
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1109/TAP.2012.2231934

http://hdl.handle.net/10251/44373

Institute of Electrical and Electronics Engineers (IEEE)

Valero-Nogueira, A.; Herranz Herruzo, JI.; Baquero Escudero, M.; Hernández-Murcia, R.;
Rodrigo Peñarrocha, VM. (2013). Practical derivation of slot equivalent admittance in
periodic waveguides. IEEE Transactions on Antennas and Propagation. 61(4):2321-2324.
doi:10.1109/TAP.2012.2231934.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 1

Practical Derivation of Slot Equivalent Admittance
in Periodic Waveguides

Alejandro Valero-Nogueira, IEEE Senior Member, Jose I. Herranz-Herruzo, IEEE Member, Mariano Baquero,
IEEE Member, Rafael Hernández-Murcia, Vicent Rodrigo

Abstract—This paper describes a procedure to obtain the
equivalent-admittance representation of a slot in a waveguide.
The approach is general but it is particularly interesting for
periodic waveguides because it does not require to know the
waveguide’s Green’s function nor to properly define the ports
in such waveguides. The procedure is demonstrated on a well-
known rectangular waveguide. It is later applied to a periodic
waveguide and it is used to design a small array. Measurements
of the array performance are shown to validate the approach.

Index Terms—Corrugated waveguides, gap waveguides, peri-
odic structures, slot antennas, slot arrays

I. INTRODUCTION

PERIODIC waveguiding structures have been used for
decades for a variety of applications in microwave,

millimeter-wave, and optic-wave regions [1]. More recently
these structures have gained renewed interest thanks to the
development of novel artificial surfaces and the introduction
of composite right/left handed waveguides [2]. Also, newly
introduced contactless waveguides capable of confined wave
propagation, resort to the high impedance effect of a periodic
bed of nails to avoid contact between metal plates [3]. The
analysis of periodic transmission lines is usually performed
by invoking Bloch-Floquet theorem in order to determine the
propagation constant of the supported wave.

When a nonperiodic obstacle is present in the periodic
waveguide, in the form of a slot, an iris, a coaxial probe, etc,
the direct use of Floquet’s theorem is not applicable since it
assumes there is a fixed progressive phase shift from one unit
cell to the other, which is not the case when an obstacle is
there. The theoretical modeling of a periodic structure with an
aperiodic obstacle in it, or with a localized source is a chal-
lenging problem addressed already in the past in [4] among
others. Given the complexity of the problem, most analyses
up to date focus on very specific structures. The modeling
of arbitrary obstacles in periodic structures is still an open
problem even from a numerical point of view. In this regard,
an accurate procedure to indirectly obtain S-parameters using
data obtained from commercial electromagnetic simulators
was recently published [5].

The kind of obstacle considered in this work is a rectangular
shunt slot. Nonetheless, the approach is in fact valid for any
type of aperture. Determination of the Equivalent-Admittance
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representation of shunt slots is a necessary first step before
being able to design a slotted waveguide array. In the usual
procedure, Yshunt is obtained from the S11-parameter of a slot
alone using Yshunt = −2S11/(1 + S11).

When dealing with periodic waveguides the Green’s func-
tion of a current in it is not known to be able to calculate
S11 from a Method of Moments approach. Furthermore, if
a purely numerical approach is going to be followed using
commercial electromagnetic suites, port definition is limited
to continuous cross-section waveguides. These ports, if used,
would introduce a discontinuity between the periodic waveg-
uide and the port itself, leading to deceiving results in the
Yshunt calculation. This is illustrated in Fig. 1.

In this paper an indirect approach is proposed to obtain the
S11-parameter associated to a slot in a waveguide. In brief, the
procedure requires the evaluation of an excitation field within
the periodic waveguide in the absence of the slot and the S22-
parameter calculated using the slot as if it were an input port
(See Fig. 1).

Figure 1. Waveguide exhibiting a periodic profile with a longitudinal slot in
the upper plate

II. REFLECTION COEFFICIENT DERIVATION

The indirect derivation of the reflection coefficient is per-
formed starting from an aperture integral formulation applied
to the slot. The derivation can also be performed from basic
microwave network analysis as in [6], but the current approach
is much more straightforward.

