

(
∂ [vec f(x, Y (x))]T

∂x
⊗ Ir

)
∂f(x, Y (x))

∂ vec Y (x)

+
(
[vec f(x, Y (x))]T ⊗ Ir

) ∂

∂ vec Y (x)

(
∂f(x, Y (x))

∂x

)

+
(
[vec f(x, Y (x))]T ⊗ Ir

)(
∂ [vec f(x, Y (x))]T

∂ vec Y (x)
⊗ Ir

)
∂f(x, Y (x))

∂ vec Y (x)

+
(
[vec f(x, Y (x))]T ⊗ Ir

)(
[vec f(x, Y (x))]T ⊗ Ir2q

) ∂2f(x, Y (x))

(∂ vec Y (x))2

= g2 (x, Y (x)) ∈ Cs−2 (T ) . (2.7)

Now we can evaluateY (3)(a) = g2 (a, Y (a)) using (2.7). For all higher-order
derivativesY (4)(x), . . . , Y (m−1)(x) we proceed in like manner and calculate

Y (4)(x) = g3 (x, Y (x)) ∈ Cs−3 (T )
...

Y (m−1)(x) = gm−2 (x, Y (x)) ∈ Cs−(m−2) (T )





. (2.8)

A list of all these derivatives can be easily established by employing standard
computer algebra systems. Substitutingx = a in (2.8), one getsY (4)(a), . . .,
Y (m−1)(a). In summary, all matrix parameters of the spline which were to be
determined are known, except forA0. To determineA0, we suppose that (2.5) is a
solution of problem (2.1) atx = a+ h, which gives

S ′
|[a,a+h]

(a+ h) = f
(
a+ h, S|[a,a+h]

(a+ h)
)
. (2.9)

Next, we obtain from (2.9) the matrix equation with only one unknownA0:

A0 =
(m−1)!
hm−1

[
f
(
a+ h, Y (a) + Y ′(a)h+ · · ·+ hm−1

(m−1)!
Y (m−1)(a) + hm

m!
A0

)

− Y ′(a)− Y ′′(a)h− 1
2
Y (3)(a)h2 + · · ·+ 1

(m−2)!
Y (m−1)(a)hm−2

]
. (2.10)

Assuming that the implicit matrix equation (2.10) has only one solutionA0,
the matrix spline (2.5) is totally determined in the interval[a, a+ h].

In the following interval[a+ h, a+ 2h], the matrix spline takes the form

S|[a+h,a+2h]
(x) = S|[a,a+h]

(a+ h) + Y ′(a+ h)(x− (a+ h)) +
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1
2!
Y ′′(a+ h)(x− (a+ h))2 + · · ·+ 1

(m−1)!
Y (m−1)(a+ h)(x− (a+ h))m−1

+ 1
m!
A1(x− (a+ h))m, (2.11)

where

Y ′(a+ h) = f
(
a+ h, S|[a,a+h]

(a+ h)
)
, (2.12)

andY ′′(a+ h), . . . , Y (m−1)(a+ h) are the similar results obtained after evaluat-
ing the respective derivatives ofY (x) usingS|[a,a+h]

(a+h) in (2.6)–(2.8). In more

compact form, we may write

Y ′′(a+ h) = g1

(
a+ h, S|[a,a+h]

(a+ h)
)
,

...

Y (m−1)(a+ h) = gm−2

(
a+ h, S|[a,a+h]

(a+ h)
)
.

(2.13)

Note that matrix splineS(x) defined by (2.5) and (2.11) is of differentiability class
C1 ([a, a+ h] ∪ [a+ h, a+ 2h]), contrary to the splines introduced by Loscalzo
and Talbot [3], which were of classCm−1 ([a, a+ h] ∪ [a+ h, a+ 2h]). By con-
struction, spline (2.11) satisfies the differential equation (2.1) atx = a + h. and
all of its coefficients are determined with the exception ofA1 ∈ Rr×q.

