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Abstract:  This work is dedicated to the analysis of the 
application of active impedance control for the realisation 
of three objectives simultaneously: velocity regulation in 
free motion, impact attenuation and finally force tracking. 
At first, a brief analysis of active impedance control is 
made, deducing the value of each parameter in order to 
achieve the three objectives. It is demonstrated that the 
system may be made overdamped with the adequate 
selection of the parameters if the characteristics of the 
environment are known, avoiding high overshoots of force 
during the impact. The second and most important 
contribution of this work is an additional measure for 
impact control in the case when the characteristics of the 
environment are unknown. It consists in switching among 
different values of the parameters of the impedance in 
order to dissipate faster the energy of the system, limiting 
the peaks of force and avoiding losses of contact.  The 
optimal switching criteria are deduced for every parameter 
in order to dissipate the energy of the system as fast as 
possible. The results are verified in simulation. 

 
Keywords: robot control, impact, force control, 
impedance control, switching. 
 
1. INTRODUCTION 

 
Possibly the most characteristic problem of robot 
force control is the abrupt change from free to 
constrained motion. The importance of this 
discontinuity is emphasized by the fact that in the 
typical industrial applications the environment is very 
stiff and the dynamics of the system is much faster 
during the constrained motion. The system is highly 
underdamped. In the transient phase (impact) the 
force may reach dangerous peaks.  
Before achieving the contact, the magnitude to be 
controlled is the velocity, and after, the force. Since 
different magnitudes are to be controlled and the 

characteristics of the system have an important 
change, it seems logical to use one controller for each 
phase. In order to make the transition from free to 
constrained motion as smooth as possible a third 
controller may be introduced.  It is called impact 
control. 
 The impact is the most important phase because high 
peaks of force may occur and cause irreversible 
damage to the robot, the environment or the tool. 
Even if that doesn’t happen, smaller peaks of force 
deteriorate gradually the mechanics of the robot. 
Another potential problem of the impact phase is the 
possibility of bouncing. All these drawbacks could be 
easily avoided designing an overdamped controller if 
the characteristics of the environment were known. 
Unfortunately it is often not the case.  For this reason, 
any a priori selected parameters of the regulator may 
not be adequate, and additional actions could be 
necessary if the system appears to be underdamped 
when the contact is achieved. An additional 
inconvenient of the impact control is the fact that this 
phase is extremely brief and may last just a few 
sampling periods. This implies that, for example, an 
adaptive controller may be too slow to protect the 
system. 
The impact control has been extensively researched 
and very diverse solutions have been proposed. The 
most compilation from different sources as well as a 
very exhausting analysis of the impact control has 
been published by Brogliato1 in 1999.  It should be 
emphasized that there are two ways to treat the 
impact1, 2: the rigid and the flexible model. The 
former doesn’t consider what is happening during 
the contact phase, just before and after it.  It is 
assumed that the duration of the impact is infinitely 
short. The relation between the velocities in the 
moment of the contact and after the rebound is given 
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by the coefficient of restitution. In the flexible 
model the impact is treated analytically considering 
the robot and/ or the environment as elastic bodies. 
This model will be used in this article.  
Following will be enumerated some methods for 
impact control. With the rigid model, Brogliato et 
al.3 proposed two methods for limiting the number 
of rebounds and assuring in this way the stability of 
the system.  There are more works based on the 
flexible model. Volpe and Khosla4 proposed three 
methods for impact control. All three are oriented to 
avoid contact loss rather than the protection against 
peaks of force. Hyde and Cutkosky5 proposed in 
1994 the modulation with pulses of the feedforward. 
These pulses are computed to suppress the transitory 
harmonics. Xu,  Hollerbach and Ma6 implemented a 
PD force control with feedforward is used for force 
reference tracking as well as for the impact control. 
The parameters of the regulators vary according a 
non linear law. They decrease if the robot is 
approaching the reference in order to reduce the 
residual energy. In the contrary case, they increase. 
Ferretti, Magnani and Zavala Río7 proposed to apply 
during the impact a feedforward determined 
empirically combined with the force regulator, in 
order to avoid contact losses.  
The switching of parameters was introduced in force 
control by B. Armstrong et al.8,9, in a study similar 
to the present work. The authors switch the gain 
matrix according to the state of the system. The 
essential idea is the same, but a different 
mathematical methodology was used. In the work of 
B. Armstrong et al. LMI was used to demonstrate 
the validity of the method. 
From the mentioned sources, it can be deduced that 
the techniques for impact are control are very 
heterogeneous. They don’t use the same model. 
Some are dedicated to avoid contact losses 
regardless of the possible peaks of force. Others are 
limited to guarantee the convergence of the system 
after a finite number of rebounds. Some consider the 
characteristics of the environment are completely 
known. 
As stated earlier, in addition to the impact controller, 
a position/ velocity and force regulators are also 
necessary. A force control task may consist of three 
controllers and two processes with very different 
dynamics. Switching among them is a potential source 
of bouncing, sliding regime and even stability loss.  
In order to avoid the switching among controllers, 
impedance control may be used. This is a control 
strategy theoretically adequate for the three phases, 
proposed by Nevill Hogan10. Its objective is to impose 
a desired dynamics to the robot rather than tracking 
the force reference. Its main advantage is that the 
same controller can be used for both free and 
restricted motion. The main disadvantage of 
impedance control, as it has been stated in many 
sources, for example by De Schutter et al.11, is that it 
is necessary to have an exact model of the 
environment in order to reach the force reference. 
This assumption may be impossible for some real 
applications.  
The first contribution of this article is the deduction 
how to select the impedance parameters in order to 

