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Abstract 15 

Several authors have proposed models to describe fish growth taking the influence of temperature into 
16 

account, and one of most interesting is the “Thermal unit Growth Coefficient” (TGC).  Recent research 
17 

has demonstrated that TGC varies throughout the growth cycle of fish, making it necessary to establish 
18 

different stanzas.  In this work, the original TGC model using 1/3 as exponent was compared with a new 
19 

model considering 2/3.  Likewise, two stages for the growth of gilthead sea bream under commercial 
20 

conditions in marine farms were detected by means of TGC seasonal models using the continuous 
21 

temperature curve.  A critical value for weight around 117g was obtained, which could mark the 
22 

transition between two growth dynamics.  To describe the weight evolution during a complete production 
23 

cycle, the two growth stages were described by two separate seasonal TGC models (1/3-TGC model and 
24 

2/3-TGC model), and with an integrated model named Mixed-TGC model, which presents interesting 
25 

properties of continuity and differentiability and could be an important tool for fish farm management. 
26 

Keywords: Seasonal growth, temperature curve, marine cages production  27 

1.- Introduction 28 

The importance of growth models in aquaculture has been demonstrated by the 29 

publication of a large number of papers in recent years (Baer et al., 2011; Dumas et al., 30 

2007, 2010; Dumas and France, 2008; Libralato and Solidoro, 2008; Mayer et al. 2008, 31 

2009; Moses et al., 2008; Seginer and Halachmi, 2008), most of which are based on the 32 

metabolic growth model developed early last century (Pütter, 1920; Bertalanffy, 1938, 33 

1957; Parker and Larking, 1959; Ursin, 1967) to describe fish growth. Most of the 34 

classic models were based on the assumption that growth depends on live weight 35 
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affected by the exponent 2/3 (surface rule), and later models (Cho, 1992; Cho and 36 

Bureau, 1998) have also  used this value. Nevertheless, some authors have questioned 37 

the general use of this exponent because Ursin (1968) estimated lower values than 2/3 38 

in some fish, and Moses et al. (2008) cited values around 3/4 in some vertebrates. 39 

An alternative is to use the “thermal unit growth coefficient (TGC)” model reported by 40 

Iwama and Tautz (1981) in hatcheries, and developed by Cho (1992), Cho and Bureau 41 

(1998) and Dumas et al. (2007) in growing trout, and Mayer et al. (2008, 2009) in 42 

gilthead sea bream. This model is a particular version of the von Bertalanffy equation 43 

that incorporates a cumulative water temperature, which allows an estimation of fish 44 

growth in several temperature conditions, constituting an interesting tool for aquaculture 45 

management.  In the case of gilthead sea bream, growth patterns were considered as a 46 

function of cumulative effective temperature Σ (Ti - 12), because growth is zero, or 47 

negative, for water temperature below 12 ºC (Mayer et al. 2008, 2009).  Other models 48 

have also considered the average temperature (Petridis and Rogdakis, 1996; Lupatsch 49 

and Kissil, 1998; Lupatsch et al., 2003) but their practical application was difficult. 50 

Ursin (1963), Akamine (1993), Moreau (1987) and Fontoura and Agostinho (1996) 51 

studied the inclusion of sinusoidal temperature curve in the Bertalanffy growth model, 52 

and recently Leon et al. (2006) used a temperature function applied to growth model 53 

from Hernandez et al. (2003). Alternatively, Dumas and France (2008) proposed a 54 

model to illustrate the seasonal TGC growth of ectotherms using a one year temperature 55 

periodic function. Seginer and Halachmi (2008) also applied the sinusoidal temperature 56 

curve to the exponential growth model from Lupatsch and Kissil (1998) to study 57 

management aspects in intensive gilthead sea bream aquaculture. 58 

Another advantage of the TGC model was the simplicity of application in aquaculture, 59 

as it was possible to estimate the weight throughout the production cycle using a single 60 

value of TGC (obtained in the same production conditions). However, Dumas et al. 61 