The value ofA1 can be found by taking the spline (2.11) as a solution of (2.1)
at pointx = a+ 2h:

S ′
|[a+h,a+2h]

(a+ 2h) = f
(
a+ 2h, S|[a+h,a+2h]

(a+ 2h)
)
.

An expansion yields the matrix equation with the only unknownA1:

A1 =
(m− 1)!

hm−1

[
f

(
a+ 2h, S|[a,a+h]

(a+ h) + Y ′(a+ h)h+
h2

2!
Y ′′(a+ h)+

+ · · ·+ hm−1

(m− 1)!
Y (m−1)(a+ h) +

hm

m!
A1

)
− Y ′(a+ h)− Y ′′(a+ h)h

− · · · − 1

(m− 2)!
Y (m−1)(a+ h)hm−2

]
. (2.14)

Let us assume that the matrix equation (2.14) has only one solutionA1. This way
the spline is totally determined in the interval[a+ h, a+ 2h].
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Iterating this process, we can construct the matrix spline approximation tak-
ing [a+ (k − 1)h, a+ kh] as the last subinterval. For the succeeding subinterval
[a+ kh, a+ (k + 1)h], we define the corresponding matrix spline as

S|[a+kh,a+(k+1)h]
(x) = S|[a+(k−1)h,a+kh]

(a+ kh) + Y ′(a+ kh)(x− (a+ kh))

+ 1
2!
Y ′′(a+ kh)(x− (a+ kh))2 + · · ·+

1
(m−1)!

Y (m−1)(a+ kh)(x− (a+ kh))m−1 + 1
m!
Ak(x− (a+ kh))m, (2.15)

where

Y ′(a+ kh) = f
(
a+ kh, S|[a+(k−1)h,a+kh]

(a+ kh)
)
, (2.16)

and in a similar manner one abbreviates

Y ′′(a+ kh) = g1

(
a+ kh, S|[a+(k−1)h,a+kh]

(a+ kh)
)
,

...

Y (m−1)(a+ kh) = gm−2

(
a+ kh, S|[a+(k−1)h,a+kh]

(a+ kh)
)
.

(2.17)

With this definition, the matrix splineS(x) ∈ C1

(
k⋃

j=0

[a+ jh, a+ (j + 1)h]

)

fulfills the differential equation (2.1) at pointx = a + kh. As an additional
requirement, we assume thatS|[a+kh,a+(k+1)h]

(x) satisfies (2.1) at pointx = a +

(k + 1)h:

S ′
|[a+kh,a+(k+1)h]

(a+(k+1)h) = f
(
a+ (k + 1)h, S|[a+kh,a+(k+1)h]

(a+ (k + 1)h)
)
,

and expanding this expression gives

Ak = (m−1)!
hm−1

[
f
(
a+ (k + 1)h, S|[a+kh,a+(k+1)h]

(a+ (k + 1)h) + Y ′(a+ kh)h

+ · · ·+ hm−1

(m−1)!
Y (m−1)(a+ kh) + hm

m!
A1

)
− Y ′(a+ kh)− Y ′′(a+ kh)h

− · · · − hm−2

(m−2)!
Y (m−1)(a+ kh)

]
. (2.18)

Observe that the final result (2.18) relates directly to equations (2.10) and (2.14),
when settingk = 0 andk = 1. We will demonstrate that these equations have a
unique solution using a fixed-point argument.
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For a fixedh andk, we consider the matrix functiong : Rr×q → Rr×q defined
by

g(T ) = (m−1)!
hm−1

[
f
(
a+ (k + 1)h, S|[a+kh,a+(k+1)h]

(a+ (k + 1)h) + Y ′(a+ kh)h

+ · · ·+ hm−1

(m−1)!
Y (m−1)(a+ kh) + hm

m!
T
)
− Y ′(a+ kh)− Y ′′(a+ kh)h

− · · · − hm−2

(m−2)!
Y (m−1)(a+ kh)

]
. (2.19)

Relation (2.18) holds if and only ifAk = g(Ak), that is, ifAk is a fixed point
for function g(T ). By using the definition (2.19) ofg and applying the global
Lipschitz’s condition (2.3) forf , it immediately follows that

‖g(T1)− g(T2)‖ ≤ Lh

m
‖T1 − T2‖ .