overcome this limitation, assuming the characteristics 
of the environment are known. It is demonstrated that 
the adequate combination of parameters allows 
reaching the reference value of the force regardless of 
the environment, achieving velocity control during 
free motion and attenuating the impact. Nevertheless, 
this technique does not guarantee the behaviour of the 
system during the impact if the parameters of the 
environment are unknown. 
The second and most important contribution of this 
paper is an impact controller based on the switching 
of the parameters of the impedance depending on the 
dissipated and the generated forms of energy in the 
given instant. The basic ideas of this work have been 
published by the authors in 200512. Also, the authors 
of this paper published a method for simultaneous 
velocity, force, and impact control13. The approach is 
similar to this article, but it was applied to explicit 
instead of implicit force control. The parameters are 
different, as well as the way to adjust them. 
The proposed method guarantees an improvement of 
the damping of the system, regardless of the 
characteristics of the environment. It needs just a few 
sampling periods to be effective.  
 
 

2. SOME CONSIDERATIONS 
REGARDING IMPEDANCE 
CONTROL 

 
The dynamics equation of a robot arm subject to an 
external force is well known14, 15, 16: 
 

(1) 
 
Where τ is the vector of motor torques, J(q) the 
Jacobian matrix of the robot, F the vector of external 
forces acting on the robot’s end effector, D(q) the 
inertia matrix of the robot, ),( qqH & the matrix of 

centrifugal and Coriolis torques G(q) the vector of 

gravity torques on the motors, and qq &,  and q&& are 

the vector of joint positions, velocities and 
accelerations, respectively. 
Solving the equation (1) for the acceleration: 
 

(2) 
 
On the other hand, the relation between the Cartesian 
and joint velocities is14, 15, 16:  
 

(3) 
 
And the accelerations: 
 

(4) 
 
Solving (4) for q&& : 

 
(5) 

 
Replacing (2) in (5) and solving forX&& : 
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(6) 
 
This system is highly non-linear. The acceleration 
depends not only on the motor torque and the external 
force, but also on the inertia matrix, centrifugal, 
Corilois and gravity forces and the robot Jacobian. 
These magnitudes vary depending the joint positions 
and velocities.  
Applying a constant force on the end effector, the 
acceleration vector would vary both its intensity and 
its direction during motion. The behaviour of the 
robot when in contact with the environment would be 
complicated to predict for the robot operator. 
Impedance control allows an intuitive reaction of the 
robot to external forces. It may be obtained 
manipulating the input variable τ. Some ways to 
achieve it are enumerated and briefly described in 
subsection 2.1. 
Assuming that the torque vector τ is set to the exact 
value that compensated the centrifugal, coriolis and 
gravity forces as well as the term qqJ &)( , then 

equation 6 becomes: 
 
 

(7) 
 
 
 
Where: 

(8) 
 
Represents the real Cartesian inertia matrix of the 
system, i.e. the relation between the force and the 
acceleration. It should be noted that it varies with the 
configuration of the robot. Also, it is non diagonal (in 
the general case). For these reasons, the inertia of a 
robot changes during motion. 
 
