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Abstract 

This paper develops and explains the criteria for obtaining mix designs of self-compacting fiber 

reinforced concrete (SCFRC), the verification of their properties, the analysis of their production quality 

continuity in a precast industry and its ulterior application to produce prestressed concrete beams to 

minimize traditional transverse rebars. 

An experimental program consisting in nine double-T prestressed beams was developed to analyze fiber 

contribution to shear behavior. Some of the main conclusions are: fibers act as additional reinforcement 

with stirrups; Codes are sufficiently safe as regards the shear ultimate limit state (ULS) but an in-depth  

study on the current Codes analyzing the influence of the parameters affecting shear strength is needed, 

EC2 does not take into account the positive effect of the fibers on the dowel action and this effect is too 

important to be neglected on beams with high longitudinal reinforcement ratios. 
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1. Introduction 

Even after many years of in-depth research, the shear behavior of concrete structures is still to be updated 

and is a topic of continuous debate between researchers who are looking for models and methods to 

describe and determine the shear capacity of structural concrete members. General shear models are being 

extended to other materials such as fiber reinforced concrete (FRC). The FRC shear design workshop 

held in Salò (Italy) [1] proved to be an interesting advance in the development of the Model Code 

provisions [2, 3] and in inspiring future research into these topics. Lectures were compiled in a fib 

Bulletin [1]. 

Many studies [4-28] have led to a number of experimental research works on FRC’s shear resistance and 

to a good advance in our understanding of the shear behavior of FRC beams. The main ideas include: 

fibers are used to enhance the shear capacity of concrete, or to partially or totally replace stirrups in RC 

structural members [9, 29-31]; FRC is characterized by enhanced toughness due to the bridging effects 

provided by fibers [31, 32]; fibers provide substantial post-peak resistance and ductility [31, 33]; by 

adding fibers, less brittle shear failures take place e.g., [24-26, 30, 32, 34]; test results indicate that when 

fibers are applied, maximum crack width, average cracks width and average crack spacing decrease [17, 

32, and 35]; FRC is suitable for structures where diffused stresses are present, and reinforcement is better 

in structures where both localized and diffused stresses are present because of a combination of rebars 

and fiber reinforcement [31]. 

RILEM TC162-TDF produced pioneer design guidelines [36] where fibers contribution to shear is added 

to concrete contribution as a separate term. 



The approach presented in the first complete draft of the Model Code 2010 [2, 3] to calculate FRC 

members’ shear capacity is based on the Eurocode 2 equation [37], used to determine shear contribution 

in concrete members without shear reinforcement by adding a factor based on Minelli’s proposal [38], 

which includes the FRC toughness properties by modifying the effect of the longitudinal reinforcement 

ratio. Then, fibers are included in concrete contribution. This was done to obtain a more representative 

modeling of the actual effect of fibers, which basically make the concrete matrix tougher after cracking 

by improving both the transfer of residual tensile stresses and the aggregate interlock (the latter, by 

keeping cracks smaller) [31]. However, we should note that the two formulations require toughness 

properties. When combining fibers and stirrups, both Codes include an additional term to consider the 

effect of stirrups. 

In [31], the fittings of a wide experimental database between the proposed model [38] and the RILEM 

formulation [36] were compared. Although the fitting results are less promising when dealing with high 

strength concrete specimens or prestressed members, the RILEM results are slightly more refined for 

small-sized elements than for deep beams [31]. 

The ACI 318-08 Code [39] does not contain a formula to calculate the shear strength of SFRC beams, and 

only assumes a minimum shear strength which fibers can withstand. Parra-Montesinos [35] ensured that 

hooked steel fibers in a 0.75% volume fraction can be used in lieu of minimum stirrup reinforcement in 

beams. Evidently, a limit based on FRC’s toughness properties (that does not only depend on the amount 

of fibers) would be a better criterion to justify substitution of transverse reinforcement. 

Other countries have produced design guidelines [31], such as France (AFGC-SETRA, 2002), Sweden 

(Stälfiberbeton, 1995), Germany (DAfStb, 2007), Austria (Richtlinie Faserbeton, 2002), Italy (CNR, 

2006) and Spain (EHE: Annex 14 [40]); the last one is based on RILEM. 

Some of the main parameters usually considered to influence shear behavior are: element dimensions 

(size effect), presence or absence of axial forces, amount of longitudinal reinforcement, compressive 

concrete strength, load conditions, cross-section shape, the shear span/depth ratio (a/d) and the toughness 

properties of steel fibers. Some authors [41-45] have studied the effect of flange width on shear capacity 

with I and T-beams. Zsutty [44] proposed an equation to calculate the shear carried by concrete with a 

factor hf  (flange thickness). However he considered it reasonable to ignore the strengthening effect of the 

flange for design purposes.   

