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Abstract

A new general formulation for the mechanical behavior of Single-Walled Carbon Nanotubes is presented. Carbon
atoms are located at the nodes of an hexagonal honeycomb lattice wrapped into a cylinder. They are linked by
covaleniC — C bonds represented by a truss or spring element, and the three-body interaction among two neighboring
covalent bonds is reproduced by a rotational spring. The main advantage of our approach is to allow general load
conditions (and any chirality) with no need of specific formulation for each load case, in contrast with previous works
[2€], [217], [31]. Four load configurations are adopted: tension, compression, bending and torsion of cantivelered
SWCNTSs. Calculations with our own codes for both AMBER and Morse potential functions have been carried out,
aimed to compare their final results. Initial positions of the atoms (nodes) into nanotube cylindrical geometry has been
reproduced in great detail by means of a conformal mapping from the planar graphene sheet. Therefteet tie e

initial SWCNTSs curvature has been introduced explicitly through a system of initial strggess€ssedtate) which
contribute to maintain their circular cross-section. Numerical results and deformed shapes for nanotubes with several
diameters and chiralities under each load case are used to obtain their mechanical parameters with the only objective
of checking the present formulation with previous wortks [28]} [30], [20], [24]. Also, the significance of the atomistic
discrete simulations at the nano-scale size against other continuum models is underlined.

Key words: Single-Walled Carbon Nanotubes, Molecular Structural Mechanics, AMBER potential, Morse potential,
prestressed state, graphene sheet, conformal mapping

1. Introduction

Since their discovery [1], carbon nanotubes (CNTs) have attracted great interest of researchers and scientists
because of their remarkable physical, mechanical and electrical properties [2]. For instance, CNTs show a singular
coupling between mechanical strain and electrical conductivityl [3, 4], becoming ideal candidates for making nano-
sensors and nano electro-mechanical systems (NEMS), with promising applications in robotics and biomechanics.

Regarding Materials Science and Engineering, nanotube reinforced composites and polymers have shown a wide
range of potential applications, specially where a high ratio strength to weight is needed (e.g. aircraft industry). The
main structural properties are their extreme longitudinéirgss [5, 6, 17,/8] (Young's modulus 1 TPa) and tensile
strengthi[9, 10, 11]«y ~ 50 GPa).

Single-walled carbon nanotubes (SWCNTSs) may be conceptualized as the result of rolling up a graphene sheet
into a cylinder, and Multi-walled carbon nanotubes (MWCNTS) can be formed by placing several cylinders each one
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inside the rest coaxially, with a distance between walls.88®m as in bulk graphite. Each graphene sheet is formed
by carbon atoms arranged in a covalent-bonded honeycotigeland the only link among carbon atoms dfelient
sheets is the Van der Waals (VDW) interaction. Attendinghi drientation of the hexagonal lattice with respect to
the nanotube axis (chirality), three types of SWCNTSs carobed:

1. ZigZag 6, 0).- One third of the bonds are parallel to the tube axis.
2. Armchair £, n).- One third of the bonds are perpendicular to the tube axis.
3. Chiral (o, m).- All of the bonds are oblique to the tube axis.

where (, m) are two integers which geometrically characterize theageral lattice orientation into the cylinder (see
[2]). The Zig-Zag and Armchair nanotubes are also calledracand they are axisymmetric.

CovaleniC-C bonds can be modeled by using the T&r&renner potential [37, 38], which correctly corresponds
with the Morse potential for strains below 102 [9]. On theasthand, VDW interaction has been usually modeled
by using the well-known 6 12 Lennard-Jones potential. More details for the potentidbpted in this work will be
given in sectiofi .

Previously to the practical applicability of nanotubes iamafacturing composites (as in other structural applica-
tions), a deep understanding of their mechanical behasioeeded. For this purpose, several experimental studies
related to Multi-walled nanotubes [10,/12,) 13} 14, 15] an@WCNTs ropes. [11, 16] have been carried out. How-
ever, to date, there is no experimental studies about ithdaliISWCNTSs due to their extremely small size and the
subsequent éliculties in their manipulation. Therefore, theoretical woray be helpful for evaluating the structural
response of SWCNTSs.

Although many analytical or numerical methods applied te thechanical behavior of nanotubes have been
developed, they roughly fall into twoflierent categories: atomistic scale and continuum scaleadstThe atomistic
methods (Molecular Dynamics, ab initio, tight-bindinghcsuccessfully reproduce physical phenomena as buckling
[17,118] and estimate elastic parameters of CNTs|[3, 7],lmy have the disadvantage of being limited at a relatively
low number of atoms (about $@ccording to Wang et. al [19]) because of their high comjrtat cost. Related to
MD methods, the motion of a system of N particles is descriygtamically by a vector of instantaneous positions and
velocities (dimension ). In addition the time dependence implies using algoritlifnime-integration sometimes
complicated. Also, a dlicult issue in MD is to describe the heat conduction with thresinding media. Opposite to
MD calculations, our MSM model have the following advantsige

1. No heat conduction is required to be accounted for in theddation. Then, some reliability is sacrificed in
order to simplify the model.

2. MSM models are basically static and no time-integratsomdeded.

3. For the same system size, onlM Bundamental variables are involved (nodal displacemerits)s reduction
implies a much higher numerical performance of the algorith

On the other hand, continuum methods are computationadigér and capable of analyse longer systems, but
the choice of some parameters for establishing an equisaleith the atomistic level may be controversial. In fact,
the wall thickness range frotm= 0.066 nm [17] to the usual value of 0.34 nm [20] which correspotadthe inter-
planar distance in graphite. Even some authors deem CNTdidsglinders [19]. Moreover, continuum methods
are insensitive to atomistic defects which have an impoitdluence on the final response of CNTSs.

Derived from Molecular Dynamic (MD) methods, a MolecularUstural Mechanics (MSM) model may be
adopted, which is reasonable in terms of computationalesgerhereas atomistic scale is correctly displayed. Some
previous works|[21, 22, 24] considered CNTs as a frame systi#mcarbon atoms located at nodes and rigid bars
(provided with axial, flexural and torsional tiesses) representing covalent bondstfdpéent layers in MWCNTs
were connected by several truss rods between neighbomngsatAlternatively, Odegard et. al [23] modeled the
graphene sheet as a 2D truss model with additional rodshrtheunit hexagonal cell.

In the context of materials with granular structure at therogcopic level (microscale), lattice networks composed
of Reissner’s beam elements have been utilized in ordefte some conceptually related problems, as the dynamic
fracture of a brittle material [25]. Hence, in the MSM frammk, the use of Reissner beam elements with large
rotations could be a promising extension for dealing witihHbcal deformations into the nanotube wall.

Another kind of MSM model was called the ‘stick-spiral’ mddy Chang and Gao [26] where covalent bonds
were reproduced by axial springs and the three-body irntierawas introduced directly by three spiral springs on
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each node. In that work (extended laterlin [27]), the infleeatdiameter and chirality in the Young’s modulus and
Poisson’s ratio was analyzed for ZigZag and Armchair SWCMNiking the curvature of the wall into account. The
same subject was investigated by Natsuki et! gl [28] butewtiglg the curvature and similar issues were addressed
by Wang [29]. Also Natsuki and Endpb [30] extended their poergiwork to the tensile and compressive behavior of
SWCNTs. All the aforementioned researches related to MSi teken advantage of the axisymmetry of ZigZag
and Armchair nanotubes, limiting their calculations to aBmnit cell involving only a few atoms.