 
The mechanical impedance is the relation between the 
force and the velocity of the system: 
 
 

 
(9) 

 
 
 
Where Z represents the impedance, f the external 
force, v the velocity, x the position, M the mass, B the 
damping and K the stiffness of the system. 
The impedance control consists in imposing to the 
system the desired mass, damping and stiffness (Md, 
Bd and Kd respectively) instead of the real ones. 
Several formulations can be found for the mechanical 
impedance. Some of them are: 

 
 

 
 

 
 
 
 
 
 
 
 

(10) 
 
 
 
The first one is most common14, 15, 16. The second one 
has been used in the original paper of Hogan10. The 
first three can be found in the work of Seraji and 
Colbaugh17. The fourth formulation is also called 
stiffness or compliance control16. It has the advantage 
that it needs neither acceleration nor force sensor to 
be implemented. Nevertheless, the inertia is not 
controlled and thus the behaviour of the robot varies 
in different configurations.  The same formulation has 
been adopted by Christian Ott el al.18, 19 for the control 
of elastic robots.  It should be noticed that the real 
robot is a second order system, while the fourth 
formulation is first order. That is due to the fact that 
that the formulation represents the stationary 
behaviour of the system while the inertia, present only 
in the transient phase, is not included in the equation. 
The fifth formulation has been used by Lu et al20. In 
this case the order of the system is reduced by using a 
sliding mode controller. A first order system is 
obtained and thus oscillations are avoided, and neither 
peaks of force nor contact losses may occur. Finally 
the sixth formulation may be used for human friendly 
robots that execute tasks in cooperation with humans21 
or for emulation of human muscles22.  Since the 
stiffness is zero, if the robot is displaced by an 
external force, it will not return to its initial position. 
 
The first formulation is the most general one and all 
the others may be considered special cases of it. It 
may be written in the form: 
  

 
(11) 

 
 
Where FF is the feedforward term. 
 
Therefore, the impedance is defined by four 
parameters: the mass, the damping, the stiffness and 
the feedforward. Following, the effect of all of them 
will be analysed in constrained and free motion in 
order to obtain an adequate performance in all the 
phases of the task.  
 
The following figure represents a schema of the real, 
physical, dynamics of the robot as well as the 
dynamics achieved by means of impedance control. 
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Figure 1. Schema of the real (a) dynamics of the robot 
and the dynamics obtained by impedance control (b). 
“s” represents the Laplace operator and the block 
“D.K.” the direct kinetics. 
 
As it may be observed, in the real dynamics of the 
robot (Figure 1, schema a)), the relation between the 
external force F and the Cartesian motion is complex 
and highly non- linear. It depends on the actual 
configuration of the robot, the join velocities and the 
motor torques.  
In the impedance control (Figure 1, schema b)) the 
behaviour of the system is linear. Physically, the 
dynamics is the same as in the schema a) in figure 1, 
but the motor torques τ are manipulated to obtain the 
dynamics represented in schema b), which is also 
given by equation (11). Next subsection describes the 
way it may be achieved. 
 

2.1 The implementation of the impedance 
control 
 

The impedance control may be implemented in 
several ways. Canudas de Witt et al. 23 describe two 
methods: via linear state feedback and by inverse 
dynamics. The former is adequate for a one degree of 
freedom robot. The latter is better for several degrees 
of freedom. Another method for the implementation 
of the impedance control is the sliding mode control20.  
In this article the inverse dynamics method will be 
used because it achieves the linealization and the 
decoupling of the system. Following will be presented 
a brief description of this method. 
 
In order to obtain the dynamics of the system describe 
in equation (11), the acceleration must be: 
 

(12) 
 
According to (5), the acceleration in joint space 
should be: 

 (13) 

 
 

The final expression for motor torques is obtained 
substituting (13) in (1):  
 
 

(14) 
 