Current Design Codes do not include this effect in their formulation for plain concrete members. 

However, in the RILEM model, factor (kf) takes into account flanges contribution to shear due to fibers 

appearing.  

These facts have encouraged authors to develop an experimental test program to analyze the influence of 

beam flange dimensions, as well as the combined effect of use of fibers with traditional transverse 

reinforcement (TR) on shear behavior. 

The objective was to analyze shear behavior on real FRC prestressed beams, which are produced daily in 

a precast industry and are made with high-strength concretes. The main goals of this study were to: 

 Propose a consistent SCFRC mix design adapted for continuous use in a precast industry.  

 Evaluate the possibility of replacing all the transverse reinforcement and secondary rebars used for 

shear resistance in prestressed beams production.  

 Analyze the current Codes that calculate shear strength capacity by means of their safety margins, 

which are obtained as the experimental to theoretical shear strength ratio.  

 Check the possible influence of flange size on shear behavior. 

2. Concrete mix designs 



Reference SCC and a SCFRC with 60kg/m
3
 (Vf = 0.75%) of steel fibers were developed for this study. 

The aim of those concretes implied a nominal slump flow of 600mm and an average compressive strength 

of about 60MPa at 28 days.  

This objective was chosen to obtain self compacting concretes with good compressive strength at early 

ages which can be placed, without vibration; this is in line with precast prestressed beam production 

demands.   

The materials used were a CEM I 52.5R cement type and calcareous crushed aggregates: filler, sand and 

7/12 mm size coarse aggregates. The fibers used were low carbon steel hooked-end steel: 40mm length, 

0.62mm diameter, and a nominal aspect ratio (length/diameter) equal to 65.  

The water/cement ratio and the superplasticizer dosage were respectively determined to reach the required 

strength and slump flow.  

SCC mix design criteria [46], most of which were based on laboratory tests, suggest an increase in fine 

content. Naturally, a final application needs experimental verification under working conditions. When 

SCC has fibers, the quantity of fines has to be increased. 

Based on the authors’ previous research work [47], the concrete mix design was determined by adapting 

solid grading (including cement) to the theoretical Bolomey particle size distribution curve [48], defined 

as:  

p = a + (100 – a) (d / D)
1/2

 (1) 

where “p” is the pass percentage through the “d” sieve, “D” is the concrete’s maximum aggregate size 

and “a” is the Bolomey parameter [48], which depends on the desired workability of the concrete and 

aggregates properties.  

For the concretes in this paper, the “a” values used were: a=16 for SCC and a=20 for SCFRC. A 

relatively low “a” parameter was used because well graded sand was available.  

Table 1 shows the mix design for both concretes. In Figure 1, theoretical and actual particle size 

distribution curves are plotted. 

3. Concrete properties and production control 

In Figure 2, the flow of an SCFRC concrete into a beam formwork with no compacting process can be 

observed; a consistent mix design was obtained to be employed continuously in a precast industry. 

To analyze the mix design robustness, an exhaustive production quality control took place in the 

experimental program. To cast all nine programmed beams, a 2m
3 

mix was used. Concrete was casted 

according to the utilities and conditions of a precast industry. The following tests were done with a 

sample from each mix: the slump-flow test (EN 12350-8), a compressive strength test on 150 x 300 mm 

cylinder specimens (EN 12390-3) and the flexural tensile strength test (EN 14651). The following was 

obtained from the flexural test: the limit of proportionality (fctl) and the residual flexural tensile strength 

(fR,j) which corresponds to the crack mouth opening displacements (CMOD) linked to the crack openings 

(in mm) of 0.5, 1.5, 2.5 and 3.5 (j=1,2,3,4 respectively). All the mixes reached slump flow test values of 

between 550 and 710mm, which were sufficient to allow adequate concrete placing in the beams.  

Table 2 shows the mechanical properties of the different concrete mixes. All the mechanical values were 

obtained as the average of three specimens 28 days after casting the beams. In order to analyze continuity 

on production, the averages, standard deviations (SD) and coefficients of variation (CoV) of the results 

are included.  



It is noteworthy that a brittle behavior of the fibers was observed during the flexural tensile strength tests, 

as deduced from the fact that fR,3 and fR,4 are clearly lower than fR,2. The 2 mm crack opening was often 

reached with the severance of several fibers without them sliding out of the concrete, and sometimes a 

brittle rupture was obtained before being able to determine the crack opening to fR,3 and fR,4. The values in 

Table 2 correspond to the results of at least two specimens. 

The smallest variation was obtained for compressive strength with a CoV value of 8%. Residual flexural 

strengths presented greater variability, with CoV values of between 13% and 22%. This means than, even 

for residual flexural strength, dispersion can be controlled at levels only slightly higher than those 

obtained for compression strength in traditional concrete production when casting is performed under 

precast industry conditions. 