(2007) suggested the need to use different TGC values for different trout stages during 62 

the growth period (< 20 g, 20-500 g, > 500 g). This would indicate that new studies 63 

revising the TGC model in other species are necessary.  64 

In a previous paper Mayer et al. (2008) studied various growth models for the gilthead 65 

sea bream considering the variability of water temperature. The evolution of a set of 66 



average weights calculated from different samples obtained in 20 batches where 67 

analysed. One of the key findings of the paper was that the best models (including TGC 68 

model) were those that considered the accumulated effective temperature as an 69 

independent variable, instead the time. In a second work, Mayer et al. (2009) explored 70 

full samples considering all the individual weights of sea bream from the batches 71 

studied in Mayer et al. (2008) using a discriminant analysis and quantile regression 72 

techniques, with reference to the classic TGC model. It was suggested that it was 73 

possible to differentiate two groups of gilthead sea bream with homogeneous and 74 

heterogeneous growth characterized by a different evolution of the weight dispersion. 75 

The factors that influenced the dynamics and the diversity of growth were the seasonal 76 

change of water temperature and the weight distribution of the fishes provided by the 77 

hatchery. 78 

The aim of this paper was to develop a new approach to the growth of gilthead sea 79 

bream under commercial production conditions with great fluctuations in water 80 

temperature, including the sinusoidal temperature curve in the TGC model, and 81 

considering the different stages throughout the growth period, in order to improve the 82 

estimation of growth on aquaculture farms. Our initial goal was to detect the existence 83 

of significant changes in the dynamics of the evolution of the average weight of fish 84 

over a complete cycle of production considering two-step TGC model that established 85 

the existence of a “critical or transition” live weight, which indicates indicated a change 86 

point in the dynamics of growth of the gilthead sea bream. 87 

 88 

2.-Material and Methods 89 

2.1. Mathematical Models 90 

Considering a general model of growth given by the initial value problem, 91 
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where W is the weight and t is the time, a model can be achieved that takes into account 93 

seasonal fluctuations in temperatures by replacing in (1) the time variable t, by a 94 



function ),( 0 ttST  (ST was used for simplicity) which represents the accumulated 95 

temperature in the time interval [ ]tt ,0  (Akamine, 1993).  Indeed, assuming that at the 96 

initial time t0, the accumulated temperature is zero, ),( 00 ttST =0 we have 97 
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Models (1) and (2) describe different temporal dynamics.  The model (2) takes the sum 
99 

of temperature as an independent variable to describe the evolution of time and the 
100 

growth is described from the instantaneous rate of weight gain per unit of accumulated 
101 

temperature.  
102 

Taking into account the chain rule  
103 
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106 

where T(t) is the continuous function that provides the temperature at any moment t, 
107 

from the model (2) we obtain immediately a seasonal time-dependent model  
108 
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109 

In the case of indeterminate allometric growth the basic model (Parker and Larkin, 
110 

1959, Gamito, 1998) is quite common, 
111 

(6)                  1 bkW
dt

dW −=  112 

where k is a constant related with the metabolic loss of an individual unit weight and the 
113 

achievement of assimilated food for growth and b is a constant (0<b<1). The model 
114 

given by (6) assumes that the allometric growth rate decreases with time due to the 
115 



decrease that occurs in metabolic rate with increasing fish size and that W increases 
116 

without limit (Gamito, 1998). 
117 

From (3), (4) and (6), we obtain the associated seasonal model 118 

,· 1 bWk
dST
dW −=

   
(7) 119 

i.e. 120 

(8)                   )·(· 1 bWtTk
dt

dW −=
 

121 

In what follows, we assume that the time, t, is given in days (d), the units of the constant 
122 

rate k (>0) are gb·(ºC·d)−1, T(t) is the function that provides the water temperature at 
123 

each time (°C), and the allometric exponent b (0<b<1) is dimensionless.  
124 

If we suppose initially that t=t0, ST(t0, t0)=0 and W=W0, the solution of (7) is  125 

