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Abstract

HgWO4 at ambient pressure is characterized using a combination of ab initio calculations, X-ray diffraction 
and Raman scattering measurements. The effect of low pressure and temperature on the structural stability is 
analyzed. Extending our ab initio study to the range of higher pressures, a sequence of stable phases up to 30 
GPa is proposed.
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1. Introduction

In spite of the interest  ABO4 compounds have attracted in recent  years,  the pressure behaviour of 

mercury tungstate remains largely unknown. It is however a rather interesting compound, since it does not 

crystallize in the scheelite (CaWO4-type, space group [SG] no. 88, I2/a, Z=4) nor in the wolframite (NiWO4-

type, SG no. 12, P2/c, Z=2) structures, the two most usual ambient-pressure structures for tungstates [1]. The 

HgWO4-type (SG no. 15, C2/c, Z=4) structure has some similarities with the wolframite, but in particular the 



cationic environments are different, as reflected by the coordinations: [6,6] for wolframite and [6+2,6] for 

HgWO4-type, where the first number in brackets is the oxygen coordination of the Hg cation, and the second, 

that of the W. Thus, the sequence of stable phases under pressure of HgWO4 can be expected to have notable 

differences  with  respect  to  the  ones  proposed for  compounds  with  the  scheelite  or  wolframite  structure, 

scheelite→fergusonite→BaWO4-II-type [1] and wolframite→CuWO4-type→Cmca [2-4] respectively.

In this paper, we study the pressure behaviour of HgWO4. Although we include some results of our X-

ray diffraction and Raman scattering measurements, we will focus on our theoretical  ab initio  calculations. 

Further details of our experimental work can be found in [5].

2. Method

All the ab initio calculations presented in this work have been performed with the VASP [6,7] code, 

which works within the density functional theory framework, using plane-waves basis and pseudopotentials. 

Projector augmented-wave [8] pseudopotentials and the recently proposed PBEsol [9] approximation for the 

exchange and correlation energy have been adopted. The latter is a GGA approximation tuned to produce a 

good description of the structural equilibrium properties of solids and surfaces.

An energy cutoff of 530 eV for the plane-waves basis and dense Monkhorst-Pack [10] reciprocal space 

grids ensure an energy convergence of 1 meV per formula unit. For each structure and volume considered, a 

full optimization of the lattice parameters and atomic positions was performed until the components of the 

stress tensor differed from the isotropic diagonal form in less than 0.1 GPa, and the maximum atomic force 

was lower than 0.001 eV/Å3. 

The energy and volume data were fitted with a 4th order Birch-Murnaghan equation of state to obtain 

the pressure, equilibrium volume (V0), bulk modulus (B0) and the first derivative of the latter (B'0). From the 

values of energy, volume and pressure, the enthalpy of each structure was calculated to determine the most 

stable phase amongst the ones considered at each pressure and zero temperature (zero-point motion effects 

were  also  not  included). The  Gibbs  free  energy  was  calculated  within  the  quasi-harmonic  Debye 

approximation  with  the  GIBBS  [11] code  to  estimate  the  effect  of  temperature  on  the  HgWO4-

type→wolframite transition. Phonon frequencies at the Γ point of the HgWO4-type structure were calculated 

using the small displacements method [12].

3. Results and discussion



Figure 1 shows the energy as a function of volume curves for all the structures considered as possible 

stable phases of HgWO4. Among these structures, the calculations find the HgWO4-type as the lowest-energy 

phase at zero pressure, in agreement with the experimental observations. The calculated values of V0, B0, and 

B'0 are respectively 81.61  Å3 per formula unit,  60.6 GPa, and 8.9, which are in good agreement with the 

experimental  values  of 81.01  Å3,  72.7  GPa,  and  5.1.  In  particular  note  that  the  PBEsol  approximation 

overestimates V0 by less than 1%, much lower than the usual 5% produced by other GGA approximations.