Moreover, Chang et. al [31] generalized the work.in [26] tar@SWCNTs and extended it to the study of shear
modulus. In a more general way, Meo and Rassi [20] implentktite ‘stick-spiral’ model in the commercial code
ANSYS® and included Chiral SWCNTSs in the study of the longitudinethavior.

The main contributions of this paper can be outlined as¥ito

1. In this paper, the main objective is to analyze the tepsiimpressive, flexural and torsional behavior of SWC-
NTs by means of the ‘stick-spiral’ model and show the inflleeatthe diameter and chirality in their mechan-
ical response. For this purpose, analytical expressiovs ixeen derived through an energy approach and have
been numerically implemented. The main advantage of ouroagp is the ability to reproduce general load
conditions (and any chirality) with no need of additionaliations, in contrast with previous works which treat
specific load situations and chiralities witld hocequations for each case, and are limited to a small unit cell
involving only a few atoms under a particular load case (de#n@ and Gao [26], Xiao et. al [27], Natsuki et. al
[28], Wang [29], Natsuki and Endp [30], Chang et.|al [31])iSTadvantage translates into a higher versatility to
deal with physically more realistic cases (e.g. thi#edent chiralities and load configurations produced during
the SWCNTSs growing procedure).

2. A special issue not explicitly included in MSM models Kaltigh the wall-curvature was included in the equa-
tions) is thepreenergy defined as the excess of strain energy from an infinite plgregshene sheet to the
nanotube [17, 32]. As has been showr [5,/ 33/ 34, 35], thisyamegy is proportional to the curvature of the wall
1/R? (where R is the tube radius) leading to an stabilizatifiac into its cross-sectional area. In this paper,
we introduce the preenergy as a system of initial strainchvproduces a ‘prestressed state’ previous to the
action of any external loading. Namely, the influence of thisal stresses is not negligible (@rences around
5 - 15% in longitudinal stiness are obtained), mainly in axial behavior of Single-&hlICarbon nanotubes
(SWCNTSs) as we can state from our results. Nonetheless, netegsed references simply ignore this fact.

3. A detailed comparison between the more usual interatgroiential functions (AMBER and Morse) has
been performed under several load cases: tension, cornmprebending and torsion. Likewise, both force-
lengthening and moment-distortion nonlinear relatiopstiave been regarded with Morse potential, general-
izing the work of Meo and Rossi [20]. In this way, we keep thaightforward relationship between both
interatomic potentials and both kinds of structural eletaéar elements and rotational springs) into the ‘stick-
spiral’ model. However, we have not included any geoméittipdating into the iterative procedure.

4. Our numerical results have been compared with those frestandard beam models and we have concluded
that the applicability of continuum methods is doubtful &dese they are unable to reproduce the atomistic detail
at that nanoscale size. Moreover, the choice of some el@stin geometrical) parameters is controversial and
may vary from one load case to another. This conclusion isgsagideement with many research works (e.g.
Wang et. all[19]), where continuum models are used.

The paper is organized as follows: in sectidn 2 a schemasicriggion of our model is provided. In sectibh 3
the governing equations of our model are worked out. In eefdia brief discussion about the adopted potentials
is drawn. Details of the numerical implementation are givesectior 5. Numerical results and some discussion of
them are carried out in sectibh 6 and finally, some conclucéngarks are addressed in secfibn 7.

2. Conceptual description of the model

A schematic description of the present MSM model is depitdijure[l for a ZigZag SWCNT. Covalent bonds
are represented by ‘bar’ (or ‘truss’) elements which cahge$orm under axial strain and the three-body interacson i
represented by rotational springs which only resist againgular distortion among two neighboring covalent bonds
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on each node. Exclusively linear displacements are takerattount at each node, therefore angular distortions will
be written depending on them. All loads are applied at theeaod

Note that such a 3D model is able to reproduce general loatatgs (tensile, compressive, flexural loading) and
there is no need to derive particular expressions for eas @sin most of previous researches (e.d.1[26, 27]).

Spring element working
as a rotational spring

Bar element working
as an axial spring

Figure 1: Geometrical description of elements

3. Governing equations

3.1. Kinematic equations
3.1.1. Bar element

We can define the axial strain among two bonded atoms as tingelialength of the covalent bond and it can be
written as:

=A== (uj-u)= [-(aa)T (Aa)T] ‘lﬂ = [c;'ﬂ1 cﬂ m = Cu? (1)
where:

a = Al = axial strain along the bar element.
A8 = unit vector along the element.
U, uj = nodal displacements.
Xi, Xj = nodal vectors undeformed shape.
X, X = nodal vectors deformed shape.
Ch= linear kinematic matrix of the bar element.

Note that eg[{|1) just gives the axial strain in terms of tHfeedénce between the nodal displacements (three DOFs
each) projected onto the initial direction of the element.

3.1.2. Rotational spring element
Three-body interactions are represented in the presentlrbgdn-plane rotational springs involving three neigh-
boring carbon atoms as can be seen in fifjllire 3 where bar elearentot included but their directions are depicted
by auxiliary straight lines.
The angular strain in the spring element is defined as thegehiarangle involved among three neighboring atoms
(or nodes):
eE=MP=A-q 2

Taking cosines il {2) and assuming the displacements arg sraaan write:
1 Cosa—CosA  [(A%)TAP] - [(23)TAP]

= - = - 3
€ SinA SinA (3)




Figure 2: Forces and displacements at the bar ends

Figure 3: Forces and displacements acting on the springegiem

where () denotes the variable is associated to the deformed shageuriitvectorst?, A may be written in terms
of

’ 1 1
A2 =I?{Ia/la+uj—ui}=7{I"‘A""+uij} (4a)
. 1 1
AY = 3 {1P2° + g — ui} = 3 {12 + Uy (4b)
where:
A= initial angle between three neighboring atoms.
a= final angle between three neighboring atoms.
12,1° = initial lengths of bar elements.
1Z,1¥ = final lengths of bar elements.

Regarding[(¥) and neglecting terms of second ordergésgiven by:
AP T A + 130 Tuy + 1°(2%) Ty

[alb 1‘—_)I""AIb + IbAJ2 ®)

COosa



Substituting[(b) (only keeping the first term in the denorntingin (3) and rearranging terms, the following expression
can be obtained:

uj uj
e=|ahT @hHT @HT|ju|=[ct c! Ci||u|=clut (6)
Uk Uk
where:

A 2

l— _

I [IasinA |atanA (7a)
2 A

1_ _ 7b

K [IbsinA IbtanA (70)

Il =-Ij-T} (7¢)

andC! means the linear kinematic matrix of the spring element.