).,(··)( 00 ttSTbkWtW bb +=  (9) 126 

An immediate discrete version of (9) can be obtained by considering for each day, i, 127 

i=1,2,…,n, the mean of the daily temperature, Ti. so we have the model 128 
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If  b=1/3 in (10), and denote k=TGC/b, we obtain the classic TGC-model (Cho, 1992) 130 

∑
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 (11) 131 

which was developed from empirical results without any mathematical or dynamical 132 

previous consideration (Dumas et al., 2007).  133 

Equations (7) or (8) allow modelling the indeterminate seasonal growth. The function 134 

T(t) can take different expressions depending on environmental conditions (Akamine, 135 

1993). 136 

The integral solution of equation (8) is given by the expression 137 
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As mentioned above, the temperature function T(t) depends on the context.  In the case 
141 

of marine farms in fixed locations, fish live in an environmental where the water 
142 

temperature evolves according to regular annual cycles.  A simple one-year periodic 
143 

expression, which allows us to include the seasonal influence of temperature on growth 
144 

in the model, is based on the sinusoidal function (14) used in different studies  
145 
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where t ≥ 0, and mT  is the average annual temperature, DT  is the amplitude and α  is a 
147 

tuning parameter.  From (14), we obtain a compact expression for the cumulative 
148 

temperature function in the time interval [t0, t],  
149 
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In the case of gilthead sea bream, it is more appropriate to use the effective temperature, 
151 

T(t)-12, instead of T(t) (Mayer et al. 2008), which only involves replacing Tm by Tm -12 
152 

in (15). 
153 
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By substituting (16) in (13), and solving the integral, we obtain an expression for the 
155 

weight in the instant t (Dumas and France, 2008) 
156 
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i.e. 158 
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where TGCb=k b. 160 

Dumas and France, (2008) obtained good results for describing the growth of different 
161 

species of ectotherms, using models analogous to that given by equation (18), assuming 
162 

different values of b for different species and contexts, but fixing different values for 
163 

different time periods under study.  
164 

From equation (18), three models were developed in order to simulate the seasonal 
165 

indeterminate growth of gilthead sea bream.  Two of them were obtained by fitting the 
166 

data to equation (11), assuming the values b = 1/3 and b = 2/3, based on actual values of 
167 

accumulated temperature.  The third model is built by aggregation of the two models 
168 

mentioned above, establishing two stages of growth. 
169 

2.2. Data description 170 

Models have been developed considering data on weight and accumulated temperature 
171 

from 20 batches of farmed gilthead sea bream in real conditions of growth (Mayer et al. 
172 

2008).   
173 

To validate the models the weight data from 6 batches of gilthead sea bream (Table 1) 
174 

were used.  The production conditions of these 6 batches were similar to those described 
175 

in Mayer et al. (2008) and corresponded to an initial production period between April 
176 

and October (Table 1). 
177 

TABLE 1  
178 

2.3 Statistical analysis and design of the models 179 

A preliminary exploratory analysis of the data from the 20 batches was performed, 
180 

considering the discrete model 
181 

( )b
b

b
f STTGCWW

1

0 ⋅+=   (19) 182 

where parameters b and TGCb were estimated from available actual data of accumulated 
183 

effective temperatures, by the Levenberg-Marquard iterative method available in 
184 



Statgraphics© plus version 5.1.  The exploratory analysis studying the model (19) with 
185 

both b=1/3 and b=2/3 was continued using a least squares fit after linearisation, 
186 

obtaining the values for the TGC, named TGC1/3 and TGC2/3, respectively.  
187 

For integrating two models it was necessary to establish the transition point of change in 
188 

the dynamics of growth we consider the expression (7) with b=1/3 and b=2/3, and solve 
189 

the equation  
190 

3/1
3/2

3/2
3/1 ·· WkWk =   (20)