Di Prisco [49] obtained a higher dispersion for the residual parameters, corresponding to an SCFRC used 

as a top slab (26.8% to 34.6%) when casting concrete with a small amount of fibers and under in situ 

production conditions.  

 

 

4. Experimental program and the results analysis 

4.1. Main variables and beams production 

Nine six meters long double-T shaped prestressed beams were casted. Figure 3 shows the beams cross-

section and reinforcement.    

Beams were prestressed over-reinforced longitudinally with 11 tendons (0.6” diameter with a nominal 

cross-section equal to 140mm
2
) of 7 wires (Y 1860 S7). Their initial tension was 1354MPa (before pre-

stress losses, which can approximately account for 26.2%). This reinforcement guaranties a beam failure 

by shear when tested. This longitudinal reinforcement implies a ρl =1.83% for all the beams, except for 

specimen HF400h/6 with ρl =1.71%. All the rebars used for stirrups or additional reinforcement were 

made out of steel B 500 S type.  

The experimental program variables were:  

- Top flange width (260 mm; 400 mm; 600 mm) 

- Concrete type (SCC or SCFRC) 

- Presence or absence of traditional transverse reinforcement (ϕ8 stirrups each 300mm) 

- Use of additional reinforcement, which is normally placed in beams made with SCC to control 

secondary failures (Figures 3 and 4) 

- The effect of a depth increase of the top flange was also analyzed.  

One type 7 of additional reinforcement was placed at both ends of all the beams to avoid longitudinal 

shear failures.  

Table 3 shows the combination of variables for each tested beam. 

4.2. Testing procedure 

Beams were tested as simple supported and were subjected to two load points. The distance between 

supports was 5.00 m and the shear span/depth ratio (a/d) was 3.0 for all cases, except for beam HF400h/6 

with a/d=2.8.  

The two loads were applied to the beams by one 2500 kN hydraulic jack. Loads were applied at a rate of 

0.5-2.0 kN/s. To monitor the behavior of the tested beams, the applied loads and vertical deflections were 



measured using a load cell and three displacement transducers placed on the middle span and over the 

middle of each shear span. All the variables were registered continuously by the data acquisition system. 

Photography and video equipment were also utilized in both the shear span zones on both sides of the 

beams. A synchronized recording system allowed us to report each photogram to the corresponding 

applied load. Later, the maximum shear crack opening versus the load curve was reported by means of a 

photo analysis. Figure 5 shows the test set up. 

4.3. Results 

As expected, all the beams had a shear failure and presented diagonal cracks with flexural cracks of very 

little consequence. Table 4 offers the maximum load obtained for each beam. Greater shear capacity was 

obtained when stirrups and fiber acted simultaneously (Beams 1 and 2), reaching a value of 18.5% higher 

than that of the beam with only traditional stirrups (Beam 3). No significant difference was found 

between the two beams with both stirrups and fibers. The additional reinforcement types 3 and 4 in Beam 

2 did not imply any shear capacity improvement.   

The beam with only stirrups also presented greater shear strength (an average of 30.4%) than all the other 

beams with only fibers as shear reinforcement.   

The differences among the beams with only fibers as shear reinforcement were clearly less significant. No 

influence of flange width on the shear strength experimental value was detected (Figure 6). Table 4 

provides the test values of the shear strength of only fiber reinforced beams of the same height. The low 

CoV value (9.62%) was similar to the compressive strength dispersion found in this research and 

indicates lack of flange influence.   

In contrast, a slight influence of additional reinforcement (types 2, 3, and 4) was detected when a greater 

shear strength was obtained in Beams 4 and 8. At any rate, this trend was neither significant nor 

consistent with that observed when comparing Beams 1 and 2.  

If fibers contribution to shear depended on fibers efficiency, it would be possible to find a correlation 

between the shear strength of the beams and their concrete flexural residual strength. Nevertheless, no 

clear trend was obtained (Figure 7), meaning that the flexural test method dispersions were greater than 

the effect on beam shear capacity.  

Based on this reflection, when analyzing the parameters influencing shear capacity (see 4.4), concrete 

residual flexural strength was considered a fix parameter, which was evaluated as the average of the 

residual strength obtained in the eight beams made with fibers. Identical criteria were applied for concrete 

compressive strength.   

4.3.1. Load Deflection Response 

Figure 8 shows the Load-mid span deflection response for one beam for each combination of top flange 

width and shear reinforcement conditions. In order to obtain a clearer graph, other beams were eliminated 

to provide no additional information. Compared with other tested beams, those with stirrups and fiber 

shear reinforcement showed a ductile failure with controlled post-peak behavior. All the other beams, 

including this one with only stirrups and no fibers, revealed brittle failure with a sharp drop after the peak. 

