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Abstract

Trigonometric matrix functions play a fundamental role in the solution of
second order differential equations. Hermite series truncation together with
Paterson-Stockmeyer method and the double angle formula technique allow
efficient computation of the matrix cosine. A careful error bound analysis
of the Hermite approximation is given and a theoretical estimate for the
optimal value of its parameters is obtained. Based on the ideas above, an
efficient and highly-accurate Hermite algorithm is presented. A MATLAB
implementation of this algorithm has also been developed and made available
online. This implementation has been compared to other efficient state-of-
the-art implementations on a large class of matrices for different dimensions,
obtaining higher accuracy and lower computational costs in the majority of
cases.

Keywords: Hermite matrix approximation, matrix cosine, MATLAB, error
bound.

1. Introduction

Matrix functions play a relevant role in different areas of science and
technology. They arise most frequently in connection with the solution of
differential systems and control theory. For example, it is well known that
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the wave equation

v2
∂2ψ

∂x2
=
∂2ψ

∂t2
, (1)

plays an important role in many areas of engineering and applied sciences.
When we use the spatially semi-discretization method of the wave equation
(1), we obtain the matrix differential problem

Y ′′(t) + AY (t) = 0 , Y (0) = Y0 , Y
′(0) = Y1 , (2)

where A is a square matrix and Y0 and Y1 are vectors, see [1] for details.
Matrix problem (2) has the solution

Y (t) = cos
(√

At
)
Y0 +

(√
A
)−1

sin
(√

At
)
Y1, (3)

where
√
A denotes any square root of a non-singular matrix A (see e.g. ex-

pression (1.2) of [2]). More general problems of type (2), with a forcing term
F (t) on the right-hand side arise from mechanical systems without damping,
and their solutions can be expressed in terms of integrals involving the matrix
sine and cosine [3]. Thus, trigonometric matrix functions play an important
role in second order differential systems, similar to matrix exponential eAt in
first order differential systems [4].

Moreover, the matrix cosine is used in the method of Yau-Lu for reducing
the symmetric eigenvalue problem (finding all the eigenvalues and eigenvec-
tors of a dense symmetric matrix) to a number of matrix multiplications
[5].

Computing the matrix sine reduces to computing the matrix cosine through
sin (A) = cos (A− π

2
I). Thus we concentrate on the matrix cosine. Serbin

and Blalock proposed a general algorithm for computing the matrix cosine
in [1], which uses rational approximations and the double angle formula

cos (2A) = 2 cos2 (A)− I. (4)

In [6] new methods for computing matrix exponential, sine and cosine
based on Hermite matrix polynomial series were presented. A new bound
for Hermite matrix polynomials was provided and it was used to give ex-
pressions for obtaining the number of Hermite series terms depending on the
desired approximation error in exact arithmetic. Later, Higham, Smith and
Hargreaves developed two algorithms based on (4) and Padé approximation
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in [7, 2], including truncation and rounding error analysis. Recently, in [8] the
authors introduced a new parameter in the matrix cosine and sine Hermite
series from [6] and new error bounds, improving both accuracy and efficiency.

In this paper we use the new matrix cosine Hermite series from [8], pro-
viding sharper bounds for Hermite matrix polynomials and the approxima-
tion error, and computing the optimal values of the series parameter to de-
velop a competitive Hermite algorithm for computing the matrix cosine in
IEEE double precision arithmetic that uses: matrix scaling based on (4),
Paterson-Stockmeyer’s method for the evaluation of Hermite series [9, 10],
and accuracy bound tests similar to those proposed in [10, p. 6456-6457].
A MATLAB implementation of this algorithm is made available online and
it is compared with the MATLAB function funm [11] and a MATLAB im-
plementation based on the Padé algorithm given in [2], i.e. function cosm,
providing higher accuracy and efficiency than both methods in the majority
of test matrices.

This paper is organized as follows. Section 2 summarizes previous results
of Hermite matrix polynomial series expansion of cos (A) and the develop-
ment of a new error bound. In Section 3, an algorithm based on that error
bound is described. Numerical experiments are presented in Section 4. Fi-
nally, conclusions are given in Section 5.

Throughout this paper, [x] denotes the integer part of x. To obtain the
above mentioned error bound, we will use any subordinate matrix norm ∥A ∥,
A ∈ Cr×r, and in the subsequent error analysis, we will use the 1-norm ∥A ∥1.
If A(k, n) is a matrix in Cr×r for n ≥ 0, k ≥ 0, the following identity holds [6]:

∑
n≥0

∑
k≥0

A (k, n) =
∑
n≥0

n∑
k=0

A (k, n− k) . (5)

2. Hermite matrix polynomial series expansions of matrix cosine.
Error bound

For the sake of clarity in the presentation of the following results we recall
some properties of Hermite matrix polynomials which have been established
in [12, 6, 8]. From (3.4) of [12, p. 25] the nth Hermite matrix polynomial
satisfies

Hn

(
x,

1

2
A2

)
= n!