 
191 

Note that in (7) we must distinguish two values of k which are different for the two 
192 

values of b, so kb=TGCb/b for b=1/3, b=2/3, respectively. The non-zero solution for W 
193 

in (20), Wc= 1/8 (TGC2/3 / TGC1/3)3 is a theoretical critical value of the weight for which 
194 

the instantaneous rate of change in terms of weight depending on accumulated 
195 

temperature is the same for both models (see Figure 1).  We assumed the hypothesis 
196 

that the critical weight obtained indicates a smooth transition from the dynamics 
197 

described by the model given by equation (19) with b=1/3 to the dynamics described by 
198 

the model with b=2/3.  
199 

To estimate the final weight of gilthead sea bream, two simulation models were 
200 

developed from equation (18) with b=1/3 (TGCb=TGC1/3) and b=2/3 (TGCb=TGC2/3), 
201 

respectively, and from the temperature function, T(t), given in (14).  These models were 
202 

designated the seasonal 1/3-TGC model and seasonal 2/3-TGC model, respectively.  The 
203 

parameters Tm, Td and α, of the temperature function T(t), (14) were adjusted for the 
204 

environmental conditions where the studied batches were located.  This was done using 
205 

a large sample of daily temperatures of sea water for a period of three years (March 
206 

1998-March 2001) and the Levenberg-Marquardt algorithm available in MATLAB© v. 
207 

5.3 was used. 
208 

From the seasonal models1/3-TGC and 2/3-TGC, taking into account the transition 
209 

value of the weight obtained previously (Wc ≈117 g), a new simulation model was 
210 

designed which is a combination of both of the previous versions, named seasonal 
211 

Mixed-TGC model. To analyse and validate the seasonal models, 1/3-TGC, 2/3-TGC 
212 

and Mixed-TGC, various techniques were applied, using the statistical package 
213 

Statgraphics© plus 5.1.  
214 



The three models were tested using the 6 batches described in Table 1, which were not 
215 

used in model development. We have considered jointly, the actual average weight data, 
216 

from different samples taken in the 6 batches obtaining a single large sample. Samples 
217 

in each batch were taken at different times of the production cycle. The estimated 
218 

weights for the three models, from the initial weight and for each batch, for the same 
219 

times in which samples were taken, were computed. Finally the actual and estimated 
220 

values were compared. On the one hand, we contrasted the equality of the means of the 
221 

absolute errors (absolute value of the difference between real values and estimated 
222 

values of weight) for the three models by means of an ANOVA, using the t-test. On the 
223 

other hand, the differences between actual weights and estimated weights were also 
224 

studied considering contrasts for paired values (using the t-test). It was thus verified 
225 

whether each model estimated suitably, overestimated or underestimated the final actual 
226 

weight.  
227 

Finally, by contrasting hypotheses about the equality of standard deviations of the 
228 

absolute errors, it was determined which model estimates more accurately the actual 
229 

weight. 
230 

3.-Results 231 

Considering the data from the 20 batches and equation (19), the parameters b and TGCb 
232 

were estimated from real data of actual accumulated temperatures.  A value for 
233 

b=0.6478 very close to 2/3 was obtained, with the 95%-asymptotic confidence interval 
234 

being for b, (0.5576, 0.7180), and a value for TGCb=0.014437, with the 95%-asymptotic 
235 

confidence interval being for TGCb (0.007744, 0.021129) and R2=97.8%.  Asymptotic 
236 

confidence intervals showed that the parameters were significant and the coefficient of 
237 

determination indicated a strong model fit to the data.  These results led us to propose 
238 

the viability of the TGC model with 3/2=b . 
239 

The results for the value TGCb obtained by least squares, after linearisation, for models 
240 

with b=1/3 and b=2/3, respectively, are shown in Table 2. Obviously, TGC values are 
241 

different in the two models, TGC1/3 = 0.00164 and TGC2/3 = 0.01609, but remain highly 
242 

significant.  
243 

TABLE 2 
244 



Figure 1 shows graphs corresponding to the instantaneous rates of growth, dW/dST, 245 

depending on the weight, W, given in (6), for the cases b=1/3 (1/3-model) and b=2/3
 