Takingh < m/L, the matrix functiong is contractive. Therefore equation (2.18)
has unique solutionsAk for k = 0, 1, . . . , n−1, and the matrix spline is completely
determined. In summary, we have proved the following theorem:

Theorem 2.1 For the first-order matrix differential equation (2.1), letL be the
corresponding Lipschitz constant defined by (2.3). We also consider the partition
(2.4) with step sizeh < m/L. Then, the matrix splineS(x) of orderm ∈ N exists
in each subinterval[a+ kh, a+ (k + 1)h], k = 0, 1, . . . , n − 1, as defined in the
previous construction and is of classC1[a, b].

Observe that the so constructed splines have a global error ofO(hm−1), which
follows from an analysis similar to Loscalzo and Talbot’s work [3].

The approximate solution of (2.1) can be computed by means of matrix splines
of orderm in the interval[a, b] with an error of the orderO(hm−1) under the
conditions of Theorem 2.1. The procedure is as follows:

• Using any convenient computer-algebra system, obtain the matrix func-
tions g1(x, Y (x)), . . . , gm−2(x, Y (x)) given by (2.6)–(2.8) and determine
the constantsY ′′(a), . . . , Y (m−1)(a). Choosen > L(b − a)/m so that
h = (b− a)/n with the partition∆[a,b] defined by Eq. (2.4).

• Solve equation (2.10) to findA0, and determineS|[a,a+h]
(x) of Eq. (2.5).

• Iteratively, fork = 1, . . . , n − 1, solve equations (2.18) to find allAk.
Next, compute the splinesS|[a+kh,a+(k+1)h]

(x) according to Eq. (2.15).
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In order to findAk for k = 0, 1, . . . , n − 1, one may solve equations (2.10) and
(2.18) either explicitly [8], or by employing an iterative method [9]. For example,
we can consider the recursion relationT s

l+1 = g(T s
l ). Here,T s

0 is an arbitrary
matrix inRr×q for s = 0, 1, . . . , n− 1, andg(T ) is given by (2.19).

3 Numerical Examples

3.1 A scalar test problem

This simple test problem is motivated by Loscalzo and Talbot’s seminal work on
scalar spline function approximation for ordinary differential equations [3]. Un-
fortunately, their otherwise very efficient method had the drawback to be divergent
for higher degree spline functions (m > 3). Here, we will compare our procedure
with their test case for the spline solution ofy′ = y with initial conditiony(0) = 1.

Figure 1 depicts the error of fourth-order spline solutions for the Loscalzo-
Talbot problem which were constructed by our proposed method. Observe that for
h = 0.01 the results already reach the accuracy of10−14, compared to the serious
error of the conventional Loscalzo-Talbot method [3]. It also becomes clear that a
further reduction in step sizeh does not necessarily improve the approximation.

It may be interesting to study the increasing quality of the approximation with
higher-order splines. Figure 2 shows how the solutions improve by takingm =
4, 5, 6, respectively, with a constant step sizeh = 0.1.

3.2 A non-linear vector system

As a second example of our method, we choose the following vector differential
system for the intervalx ∈ [0, 1], which is clearly non-linear:

y′1(x) = −1 + ex − sinx+ sin (y2(x))

y′2(x) =
1

4 + y21(x)
− 1

5 + e2x + 2 ex cosx− sin2 x





(3.1)

with the initial values
y1(0) = 2

y2(0) = π/2



 .
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We can then rewrite the problem using vector notationy(x) =

(
y1(x)
y2(x)

)
with

y(0) =

(
2

π/2

)
to obtain the nonlinear vector problemy′(x) = f(x,y(x)),

where

f (x,y(x)) =




−1 + ex − sinx+ sin (y2(x))

1

4 + y21(x)
− 1

5 + e2x + 2 ex cosx− sin2 x


 . (3.2)