A. Aperture Integral Equation

The aperture integral equation (AIE) is the standard pro-
cedure to deal with apertures on conducting surfaces. Let us
assume the aperture is a slot for simplicity. The AIE essentially
establishes an integral equation by formulating two equivalent
problems for the two regions, let us name them a and b,
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connected through the aperture. These two problems become
independent as the slot is closed by a conducting surface.
Continuity of tangential electric fields in the aperture is assured
by imposing opposite equivalent magnetic currents on both
sides of the closed aperture, while the enforcement of the
continuity condition of tangential magnetic fields yields the
operator equation,

Ha
tan (M) = Hb

tan (−M) +Hinc
tan (1)

whose solution determines the unknown equivalent mag-
netic current M.

An approximate solution for M in (1) can be obtained using
the Method of Moments (MoM). Let us consider a slot of
length L and width w. Let

{
1
wm

n

}
be a set of N basis

functions such that M =
∑ vn

w mn and
{
wn = 1

wmn

}
a set of

weighting functions. For convenience, the basis and weighting
functions are of the sinusoidal type in the slot’s long dimen-
sion and constant in the narrow one: mn = sin

(
nπ
L x
′) x̂′.

Therefore, the integral equation can be written in matrix form
as [

Y a + Y b
]
[V ] = [I] (2)

where [Y a] = [〈wm,H
a
tan (mn)〉]N×N is the external admit-

tance matrix,
[
Y b
]
=
[〈
wm,H

b
tan (mn)

〉]
N×N the internal

one and [I] =
[〈
wm,H

inc
tan

〉]
N×1 the excitation vector. As

shown in (2), the aperture admittance is the parallel of two
admittances which correspond to two independent situations
seen from the aperture, as emphasized above.

The external problem is usually approximated by an infinite
ground plane. Therefore Y a is obtained applying image theory
and the free-space Green’s function. On the other hand the
internal admittance calculation would require the knowledge of
the Green’s function of the waveguide at hand, which is known
only for a bunch of cases. Alternatively, the internal admittance
can be regarded as the loading admittance of a rectangular
waveguide showing the slot’s cross-section, as sketched in Fig.
1. This waveguide presents a multimode reflection coefficient,
S22, associated to the first N TEn0 modes of interest, which
can be computed numerically. The transverse electric field of
these modes behave like the basis functions chosen above.
Then, from basic network theory, the normalized internal
admittance can be calculated as[

Y b
]
= [I + S22]

−1
[I − S22] (3)

where [I] is the identity matrix.
It is noteworthy to observe at this point that the main

waveguide ends must be properly matched for the S22 co-
efficient to provide the internal admittance correctly since the
waveguide is supposed to be infinite for the Yshunt calculation.
This important aspect will be discussed in more detail in next
section. For those cases in which slot thickness must be taken
into account, either it can be included in the numerical model
as part of the internal admittance or modeled separately with
a two-port generalized admittance matrix and combined with
the external or the internal admittance.

Vector [I] in (2) is normally calculated using the funda-
mental mode of the waveguide as the excitation field. For the
purpose of this derivation it is useful to assume that this field
is normalized to have unit power and it is originated by a
known magnetic current M0, such that M0 = E0 × n, being
E0 the transverse electric field component of the waveguide’s
fundamental mode, and n a unit vector oriented in the longi-
tudinal direction of the waveguide. Once the excitation vector
is known, equation (2) is solved for the voltage vector.