In  Table  1,  calculated  Raman  frequencies  are  presented  together  with  the  data  from our  Raman 

experiments. The overall agreement is quite reasonable, with a small underestimation of the theoretical values 

with  respect  to  the  experimental  ones  which  has  been  related  to  the  GGA  approximation  [13].  X-ray 

diffraction patterns can also be indexed with a HgWO4-type structural model (see Figure 2.(a) in [5]). Thus, 

the ambient-pressure phase of HgWO4 is unequivocally determined.

Upon increase of pressure, the wolframite structure becomes more stable than the HgWO4-type, as 

shown by the free energy as a function of pressure curves of Figure 2. As pointed out in [14], both structures 

are very similar. In the I2/a setting, the HgWO4-type structure features lattice parameters very close to those 

of a wolframite P2/c supercell doubled along its c axis, as shown in Figure 3. The atomic positions are also 

similar,  the most  noticeable  difference  being in  the stacking of  the oxygens  [14],  which produces rather 

different environments around both cations.  Despite all these similarities,  which justify their proximity in 

energy, it should be stressed that in our calculations the two structures are markedly different. 

It should also be noted that in our experiments at ambient temperature we didn't found indications of 

the wolframite structure up to the maximum pressure reached of 16 GPa for X-ray diffraction experiments and 

25 GPa for Raman scattering measurements (although the quality of the Raman spectra above 16 GPa is poor 

[5]). To estimate the effect of the temperature on these energetically close phases, we have calculated the 

Gibbs free energy of the HgWO4-type and wolframite structures at 300 K within the Debye approximation. 

The difference in  free energy between both phases is marked by the discontinuous line of Figure 2.(b). As 

shown, temperature makes the wolframite phase more unfavourable with respect to the HgWO4-type, and the 

transition pressure is increased from ~2 GPa at 0 K to ~11 GPa at 300 K. This pressure is rather close to the 

maximum reached in experiments, where measurements are of lower quality, and this may justify the lack of 

experimental observations of the wolframite phase.

As  a  final  comment  with  regard  to  the  stability  at  lower  pressures,  we  note  that  in  the  present  

calculations a full optimization of the lattice and atomic parameters of the triclinic CuWO4-type (SG no. 2, P-



1, Z=2) structure have lead to the wolframite structure. This is in marked contrast to the situation found in the 

Mg, Zn, and Cd tungstates [2-4]. Also, the fergusonite (YNbO4-type, SG no. 15, I2/a, Z=4) structure has been 

found to be identical to the scheelite.

Extending our  ab initio study to higher pressures, we have considered several candidates for stable 

phases:  BaWO4-II-type (SG no. 14,  P21/n,  Z=8), Cmca (SG no. 64,  Cmca,  Z=8), BaZnCl4-type (SG no. 60, 

Pbcn, Z=4 ), LaTaO4-type (SG no. 14, P2/c, Z=4), CaUO4-type (SG no. 166, R-3m, Z=1), BaMnF4-type (SG 

no. 36, A21am, Z=4), and SrUO4-type (SG no. 57, Pbcm, Z=4) structures. Some of these structures have been 

found to be energetically competitive in previous works and all are likely high-pressure phases on the basis of 

crystal-chemical considerations  [1]. Although ambient temperature can affect energetically close phases at 

low pressures, it is unlikely that it will completely modify the sequence of stable phases under high pressure, 

and thus we have performed only zero-temperature calculations. As shown in  Figure 2.(b), the BaWO4-II-

type structure becomes the most stable after the wolframite and HgWO4-type ones. Increasing the pressure 

further,  the BaWO4-II-type structure becomes unstable with respect to the Cmca. In these two first order 

transitions, the coordination changes first from [6+2,6] to [8,6], and then to [11,6+1]. The sequence HgWO4-

type→BaWO4-II-type→Cmca  of transitions under pressure bears similarities  to the sequences of both the 

scheelite and the wolframite compounds.