According to Ref. [6] this problem has the exact solutiony1(x) = ex + cos x
andy2(x) = π/2, and hence for this test case we will be able to assess the exact
error of our numerical estimates. Our proposed method serves to construct the
splines of fifth order for the problem given in Eq. (3.1). For this we require to
calculatey′′(x), y(3)(x) andy(4)(x), which in general is straightforward. We may

derivey′′(x) =
(

y′′1(x)
y′′2(x)

)
using a computer algebra system such asMathemat-

ica, which readily produces:

y′′1(x) = ex − cos (x) + cos (y2(x))y
′
2(x)

y′′2(x) =
2e2x + 2ex cos (x)− 2ex sin (x)− 2 cos (x) sin (x)(

5 + e2x + 2ex cos (x)− sin (x)2
)2 − 2y1(x)y

′
1(x)

(4 + y1(x)2)
2





.

(3.3)

Taking into account thaty1(0) = 2, y′1(0) = 1, y2(0) = π/2, andy′2(0) = 0, it

follows by Eq. (3.3) thaty′′(0) =
(

0
0

)
. We similarly calculate the third-order
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derivativey(3)(x) =

(
y
(3)
1 (x)

y
(3)
2 (x)

)
with components:

y
(3)
1 (x) = ex + sin (x)− sin (y2(x)) (y

′
2(x))

2
+ cos (y2(x))y

′′
2(x)

y
(3)
2 (x) = − 8 (cos (2x)− 2ex (ex − sin (x)))

(9 + 2e2x + 4ex cos (x) + cos (2x))2

− 64 (ex + cos (x))2 (ex − sin (x))2

(9 + 2e2x + 4ex cos (x) + cos (2x))3

+
8 (y1(x))

2 (y′1(x))
2

(
4 + (y1(x))

2)3 − 2 (y′1(x))
2

(
4 + (y1(x))

2)2 − 2y1(x)y
′′
1(x)(

4 + (y1(x))
2)2





(3.4)

In like manner as before, we considery1(0) = 2, y′1(0) = 1, y′′1(0) = 0, y2(0) =

π/2, y′2(0) = 0, andy′′2(0) = 0 with (3.4) to deducey(3)(0) =

(
1
0

)
. Sim-

ilarly, we may then derive the explicit results for the components ofy(4)(x) =(
y
(4)
1 (x)

y
(4)
2 (x)

)
. In the final step, it remains to substitute the known valuesy1(0) =

2, y′1(0) = 1, y′′1(0) = 0, y′′′1 (0) = 1, y2(0) = π/2, y′2(0) = 0, y′′2(0) = 0, y′′′2 (0) =

0, into the last expression to obtainy(4) =

(
2
0

)
.

Also, it is not difficult to see thatf , defined by (3.2), fulfills the global Lips-
chitz’s condition

‖f (x,y)− f (x, z)‖1 ≤ ‖y − z‖1 , 0 ≤ x ≤ 1, y, z ∈ R2. (3.5)

Comparing with the general form (2.3), we note thatL = 1. Therefore, by Theo-
rem 2.1 we need to takeh < 5. In the following, for example we chooseh = 0.1
and summarize the numerical results in Table 2. In each interval, we evaluated the
difference between the estimates of our numerical approach and the exact solu-
tion, and then take the Fröbenius norm of this difference, following the procedure
explained in Ref. [6]. Table 1 lists the maximum of these errors for each subinter-
val.
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For the solution of the vector differential system (3.1), Figure 3 illustrates the
approximation behavior of various splines of the fourth order (m = 4) with the
different step sizesh = 0.1, 0.01, andh = 0.001. All vector splines lie well in
the predicted range of Theorem 2.1 and provide excellent approximations for the
problem at hand with the benefit of very low computational cost. Observe that
at step sizeh = 0.001 the limit of machine precision is practically reached and
explains the random fluctuations around10−15. Hence, it obviously is of lesser
interest to obtain more accurate approximations form = 4 andh = 0.001.