No clear differences in ductility (post-peak behavior) were observed between the beams reinforced only 

with either fibers or TR. 

4.3.2. Cracking pattern and the Load-Crack width response 

The cracking pattern evolution on shear span at different loads is illustrated in Figure 9 as a selection of 

the main types of beams with the same geometry. Figure 10 represents the Load-Crack width response of 

these same beams. These figures allow us to analyze the influence of their shear reinforcement: transverse 

reinforcement (TR), fibers, or both. The other analyzed variables produced no remarkable difference in 



this behavior. These figures enable an assessment of the width, quantity and spacing among the cracks 

throughout the loading process.  

The average crack inclination was very close to 22º for all the beams. 

For those beams reinforced to shear only with fibers (Beam 4), only a few cracks developed upon low 

loads, and but one of them opened quickly. For Beam 3, which had only traditional reinforcement, cracks 

were more profuse, very straight and extremely parallel. Upon very low loads, some crack openings close 

to 0.3 mm were noted and rapidly progressed; consequently, this beam must not be considered to be in 

service conditions. For all the SCFRC beams, and for the beam with only TR, the crack which produced 

the failure either coincided with a previous crack or was generated from previous cracks. For Beam 2 

(which had traditional reinforcement and fibers), a larger number of cracks developed, with a narrower 

gap between them and a thin opening remained. It was necessary to reach a high load level to appreciate 

shear cracks, and shear cracks reached values of 0.2 mm only near ultimate loads. Cracks increased 

gradually, but in a way that was easy to control. The crack that finally produced the failure developed 

upon a very high load, involved two previous parallel cracks and produced a flatter final crack slope.   

In conclusion, clearly improved ductility was detected only when TR was placed on an SCFRC beam and 

when addition of fibers to the traditional transverse reinforcement led to a 35% increment in the 

maximum load for the same crack width. The crack width of the beam with traditional transverse 

reinforcement only (Beam 3) was 0.4 mm for a load of 750kN. The same beam, but with fibers (Beam 2), 

reached an ultimate, 35% higher load (1150kN) than without fibers.  

4.4. Shear values calculated with the current Design Codes 

Shear strength capacities were calculated by the formulation of current Codes EHE08 [40], EC2 [37] and 

MC2010 [2, 3]. As EC2 has no formulation which takes into account fiber contribution, it was calculated 

by following the RILEM approach [36].  

Notation (Appendix A) and formulas presentation have been adapted to facilitate their comparison. In this 

way, formulas take the following general structure: 

Vu2 = (Vcu* + Vfu ) + Vsu  (2) 

All the Codes consider the traditional transverse reinforcement contribution (Vsu) in the same way and are 

evaluated according to the following expression:  

Vsu = z·sen α·(cotg α + cotg θ) ΣAα·fyα,k (3) 

Table 6 shows the expression for the concrete (Vcu) and fibers (Vfu) contributions of each Code.  

No Code considers any explicit influence of cracks inclination on the fibers contribution evaluation or 

proposes any fibers effect on the θ value to be considered in the shear reinforcement contribution (Vsu). 

Consequently, fibers are considered separately to TR. On the other hand, the inclination of compression 

stresses θ was assumed equal to that obtained with the corresponding expression of Model Code -Level 

III of Approximation- (see Expression B.13 from Appendix B) for all the Codes. 

In this way, the theoretical shear strength values were calculated by the following criteria for each Code: 

-MC2010: Beam 3 (without fibers) was calculated by applying the most accurate form (Level III of 

Approximation), which permits the calculation of εx and directly calculates the corresponding inclination 

of the compression stresses (θ). Level III of Approximation was based directly on the equations of the 

Modified Compression Field Theory (MCFT) [50]. Other beams (with fibers) were calculated by 

applying the formula proposed in MC 2010 (see Chapter 7.7), which includes the effect of fibers inside 

the concrete matrix contribution. 



-EHE08:  This reference angle of cracks inclination (θe) was taken to equal the inclination of compression 

stresses (θ): θ = θe. 

-EC2: When considering TR shear contribution, EC2 neglects the concrete contribution to shear (Vcu). 

Several authors, including the EC2 authors, have doubts about concrete contribution to shear when TR is 

needed. Cladera and Marí [51, 52] concluded that the EC2 procedure is very easy to use but its results are 

very scattered. On the one hand, it may be too conservative for slightly shear-reinforced beams or for 

prestressed beams; on the other hand, it may prove slightly underestimated for heavily reinforced 

members. 

To obtain real predictable resistance concrete, partial safety factors for material properties were 

considered in the calculation as γc=1 and γs=1. Moreover, average values were utilized when a 

characteristic value appeared in a formula.  