246 

(2/3-model), considering the values k=k1/3 and k=k2/3, showed in Table 2, respectively. 247 

Both curves allow us to compare the dynamics of the evolution of weight for both 248 

models. Instantaneous growth rates based on the cumulative effective temperature 249 

(dW/dST, g ºC-1) are equal for the non-zero intercept point corresponding to the value of 250 

weight W ≈ 117 g (transition value of weight). From W=0 to W=117 g, instantaneous 251 

growth rate of weight with respect to the cumulative effective temperature is higher and 252 

grows faster for the 2/3-model. After W=117g, the instantaneous growth rate is higher 253 

for 1/3-model. These results clearly suggest a pattern of gilthead sea bream growth in 254 

two stages. 255 

FIGURE 1 
256 

The fitted values for the parameters of the temperature function T(t), described in (14), 
257 

are Tm=18.8525, TD=-6.6997 and α=-312.4609.  Figure 2 shows the temperature 
258 

function T(t) and actual temperature data over a period of time established by the 
259 

available actual data (available time interval started at day 69, March 10).  Note that by 
260 

periodicity, the first day of January would be day 1+365·j, where j is any integer value. 
261 

FIGURE 2 
262 

So, two seasonal models were established based on equation (18), in order to describe 
263 

the growth of gilthead sea bream; the seasonal 1/3-TGC model (b=1/3, 
264 

TGC1/3=0.001646) and the seasonal 2/3-TGC model (b=2/3, TGC2/3=0.016095). From 
265 

the former models, 1/3-TGC and 2/3-TGC, we constructed the seasonal Mixed-TGC 
266 

model, which is defined in (21) and (22). 
267 
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To estimate final weights greater than 117 g from initial weight less than 117 g, first we 270 

calculated the value t1 for reaching 117 g using the 1/3-TGC model and the expression 271 



(23), and then we estimated the final weight using the 2/3-TGC model and expression 272 

(24). 273 
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Therefore, until a final weight less than 117, the Mixed-TGC model coincides with the 276 

1/3-TGC model.  In the case of an initial weight greater than or equal to 117g, the 277 

Mixed-TGC model coincides with the 2/3-TGC model.  The Mixed-TGC model leads to 278 

a continuous curve for representing the final weight of the gilthead sea bream.  279 

Moreover, the curve is also differentiable at all time because the Mixed-TGC model is 280 

constructed so that when the weight is exactly 117 g, the derivatives of the functions 281 

that define the models 1/3-TGC and 2/3-TGC coincide.  Thus, the transition from the 282 

1/3-TGC model to the 2/3-TGC model occurs smoothly, without sharp points. 283 

Figure 3 shows actual weight points together with estimated weight curves obtained 
284 

from the three models, 1/3-TGC, 2/3-TGC3 and Mixed-TGC, for the six new batches 
285 

reserved for validating the theoretical models.  
286 

FIGURE 3 
287 

Table 3 shows the results for the averages of absolute errors of estimation for the 288 

complete cycle (long-term using data from all monthly samples), for the periods before 289 

the critical weight (Wf<117) and after the critical weight (W0>117) and for final weight 290 

at the end of the cycle. The estimated absolute error (absolute value of the difference 291 

between real and estimated value), is a measure of the adjustment of the values 292 

estimated by models to the real data.  The results show a lower value of the average of 293 

the absolute errors for the 1/3-TGC model than 2/3-TGC when W<117 g, and for the 294 

2/3-TGC model than 1/3-TGC when W≥117 g, but if the complete production cycle is 295 

considered and the Mixed TGC model is compared with the 1/3-TGC model and the 296 