3.1.3. Whole structural system

This section refers to any group of bar and spring elememiggrly assembled. In particular, to those systems
which reproduce SWNTs geometry as can be seen in figure 1h&siake of clarity, the next parameters are defined:
ur = displacements of free nodes.
up = displacements of fixed (constrained) nodes. Heugia: 0 but displacements could be imposed with
non-zero values.

e' = vector of axial strains.
€' = vector of angular distortions.
C'= kinematic matrix associated to axial strains
Cl = kinematic matrix associated to angular strains
Equationsl[(ll) and{6) can be grouped and rearranged for thiewsiistem in the following way:
€' [cﬂ [C” cﬂ] [uR}
=|arllu] =GR & (8)
e <4 A
where the kinematic matrices defined above are formed bydhesponding blocks of!, i = a,b,c,... or C,j,
i =1,2,3,...depending on the element considered. Regandineanishes in the present work, €4.(8) is reduced to:
E/1 = CéUR (9a)
Er = CEUR (9b)

3.2. Equilibrium equations
3.2.1. Bar element
The Virtual Work Equation (VWE) associated to any bar elenfsee fid.2) can be expressed:

fTou; + (f?)T(Suj = n%e® (20)

For all kinematically admissible virtual displaceme#iis, 6u;. Where:
f2,f8 = fraction of the external forces contributing to axial strai
n? = axial force
0e? = virtual axial strain.

Substituting[(Il) in[(T0) yields:

ou; ou;
vl i
()T 6u? = nfCsu® (11)
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therefore:
f2 = n®(C})" = n*H} (12)

whereH} denotes the linear equilibrium matrix of the bar elemenbonir(12) it is clear that theontragradience
relationship works strictly.

3.2.2. Rotational spring element
Similarly to (10), the VWE associated to any spring elemsage(fid.B) can be written:

(F)T6u; + (FHTou; + ()T suy = mbee® (13)

For all group of virtual displacemendsi;, 5u;, sux kinematically admissible. Where:
fi.fl.fx = fraction of the external forces contributing to angulaastr
mt = moment force
set = virtual angular strain.

Substituting[(B) in[(I13) the contragradience relationgtjpivalent to[(IR) is obtained:
1= mi(CH)" = mH;} (14)
whereH,1 means the linear equilibrium matrix of the spring element.

3.2.3. Whole structural system ~
The energy equilibrium approach in terms of the externaldsrat free nodeig can be written:

f;(iuR =n'ée' + m' e’ (15)
Taking first variations in{|9) and substituting [n{15):
f;(SuR = n'Cléur + m' CRdugr (16)

Equating cofficients in [16) and transposing, yields:

- n n
=l ][] = [He || = teo an
where:
n= vector of internal axial forces
m = vector of internal moment forces
p= vector of internal forces

Hr = reduced equilibrium matrix of the whole system (verifyiraptragradience).
It is worth noting that ed.{17) can also be expressed as:

fr = Hin + Hom = T + Tr (18)

which shows thatr can be obtained as the sum of the fraction correspondingiab faxces and the fraction corres-
ponding to moment forces.

3.3. Constitutive equations
The strain-internal force relationship for any group ofgedy assembled elements takes the form:

e=€+Fp (19)



whereg is referred to as the initial strains (preenergy) relatethéochange in shape from the graphene sheet to the
SWCNT, andF is a diagonal matrix involving the flexibility parametersezch element. The reverse expression is
given by:

p=Fle—Fleg=Ke—Key=Ke+po (20)

ObviouslyK is a diagonal matrix involving the $ihess parameters derived from the interatomic potentialgsetion
[4) andpg are the initial forces consistent witlg. Splitting in blocks, eq.{20) becomes:

-5 2

0 KT
Since the nanotube geometry has been generated througlicemaahmapping from a graphene sheet to a cylinder
where carbon atoms are kept into the surface and covalendstane located along the respective secant among two
carbon atoms, initial longitudinal strains have been dated as the dierence in length from the graphene sheet
to the cylinder. Also, initial angular distortions has bediained as the fference in angle from graphene to the
nanotube.

6/1

EF

No
Mo

+ (22)

3.4. Stifness equations

In order to obtain the dfiness equation of the whole structural system, we subseugd2l) and(9) in e@.(L7),
Sso:

_ K4 0 (H/l)T n
_ A r R A r 0
fr = [HY HR][ 0 KF] [(HE)T Ur+[H HE] [mo] (22)
operating:
fr = [HRKAHYT + HEKT(HR) | ug + Hrpo (23a)
fR = KRUR + fo (23b)
where:
Kr= reduced sffness matrix
fo=  effect of initial forces at free nodeprestressedtate).

Although it has not been shown in this paper, a similar pracedould be performed to achieve individuaffsigss
matrices of bar and spring elements. Since the equilibriuatrimHr is formed from the corresponding blocks of
individual equilibrium matrices of each element (assendflglements), it is easy to prove thi&k can be obtained
assembling individual dtiness matrices in the usual sense, which constitutes a gieahtage for its numerical
implementation compared with other published works [2§, 31

4. Interatomic potentials

The axial and angular $ihess parameters (so-called constant forces) represemténaction between carbon
atoms into the nanotube, which is usually introduced in tbécal MSM models by means of a potential functldn
This function and the dtiness parameters are related by:

U 0%U
Kt= —— K'= —— 24
I(Ar)? I(AG)? (24)
where:
Ar = difference in length of covalent bonds from their equilibriunsifion

A6 = difference in angle among neighboring covalent bonds from #ugiilibrium angle
K= axial stifness of any bar element
K' = angular stitness of any spring element

Potential functions usually employed in molecular mecbsnan be classified into two main categories:
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1. Harmonic potentials The potential is described as the addition of the potkntiae to diferent relative displace-
ments between atoms, expressed as a quadratic form each one:

U:ZUr+ZU9+ZU¢+ZUw+ZUVdW (25)

where
U, = potential including the change in length of the bond
Ug = potential including the change in angle among neighborovglent bonds
Uy = potential due to the torsion of the bond
U, = potential due to the torsion of the bond (out-of-plane iotgt

Uygw = potential including Van der Waals (VDW) interaction
Usually, definition[(Zb) is simplified [26, 28, 29,/36] by orkgeping the first and second terms as:

U= 3 Sk + 3 2k(a0y (26)

wherek;, ky are the force constants to the longitudinal and angulaatiaris. The first sum is extended over all
covalent bonds and the second over all angles among bonds.

On the other hand, if the MSM model is constituted with frantereents (e.g. [21, 22, 24]) also the third and
fourth terms are retained and grouped into a quadratic f@so@ated to the torsion of the bar element.