Code formulas include limitations on several parameters such as the ρl reinforcement ratio for 

longitudinal reinforcement, the ξ factor which takes into account the size effect, the σck average stress 

acting on the concrete cross-section for an axial force due to prestressing actions and minimum concrete 

contribution to shear Vcu , as presented in Appendix B. None of these limitations affected the values 

calculated in the beams tested for this paper.  

Table 6 presents the theoretical shear strength values calculated with the current Codes for each beam. 

Figures 11-a and 11-b represent contributions to shear by means of concrete, stirrups and fibers for the 

current Codes: the Spanish Code EHE08, EC2 and MC2010 for all of the beams tested. In Figure 11-a, 

the results were evaluated by considering average values without applying safety factors. Figure 11-b 

reproduces the values evaluated by considering design values. Design values were obtained by dividing 

the characteristic value by its corresponding material safety factor. 

As all the formulas (except MC2010 for concrete without fibers) include an identical and explicit term 

after considering the favorable effect of prestressing reinforcement on concrete contribution, a line with 

the level of this effect has been represented in Figures 11-a and 11-b. 

Figure 11-b shows how the fibers effect is underestimated by the Codes, mostly by MC2010. Finally, 

Table 7 reports the shear contributions as a percentage due to stirrups, concrete and fibers. 

4.4.1. Flange effect on shear strength. 

The kf factor in Codes EHE08 and RILEM, which takes into account flange contribution in the T-sections 

calculated by the formula in Appendix B, was equal to 1 for rectangular sections, yet increased when 

there was a flange. With the cases presented herein, kf was equal to 1.5 for width flanges of up to 400mm, 

which did not differentiate any flange effect among the beams studied in this paper with a flange width of 

up to 400mm. In contrast, kf equaled 1.35 for the smallest flange width tested (260mm). 

In Figure 12, the EC2 safety margins were plotted for the beams only reinforced with steel fibers. In this 

graph, the theoretical values were obtained with the EC2 formulations, and the RILEM proposal was 

added to evaluate the shear contribution due to steel fibers. Four different options were calculated: 

1. kf =1.5 was applied to all the cases. 

2. Without the kf application, then kf =1.   

3. kf was applied exactly as proposed in the RILEM approach. 

4. kf was applied as proposed in the RILEM approach, but without its limitations (see B.5 and B.6 

in Appendix B). 

When kf  was not applied (2
nd

 option), highly conservative SM (safety margin) values were obtained.  

If we observe the 4
th

 option (kf without limitation), it is clear that SM lowered for 600 mm flange widths, 

meaning that the application of limitations was necessary. 



The most balanced option (when comparing the theoretical and experimental results) may be obtained by 

applying the corresponding kf value (3
rd

 option) for the cases in which hf >400mm. Only the beam with a 

low kf value (hf=260mm) was not conservative enough with this criterion. For this width flange, kf =1 had 

to be applied. 

4.4.2. Assessment of shear formulations from current Design Codes.   

The safety margins (SM) obtained as Vtest / Vtheo (the shear test value divided by the shear theoretical 

value) were used as a reference parameter to compare the results obtained from the different beams and 

Codes. 

In order to achieve a more complete analysis of the SM of the current Design Codes, Figure 13 shows 

how the SM of the different analyzed Codes were plotted for the beams tested in the experimental 

program presented herein, along with six more beams corresponding to Minelli’s PhD thesis [38]. 

Minelli’s beams were similar to our HF600 series (prestressed, reinforced only with fibers, 700mm depth 

and 600mm flange width).  

The toughness properties of Minelli’s concretes were obtained by means of four point bending tests to 

determine equivalent strengths such as feq(0.6-3.0)  usually, these values have been assumed to be fR3 in the 

literature. For calculation purposes, it was assumed that fR3=fR4 to be able to apply the same criteria to the 

Minelli database beams.  

We observed that applying the longitudinal reinforcement ratios limit, which equaled 2%, when the actual 

reinforcement was much higher (which is the case of Minelli’s database) conferred shear strength 

estimations which were too conservative. This reasoning, coupled with the assertion of Cladera [53] 

which ensures that the limitation of longitudinal reinforcement could be extended from 2% to 4%, led the 

authors to apply the real longitudinal reinforcement ratio. 

The graph represented in Figure 13 is divided into three parts: beams reinforced only with stirrups, 

stirrups with fibers and, finally, only reinforced fiber. Moreover, beams were arranged in descending 

order according to their flange width.  

All the Codes presented safety margins greater than “1”, which means a safe shear strength evaluation. 