In this way, not only the system is made linear, but 
also it is decoupled. The behaviour of the system in 
direction of any Cartesian axis is independent of the 
other directions.  
The torque from equation (14) cannot be computed 
when the robot goes through a singularity, i.e. a 
configuration where the Jacobian matrix is non- 
invertible. The singularities are a major problem in 
robotics and its solution is beyond the scope of this 
article. Nevertheless, following will be mentioned two 
solutions proposed by other researchers. In the first 
one24 the controller is split in two parts. The first one 
controls the distance from the singularity.  The second 
one controls the motion in the direction orthogonal to 
the singular direction. While this method is adequate 
in free motion, it may have problems during the 
contact. In the second solution19, it is preferred simply 
to avoid the singularities. The introduction of a 
second controller which forces the robot to move 
away from singularities is proposed. It is activated 
only in the proximity of singularities.  The final 
control action is obtained as a sum of the outputs of 
the two controllers. 
Another case when the Jacobian matrix is non- 
invertible is when it is not square. That happens if the 
number of degrees of freedom of the robot is different 
than six.  
If the robot has five or less degrees of freedom, it will 
be unable to control its motion/ force along all the 
directions of space. This may be dangerous in contact 
tasks since the trajectory in the non- controlled 
directions is unpredictable and the robot may 
penetrate deeply in the environment causing high 
peaks of force. It may be unadvisable to use a robot 
with less than six degrees of freedom in contact tasks. 
If the robot has more than six degrees of freedom it 
may achieve the same end effector trajectory with 
different combinations of joint motions. It is called a 
redundant robot. Although the inverse jacobian does 
not exist, several solutions for the pseudo inverse may 
be found in the literature. One of them is the right 
pseudo-inverse15.  A more general case is a pseudo-
inverse that minimizes the quadratic cost function of 
joint velocities16.  
It should be noticed that the redundancy may help in 
many cases to solve the problem of the singularities 
by extracting all the linearly independent equations16.  
 
2.2 The behaviour of the system in constrained 
motion 
 
Since it has been demonstrated in section 2.1. that the 
system may be decoupled, in the rest of the article the 
case of a single degree of freedom will be treated 
without loss of generality.  
Lower case letters will be used instead of capitals for 
one dimensional variables like force, position, 
velocity, etc. 
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Assuming that the deformation of the environment is 
elastic, the reaction force of the environment will be: 
 

(15) 
 
Where xe is the coordinate of the environment’s 
surface. 
The dynamics of the position in constrained motion 
may be obtained from equations (3) and (10): 
 

(16) 
 
The roots of the characteristic polynomial are:  
 

     (17) 
 
and the discriminant: 
 

(18) 
 

In order to make the system as damped as possible, it 
is convenient to assign a high value to Bd and low 
values to Md and Kd. 
 
The final value of the position will be: 
 

 (19) 
 
 
 
 
The final value of the force main be obtained as: 

 
(20) 

 
    

Thus: 
 

  
(21) 

 
 
 
This means that choosing 0=dK  not only damps the 

system, but also allows us to reach the reference value 
of force regardlessly of the characreristics of the 
environment. 
 
2.3 The behaviour of the system in free motion 
 
In this case Fext=0 and the dynamics of the system is 
defined by the following equation: 
 

(22) 
 
The final values of the position and velocity will be: 

 
 

(23) 
 
 
 

Therefore, a stiffness different of zero will make the 
robot reach the distance given by equation (23), where 
it will stop. This correponds to position control. 
Assigning a stiffness equal to zero will make the 
system go to a constant speed. This corresponds to 
velocity control. The latter is more practical for 
impact control since it does not require previous 
knowledge about the position of the environment. 
On the other hand, the damping should be chosen the 
way to assure the desired final velocity vref: 

 
(24) 

 
 

2.4 Conclusions about the selection of the 
impedance parameters 
 
This section will contain a recapitulaton of the 
previous conclusions for the selection of the 
parameters in order to achieve the desired 
performance both in free and constrained motion. 
 
The stiffness Kd should be set to zero for two reasons. 
At first, in free motion, velocity control is obtained 
instead of position control, what is better suited for 
impact achieving a softer impact in the case when the 
exact position of the environment is unknown. 
Second, the final value of force does not depend on 
the characteristics of the environment and the force 
reference may be always reached.  
The value of ff should be selected equal to the 
reference force in order to achieve tracking error zero 
according to (21). 
The damping Bd is used to assure the system will have 
a velocity equivalent to the reference value during the 
free motion according to (24).   
 
Regarding the mass Md, it is the only parameter that 
practically has no importance during free motion.The 
value assigned to the mass should be low in order to 
damp the system during the impact. If the stiffness of 
the environment is known, the value of the mass that 
makes the system underdamped may be obtained  
from (18): 
 
             (25) 
 
 
Briefly the values to be assigned are the following: 

- ff=Fref, where Fref is the force reference. 