In this paper, ed.(26) with AMBHRconstants are adopted. Regarding €gk.(24) and followitlg [24] and [28],
the next values are adopted:

K=k = 65200 K" = ks = 0.876,2n0m, (27)

2. Multi-body potentials The so-called REB®potentials involve the féect of the rest of atoms in the covalent
bond interaction. Therefore, the two-body terms in the ipidé function will include the distance among the
two atoms regarded and the angles formed with neighboringlent bonds. The most extensively used (e.g.
[17,118,32, 35, 39, 40]) potential function (mainly in Molgar Dynamics simulations) is the Tefs@renner
(TB) potential [37] 38]. However, its formulation is relagly complicated for further numerical implementation
due to éfects of variation in length and angle are coupled, hence eapproached by the Morse potential [S, 30]
function for longitudinal strains below 10%, which is givey:

E:ZEr+ZE9 (28)

Er = De{[1 - e74)2 - 1 (29)
Eg = %kg(Ae)2[1 + ks(A0)*] (30)
where the parameters involved take the following values [9]
De =0.2895N.nm B = 3843nnrt
ko =0.8998N.nm ks = 0.754ad (31)

Moreover,Ar is the change in length of covalent bonds from their initigtahce of equilibrium in the nanotube
that is around 0.142 nm, amd is the change in angle from the initial one in the SWCNT whielbout z/3.
Both values depend on the chirality and vary from one bonahtiteer.
As can be seen from eds.{28) fo](30) the contribution of tiara in length and angle are uncoupled. In this case,
definitions [(24) take the form:

K" =282Dee (4[240 — 1] (32)

K" =kg[1 + 15ks(A6)"] (33)

which definitely leads to a numerical iterative proceduee{en3).

1Assisted Model Building with Energy Refinement, force fieldliknown in bio-molecular simulation
2Reactive Empirical Bond Order
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In order to qualitatively compare both potentials we depliet force-lengthening relation in fig.4fa) and the

moment-distortion relation in fig.4(b), given by:

n = 28DePAI[1 — eF(AN] (34a)
m = ky(AQ)[1 + 3ks(AH)*] (34b)
12 ; ; ; ; ; 0.7
[ - - - AMBER Axial force
1 N
10t P —— Morse Axial force 0.6f
1
1 0.5
8, 1
! ~
1
> \ Eo4
S 6 ! Z
oy Zo03
1
1 2 '
4 /
0.2
2t 01l - - -AMBER Moments |
' —— Morse Moments
0 i i i i i 0 i i i i
0 0.02 004 006 008 0.1 0.12 0 01 02 03 04 05 06 07
A6 (rads)

Ar (nm)
(a) Force-length variation (b) Moment-angle variation

Figure 4: Comparison AMBER and Morse potentials

From their values, can be intuitively concluded that axidirsess has higher influence than angulatretiss on
the mechanical response of SWCNTs. Hence Meo and Rossi 2@ the Morse potential for axial $tiess but
linearized angular sfiness. Anyway, from fif.4(R) is expected that the choice optitential will be inconsequential

as far as axial strains remain lower than 0.01 nm (about 7%).

5. Numerical implementation
General SWCNTs geometry has been generated by means of @rmmahimapping from the graphene sheet to

the cylinder surface. Carbon atoms are kept on the surfate@ralent bonds are located along secants among two

covalent-bonded atoms. This geometry as well as the outimting results has been programmed in VisualLISP

code. On the other hand, implementation of the governinggaps has been done ind& programming language.
Two main subjects are treated: First, importance of theaghof the potential function on the final response of

nanotubes is investigated. Secondly, influence of the tioseof initial forces (prestressed state) with each pagént
is deemed. Thus, four filerent situations has been coded.

5.1. AMBER potential
Regarding constant iness for each element (eQ.127)) is the most easy way to inteoithe interatomic interac-

tion into the code and leads to the simple (non-iterativey flilagram depicted in fid.] 5.
Two codes have been developed with AMBER potential (one aiitthone without initial forces) for seeking the
influence of the prestressed state in SWCNTSs response. fitiéd forces has been introduced through second terms

in eqs[(2) and(23). Nevertheless, diagram in[fig. 5 is Vfalithoth calculations.
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| Geometry generatigh

| Calculation oft' andI'l () |

l

K*, K" | |Evaluation of individua|
eq.[ZT)| |stifness matrices

Assembly ofK g eq.[Z3)

l

Resolution of reduced $fi
) -—lu
ness linear systerh (23b)

Evaluation of bar forces and
spring moments, eqs.1(8) and{21)

Output and drawing result

Figure 5: Simple flow diagram with AMBER potential

5.2. Morse potential

Introduction of the Morse potential in the governing eqoiasi is essentially elierent from the previous case. In
fact, equationd(32) an@ (B3) are tangenffiséisses to the equilibrium path of each element and they depethe
SWCNT deformed shape at each point of these trajectorigs.vahiable nature of dtiness can be callezbnstitutive
nonlinearityand leads to the iterative procedure outlined in figure 6ethas the so-called Newton-like methods for
solving nonlinear problems numerically. Superscriptadicate the iteration counter and subscriptsthe bar and
spring element respectively.

Denotingu, as a generic component og at the beginning of each increment, let us define the absetube in
thep-component ofir as:

E,=IAu| p=12....n (35)

wheren is the total number of DOFs involved in the reducedfiséiss linear system. Then, convergence criteria
adopted has been:

Il AuR]l = max{E,} < & = 10°° (36)

Note thatK”O, KT are the tangent $thess parameters for the undeformed shape of the nanotubestfesses are
not taken into accoumtr = A9 = 0 will be substituted in eqs[_(B2) arld{33) but if prestressesncluded\r = Arg
andAd = A6y (initial strains from the graphene sheet) will be employestead.

Also, it should be pointed out thak ()f, (K")k are exclusively updated througk )y, (K")¥ (constitutiveupdat-
ing), since the vectord, I'! involved are taken from the undeformed shape (geometiiedt analysis), correspond-
ingly with the small displacements assumption. Furtherawpments of our formulation as geometrical nonlinearity
(whered', T are suitably updated iteratively) are currently in prograssd values of critical stresses and strains will
be given.
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Figure 6: Iterative procedure to introduce Morse potential

6. Numerical resultsand discussion

In this section, tensile, compressive, flexural and tor@itmehavior of SWCNTs have been studied by using our
new formulation of the ‘stick-spiral’ model. The followintanotubes have been tested for each loading scheme:

Similar diameters and aspect ratios have been chosen intorflether comparison of the obtained results. For
the study of the mechanical properties, the usual (but ogatsial) wall thickness df = 0.34 nm was adopted [24],
[27].

One of the mainissues in this paper is to find out the influefitteegrestressed stand the interatomic potential
in the final response. As we have taken into account two piatdahctions (AMBER and Morse), four calculations
were carried out into each nanotube.
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Chirality  d(nm) L(nm) L/d

ZZ(9,0) 0.7046 85910 12.2
Z7(11,0) 0.8612 10.2950 12.0
Z7(13,0) 1.0178 12.2120 12.0
AC(5,5) 0.6780 8.1164 12.0
AC(7,7) 0.9492 11.3138 11.9
AC(8,8) 1.0848 12.7895 11.8
CH(7,4) 0.7541 89009 11.8
CH(8,5) 0.8879 9.6767 10.9
CH(10,6) 1.0960 11.9272 10.9

Table 1: SWCNTSs dimensions and chiralities

Cantilevered supporting conditions were assumed in afig;dsllowing [20] and/[24, fig 4], because of their easy
implementation and interpretation of numerical resultsctBrestraints have been performed through the introductio
of pinned joints at the nodes of the left end of the SWCNT, adiogly with the linear degrees of freedom (DOFs)
regarded in our model.