[n
2
]∑

k=0

(−1)k (xA)n−2k

k!(n− 2k)!
, (6)
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for an arbitrary matrix A in Cr×r. From [8], we have the following Hermite
matrix polynomial series expansion of the matrix cosine cos (Ay):

cos (Ay) = e−
1
λ2

∑
n≥0

(−1)n

λ2n(2n)!
H2n

(
yλ,

1

2
A2

)
. (7)

Denoting by CN(λ,A
2) the Nth partial sum of series (7) for y = 1, one gets

the approximation

CN(λ,A
2) = e−

1
λ2

N∑
n=0

(−1)n

λ2n(2n)!
H2n

(
λ,

1

2
A2

)
≈ cos (A), λ ∈ C. (8)

Working similarly as in [13, pp. 1913], we can obtain a bound for Hermite
matrix polynomials

∥∥H2n

(
x, 1

2
A2

)∥∥ based on ||A2||, see [2], using the Taylor
series for the hyperbolic cosine cosh(y) =

∑
n≥0 y

2n/(2n)!. Taking norms in
(6), one gets

∥∥∥∥H2n

(
x,

1

2
A2

)∥∥∥∥ ≤ (2n)!
n∑

k=0

(
∥A2∥

1
2

)2(n−k)

k!(2(n− k))!
|x|2(n−k). (9)

On the other hand, using (5), it follows that

e cosh
(
|x|

∥∥A2
∥∥ 1

2

)
=

∑
n≥0

(
|x| ∥A2∥

1
2

)2n

(2n)!

∑
k≥0

1

k!
=

∑
n≥0

∑
k≥0

(
|x| ∥A2∥

1
2

)2n

(2n)!k!

=
∑
n≥0

n∑
k=0

(
∥A2∥

1
2

)2(n−k)

k!(2(n− k))!
|x|2(n−k), (10)

and as a consequence

n∑
k=0

(
∥A2∥

1
2

)2(n−k)

k!(2(n− k))!
|x|2(n−k) ≤ e cosh

(
|x|

∥∥A2
∥∥ 1

2

)
. (11)

Multiplying by (2n)! in (11) and using (9), we have the result:∥∥∥∥H2n

(
x,

1

2
A2

)∥∥∥∥ ≤ (2n)! e cosh
(
x
∥∥A2

∥∥ 1
2

)
, ∀x ∈ R, n ≥ 0, ∀A ∈ Cr×r.

(12)

4



Taking into account approximation (8) and bound (12), it follows that∥∥cos (A)− CN(λ,A
2)
∥∥ ≤ e−

1
λ2

∑
k≥N+1

1

λ2k(2k)!

∥∥∥∥H2k

(
λ,

1

2
A2

)∥∥∥∥
≤ e1−

1
λ2 cosh

(
λ
∥∥A2

∥∥ 1
2

) ∑
k≥N+1

1

λ2k

= e1−
1
λ2 cosh

(
λ
∥∥A2

∥∥ 1
2

)[∑
k≥0

1

λ2k
−

N∑
k=0

1

λ2k

]
. (13)

Simplifying the geometric series in (13), we have finally the bound:

∥∥cos (A)− CN(λ,A
2)
∥∥ ≤

e1−
1
λ2 cosh

(
λ ∥A2∥

1
2

)
(λ2 − 1)λ2N

. (14)

3. Algorithm

In this section we describe Algorithm 1 (cosher), based on Hermite series,
which uses bound (14) for choosing the scaling factor for computing the
matrix cosine.

Algorithm 1 (cosher) Given a matrix A ∈ Cr×r and the order N of Her-
mite matrix approximation of the cosine function, this algorithm computes
B ∼= cos(A).

1: Preprocessing of matrix A: Ǎ.
2: Compute optimal values of λ and s.
3: Scaling phase: Ã = Ǎ/2s

4: Compute B̃ = CN(λ, Ã
2), where CN is the Hermite approximation of the

cosine function.
5: for i = 1 : s do
6: B̃ = 2B̃2 − I
7: end for
8: Postprocessing of matrix B̃: B.