If we observe the beams only reinforced with fibers, MC2010 was the most balanced one for all the 

flange widths. This formula considered the whole effect of fibers as it multiplied the longitudinal 

reinforcement ratio by a parameter which included the compressive strength and toughness properties of 

the FRC. In this way, the fibers effect, that of improving the dowel action by increasing the bond between 

the rebar and concrete matrix, as proposed by Swamy [5], was implicit. The dowel action improvement 

due to fibers was too important for beams with very high longitudinal reinforcement ratios (ρl>2%) to not 

be considered, as with EC2. Therefore, the application of EC2, with RILEM or EHE08’s formulas, to 

Minelli’s beams with large amounts of longitudinal reinforcement (ρl) led to higher SM. 

The current MC2010 formula for FRC offers a major advantage if compared with EC2 because MC2010 

multiplies the longitudinal reinforcement ratio by the compressive strength and the toughness properties 

of the FRC. On the other hand, EC2 does not consider the toughness properties on the longitudinal 

reinforcement ratio. It is known that fibers improve the dowel action because they improve the bond 

between the rebar and the concrete matrix, as in Swamy [5], who ensured that fibers enable beams to fully 

use the shear contribution due to the dowel action; moreover, this fact must be included in the Design 

Codes as has been done with the MC2010 formulation for FRC elements.  

MC2010 is highly conservative for all cases with FRC beams. It is important to remember that the limit 

of the longitudinal reinforcement ratios was equal to 2% and has not been applied in the values evaluation 

in Figure 13. Otherwise the SM obtained for the Minelli’s beams should be higher.    



EC2 was excessively conservative when stirrups were placed because concrete contribution to shear was 

neglected. 

When stirrups were present, MC2010 with Level III of Approximation, or EHE08, were clearly better 

adjusted. In these cases, SM were close to 1.2, and were visibly narrower than those obtained for FRC 

(about 1.5). This may be justified by less confidence in the continuity of the FRC toughness properties. 

Obviously, additional studies must be done to reach and validate a more adjusted proposal.  

 5. Conclusions 

An SCFRC has been casted with good production continuity according to the slump flow test and its 

compressive strength and flexural behavior under industrial conditions, and with low levels of quality 

variability. 

An experimental program including shear tests on nine prestressed FRC double T-beams has been 

developed. The results indicate that inclusion of steel fibers provides a more ductile behavior after the 

maximum load. According to the analysis of failure modes, deflections and cracking patterns, the 

following conclusions can be drawn:  

 Steel fibers control not only the appearance of cracks, but also their propagation.  

 With steel fibers, more cracks are created, but these are narrower than without fibers, and the gap 

between them is also smaller. 

 Steel fibers positively interact with traditional transverse reinforcement (additive effect), conferring an 

important contribution to the tension stiffening mechanism.  

 EC2 is highly conservative when stirrups are present, because concrete contribution to shear is 

neglected. 

 According to the flange width influence, the results obtained for tested beams indicate that the 

presence of a flange does not clearly produce a difference in the ultimate load capacity. These results 

are in agreement with the fact that the kf factor, which takes into account the contribution of flanges on 

shear according to RILEM, does not vary for hf>400mm. 

 The RILEM approach does not consider the positive effect of fibers on the dowel action. Its 

application leads to results which vary vastly with the longitudinal reinforcement ratio. 

 MC2010 bears in mind the positive effect of fibers on the dowel action. In this way, fibers 

contribution increases when beams have high longitudinal reinforcement ratios. MC2010 shows well 

balanced SM for a variable range of flange widths (hf) and reinforcement ratios. However, these SM 

have highly very conservative values. 

 Even though all the Codes underestimate the fiber effect on shear, a less conservative approach is 

needed in the MC2010 proposal.   
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FIGURE CAPTIONS 

Fig. 1. Theoretical versus actual particle size distribution curves for selecting the mix design 

Fig. 2. Concrete pouring into the formwork 

Fig. 3. Cross-section. Dimensions in mm. 

Fig. 4. Additional reinforcement typologies. Dimensions in mm. 

Fig. 5. Beam during shear test 

Fig. 6. Vtest (kN) comparison of fiber-reinforced beams with a variable top flange width. 

http://www.efnarc.org/pdf/SCCGuidelinesMay2005.pdf


Fig. 7. Vtest –fRj response for each beam (the number of the beam is next to each point). 

Fig. 8. Load-deflection responses on middle span. 

Fig. 9. Cracking patterns. Crack appearance and its corresponding load level. 

Fig. 10. Crack widths (mm) on beams for different shear reinforcement combinations. 

Fig. 11-a. Contributions of concrete, stirrups and fibers to the ultimate theoretical shear strength capacity 

(average values). 

Fig. 11-b. Contributions of concrete, stirrups and fibers to the ultimate theoretical shear strength capacity 

(design values). 

Fig. 12. SM variations when different flange factor values are applied. 