Also, a system of point loads statically equivalent to theemal loading has been applied on the atoms at the free
end for each case. Of course, there is not a unique systemraflpads and some additional assumption (specific for
each load case) is required. A detailed description for égplothesis and numerical values for these point loads will
be given below.

6.1. Axial behavior

Equivalent stress-strain curves were obtained for thelesated SWCNTSs in tablg] 1. Stresses of 20, 40, 60, 80,
100 GPa were tested in tension and of 30, 60, 120 GPa in cogipnes

Equivalent axial strain is calculated as:

AL
€x = L (37)
where:
AL = variation in length of the nanotube, calculated as the logiiial displacement at the free end.
L= initial length of the nanotube
Equivalent stress is evaluated as: c
t
= oy (38)
where:
F. = total force applied in the axial direction
d=  nanotube diameter
t= thickness wall, estimated as3@nm

The point loads acting at the nodes of the right end have bleined fromR, = F;/N;, whereN; are the number
of atoms along the circumferential direction of the nanetulence, all the point loads into each axial simulation will
be given the same values, which are provided in tdBles Zland 3.

For the sake of brevity, only a fewy — & curves are plotted in figl 7 in tension and[fig 8 in compressionwa
can expect, linear axial behavior is reproduced with AMBEReptial. Even linear behavior is yielded with Morse
potential, as a direct consequence of using tangeffiiasises into the iterative procedure. Hence, our resuleeagr
qualitatively well with those obtained from the expresiofdlatsuki et. all[28] (AMBER potential) and Natsuki and
Endo [30] (Morse potential) taking= 0.34 nm. In these references, no initial stresses were taken irdoust. As
we can see, higherfilerence is observed with [30] due to the geometrical nonfityeadopted in their work.

Despite of the controversy about mechanical propertiesV'dCSTs and their strong dependence on the wall
thickness, the equivalent Young modulus has been calclilateach case as:

[ (39)
€x
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R(NN)F(hN) — R(WN) F(nN) ~ Ri(nN) Ft(nN)

ox(Gpa)  2Z(9,0) ZZ(11,0) ZZ(13,0)
20 1.67 15.05 1.67 18.40 1.67 21.74
40 3.34 30.10 3.34 36.79 3.34 43.48
60 5.02 45.16 5.02 55.19 5.02 65.23
80  6.69 6021  6.69 73.59  6.69 86.97
100 836 7526 836 91.99 836 108.71
ox(Gpa) AC(5,5) AC(7,7) AC(8,8)
20 1.45 14.48 1.45 20.28 1.45 23.17
40  2.90 2897 290 40.56  2.90 46.35
60 435 43.45 4.35 60.83 435 69.52
80 5.79 57.94 5.79 81.11 5.79 92.70
100 7.24 72.42 7.24 101.39 7.24 115.87
ox(Gpa)  CH(7,4) CH(8,5) CH(10,6)
20 1.46 16.11 1.46 18.97 1.46 23.41
40 2.93 32.22 2.92 37.93 2.93 46.83
60 439 48.33  4.38 56.90  4.39 70.24
80 5.86 64.44 5.84 75.87 5.85 93.66
100 7.32 80.55 7.30 94.84 7.32 117.07

Table 2: Point loads applied in tensile simulations

R(NN)F(nN) ~ R(WN) F(nN) ~ Ri(nN) Ft(nN)

ox(Gpa)  ZZ(9,0) ZZ(11,0) ZZ(13,0)
30 2.51 22.58 2.51 27.60 251 3261
60 5.02 45.16 5.02 55.19 5.02 65.23
120 10.03 90.31 10.03 110.38 10.03 130.45
ox(Gpa) AC(5,5) AC(7,7) AC(8,8)
30 2.17 21.73 2.17 30.42 2.17 34.76
60  4.35 4345 435 60.83  4.35 69.52
120 869 86.90  8.69 121.67  8.69 139.05
o(Gpa)  CH(7,4) CH(8,5) CH(10,6)
30 2.20 24.17 2.19 28.45 2.20 35.12
60 4.39 48.33 4.38 56.90 4.39 70.24
120 8.79 96.66 8.75 113.80 8.78 140.49

Table 3: Point loads applied in compressive simulations

averaging results in each curve. Thus, we can analyse thgorethip among the nanotube diameter and its Young
modulus. Final results in tension are summarized in {ableddpdotted in figur€p.

From figured 7 an]9 we can state that axial response in teisigtffer (on average terms) by using Morse
potential than AMBER potential. Otherwise, AMBER and Mopggtential agree reasonably well in tension for axial
strains below 6% (see fig 7).

In general, Young modulus grows slightly with nanotube détan if prestresses are not included, in agreement
with other published works|([26, fig 4a], [31], [27], |24, fi@]l [21, fig 7]). Nevertheless, the opposite trend is
observed if prestressed state is regarded. In fact, inojudlie prestressed state increases longitudirfidasis up to
18% except for ZZ(9,0), where affgning of 32% is obtained. This remarkabi&eet may be explained as follows:
initial stresses introduce radial resultant forces whiemd to keep the circular cross-section of the nanotube and
therefore produce a longitudinal shortening. Obvioustyltdwer loads are applied, the higheffgtning dfect of the
prestressed state in tension is rendered.
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Figure 8: SWCNTs compressive behavior

Tensile simulations with Chiral CNTs diverge for high loallee to the non-axisymmetry of this nanotubes: Chiral
tensile loaded CNTs involve some bonds strongly tensiomeldsame other bonds strongly compressed, therefore,
the very diferent stifhesses from tension to compression with Morse potentigdf(&) causes ill-conditioning of the
iterative procedure depicted in figlife 6. Further improvetmef this numerical procedure are currently in progress.

Other disadvantages of the non-axisymmetry of Chiral CN'€stlae coupling between tension and torsion, and
the local transversal deformation at the free end (see fiti{@) which can distort the final results. This deformation
can be avoided by imposing displacements at the right eftedENT in order to keep the ending atoms into the CNT
circular cross-section. These new boundary conditionisogiincluded in future works.

Our results agree reasonably well with those reported by [30] and [24] for nanotubes of the same diameter.
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AMBER AMBER MORSE MORSE

prestress prestress

d(nm) E(GPa) E(GPa) E(GPa) E(GPa)

ZZ(9,0) 0.7046 774.46 967.75 897.63 1184.68
ZZ(11,0) 0.8612 783.24 900.27 909.09 1076.76
ZZ(13,0) 1.0178 788.67 868.55 916.19 1029.00
AC(5,5) 0.6780 786.54 873.54 913.83 1038.90
AC(7,7) 0.9492 79454 837.41 924.39 984.89
AC(8,8) 1.0848 796.77 829.27 927.11 972.96
CH(7,4) 0.7541 778.97 845.14 905.94 1040.18
CH(8,5) 0.8879 783.96 829.12 900.02 1018.43
CH(10,6) 1.0960 784.06 814.20 904.24 982.74

Table 4: Young modulus SWCNTSs in tension

In order to derive the chirality influence on the tensile hatia two more SWCNTs under tension by using
AMBER potential with initial stresses (talilé 5) have beestad and compared with the SWCNTSs from tdBle 1 with
the intermediate diameter in each Chirality. Results anersarized in tablgl6 and plotted in figure 11.