3.3 Sylvester matrix differential equation

In many areas of science and engineering linear matrix differential equations ap-
pear of the type

Y ′(x) = A(x)Y (x) + Y (x)B(x) + C(x)
Y (a) = Ya

}
a ≤ x ≤ b, (3.6)

whereY (x), A(x), B(x), C(x) ∈ Rr×r. The case of constant coefficients has
been studied by several authors [10], whereas the variable-coefficient case has so
far received little numerical treatment in the literature.

Following Ref. [6], we choose the following Sylvester problem (3.6) as a final
example:

A(x) =

(
0 xe−x

x 0

)
, B(x) =

(
0 x
0 0

)
,

C(x) =

( −e−x(1 + x2) −2e−xx
1− e−xx −x2

)

Y (0) =

(
1 0
0 1

)
, Y (x) ∈ R2×2, 0 ≤ x ≤ 1.

(3.7)

According to [6] we know that this problem has the exact solution

Y (x) =

(
e−x 0
x 1

)

with the Lipschitz constantL = 2. The higher-order derivatives ofY (x) are
required for the construction of the spline approximation and can be readily ob-
tained.
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For splines of the fifth order (m = 5), we taken = 10 partitions andh = 0.1.
The results are summarized in Table 3, where the numerical estimates have been
rounded to the sixth relevant digit. In Table 4, we evaluated the difference between
the estimates of our numerical approach and the exact solution, and then take the
Fröbenius norm of this difference. The maximum of these errors are indicated for
each subinterval.

For the solution of the Sylvester matrix problem (3.6), Figure 4 depicts the
approximation behavior of various splines of the fifth order (m = 5) with the
different step sizesh = 0.1, 0.01, andh = 0.001. As before, all matrix splines
lie well in the predicted range of Theorem 2.1. It becomes evident that the splines
for step sizesh = 0.01 andh = 0.001 are almost indistinguishable and reach the
same precision of almost10−14.

We also carried out the computations for the sixth order matrix splines (m = 6)
with the step sizesh = 0.1, 0.01, andh = 0.001, and as expected, we could ob-
serve thath = 0.01 yields an accuracy close to machine precision. Interestingly,
higher step sizes do not improve these approximations—the quality of approxi-
mation indeed deteriorates due to the accumulation of rounding errors.

3.4 The Hénon-Heiles system

The H́enon-Heiles equation [12] is a nonlinear nonintegrable Hamiltonian system
defined by

x′′ = −∂V (x, y)

∂x

y′′ = −∂V (x, y)

∂y





, a ≤ t ≤ b, (3.8)

where the potential-energy function is conserved during motion and given by the
following expression

V (x, y) =
1

2

(
x2 + y2 + 2x2y − 2

3
y3
)
.

The differential system (3.8) can be recast in vectorial formu′(t) = f (t,u(t)),
whereu(t) = (u1(t) u2(t) u3(t) u4(t))

T ∈ R4 and

f (t,u) =




u2

−u1 − 2u1u3

u4

−u3 − u2
1 + u2

3


 ,
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andf satisfies

‖f (t,y)− f (t, z)‖1 ≤ 5 ‖y − z‖1 , 0 ≤ t ≤ 1, y, z ∈ R4.

Then, one gets thatL = 5 and by Theorem 2.1 we need to takeh < m/5. For
these benchmark tests, we have takent ∈ [0, 1] with the initial conditionsx(0) =
1, ẋ(0) = 0.5, y(0) = 1, andẏ(0) = 0.5. Since the solution is unknown, we have
considered as reference values the results generated byMATLAB ODE solver
ode45. The parametersRelTolandAbsTolwere chosen to obtain the maximum
precision (RelTol = 2.22045 · 10−14, AbsTol = 1.0 · 10−14). The ODE solver
ode45allows to solve non-stiff differential equations and is based on the Runge-
Kutta method.