- Kd =0. 

-  Bd: according to equation (24) in order to 
attain the reference speed. 

-  Md: if the charachteristics of the system are 
known, in order to make the system 
overdamped according to (25). Otherwise as 
small as possible. 

Usually in the applications of force control, the active 
damping is adjusted for smoothing the impact. In this 
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case this is achieved by means of the mass. The 
damping is used for velocity control in free motion. 

It should be emphasized that the selection of the 
parameters in the way it is described above assures 
that both velocity reference  and force reference will 
be reached during free and constrained motion 
respectively, even if the stiffness of the environment 
is unknown. Nevertheless, it is not possible to 
guarantee that the system will be overdamped, neither 
its behaviour  during the transition phase according to 
(17) and (18).  
 
3. SWITCHING THE VALUES OF THE 
PARAMETERS 

 
The previous results show how to select the 
impedance parameters if the characteristics of the 
environment are known. Nevertheless, in some cases 
this is not true, and the behaviour of the system in the 
transition cannot be controlled. Given the potential 
danger of the impact phase it is convenient to 
introduce an additional measure in order to make the 
transition as soft as possible.  
The proposed method is based on the transformation 
of the energy. For example, when the robot penetrates 
into the environment, the kinetic energy it had in free 
motion is transformed in elastic potential energy of 
the environment. It is convenient to assign a low value 
of mass in order to reduce the kinetic energy and a 
high stiffness to avoid a deep penetration into the 
environment. When the robot starts rebounding, the 
inverse energy transformation occurs. Then the mass 
should be high to limit the acquired velocity and the 
stiffness low to reduce the elastic force.  
Before starting a deeper analysis of the proposed 
method, some assumptions made in the article will be 
mentioned in this paragraph. It will be considered for 
simplicity that all the magnitudes are normalised, 
nondimensional quantities. This assumption does not 
have any influence on the generality of the 
conclusions. It will be also considered that the 
position of the environment is on a positive 
coordinate, i.e. that positive velocity means the robot 
is leaning towards the environment and negative 
velocity means it is moving away. The contrary case 
is completely symmetric and the conclusions obtained 
for one case are also valid for the other one. 
 
3.1. Physical principle of the energy dissipation by 
means of the switching of the parameters 
 
During constrained motion, the system is typically 
underdamped. While it oscillates around the 
equilibrium point, the kinetic energy is transformed to 
potential and vice versa. Considering an ideal case, a 
system without dissipation the total energy in every 
moment should be the sum of the potential and the 
kinetic energy: 
 

2 21 1

2 2k pE E E kx mx= + = + &    (26) 

 
Where k is the stiffness and m the mass of the system. 

In the instant when velocity is zero, the position 
reaches its extreme point and the system has only 
potential energy (it will be assumed for simplicity that 
the origin of the coordinate system is in the 
equilibrium point): 
 

2
max

1

2pE E kx= =     (27) 

 
The extreme values of the position: 
 

    (28) 
 
 
In the instant when the position is zero, the speed has 
an extreme point and there is only kinetic energy: 
 

2
max

1

2kE E mx= = &     (29) 

 
The extreme value of the velocity: 
 

    (30) 
 
In the phase plane the system is represented by an 
ellipse. It is obvious from (28) that decreasing k will 
make ellipse higher and from (30) that decreasing the 
mass will make it wider, as it may be appreciated in 
the following figures.  
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Figure 2. Phase diagrams of the system when the 
stiffness is higher than the mass for three values of the 
energy. 

2 4 6 8 10 12 14 16 18

-6

-4

-2

0

2

4

6

Position

V
el

oc
ity

 
Figure 3. Phase diagrams of the system when the mass 
is higher than the stiffness for three values of the 
energy. 
 
Assigning a high mass and low stiffness in the second 
and fourth quadrant, and doing the opposite in the first 
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and the third one, the system will be closer to the 
equilibrium point every time it intersects any of the 
axes. This is represented in the following figure.  
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Figure 4. Phase diagram of the system when the mass 
is higher than the stiffness in the even quadrants 
(dashed line) and the opposite in the odd ones (full 
line). The initial state is (0,0.1). 
 