2/3-TGC model, differences were not statistically significant.  When final weight was 297 

estimated from initial weight with three models, differences were not significant. 298 



TABLE 3  
299 

Finally, Table 4 shows the outcomes of the hypothesis tests considering the resulting 300 

variable by subtracting the actual weight minus the estimated weight, D=Wreal-West. 301 

When considering the sign of the difference between real and estimated weight, we can 302 

determine if a model overestimates or underestimates real weight.  Analysis 303 

distinguishes the case in which the real final weight is less than 117 g (first stage) from 304 

that where the real initial weight is greater than or equal to 117 g (second stage).  The 305 

Mixed-TGC model does not appear in the analysis because for final weights less than 306 

117g the Mixed-TGC model coincides with 1/3-TGC model, and if initial weight is 307 

greater than or equal to 117, then Mixed-TGC model coincides with 2/3-TGC model. 308 

TABLE 4 309 

For a significance level 05.0=α , on the one hand the results indicate that there are no 
310 

statistically significant differences between the real weight and the weight estimated by 
311 

the 1/3-TGC model for the first stage, and that the 1/3-TGC model tends to overestimate 
312 

the final weight in the second stage of growth.  On the other hand, the 2/3-TGC model 
313 

overestimated the final weight in the first stage of growth while there were no 
314 

statistically significant differences between the real weight and weight estimated by the 
315 

2/3-TGC model in the second stage of growth. 
316 

4.-Discussion 317 

Final weight of gilthead sea bream in real conditions of production, seems to be better 318 

explained using the TGC model with b=2/3 than with b=1/3, because estimated value of 319 

exponent was b=0.648, very close to 2/3.  Lupatsch and Kissil (1998) developed a 320 

growth model for gilthead sea bream and obtained a coefficient for weight similar to 2/3 321 

(b= 0.613), although in a new model (Lupatsch et al., 2003) the coefficient was lower 322 

(b=0.514). 323 

When the two models, 1/3-TGC and 2/3-TGC were assayed, a change in the pattern of 324 

growth for gilthead sea bream under commercial production conditions was noted, as  325 

the presence of a transition weight value from around 117 grams was detected, which 326 

indicates a turning point for the dynamics of growth in weight of fish.  If we start with 327 

an initial weight of 10 grams, this value can be matched with a value of the sum of 328 



effective temperatures ST =1670 ºC.  We cannot explain the hypothetical physiological 329 

process of change that occurs at 117 grams.  The results indicate the need to address a 330 

more detailed study of allometric growth of gilthead sea bream under production 331 

conditions.  Nevertheless, the reasons for the change in the pattern of growth should be 332 

related with aspects such as the compensatory growth, genetic potential, allometric 333 

growth, nutrients or physiology of reproduction.  Dumas et al. (2007) showed that to 334 

describe the growth of rainbow trout over a full cycle of production, there are three 335 

stanzas with different values for b.  Growth changes associated with these stages are 336 

explained by morphological changes due to muscle growth dynamics, nutrient 337 

utilisation and reproduction investment.  It seems clear that parameter b should not be 338 

considered a priori as a constant for a TGC model intended to explain the growth of 339 

gilthead sea bream in a full production cycle.  Specifically, in the case of gilthead sea 340 

bream, when considering a complete production cycle, the TGC-1/3 model tends to 341 

overestimate the final weight (Mayer et al. 2008).  342 

The 1/3-TGC model gives statistically significant better results for the estimated weight 343 

of fish in early stages, to lower final weights of 117 g, while 2/3-TGC model gives 344 

better results in estimating the final weight of fish with initial weights higher than 117 345 

g.  The result is consistent with the fact that the1/3-TGC model is based on the model 346 

proposed by Iwama and Tautz (1981) for fingerling growth in hatcheries.  If we assume 347 

that the temperature varies continuously over time, therefore the model assumes that the 348 

growth rate is allometrically related to the weight, W, and the allometric constant of 349 

proportionality is directly related to temperature that varies during the rearing period. 350 