Fig. 13. Safety Margin = Vtest / Vtheo without safety factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 

Mix design adaptation (kg/m
3
). 

(kg/m
3
) SCC  SCFRC  

7/12 aggregate 846 721 

Sand 924 985 

Filler 41 50 

Cement 440 460 

Water 198 205 

Fibers 0 60 

Superplasticizer 11.1 12.8 

W/C ratio 0.45 0.45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 

Mechanical concrete properties. 

Specimen ID fc [MPa] fctl [MPa] fR1 [MPa] fR2 [MPa] fR3 [MPa] fR4 [MPa] 

HF600TR/1 61.1 3.36 5.26 5.13 -- -- 

HF600TR/2 65.7 4.39 9.36 9.56 6.89 4.96 

H600TR/3 52.4 3.64 -- -- -- -- 

HF600/4 65.4 4.70 10.46 7.99 6.24 5.12 

HF600/5 65.9 4.20 8.55 8.43 5.55 3.92 

HF400h/6 59.5 4.45 8.96 7.49 5.96 4.57 

HF400/7 63.5 4.08 6.64 6.70 4.77 3.41 

HF400/8 70.0 4.33 8.10 7.02 4.68 3.13 

HF260/9 65.0 3.11 6.45 4.38 -- -- 

Average 63.17 4.03 7.97 7.09 5.68 4.18 

SD 4.75 0.51 1.61 1.59 0.79 0.75 

CoV (%) 8 13 20 22 14 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 

Main study variables. 

Specimen 

ID 

Top flange 

width (mm) 

Transversal 

reinforcement 

Fibers 

(kg/m
3
) 

Plus depth 

(mm) 

Additional 

reinforcements 

(types) 

HF600TR/1 600 cϕ8/300 60 0 2, 3, 4 

HF600TR/2 600 cϕ8/300 60 0 2 

H600TR/3 600 cϕ8/300 0 0 2, 3, 4 

HF600/4 600 0 60 0 2, 3, 4 

HF600/5 600 0 60 0 - 

HF400h/6 400 0 60 50 - 

HF400/7 400 0 60 0 - 

HF400/8 400 0 60 0 2, 3, 4 

HF260/9 260 0 60 0 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 

Experimental shear strength (kN) for each tested beam. 

Specimen ID Vtest 

Vtest 

(Beams only 

with fibers,  

not TR) 

HF600TR/1 571.61  

HF600TR/2 592.70  

H600TR/3 491.34  

HF600/4 392.44 392.44 

HF600/5 347.17 347.17 

HF400h/6 420.03  

HF400/7 389.95 389.95 

HF400/8 428.31 428.31 

HF260/9 325.58 325.58 

Average  376.69 

SD  36.26 

CoV (%)  9.62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 

Current Codes shear formulas. 

TR=Traditional transverse reinforcement; 

(*) β depends on θ according to the formula in Appendix B; if θ = θe  β=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code Theoretical Shear (V) Parameters  

 

Concrete contribution  Vcu 

Fibers contribution  Vfu 

 

Without 

TR 

With 

TR 

EHE-08  [40] 

Vcu =[(C1/γc)·ξ·(100·ρl· C2)
1/3

+ 0.15·σck]·β·bo·d 

Vfu =kf·0.7·ξ·0.5·0.33·(fR3k/γc)·bo·d 

C2= fcv 

C1=0.18 

β=1 

C1=0.15 

β= (*) 

EC-2  [37]   + 

RILEM [36] 

Vcu =[(C1/γc)·ξ·(100·ρl· C2)
1/3

+ 0.15·σck]·β·bo·d 

Vfu =kf·0.7·ξ·0.18·(fR4k/γc)·bo·d  

C2= fck 

C1=0.18 

β=1 

β=0 

Vcu=0 

MC2010  [2, 3] 

Without fibers: 

Vcu =kv· (√fck /γc)·z·bo     (Level III Approximation) -----------   

MC2010 [2, 3] 

With fibers: 

Vcu + Vfu = [(C1/γc)·ξ·(100·ρl· C2)
1/3

+ 0.15·σck]·β·bo·d 

C2=(1+7.5·(fFtuk/fctk))·fck 

C1=0.18 

β=1 



Table 6 

Shear strength (kN) calculated from the current Design Codes without safety factors. 