The preprocessing and postprocessing are based on applying transforma-
tions to reduce the norm of matrix A and recover the matrix B ∼= cos(A)
from the matrix B̃ obtained in the Loop 5-7. The available techniques to
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reduce the norm of a matrix are argument translation and balancing [14, p.
299]. The argument translation is based on the formula

cos(A− πjI) = (−1)j cos(A), k ∈ Z,

and on finding the integer q such that the norm of matrix A−πqI is minimum.
This value can be calculated by using Theorem 4.18 from [14]. Balancing is a
heuristic that attempts to equalize the norms of the kth row and kth column,
for each k, by a diagonal similarity transformation defined by a non singular
matrixD. Balancing tends to reduce the norm, though this is not guaranteed,
so we will use it only for matrices where the norm is really reduced. For those
matrices, if Ǎ = D−1(A−πqI)D is the obtained matrix in the preprocessing,
the postprocessing consists of computing B = (−1)qD cos(B̃)D−1.

For the evaluation of CN(λ, Ã
2) the Horner and Paterson-Stockmeyer’s

method can be applied [9, 10], obtaining previously with MATLAB the sym-
bolic expression of CN(λ, Ã

2) as a polynomial of matrix Ã2 with degree N
and coefficients depending on λ, for each considered value of N . The double
angle formula (4) is used to recover cos(Ǎ) from the matrix B̃ obtained in
Step 4, see [1] for details.

The optimal values of N with respect to cost of the evaluation of matrix
polynomial CN(λ, Ã

2) with Paterson-Stockmeyer method are included in the
set SN = {1, 2, 4, 6, 9, 12, 16, 20, · · · }, see [10, p. 6454]. The scaling factor s
and the parameter λ is chosen as follows. If Nk, where k is the position of N
in SN , is the chosen order of Hermite approximation, the number of matrix
product evaluations in Algorithm 1 is equal to k + s. Hence, the number of
matrix products depends on the scaling factor s. For the evaluation of cos (A)
with IEEE double precision arithmetic, analogously to [2], we consider an
absolute error-based algorithm. If we take the error in (14) to be lower than
or equal to the unit roundoff in double precision floating-point u = 2−53, i.e,

e1−
1
λ2 cosh

(
λ

√∥∥∥(Ǎ/2s)2∥∥∥
1

)
(λ2 − 1)λ2N

≤ u, (15)

then

s ≥ 1

2
log2

(∥∥Ǎ2
∥∥
1

)
+ log2

 λ

arc cosh
(

u(λ2−1)λ2N

e1−1/λ2

)
 . (16)

We choose the parameter λ = λmin, where λmin is the value of λ such that
the right-hand side of (16) reaches the minimum value. Hence, if we define
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ΘN =
1

λmin

arc cosh

(
u(λ2min − 1)λ2Nmin

e1−1/λ2
min

)
(17)

then, using (16), it follows that

s =

log2

√
||Ǎ2||1
ΘN

 . (18)

We discard the values of N except for {1, 2, 4, 6, 9, 12, 16, 20}, because for
N = 25, 30 the corresponding values of λmin are negative. The values of λmin

are listed in Table 1a. These values are independent of the norm of matrix
Ǎ2, see (16), and they have been computed by using the symbolic functions
diff and solve from the Symbolic Math Toolbox 5 of MATLAB. The values
ΘN of (17) are listed in Table 1b.

λmin

N=1 28614.3702451495925
N=2 1304.99637514915918
N=4 110.428178898694292
N=6 38.3201292093300207
N=9 17.3255806739152432
N=12 11.2995380153548675
N=16 8.08117035928883672
N=20 6.56678564572528643

(a) Optimal values of λmin.

ΘN

N=1 1.3988322173046763·10−4

N=2 4.5977704110066707·10−3

N=4 9.0556596644120163·10−2

N=6 3.6534325997941364·10−1

N=9 1.1543637495804793
N=12 2.3009899711770276
N=16 4.2073703112196084
N=20 6.3959908727565082

(b) Values of ΘN from (17).

Figure 1: Tables of λmin and ΘN .

In the final MATLAB implementation of cosher, available online in
http://personales.upv.es/∼jorsasma/cosher.m, we have applied similar ac-
curacy bound tests to those in [10, p. 6456-6457] to the sum of the highest
degree terms of the Hermite series CN(λ, Ã

2). The tests consist of verify-
ing if the norm of the sum of several highest degree terms is lower than the
unit roundoff. If that is the case, then the corresponding series terms can
be neglected, permitting to save matrix products. This kind of tests were
already performed with the matrix exponential Hermite series in [10], sav-
ing matrix products and therefore reducing the cost for some matrices. For
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a complete description of algorithm cosher see MATLAB implementation
cosher.m mentioned above.

The analysis of rounding errors of Algorithm 1 can be made analogously
to the analysis of rounding errors given in [14, p. 293] for polynomials p2m(A)
or q2m(A) from the Padé approximation, see (12.25) from [14, p. 293], and
the analysis of the rounding error in the evaluation of A2 given in the same
reference. A complete analysis is given in [15].