Switching the parameters in the instants of changes of 
quadrant a conservative system is made dissipative. It 
is a form of energy dissipation, and thus it may be 
used for impact control. 
It should be emphasized that the previous reasoning 
has been made for an idealized system rather than a 
real one. The main difference is that the equilibrium 
point changes when the stiffness is switched, 
according to (19). Also, the damping has not been 
taken into account. The analysis made in this section 
is more descriptive than precise. The exact one is left 
for the next section. 
 
3.2. Switching criteria and sliding regimes 
  
In order to deduce the optimal switching criteria the 
following energy Lyapunov-like function is used: 
 

(31) 
 

It represents the Euclidian distance from the 
equilibrium point ∞x in the phase plane. It is evident 

that faster convergence means faster energy 
dissipation. On the other hand, the term 

2)(
2

1
∞− xx is equivalent to the elastic potential 

energy of the environment, scaled by a factor that may 

depend on the units. In the same way, the term 2

2

1
x& is 

proportional to the kinetic energy. Therefore, it may 
be stated that V equivalent to the total energy of the 
system. Any quadratic function of velocity and 
distance of the origin would have the same effect. 

It should be emphasized that in the typical 
applications of Lyapunov functions, the origin of the 
coordinate system is located at the equilibrium point, 
and hence it is not taken into account. Nevertheless, 
when a parameter is switched, the equilibrium point 
may also change, which may influence the stability 
and generally the behaviour of the system. For this 
reason, ∞x is included in the considerations. 

The derivative of V: 
 

(32) 
 

Assuming the dynamics of the system: 
 

 (33) 
 

And 
 

 (34) 
 

The substitution of the expression (34) in the 
expression (32) gives: 
 
 
   

    (35) 
 
 
Introducing the expression for ∞x from (19):  

 
 

        
(36) 

 
 
This formula will used to deduce the switching 
criteria for the parameters. They will be analysed one 
by one in the following subsections. 
 
3.2.1. The mass 
 
This subsection is dedicated to the deduction of the 
switching criteria of the mass in function of the state 
of the system in order to dissipate the energy and thus 
to soften the impact. Also, the possibility of sliding 
regimes provoked by the switching will be analyzed. 
Finally, a study of the effect of the noise of the 
acceleration sensor will be made. 
It will be assumed that the mass is switched between 
two values: the minimal and the maximal one. It will 
also be assumed that only non- negative value may be 
assigned to the mass although the contrary would be 
possible in impedance control. 
For the achievement of a soft impact it is necessary to 
dissipate the energy of the system very fast. The 
derivative of the energy should be always as small as 
possible. 
In order to appreciate the effect of the mass on the 
behaviour of the system, the partial derivative of V&  
with respect to the mass is deduced: 

 
  

(37) 
 
 
 
 

Substituting (34) in (37): 
 

  (38) 
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0 0S and S> <&

0 0S and S< <&
0 0S and S> >&

When this expression is positive the energy is 
dissipated slower as the mass increases.  When it is 
negative the energy is dissipated faster as the mass 
increases.   
It seems logical to assign a high value to the mass 
when (38) is negative and a low one in the contrary 
case. For this reason the following switching law is 
proposed:  
 
 

(39) 
 

 
If xx&&&  is positive, the term associated to the mass is 
absorbing energy from the system. In the contrary 
case it is delivering energy. It should be noticed that 
xx&&&  corresponds to the derivative of the square of the 
velocity and thus of the kinetic energy. Therefore, 

0xx<&&&  means that the kinetic energy is decreasing, 
i.e. being transformed into elastic potential energy. 
Assigning a small value of the mass will mean 
reducing the amount the kinetic energy to be 
dissipated. In the contrary case, when 0xx >&&& , the 
kinetic energy is increasing, i.e. potential energy is 
transformed in kinetics.  
The switching criteria (39) have been verified by 
means of simulations. These were made at first 
assigning smaller and smaller values to mmin, while 
keeping mmax constant. Next, the contrary was made: 
mmin was kept constant, while the values of mmax were 
increased in several successive experiments. Testing 
the two cases separately, the effectiveness of the 
switching criteria is verified.  Otherwise, the positive 
results in one case could compensate the negative 
ones of the other, giving a false appearance of the 
validity of the method. 
The adopted values for the simulations are the 
following:  Md =10 kg (if not switched), Bd=10 Ns/m, 
Kd=0, ff=1000 N (if not switched) Ke=100000 N/m, 
Be=10 Ns/m, xe=0 (for simplicity). It is assumed that 
that the robot impacts with the environment in the 
instant t=0. The adopted value for the stiffness of the 
environment is very high and the system is highly 
underdamped, what corresponds to the reality in the 
force control applications. 
The results are represented on the following graphics. 
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Figure 5. Force in function of the time when 
switching mmin and keeping the value mmax=10 in all 
the cases. a) mmin=10 (full line) b) mmin=5 (circles) c) 
mmin=1 (crosses). 
 