When we compare the real weight with the estimated weights along the complete 351 

growth cycle, we cannot establish statistically significant differences, because the large 352 

dispersion of the absolute errors corresponding to the 1/3-TGC model and 2/3-TGC 353 

model (Figure 4). The three models seems to provide acceptable results for estimating 354 

the long term weight, as evidenced by the analysis of absolute errors of estimation 355 

(Table 3). If we consider only the weights at the end of the cycle, the absolute error 356 

analysis does not allow statistically significant differences between the three models, 357 

but the final error clearly seems to be lower with Mixed or 2/3-TGC models than 1/3-358 

TGC-model. In view of the graphs in Figure 3, it seems clear that both 2/3-TGC model 359 

and further the 1/3-TGC model, tend to overestimate the weights at the final of the cycle 360 



of production. Notably, the absolute errors for models 1/3-TGC and 2/3-TGC show a 361 

wide dispersion, which prevents us establishing significant discrepancies in absolute 362 

errors considering the complete cycle in the three models.  In Figures 4 and 5, the value 363 

for the standard error reflects the variation within each sample, and we can observe that 364 

the mean of absolute errors for the Mixed-TGC model is the lowest.  365 

FIGURE 4 – FIGURE 5  366 

It appears that the errors for the Mixed-TGC model have statistically significant lower 367 

dispersion when estimating the average absolute errors.  Indeed, to test if the differences 368 

between standard deviations of the errors are statistically significant when considering 369 

the whole cycle, hypothesis tests were performed comparing the standard deviations of 370 

the long-term absolute errors of estimation for 1/3-TGC, 2/3-TGC and Mixed-TGC 371 

models.  First, we tested the null hypothesis that the standard deviation from the 372 

absolute error for 1/3-TGC model is equal to that corresponding to the Mixed-TGC 373 

model (H0: Mixσσ =3/1 ), against the alternative hypothesis that the standard deviation of 374 

the absolute error for the 1/3-TGC model is greater (H1: Mixσσ >3/1 ), obtaining the p-375 

value=0.0073 which leads to rejection of H0. When the null hypothesis that the standard 376 

deviations of the absolute errors for 2/3-TGC model and Mixed-TGC model are equal 377 

(H0: Mixσσ =3/2 ) was tested against the alternative hypothesis that the standard deviation 378 

is greater for the model 2/3-TGC (H1: Mixσσ >3/2 ), it yielded a p-value=0.0009, which 379 

also led to rejection of H0.  Statistically significant differences between the standard 380 

deviations of the absolute errors cannot be set for the 1/3-TGC and 2/3-TGC models. 381 

The results of these contrasts showed lower uncertainty in estimates from the Mixed-382 

TGC model and confirmed what Figure 4 seemed to show.  Moreover, the 1/3-TGC 383 

model and the 2/3-TGC model tended to overestimate the weight in the second stage of 384 

growth and in the first stage of growth, respectively. 385 

From the above considerations, the Mixed-TGC model clearly seems to be the most 386 

appropriate for describing the growth over the complete production cycle. 387 

5.-Conclusions 388 

The family of TGC seasonal models obtained by considering different values for the b 389 

parameter in the metabolic equation provides a framework for studying and explaining 390 



indeterminate growth patterns.  In the case of gilthead sea bream, the use of 1/3-TGC 391 

model is useful for estimating the weight in the initial period of growth (in this case the 392 

1/3-TGC model matches with the Mixed-TGC model). In the case where the initial 393 

weight exceeds 117 grams, it is advisable to use the 2/3-TGC model to estimate the 394 

weight (which in this case also coincides with the Mixed-TGC model).  The study of 395 

TGC models has revealed a change in the growth pattern that occurs when the fish 396 

reaches a weight around 117g.  397 

A continuous growth curve including temperature function and integrating the two 398 

models was developed to establish a practical tool for fish farmers. 399 

The results indicate that the Mixed-TGC model is the most appropriate for long-term 400 

and final weight estimations along the complete cycle of growth. 401 
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 477 