Chirality  d(nm) L(nm) l/d
CH(8,4) 0.8285 10.1436 12.2
CH(10,4) 0.9707 11.5281 11.9

Table 5: Additional SWCNTSs dimensions and chiralities

d(nm) L(nm) d  6(°) E(GPa)
Z7Z(11,0) 0.8612 10.2950 12.0 0.0 900.27
CH(10,4) 0.9707 115281 119 16.1 834.87
CH(8,4) 0.8285 10.1436 12.2 19.1 842.32
CH(8,5) 0.8879 96767 10.9 224 829.12
AC(7,7) 0.9492 11.3138 119 30.0 83741

Table 6: Young Modulus (tension) against Chirality

On the whole, ZigZag CNTs appear to be about 8%estihan Armchair ones, against [30]. Nevertheless, the
diameter influence on the Young modulus can not be removedthe values in tablel 6 and there is not a clear trend
in the figure Tl

Let us draw our attention on the compressive behavior of SWN®@s can be seen from figurk 8, Morse potential
produces sffer results in compression than AMBER potential becauseehifher slope in the compressive branch
for bond elongation of the former. In fact, theffdrence is clear from axial strains of 6%.

Proceeding as we did in tension, we can obtain new valuefi@Young modulus in compression (table 7) and
plot them against nanotube diameter (see figuie 12). In ##8,cYoung modulus is increasing with the nanotube
diameter, but in the range of diameters studied herein wikl@mnsider it nearly constant.

Regarding initial stresses, theifect is the opposite we found in tension. Therefore, the shorg caused by the
prestressed state decreases the compressive Young m@fiyuus{12).

Obviously, if Morse potential or prestressed state areliragbin the analysis, dierent Young moduli are obtained
from tension to compression and the applicability of camtim models becomes doubtful, as has been remarked in
previous published works [27], [26].
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Figure 9: Young modulus SWCNTS in tension

load levels. Likewise, the local transverse deformatiathatree end can be observed in figure 113(c).

From tablé ¥, chirality does not have a relevdiret on the compressive response and it could be readilyatedle

as we concluded in tension.

6.2. Flexural behavior

Cantilever supporting conditions (through pinned joim®re kept for flexural loading and a external bending

moment was applied at the free end, taking values from [dble 8

Each bending moment has been coverted into a system ofdfiagiquivalent longitudinal point loads at the nodes
of the free end. If we define theaxis as the bending axis agds the orthogonal coordinate, the values of the point

loads will vary in linear proportion with the coordinate, following:

in

Mz
= —Zyi
I

2,
17
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AMBER AMBER MORSE MORSE

prestress prestress

d (nm) E(GPa) E(GPa) E(GPa) E(GPa)

ZZ (9,0) 0.7046 774.41 674.55 897.52 768.28
ZZ (11,0) 0.8612 783.21 711.09 909.07 814.99
ZZ (13,0) 1.0178 788.68 734.57 916.24 845.27
AC(5,5) 0.6780 786.48 728.64 913.81 839.61
AC(7,7) 0.9492 794.66 762.57 924.39 882.88
AC(8,8) 1.0848 796.78 771.68 927.13 894.61
CH(7,4) 0.7541 795.56 718.80 905.87 814.66
CH(8,5) 0.8879 780.97 741.93 900.15 847.50
CH(10,6) 1.0960 799.16 761.45 904.26 882.50

Table 7: Young modulus SWCNTSs in compression

ZZ(9,0) Zzz(11,0) ZzZz(13,0)
AC(5,5) AC(7,7) AC(8.8)
CH(7,4) CH(85) CH(10,6)

0.5 1.0 1.0
M(nN - nm) 1.0 2.0 20
2.0 3.0 4.0

Table 8: Bending momentsi - nm) applied at the free end

Some numerical values of the applied nodal forces under dibgmoment oM = 1nN- nmare included in tablgl9,
where positive values indicate tensile forces and negaéiltees stand for compressive forces.

Aimed to find out qualitatively the bending response of SWENDtations at the free end have been measured
and plotted against bending moment. All curves plotted shearly linear flexural behavior (see figurg 14 as an
example), even when Morse potential is taken into accouheréfore, nonlinear bond interaction of the potential
function has a little influence on the bending response, akldi® expected. Nevertheless, the choice of the potential
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Figure 12: Young modulus SWCNTSs in compression

has more influence than initial stresses, which could beilyeadglected. As well, the Young modulus in tension
derived from[[23] E = 80501GP3g) is used to plot additional bending curves in figs T4(a) [an@)LAespectively,
giving stiffer results than the equivalent curve with our model in ard2B8fb.

In order to compare mechanical parameters obtained froahlaehavior with those from bending response, Young
moduli were calculated in this load case as:

ML
E=— 40
7 (40)
where:
M = moment at the free end
6= rotation at the free end

L= initial length of the SWCNT
| = moment of inertia of the cross-section regarding the SWC8I& hollow cylinder witht = 0.34nm

Averaging values for each nanotube we can obtain the vafiteble[10. This results show a substantial scattering
of the Young modulus and stress the fact that continuum rsqded particularly standard beam theories) are not ap-
plicable at that nano-scale size due to the relatively samatiunt of atoms involved. This idea is in clear disagreement
with other published works (e.g./[6], [10], [11], [13], [141LE]).
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Then, Young modulus obtained by efi. J(40) is plotted in figu#e As we can see, Young modulus is increasing
(as in tension) with diameter for ZigZag and Armchair nahets but surprisingly is decreasing with diameter with
Chiral nanotubes. It should be noted that numerical illditaning is particularly important with small diameter
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M (nNnm)

77(11,0)

AC(5,5)

CH(7,4)

yi(nm) Ry;(nN)

yi(nm) Ri(nN)

yi(nm) Ryi(nN)

0.4131 0.41 0.3390 0.59 0.3693 0.47
0.4131 041 0.3097 0.54 0.3547 0.45
0.2820 0.28 0.2268 0.39 0.2892 0.37
0.2820 0.28 0.1048 0.18 0.1888 0.24
0.0613 0.06 0.1048 0.18 0.0655 0.08
0.0613 0.06 -0.0354 -0.06 0.0394 0.05
-0.1789 -0.18 -0.1354 -0.29 -0.0117 -0.15
-0.1789 -0.18 -0.2743 -0.48 -0.1887 -0.24
-0.3622 -0.36 -0.2743 -0.48 -0.2892 -0.37
-0.3622 -0.36 -0.3316 -0.58 -0.3449 -0.44
-0.4306 -0.42 -0.3775 -0.48

Table 9: Point loads applied in bending fdr= 1nN - nm
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Figure 14: SWCNTs flexural behavior

AMBER AMBER MORSE MORSE

prestress

prestress

d (nm) E(GPa)

E(GPa)

E(GPa)

E(GPa)