The numerical estimates are shown in Figures 5 and 6. Figure 5 depicts the
errors for splines of orderm = 4 with variable step sizeh = 0.1, 0.01, 0.001,
whereas in Figure 6 the step sizeh = 0.1 is fixed and the spline order varies
m = 4, 5, 6.

As can be seen in Figure 5, the error is situated well within the expected mar-
gins improving with each lower value ofh. On the other hand, in Figure 6 with
h = 0.1 the error is not exceeding the predicted maximum estimateO(hm−1) for
m = 4, 5, 6.

4 Conclusions

This work focuses on the presentation of a new method for the numerical integra-
tion of first-order matrix differential equations of the typeY ′(x) = f(x, Y (x)) in
the interval[a, b] using higher-order matrix splines (m > 3). Contrary to existing
spline methods in the literature, this new method only requires first-order deriva-
tives for the construction of the splines to provide a continuous approximation of
orderO(hm−1). Additionally, our method is well-suited for implementation on
numerical and/or symbolical computer systems.

For an explicit demonstration of our proposed method and its advantages over
existing conventional methods, we discussed three numerical test cases with ex-
cellent results. It is hoped that this new approach to approximating matrix dif-
ferential models will motivate and open up alternative avenues to tackle different
related problems in science and engineering.
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Figure 1: Error for the Loscalzo-Talbot problem with splines of fourth order (m =
4) using our proposed method for various step sizes.

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Max. error 8.2362× 10−12 4.8717× 10−11 1.27357× 10−10 2.50353× 10−10 4.24194× 10−10

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

Max. error 6.55672× 10−10 9.51896× 10−10 1.32033× 10−9 1.7688× 10−9 2.30555× 10−9

Table 1: Approximation error for vector problem (3.1).
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Figure 2: Errors for increasing spline orders (m = 4, 5, 6) solving the Loscalzo-
Talbot problem. The step size is constant (h = 0.1).
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Figure 3: Representing the2-norm error for the vector differential system (3.1)
using splines of fourth order (m = 4).
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Figure 4: Representing the2-norm error for the Sylvester matrix differential equa-
tion (3.6) using splines of fourth order (m = 4).
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Figure 5: Error for the H́enon-Heiles problem with splines of fourth order (m = 4)
using our proposed method for various step sizes.
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Figure 6: Errors for increasing spline orders (m = 4, 5, 6) solving the H́enon-
Heiles problem. The step size is constant (h = 0.1).

Interval Approximation
[0, 0.1]

(
2. + x + 0.166667x3 + 0.0833333x4 + 0.00833619x5

1.5708

)

[0.1, 0.2]
(

2. + 1.x − 3.98676 × 10−7x2 + 0.166671x3 + 0.0833075x4 + 0.0083996x5

1.5708 + 1.02341 × 10−9x2 − 9.53254 × 10−9x3 + 4.27272 × 10−8x4 − 7.27159 × 10−8x5

)

[0.2, 0.3]
(

2. + 1.x − 9.78808 × 10−6x2 + 0.166723x3 + 0.0831609x4 + 0.00856703x5

1.5708 − 2.80891 × 10−9x + 2.68447 × 10−8x2 − 1.2696 × 10−7x3 + 2.96285 × 10−7x4 − 2.72203 × 10−7x5

)

[0.3, 0.4]
(

2. + 1.00001x − 0.000070073x2 + 0.166941x3 + 0.0827649x4 + 0.00885657x5

1.5708 − 2.3641 × 10−8x + 1.51773 × 10−7x2 − 4.84484 × 10−7x3 + 7.68203 × 10−7x4 − 4.83576 × 10−7x5

)

[0.4, 0.5]
(

2. + 1.00005x − 0.000295117x2 + 0.167541x3 + 0.0819626x4 + 0.00928717x5

1.5708 − 1.04291 × 10−7x + 5.05234 × 10−7x2 − 1.21958 × 10−6x3 + 1.46618 × 10−6x4 − 7.01984 × 10−7x5

)