Figure 1. Curves representing instantaneous growth rate dW/dST                                                   478 
for two models (1/3-TGC and 2/3-TGC) 479 
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 486 

Figure 2. Temperature curve obtained and available actual data from 487 
Mediterranean Sea in Spanish southwest coast  488 
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Figure 3. Growth curves generated with three models (1/3-TGC  and 2/3-TGC and Mixed) 
and real data from six new batches. (The abscissa axis shows the value of the time variable t day 

within a year. So, t=1 corresponds to the first day of the year, January 1 and a time value t >365 
indicates a transition from a year to the next) 

 

 



 

 

Figure 4. Mean and standard errors for absolute error of long term estimation using three 
models and real values of new six batches.  

 



 

 

Figure 5. Mean and standard errors for absolute error of final weight estimation using 
three models and real values of new six batches.  
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Table 1. Description data from six new batches used for validation of models 

 

Batch 
Samples 
along the 

period 

Initial 
weight, 

0W  
(g) 

Final 
weight, 

fW  

(g) 
Days T       

(ºC) 
ST    

(ºC) 
TGC        

(g1/3 ºC-1) 
SGR  

(% d-1) 

1 5 85.1 452.1 183 23.7 2141.1 0.001530 0.91 

2 10 10.0 371.4 463 19.8 3611.4 0.001394 0.78 

3 7 35.0 384.4 399 19.0 2793 0.001432 0.60 

4 9 19.3 382.8 420 19.2 3024 0.001514 0.71 

5 8 43.8 411.6 388 19.7 2987.6 0.001310 0.57 

6 8 30.0 381.4 364 20.6 3130.4 0.001324 0.69 

T: average temperature of the period, ST: cumulative effective temperature (effective temperature is 
temperature in degrees Celsius minus 12), TGC: Thermal Growth Coefficient 










 −

ST
WW f

3/1
0

3/1 ,  SGR: Specific 

Growth Rate ( ) ( )







 −

Days
WW f 0lnln ) 

 



 

Table 2. Thermal Growth Coefficients obtained using the two models (b=1/3 and 
b=2/3) considering growth data from 20 batches 

 

Model TGCb 95% TGCb Confidence 
interval 

Kb R2 







 =

3
1b  

TGC1/3=0.00164561 0.00156 - 0.00174 0.0049368 

 

97.3% 







 =

3
2b  

TGC2/3=0.0160949 0.0153 - 0.0169 0,02414235 98.1%. 

 

 



 

 

Table 3. ANOVA results for the averages of absolute errors of estimation (g), and the 
three models, for the complete cycle (long-term using data from all monthly samples), for 
the periods before the critical weight (Wf<117) and after the critical weight (W0>117) and 

for final weight at the end of the cycle, considering data from six new batches. 

 1/3-TGC Model 2/3-TGC Model Mixed-TGC model 

Long-term 28.9  31.9 24.4 

Wf<117(1) 9.5 a 28.8 b - 

W0≥117(2) 48.7 a 29.0 b - 

Final Weight 64.1 46.6 34.6 

The results must be interpreted by row. (1) P-Value = 0.0328 (2) P-Value= 0.0349 

 



 

Table 4. Hypothesis tests for paired variables distinguishing two stages of growth: first  
Wf < 117 g and second W0 ≥117 g 

 

Model Wf < 117 g W0 ≥117 g 

1/3-TGC  

H0: D=0 

H1: D≠0 

P-value=0.890 

Not Reject H0 

H0: D=0 

H1: D<0 

P-value=0.0005 

Reject H0 

2/3-TGC 

H0: D=0 

H1: D<0 

P-value=0.0021 

Reject H0 

H0: D=0 

H1: D≠0 

P-value=0.60 

Not Reject H0 

 

 