ZZ (9,0) 0.7046
77 (11,0) 0.8612
77 (13,0) 1.0178

652.25
707.34
733.35

661.96
714.23
741.34

742.78
807.76
841.04

758.32
818.36
853.42

AC(5,5) 0.6780
AC(7,7) 0.9492
AC(8,8) 1.0848

655.01
714.88
709.03

652.39
710.40
727.62

716.82
793.20
811.29

749.63
816.92
837.80

CH(7,4) 0.7541
CH(8,5) 0.8879
CH(10,6) 1.0960

758.04
614.42
607.76

789.15
721.82
710.09

893.94
782.10
781.07

689.50
839.13
821.92

Table 10: Young modulus SWCNTs in bending
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Chiral SWCNTSs in bending and could be the reason for this sipptrend.
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Figure 15: Young modulus SWCNTs in bending

Comparing values of table 110, the influence of the chiratityhie flexural behavior may be omitted, since there
is not a clear dference in Young modulus between ZigZag and Armchair namatubhen, bending of SWCNTSs (as
tension and compression) is nearly independent of thelitiirgualitative bending response of SWCNTs may be
observed in figurg16.

6.3. Torsional behavior

Finally, cantilevered SWCNTSs (pinned joints) were sulgeldb a set of point loads;; at their free end producing
a torque with the same values taken in bending (see fablelseTloads are assumed to be tangent to the extreme
circumference of the tube at the free end, and all of themldioduce the same torque with respect to the cylinder
axis. Hence, they can be defined by

Fi = ——
ti Nid
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(b) Armchair(7,7)M = 3nN nm MORSE prestressed

(c) Chiral(8,5)M = 1nN nm MORSE prestressed

Figure 16: Deformed shape SWCNTs bending

and conveniently projected onto the global axes. Some rinalesalues for the final components of these forces
taking a torque oM; = 1n- Nnmare given in tablg~11.

Into each simulation, rotation of the free end is measurebpdotted against torsional moment (see fidurk 17 as
an example). Our results are compared with those obtaioad [28] by using AMBER potential. The fierence in
about 35% may be because the approath [28] is related tolahar graphene sheet without taking into account
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ZZ(11,0) AC(5,5) CH(7,4)
y(nm) z(m)  Ri(N)Ra(N) _ yi(m) z(m) _ Ru(MN)Ra(MN) _ yi(hm) z(nm) _ Ry(nN) Ru(nN)
0.0613 -0.4262 0.21 0.03 0.1048 -0.3224 0.28 0.09 0.038754. 0.24 0.03
0.2820 -0.3254 0.16 0.14 0.2268 -0.2520 0.22 0.20 0.18&R609. 0.21 0.12
0.4131 -0.1213 0.06 0.20 0.3390 0.0000 0.00 0.29 0.354290.1 0.08 0.23
0.4131 0.1213 -0.06 0.20 0.3097 0.1379 -0.12 0.27 0.369380.0 -0.05 0.24
0.2820 0.3254 -0.16 0.14 0.1048 0.3224 -0.28 0.09 0.289223.2 -0.15 0.18
0.0613 0.4262 -0.21 0.03 -0.0354 0.3371 -0.27 -0.03 0.06251@ -0.24 0.04
-0.1789 0.3917 -0.19 -0.09 -0.2743 0.1993 -0.17 -0.24 €510.3590 -0.23 -0.07
-0.3622 0.0233 -0.11 -0.18 -0.3316 0.0705 -0.06 -0.29 qr28.2426 -0.15 -0.18
-0.4306 0.0000 -0.21 0.00 -0.2743 -0.1993 0.17 -0.24 -G 37.0000 0.00 -0.24
-0.3622 -0.2328 0.11 -0.18 -0.1695 -0.2936 0.26 -0.15 4930.1535 0.10 -0.22
-0.1789 -0.3917 0.19 -0.09 -0.1887 -0.3269 0.21 -0.12

the curvature of the nanotube.

Table 11: Point loads applied in torsion fgk = 1nN - nm
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Figure 17: SWCNTSs torsional behavior

The mechanical parameter chosen in this case for compaaings (with the same restraints aforementioned in
bending) is the shear modulus G, and it has been calculated as

ML
G=—— (41)
Jo
where:
M; = torsional moment at the free end
¢ = rotation at the free end
J= polar inertia of the cross-section regarding the SWCNT aallaw cylinder witht = 0.34 nm

Averaging for each nanotube we can obtain the values offighle
Shear modulus variation with respect to the nanotube diemi®tdepicted in figure_18. Our results show same
increasing trend reported by [21, fig 7] and![27, fig 10], buthveimaller values (around 20%) in the same way that
Young modulus. Nevertheless, the magnitude order is reddeand agrees well with these works.
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350,

AMBER AMBER MORSE MORSE

prestress

prestress

d (nm) G(GPa)

G(GPa) G(GPa)

G(GPa)

ZZ (9,0) 0.7046
ZZ (11,0) 0.8612
77 (13,0) 1.0178

261.74
283.62
292.91

266.22
286.64
295.15

284.62
308.14
318.70

293.15
314.31
323.42

AC(5,5) 0.6780
AC(7,7) 0.9492
AC(8,8) 1.0848

235.67
272.82
282.88

240.04
274.13
283.91

255.05
296.49
307.83

260.29
298.09
310.15

CH(7,4) 0.7541
CH(8,5) 0.8879
CH(10,6) 1.0960

413.04
248.60
269.80

224.00
218.73
260.86

185.06
291.59
306.30

304.67
228.65
251.50

Table 12: Shear modulus SWCNTSs in torsion
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Figure 18: Shear modulus SWCNTSs in torsion
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Anyway, Morse potential seems to producéfetivalues of G than AMBER potential, but it is not an important
difference in our range of diameters. As can be seen in figure, IB@)nditioning for Chiral nanotubes in torsion
with Morse potential is also present. Likewise, the norsaximetry of Chiral nanotubes lead to eccentricities inéo th
system of loads applied at the free end which cause bendhisgyending-torsion coupling has a detrimentétet on
final results (figur@ I9(f)). As we mentioned before, thidpem may be solved by means of imposed displacements
instead of point loads at the free end.

Further understanding of the SWCNTSs torsional behavioreaachieved from figufe 19. Usual shortening can
be seen in SWCNTSs subjected to torsional loads if initi#stes are considered. Also, a radial deformation of the
cross-section at the free end is observed with both potdntiations as torsional moment increases (figure 19(b)).
Since point loads are applied in tangential direction, ttiegd to move the atoms at the free end from their initial
circular configuration. Therefore, those atoms pull outrtheighbors and a conical deformation is rendered. This
undesired deformation mode is the probable cause of theneamlrespons&l — 6 with linear potential (see figure
7).

Under torsional loads, we assumed independency of thelithibecause of the known isotropy of the graphene
layer into its own surface. Although our results seems ttesteat ZigZag nanotubes areffgr subjected to torsion,
the diferences are not decisive.