4. Numerical examples.

In this section we compare MATLAB implementation cosher with func-
tions funm and cosm. funm is a MATLAB function that computes ma-
trix cosine and other matrix functions at square matrices using the Schur-
Parlett algorithm from [11]. cosm is a MATLAB implementation of Algo-
rithm 5.1 proposed in [2] which uses Padé approximants of cosine function
(http://www.maths.manchester.ac.uk/ higham/mftoolbox). MATLAB 7.9
(R2009b) implementations were tested on an Intel Core 2 Duo processor
at 2.52 GHz with 4 GB main memory. Algorithm accuracy was tested by
computing the relative error

E =
∥ cos(A)− Ỹ ∥1

∥cos(A)∥1
,

where Ỹ is the computed solution and cos(A) the exact solution. In the tests
we did not use any preprocessing/postprocessing in the implemented algo-
rithms. Analogously to the experiments in [16], we found that turning on pre-
processing in this algorithm provided similar results to those presented in this
section without preprocessing. We used a set of 102 test matrices: forty-seven
10×10 matrices obtained from the function matrix of the Matrix Computa-
tion Toolbox [17], twenty four 9×9 or 10×10 matrices from the Eigtool MAT-
LAB package (http:/web.comlab.ox.ac.uk/pseudospectra/eigtool/), twenty
four matrices from the state-of-the-art of matrix functions [11, 18, 4, 19,
20, 21, 22, 10] and seven from built-in MATLAB functions, sized from 2× 2
to 20×20. For a complete description of the set of text matrices see [10]. The
“exact” matrix cosine was calculated analytically when possible, and other-
wise using MATLAB’s Symbolic Math Toolbox with high precision arith-
metic.

Tables 2a and 2b show the comparatives cosher-cosm and cosher-funm
for N ∈ {9, 12, 16, 20}. The first three rows show the percentages of times
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that the relative error of the first function is lower, equal or greater than
the relative error of the second function. The fourth row shows the ratio
of matrix products needed for computing the matrix cosine for over all the
test matrices. In the same way as in [10, p. 6459] we have considered that
the asymptotic cost in terms of matrix products for solving the multiple
right-hand side linear system that appears in Padé algorithm is 4/3. The
computational cost of funm depends greatly on the eigenvalue distribution of
the considered matrix. If A ∈ Cr×r, this cost is roughly between 28r3 flops
and r4/3 flops [14, p. 228]. Since the cost of a square matrix product is 2r3

flops, we estimated by default that the cost of funm is 14 matrix products.

N=9 N=12 N=16 N = 20
L 33.33 67.65 84.31 72.55
E 0 0 0 0
G 66.67 32.35 15.69 27.45
R 0.94 0.92 0.92 0.91

(a) Comparative cosher-cosm.

N=9 N=12 N=16 N=20
64.71 74.51 77.45 73.53
0 0 0 0

35.29 25.49 22.55 26.47
0.60 0.58 0.58 0.58

(b) Comparative cosher-funm.

Figure 2: Comparatives cosher-cosm and cosher-cosm. The first three rows show the

percentage of times that relative error of cosher is lower (L), equal (E) or greater (G)

than relative error of cosm or funm. The last row shows the ratio (R) of costs in terms of

matrix products between cosher and cosm (2a), and cosher and funm (2b).

Figure 3 shows the performances [23] of the functions compared, where α
coordinate varies between 1 and 5 in steps equal to 0.1, and p coordinate is the
probability that the considered algorithm has a relative error lower than or
equal to α-times the smallest error over all the methods, where probabilities
are defined over all matrices.
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Figure 3: Performance profile of cosher, cosm and funm for the set of test
matrices.

From tests, the following conclusions can be emphasized:

• Computational cost of cosher is lower than computational costs of
cosm and funm for all considered orders.

• Function cosher is more accurate than cosm for N = 12, 16, 20, and
it is more accurate than funm for all considered orders.

• In the performed numerical tests, the optimal order of Hermite algo-
rithm is N = 16.

5. Conclusions.

In this work an efficient algorithm to compute the matrix cosine based
on Hermite matrix polynomial expansions has been proposed, improving the
algorithms proposed by the authors in [6, 8]. The new algorithm uses a scal-
ing technique based on the double angle formula, the Horner and Paterson-
Stockmeyer’s method for computing the Hermite matrix polynomial approxi-
mation, a new bound of the absolute error in exact arithmetic, and accuracy
bound tests for neglecting higher order series terms. A MATLAB imple-
mentation of this algorithm has been compared with the built-in MATLAB
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function funm and the MATLAB function cosm based on the Padé algorithm
given in [2]. Numerical tests show that the new algorithm has lower com-
putational cost and higher accuracy than both functions funm and cosm for
several orders of the Hermite approximation, reaching its best performance
when Hermite approximation of order N = 16 is used.
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