It can be appreciated that when the value of mmin is 
decreased, the peaks of force are reduced. Also, the 
convergence of the system is faster.  
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Figure 6. Force in function of the time when 
switching mmax while mmin=10 in all the cases. a) mmax 
=10 (fulle line) b) mmax =20 (circles) c) mmax =50 
(crosses). 
 
It can be appreciated that increasing mmax also reduces 
the peaks of force. Nevertheless, it slows the 
convergence of the system.  
 
It may be concluded that the simulations results 
confirm the validity of the switching criteria (39) 
regarding the protection of the system,  as both 
decreasing mmin and increasing mmax reduce the peaks.  
 
 
3.2.1.1. Sliding regimes when switching the mass 
 
The analysis of sliding regimes and sliding modes is a 
very extensive field and thus beyond the scope of this 
work. Nevertheless a brief explanation will be given 
in order to improve the clarity of the article. Further 
information can be found in different sources 25. 
A parameter switches when the state variables satisfy 
a given condition that can be expressed as  
 
S=0               (40) 
 
When this condition is true it said that the system is 
on the switching surface. 
If the system is not on the surface, there are four 
possible cases: 
 
   0 0S and S< >&             (41) 

(42) 
(43) 

                                      (44) 
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Fig. 7.  The four possible cases. The thick line 
represents the switching surface S=0. Above the 
surface S>0, and below it S<0. The following cases 

are possible: a) S<0 and 0>S& , the system tends 

towards the surface. b)  S<0 and 0<S& , the system is 

moving away from the surface, c) S>0 and 0>S& , the 
system is moving away from the surface, d) S>0 and 

0<S& , the system heads for the surface. 
 
If any of the conditions (43) or (44) is true, the system 
is moving away from the switching surface. The 
mathematical demonstration of this statement will be 
omitted, but its meaning is rather logical. In the first 
case, both the value of S and its derivative are 
positive. In the second case S and its derivative are 
negative. Thus, in both cases the distance from the 
surface is increasing.  
In the contrary case, if any of the conditions (41) or 
(42) is true, the system is tending towards the 
switching surface.  
In summary, if the values of S and its derivative have 
the same sign, the distance of the switching surface is 
increasing. If their signs are opposite, the distance is 
increasing. 
If a system satisfies both conditions (41) and (42), it 
will remain on the surface once it has reached it. This 
is called a sliding regime. It is a harmful phenomenon, 
because the system is stuck on the surface instead of 
tracking the reference values. 
In impedance control, the system is second order, 
typically underdamped. Its behaviour is oscillatory. It 
crosses the switching surface in every period. When 
this happens, it is obvious that the sign of S changes. 
In order to cross the surface, the system must head for 
it (conditions (41) or (42)), passes through the surface 
(S=0 for an instant), and move away from it 
(conditions (43) or (44).  Therefore, in an oscillatory 
system, if no switching is performed, the sign of S 
changes when crossing the surface, while the sign of 
remains S&  the same. Nevertheless, the switching of a 
parameter may provoke a change of the sign ofS& .  In 
this case, the system is pushed back to the surface 
whichever is the sign of S. The system becomes 
unable to leave the surface and remains on it. 
In summary, a sliding regime may occur if there is a 
possibility the switching of a parameter to provoke the 
change of the sign of S&  when crossing the surface. 