6.4. Derivation of Poisson’s ratio

As has been mentioned before, the continuum models are plitape at the SWCNTSs nano-scale size. In order
to highlight this idea, values for the Poisson’s ratio wdneamed through the classical constitutive relationship:

E
=—-1 42
V=06 (42)
involving the Young modulus obtained from the tensile siatiohs and the Shear modulus from the torsional ones.
Output values are grouped in tablg 13 and their variatioh véispect to the nanotube diameter plotted in fi@uie 20.

AMBER AMBER MORSE MORSE

prestress prestress
v v v v
ZZ(9,0) 0.48 0.82 0.58 1.02
Zz(11,0)  0.38 0.57 0.48 0.71
7z(13,0)  0.35 0.47 0.44 0.59
AC(5,5) 0.67 0.82 0.79 1.00
AC(7,7) 0.46 0.53 0.56 0.65
AC(8,8) 0.41 0.46 0.51 0.57
CH(7,4) -0.06 0.89 1.45 0.71
CH(8,5) 0.58 0.90 0.54 1.23
CH(10,6)  0.45 0.56 0.48 0.95

Table 13: Poisson’s ration tension-torsion

Of course, the obtained results for Chiral nanotubes areetiable because of the same numerical ill-conditioning
problems found under torsion with Morse potential. Obvigusegative Poisson'’s ratio are senseless. On the other
hand, from the ZigZag and Armchair results, we could staeRisson’s ratio decrease with increasing diameters up
to an average value of abouf8 - 0.3. However, the remarkable scattering observed invakdhte last conclusion.

To sum up, equatiori (42) does not suitably render into thehargcal behavior of SWCNTSs, underlining that
continuum models are not capable of reproducing their discnature. Opposite to this idea Natsuki et. | al [28]
propose a value of = 0.273 and suggest the continuum body relationship (42) mayskee for estimating the
Poisson modulus of a planar graphene sheet. Neverthdiegs;dnclusion should not be extended to SWCNTSs.
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7. Concluding remarks

In this paper, a new general formulation for the ‘stick-apimodel presented by Chang and Gaa [26] has been
presented. Calculations with both AMBER and Morse pot¢ftiactions have been carried out, aimed to compare
their final results. In addition, thefect of initial SWCNTSs curvature has been introduced exgyitihrough a system
of initial stressesgrestressedtate) which contribute to maintain their circular crosst®on.

Our formulation allows the model to be subjected to geneiad Iconditions with no need of additional equations,
against other previous works [2€], [27], [31] where a speddimulation is needed for each load case. As examples of
this issue, four load configurations were adopted: tensimmpression, bending and torsion of cantivelered SWCNTSs.
Numerical results of mechanical parameters and deformegoeshare presented and discussed.

Main conclusions obtained from our calculations are sunmzedras follows:

1. Morse potential provide sfer results in tension than AMBER potential withffédrences over 15%. The same
stiffening dfect produced by Morse function (15% in compression, up to 13%ending and around 8% in
torsion) is present in all load cases. However, there aremudrtant diferences below strains about 6% in tension
and below 4% in compression.
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10.

11.

. Despite the nonlinear nature of the Morse potential glifeehavior under all load cases studied in this paper has

been yielded. Of course, the forces updating through targiénesses (fi§l6) only may reproduce partially this
nonlinearity, leading to an apparent contradiction. ltidtdde noted that higher values of strains into each load
case are not consistent with the model, which aims to rem®the mechanical response of CNTs (geometrically
linear) under small strains and displacements assumption.

. Our new formulation is able to include initial stresspgeénergy explicitly just by adding initial strains into the

constitutive equatiori (19). This feature is a great novedtgited to other works concerned with the ‘stick-spiral’
model [26], [27], [28], [30], [31]. The initial strains wergdopted by keeping the carbon atoms into the cylinder
surface of the nanotube at the undeformed shape, and regahdi initial location of the covalent bonds in a
straight line linking two neighboring C atoms.

. The prestressed state produce$ssting under tensile loads (about88%) and flexibilization under compressive

loads (about 5 15%). This phenomenon occurs because the prestressednstatieice radial resultant forces
which tend to keep the circular cross-section of the naretilihus, Poissonf®ect converts these radial forces into
longitudinal shortening under any load case. Of courseintthgence of the initial stresses into the axial behavior
of SWCNTs should not be neglected.

On the other hand, the results are very similar in bendingg@inces in the range of 5%) and torsiorfl@giences
around 3%), and we can consider these load cases as indepehte prestressed state.

. Despite the adoption of Young and shear moduli for the @mpn of results, this choice may be controversial

because of their high dependence on the wall thickness Kwisigally is taken as 0.34 nm). Our only objective has
been to validate our model with previous results, but nostaldish quantitative mechanical parameters associated
to a continuum.

. In fact, is doubtful to deal with SWCNTs as a continuum hab/has been shown through the great scattering

observed in the Poisson’s ratio calculated by using [ed.. (f@grefore, the classical constitutive relations do not
suitably render a continuum equivalent medium for SWCNTSs.

. The application of standard homogenization theorie§ [42] could be very promising to treat the mechanical

simulation of CNTs (although our paper is not directly rethto these methods), given the specific characteristics
of the problem (great number of unit cells which are repeatitd geometric periodicity). Likewise, it would

be taken tensile, compressive, flexural and torsional hehas the preferred set of simple loading test cases for
establishing the equivalent properties into the homog#iuia solution.

. ZigZag SWCNTs are dfer than Armchair ones under tensile loads (up to 8%), butribisclear the influence

of the chirality on the final response under compressivedingnand torsional loads. It could be concluded the
mechanical behavior of SWCNTSs is almost independent of hiirality.

. Young modulus E is decreasing with nanotube diameterrigiaa (only if prestressed state is included) and is

increasing in compression. However, in compression, trariaf Young modulus is much lower than in tension.
Also, E is increasing under bending loads and shear modulissirigreasing under torsional loads with respect
to the nanotube diameter. In both cases, Chiral results havbeen taken into account due to the numerical
ill-conditioning experimented for these results with Memotential.

The non-axisymmetry of Chiral nanotubes lead to some&dstrongly tensioned and some other bonds strongly
compressed under some of the load cases considered. Tiegthtovery dferent stifnesses from tension to com-
pression with Morse longitudinal interaction causes diditioning of the iterative procedure depicted in figlre 6
and the results for Chiral CNTs are not completely reliableither improvements are currently in progress.

As output of our developed codes, deformed shapes, baaldfarces, angular moments and joint reactions are
obtained. By interpreting the resulting deformed shap@sesundesired local deformations have been discovered
at the cantilever free end, mainly with Chiral nanotubesis Hfect is probably due to the local configuration of
the bondsat the nanotube ends. Namely, some of the extreme bar elgfimetitese zones are shorter than the
real covalenC — C bonds and the application of a set of point forces at the fnelevéll trigger unexpected local
deformations. However this problem may be removed by inicath imposed displacements at the free end by
means of a set of moving pinned joints, which is currentiyngeiorked out. Anyway, the imposed displacements
solutions may produce slightly fierent values of the mechanical parameters rendered (as1dhoilbrahimbe-
govic and Markovic|[41] and against Markovic and Ibrahimereig [42]). In any case, local deformations near
nanotube ends should be considered as latatts which could be readily neglected.
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