B. Reflection Coefficient

In our case, the reflection coefficient sought is the ratio
of the field scattered back from the slot to the incident
field radiated by M0. Any field component can be chosen
to establish this ratio. Here it is convenient to choose the
transverse magnetic field. With all the assumptions made, the
S11-parameter can now be written as

S11 =
Hscattered
t

Hinc
t

=
〈
M0,H

scattered
t (M)

〉
(4)

where M is the magnetic current known after solving (2).
The difficulty at this point, however, is that since the

waveguide’s Green’s function is not known, it is not possible
to obtain the scattered field directly. Yet, since we are not
interested in the scattered field itself but in the ratio of the
scattered to the incident field, the reciprocity theorem can be
invoked to state that〈

M0,H
scattered
t (M)

〉
=
〈
M,Hinc

tan (M0)
〉

(5)

which can be written very nicely in matrix form with the
help of (2) as

S11 = [I]
t
[V ] = [I]

t [
Y a + Y b

]−1
[I] (6)

where the superscript t means transpose.
After this derivation it is evident that (6) is in fact valid

for any aperture size. Furthermore, it can be used for arbitrary
cross-section waveguides both continuous and periodic ones.
It can also be extracted that the expression is formally exact,
being its accuracy bounded by the intrinsic precision of the
numerical method used to compute

[
Y b
]
.

III. RESULTS

A series of examples will be considered below in order to
show the accuracy achievable and the practical implementation
of expression (6).

A. Shunt Slot in Rectangular Waveguide

Initially, a well-documented case such as a shunt slot in
a rectangular waveguide will be considered for reference
purposes. The S11-parameter can be obtained using different
techniques. Here the reflection coefficient will be calculated
using an accurate custom MoM code which uses the waveg-
uide Green’s function. In addition, results obtained using
CST’s frequency domain solver [7] will be shown. We choose
in particular a WR-90 waveguide and select one of the cases
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treated by Stern and Elliott in [8], where a very detailed study
can be found.

In this case the slot thickness is zero. The internal admit-
tance in (6) is calculated placing a waveguide port at the
slot and computing the generalized scattering parameters of
five excitation modes while the waveguide is terminated with
waveguide ports, i.e, it is perfectly matched. This computation
is performed with CST. The external admittance is computed
with the custom MoM code.

As explained above, each term of the excitation vector is
calculated from

In =
1√
2P0

∫ ∫
slot

sin
(nπ
L
x′
)
Hinc
x dSslot (7)

Hinc
x is computed numerically at the interface between

internal and external admittances using CST again but feeding
the waveguide from one end this time, and in the absence of
any port or physical aperture at the slot location. Magnetic field
amplitude must be normalized with respect to the input power
which in general will be P0 = 1 − |S11|2. Besides, incident
field phase requires to be referenced to the slot’s center for
the Yshunt calculation.

Fig. 2 shows the slot’s equivalent admittance calculated at 9
GHz using (6) and the other two procedures mentioned above.
The figure also shows a black dot which indicates the resonant
length obtained by Stern and Elliott for this case (slot offset
of 6.35 mm).

The most accurate results are those obtained with the
Method of Moments. The number of basis functions was
increased up to a convergence point. This happened for 18
basis functions and the resonant length appeared to be very
close to Stern and Elliott’s. The indirect method proposed
here is shown in black line. These results were obtained for
5 modes. Simulations using more modes were also performed
but very poor convergence was observed. If fact with only one
mode, results were almost the same as those in the figure. The
reason for this lack of convergence is attributed to numerical
inaccuracies in the computation of the generalized scattering
matrix. When the slot is shorter than half wavelength, all
modes considered in the computation are in fact evanescent.
This behavior increases with the order of the mode up to a
point in which numerical errors may exceed the actual mode
weight. We believe that other type of numerical techniques
such as Mode Matching may produce better results.

B. Shunt Slot in a Waveguide With Dielectrically Filled Cor-
rugations

The situation considered now is a longitudinal slot in a
waveguide with transverse corrugations filled with a dielectric
material. This problem was studied previously with another
indirect method described in [5]. This is one of the few, if not
the only, periodic case for which the S11-parameter of a slot
is available for reference.

As in III-A, the first step is matching the waveguide ends
so that reflections are suppressed or at least minimized. For
that purpose the matched transitions designed in [5] are used.