4. Concluding remarks

The ab initio and experimental results presented in this work for the stability at low pressure and low 

temperature are in agreement, and show that the HgWO4-type is the stable phase in these conditions. At high 

pressure, the BaWO4-II-type and Cmca phases found stable in our ab initio calculations have been reported in 

previous works on other ABO4 compounds. Further experimental work at high pressure would be needed to 

confirm the high pressure behaviour of HgWO4.
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Tables

Table 1. Ab initio calculated and experimental Raman frequencies ω (cm-1) for the HgWO4-type structure at ambient pressure.

Mode ω (ab initio) ω (experiment) Mode ω (ab initio) ω (experiment)

Bg 87 89 Ag 353 374

Bg 133 139 Bg 491 508

Ag 141 145 Ag 525 537

Ag 184 193 Ag 683 698

Bg 200 204 Bg 695 715

Bg 216 228 Bg 827 842

Ag 268 278 Ag 907 924

Bg 280 292



Figure captions

Figure 1. Ab initio calculated energy as a function of volume curves for the HgWO4-type (empty circles), wolframite (empty 
squares), BaWO4-II-type (empty diamonds), Cmca (empty triangles), BaZnCl4-type (filled circles), LaTaO4-type (filled squares), 
scheelite (crosses), CaUO4-type (filled diamonds), BaMnF4-type (stars), and SrUO4-type (plus signs) structures. The fergusonite 
structure was found to be identical to the scheelite, and the CuWO4-type to the wolframite. Energy and volume are written per 
formula unit.

Figure 2.(a) Volume as a function of pressure and (b) Gibbs free energy as a function of pressure. In (a) theoretical data for the 
HgWO4-type (circles), wolframite (squares), BaWO4-II (diamonds), and Cmca (triangles) is shown; crosses correspond to 
experimental data of the HgWO4-type structure. In (b) continuous lines are used for calculations at 0 K without zero-point motion 
effects, discontinuous ones for 300 K. At each pressure and temperature the free energy is measured with respect to that of the 
HgWO4-type phase. Volume and free energy are written per formula unit.

Figure 3. Calculated lattice parameters a, b, c, and β of the HgWO4-type (circles), wolframite (squares), BaWO4-II-type (diamonds), 
and Cmca (triangles) structures. Experimental data of the HgWO4-type structure is marked by crosses. For an easier comparison 
with the P2/c wolframite, the HgWO4-type structure is shown in the I2/a setting. The c axis of the wolframite is shown multiplied 
by 2.



Figure 1. Ab initio calculated energy as a function of volume curves for the HgWO4-type (empty circles), wolframite (empty 
squares), BaWO4-II-type (empty diamonds), Cmca (empty triangles), BaZnCl4-type (filled circles), LaTaO4-type (filled squares), 
scheelite (crosses), CaUO4-type (filled diamonds), BaMnF4-type (stars), and SrUO4-type (plus signs) structures. The fergusonite 
structure was found to be identical to the scheelite, and the CuWO4-type to the wolframite. Energy and volume are written per 
formula unit.



Figure 2.(a) Volume as a function of pressure and (b) Gibbs free energy as a function of pressure. In (a) theoretical data for the 
HgWO4-type (circles), wolframite (squares), BaWO4-II (diamonds), and Cmca (triangles) is shown; crosses correspond to 
experimental data of the HgWO4-type structure. In (b) continuous lines are used for calculations at 0 K without zero-point motion 
effects, discontinuous ones for 300 K. At each pressure and temperature the free energy is measured with respect to that of the 
HgWO4-type phase. Volume and free energy are written per formula unit.



Figure 3. Calculated lattice parameters a, b, c, and β of the HgWO4-type (circles), wolframite (squares), BaWO4-II-type (diamonds), 
and Cmca (triangles) structures. Experimental data of the HgWO4-type structure is marked by crosses. For an easier comparison 
with the P2/c wolframite, the HgWO4-type structure is shown in the I2/a setting. The c axis of the wolframite is shown multiplied 
by 2.