Specimen ID Vtest VEHE08 VEC2 + RILEM VMC2010 

HF600TR/1 571.61 491.21 337.03 474.40 

HF600TR/2 592.70 491.21 337.03 474.40 

H600TR/3 491.34 384.99 224.82 404.34 

HF600/4 392.40 281.62 290.97 249.58 

HF600/5 347.20 281.62 290.97 249.58 

HF400h/6 420.00 298.81 308.86 261.58 

HF400/7 390.00 292.91 302.40 259.42 

HF400/8 428.30 292.91 302.40 259.42 

HF260/9 325.60 292.19 300.72 269.24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7 

Shear contributions (%) due to stirrups, concrete and fibers according to the current Design Codes 

Specimen 

ID 

EHE08 EC2+RILEM MC2010 

Stirrups Concrete Fibers Stirrups Concrete Fibers Stirrups Concrete Fibers 

HF600TR/1 46 33 21 67 0 33 47 53 

HF600TR/2 46 33 21 67 0 33 47 53 

H600TR/3 58 42 0 100 0 0 56 44 0 

HF600/4 0 63 37 0 61 39 0 100 

HF600/5 0 63 37 0 61 39 0 100 

HF400h/6 0 63 37 0 61 39 0 100 

HF400/7 0 64 36 0 62 38 0 100 

HF400/8 0 64 36 0 62 38 0 100 

HF260/9 0 68 32 0 66 34 0 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A. Notation 

Ap cross-sectional area of prestressed reinforcement 

As cross-sectional area of longitudinal tension reinforcement  

Aα traditional shear reinforcement area 

bf flange width 

bo web width 

d effective depth 

fctk characteristic tensile strength value for the concrete matrix 

fFtuk characteristic ultimate residual tensile strength value for fiber-reinforced concrete  

fp0 stress in strands when the strain in the surrounding concrete is zero 

fR3k residual flexural tensile strength corresponding to CMOD=2.5mm (according to EN 14 645) 

fR4k residual flexural tensile strength corresponding to CMOD=3.5mm (according to EN 14 645) 

fyα,k yielding strength of shear reinforcement steel 

kf factor for taking into account the contribution of the flanges in T-sections (EHE08 and RILEM) 

Vcu design shear resistance attributed to concrete 

Vfu design shear resistance attributed to fibers 

Vsu design shear resistance provided by shear reinforcement 

Vu2 design shear resistance 

z internal lever arm corresponding to the maximum bending moment. In the shear analysis, an 

approximate value z=0.9·d can be normally used. 

α inclination of stirrups in relation to the beam axis 

γc partial safety factor for concrete material properties 

γs partial safety factor for the material properties of reinforcement and prestressing steel 

εx longitudinal strain at the mid-depth of the member 

θ inclination of the compression stresses 

θe reference angle of cracks inclination 

ξ factor that takes into account the size effect 

ρl reinforcement ratio for longitudinal reinforcement 

ρw percentage of shear reinforcement 

σck average stress acting on the concrete cross-section for an axial force due to prestressing actions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B. Parameters determination and its limitations  

 

Common limitations for all Codes:  

ξ = 1+√(200/d)≤ 2.0 (B.1) 

ρl= (As+Ap)/(bo·d)≤ 0.02 (B.2) 
Particular limitations of each Code:  

σck=[(Nk+Pk)/(bo·d)]<0.30·fck ≤ 12Mpa (EHE-08) (B.3) 

σck=[(Nk+Pk)/(bo·d)]<0.2·fck  (EC2 and MC2010 for FRC) (B.4) 
kf= 1+n·(hf /bo)·(hf/d) ≤1.5 (EHE08 and RILEM) (B.5) 
n=[(bf-bo)/hf]≤3 and n≤(3·bo/hf)  (EHE08 and RILEM) (B.6) 
Vcu, min = [(0.075/γc)·ξ

3/2
·fcv

1/2
+ 0.15·σck]·bo·d  (EHE-08) (B.7) 

Vcu, min = [0.035·ξ
3/2

·fcv
1/2

+ 0.15·σck]·bo·d  (EC2 and MC2010 for FRC) (B.8) 

0.5 ≤ cotg θ ≤ 2.0   26.57º ≤ θ ≤ 63.43º (EHE-08) (B.9) 

1 ≤ cotg θ ≤ 2.5   22º ≤ θ ≤ 45º (EC2) (B.10) 

β determination (EHE-08):  

β= (2·cotg θ -1) / ( 2·cotg θe -1); if   0.5 ≤ cotg θ < cotg θe (B.11) 
β= (cotg θ - 2) / (cotg θe - 2); if   cotg θe ≤ cotg θ ≤  2.0 (B.12) 

Parameters influencing Vcu (MC2010):  

θ = 29º + 7000·εx                              (B.13) 

εx=[MEd/z + VEd + 0.5·NEd – Ap·fp0] / [2·(Es·As + Ep·Ap)] (B.14) 

kv=0.4·1300 / [(1 +1500·εx)·(1000 + 0.7·kdg·z)]   if ρw=0 (B.15) 

kv=0.4 / (1 +1500·εx)   if ρw ≥ 0.08·√fck / fyk (B.16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 