Figure 2. Yshunt of a longitudinal slot in a WR-90 waveguide calculated
at 9 GHz with three different methods. The slot’s offset is 6.35 mm (0.25
inches) and width is 1.6 mm. Slot is considered of zero thickness, except for
the CST model where a thickness of t = 0.05 mm was used to enhance
numerical accuracy. The black dot in the middle indicates the resonant length
obtained by Stern and Elliott in [8] for this case.

The geometry and all representative dimensions are shown
in Fig. 3. Besides the corrugated waveguide, two stepped
transitions to WR-90 can be seen on both waveguide ends.
The relative permittivity of the grooves’ filling is εr = 2.17.
Slot offset is δy = 1.5 mm.

Figure 3. Corrugated waveguide with input and output stepped transitions to
WR-90. Side walls have been removed to show the waveguide. Dimensions
for the corrugated waveguide are a = 16 mm, b = 4 mm, hc = 12.6 mm,
p = 3.21 mm, and wc = 3.175 mm. Dimensions for the stepped transitions
are as = 22.86 mm, bs = 10.1 mm, hs = 2.45 mm, ht = 3.71 and
ws = 8.6 mm. Slot width is w = 1.0 mm, thickness t = 0.45 mm and
offset δy = 1.5 mm.

Fig. 4 shows the Yshunt for structure in Fig. 3 as a function
of slot’s length. The working frequency is now 8.5 GHz.
Agreement with respect to the reference method is very re-
markable, particularly the resonant length and the conductance
amplitude, which are the two quantities sought out in slotted
waveguide array design. As in III-A, five modes were used in
this analysis too.

IV. ARRAY DESIGN

In this last section we apply the new formula to the design of
a small array in a periodic waveguide. The waveguide chosen
is a groove gap waveguide [9], a new type of waveguide
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Figure 4. Normalized equivalent shunt admittance of a longitudinal slot in
the waveguide shown in Fig. 3 at f = 8.5 GHz, as a function of slot length.
Offset, δy = 1.5 mm, slot width, w = 1.0 mm. Simulation using proposed
method is compared with data provided in [5].

which does not need metal contact between upper and lower
conductor. The waveguide consists of a textured surface for
the lower conductor and a conducting plate for the upper one.
The textured surface is a 2D periodic bed of nails, which are
a quarter-wavelength in height, that creates a high impedance
condition in the gap between the nails top and the upper plate.
Such condition suppresses any propagation in the gap but if
a set of nails is removed to open a groove, propagation can
take place there. Fig. 5 shows the textured surface. The bed of
nails shown has been designed to operate from 25 to 50 GHz.
Relevant dimensions are wn = 1.2 mm, hn = 2 mm and p = 3
mm for width, height and periodicity of nails, respectively. The
gap between nails top and upper plate is d = 0.4 mm.

Figure 5. Groove gap waveguide. Nails width, height and periodicity are
1.2 mm, 2 mm and 3 mm, respectively. Groove width and length are 5.4 mm
and 38 mm, respectively.

The groove waveguide can propagate a fundamental mode
very similar to the TE10 mode of a conventional rectangular
waveguide. To that purpose, waveguide dimensions have been
chosen to be a = 5.4 mm, b = 2.4 mm and L = 38
mm for width, height and length, respectively. The array of
shunt slots is of the resonant type, being 37.5 GHz the design
frequency and N = 5 the number of elements. The amplitude
taper chosen is an ordinary triangular distribution. The array
is designed following the conventional procedure described in
[10]. The waveguide was fed with a coaxial probe.

In Fig. 6, the H-plane pattern is shown. The correspondence
between measured and simulated main lobe for the H-plane is
very good.

Figure 6. H-plane pattern of slot array with triangular distribution

V. CONCLUSIONS

A useful procedure to determine the equivalent admittance
of a slot in a periodic waveguide has been described, evaluated
and verified experimentally. Expression (6) is theoretically
exact and in fact can be used not only for periodic waveguides
but also for continuous waveguides of arbitrary shape, or
waveguides having arbitrary obstacles within. The inaccuracies
detected during the computations are due to the numerical
procedure used for the computation of the reflection coefficient
at the slot, when it is seen as a port, due to the evanescent
nature of the modes involved.
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