[0.5, 0.6]
(

1.99998 + 1.0002x − 0.000921692x2 + 0.168862x3 + 0.080566x4 + 0.00987867x5

1.5708 − 3.25859 × 10−7x + 1.26869 × 10−6x2 − 2.46395 × 10−6x3 + 2.3864 × 10−6x4 − 9.21882 × 10−7x5

)

[0.6, 0.7]
(

1.99993 + 1.00062x − 0.00237386x2 + 0.171395x3 + 0.0783551x4 + 0.0106518x5

1.5708 − 8.18293 × 10−7x + 2.66421 × 10−6x2 − 4.32971 × 10−6x3 + 3.51164 × 10−6x4 − 1.13697 × 10−6x5

)

[0.7, 0.8]
(

1.9998 + 1.00162x − 0.00534205x2 + 0.175805x3 + 0.0750753x4 + 0.0116284x5

1.5708 − 1.76297 × 10−6x + 4.93332 × 10−6x2 − 6.89355 × 10−6x3 + 4.80962 × 10−6x4 − 1.34027 × 10−6x5

)

[0.8, 0.9]
(

1.99947 + 1.00376x − 0.0108784x2 + 0.18297x3 + 0.0704351x4 + 0.0128313x5

1.5708 − 3.38486 × 10−6x + 8.30591 × 10−6x2 − 0.0000101804x3 + 6.23218 × 10−6x4 − 1.52432 × 10−6x5

)

[0.9, 1.0]
(

1.99873 + 1.00796x − 0.0205098x2 + 0.19401x3 + 0.0641039x4 + 0.0142844x5

1.5708 − 5.93162 × 10−6x + 0.000012961x2 − 0.0000141487x3 + 7.71598 × 10−6x4 − 1.68162 × 10−6x5

)

Table 2: Vector approximation for system (3.1) in the interval[0, 1].
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Interval Approximation
[0, 0.1]

(
1. − 1.x + 0.5x2 − 0.166667x3 + 0.0416667x4 − 0.00816941x5 0.

x. 1.

)

[0.1, 0.2]
(

1. − 1.x + 0.499997x2 − 0.166626x3 + 0.0413976x4 − 0.00739198x5 0.
1.x 1.

)

[0.2, 0.3]
(

1. − 0.999997x + 0.499961x2 − 0.166422x3 + 0.0408023x4 − 0.00668854x5 0.
1.x 1.

)

[0.3, 0.4]
(

0.999999 − 0.999979x + 0.499834x2 − 0.165957x3 + 0.0399455x4 − 0.00605204x5 0.
1.x 1.

)

[0.4, 0.5]
(

0.999995 − 0.999925x + 0.499542x2 − 0.16517x3 + 0.0388822x4 − 0.00547612x5 0.
1.x 1.

)

[0.5, 0.6]
(

0.999983 − 0.999797x + 0.499x2 − 0.16402x3 + 0.0376596x4 − 0.00495499x5 0
1.x 1.

)

[0.6, 0.7]
(

0.999954 − 0.999547x + 0.498127x2 − 0.16249x3 + 0.0363175x4 − 0.00448346x5 0
1.x 1.

)

[0.7, 0.8]
(

0.999896 − 0.999117x + 0.496844x2 − 0.160578x3 + 0.0348899x4 − 0.00405681x5 0
1.x 1.

)

[0.8, 0.9]
(

0.999792 − 0.998438x + 0.495083x2 − 0.158291x3 + 0.033405x4 − 0.00367075x5 0
1.x 1.

)

[0.9, 1.0]
(

0.999617 − 0.997437x + 0.492785x2 − 0.155651x3 + 0.0318868x4 − 0.00332143x5 0
1.x 1.

)

Table 3: Approximation for the Sylvester matrix problem (3.6).

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Max. error 2.6999× 10−10 5.1438× 10−10 7.36134× 10−10 9.38797× 10−10 1.1268× 10−9

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

Max. error 1.30572× 10−9 1.48252× 10−9 1.66579× 10−9 1.86603× 10−9 2.09601× 10−9

Table 4: Approximation error for the Sylvester matrix problem (3.6).
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