In order to analyze the conditions of the sliding 
regime for the concrete case of the switching of the 
mass, it is important to emphasize that, according to 
(39) the mass switches four times in every period as 
both the speed and the acceleration change their sign 
twice. Therefore, there are two switching surfaces, 
when velocity and acceleration go through zero: 

 
 

(45) 
 

Given that the acceleration is the derivative of the 
velocity, when the former passes through zero, the 
latter has an extreme point. When the acceleration 
passes from positive to negative, it is evident that the 
velocity has a maximum and therefore it is positive. 
The product xx&&&  goes from positive to negative. In the 
second case of change of sign acceleration, when it 
becomes positive, it corresponds to a minimum of the 
velocity, which is therefore negative. The productxx&&&  
goes from positive to negative like in the previous 
case. Thus, taking into account the condition (39) in 
both cases of change of sign of the acceleration the 
mass switches to its minimal value from the maximal 
value.  
These conclusions are represented in the following 
tables. 
 
Table 1. Signs of relevant magnitudes and value of the 
mass when acceleration changes its sign from positive 
to negative. 
 
Magnitude Before 

crossing the 
surface 

After crossing 
the surface 

Acceleration >0 <0 
Velocity >0 >0 

xx&&&  >0 <0 
mass mmax mmin 
 
Table 2. Signs of relevant magnitudes and value of the 
mass when acceleration changes its sign from 
negative to positive. 
 
Magnitude Before 

crossing the 
surface 

After crossing 
the surface 

Acceleration <0 >0 
Velocity <0 <0 

xx&&&  >0 <0 
mass mmax mmin 
 
A similar analysis can be made for the changes of the 
sign of the velocity. In order to change its sign from 
positive to negative the acceleration must be negative, 
and therefore the product xx&&&  becomes positive. To 
change from negative to positive, the acceleration 
must be positive, and thus xx&&&  goes positive again. 
This is summarized in the following tables: 
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Table 3. Signs of relevant magnitudes and value of the 
mass when velocity changes its sign from positive to 
negative. 
 
Magnitude Before 

crossing the 
surface 

After crossing 
the surface 

Velocity >0 <0 
Acceleration <0 <0 

xx&&&  <0 >0 
mass mmin mmax 
 
Table 4 Signs of relevant magnitudes and value of the 
mass when velocity changes its sign from negative to 
positive. 
 
Magnitude Before 

crossing the 
surface 

After crossing 
the surface 

Velocity <0 >0 
Acceleration >0 >0 

xx&&&  <0 >0 
mass mmin mmax 
 
Summarizing, the mass switches to:  
 

- mmin when the acceleration changes its 
sign. 

- mmax when the velocity changes its sign. 
 
Following will be realised the analysis of the 
possibility of occurrence of a sliding regime in both 
surfaces.  
The derivative of 

1S  is: 

 
(46) 

 
Given that both position and velocity are continuous 
and therefore don’t change when the mass is 
switched, and that ff, Kd, Bd, Ke, Be and xe are constant, 
the change of the value of the mass (assuming it is 
always positive) doesn’t influence directly the sign 
of

1S& . As consequence, the switching of the mass 

cannot change the sign of the surface nor provoke the 
appearance of a sliding regime.  
The derivative of 

2S  is: 

 
(47) 

 
Assuming that in the proximity of the switching 
surface the value of the acceleration is nearly zero, the 
following can be assumed: 
 

 
 

(48) 
 
 

 
Therefore, the switching of the mass would not 
change the sign of the derivative of the surface

2S , and 

thus there cannot be sliding regime in this surface.  
 

 
3.2.2.2. The effect of the noise of the acceleration 
measurement 
 
The switching criteria of the mass (39) require the 
knowledge of the value of the acceleration. 
Nevertheless, the acceleration measurement is subject 
to noise. The analysis of the effect of this noise will 
be presented in this section. 
In order to have realistic values, the data for the 
analysis will be taken from the datasheet of the 
Analog Devices ADXL330. It is a low cost, 3-axis, 
on-chip accelerometer. It is extended in the research 
as well as in the commercial applications.  
 
The bandwidth in each axis is selected by the user by 
means of capacitors connected to the measured 
outputs. It is basically a low pass filter. With a lower 
bandwidth the noise filtering is improved but the 
resolution of the accelerometer is deteriorated. A 
trade-off should be found for each application. The 
user should limit the bandwidth to the lowest 
frequency needed by the application to maximize the 
resolution and dynamic range of the accelerometer. 
 
According to the datasheet, the root mean square 
noise should be calculated by the formula: 

 
(49) 

 
Where N is the r.m.s. noise, N0 the noise magnitude 
and B the bandwidth. 
 
The noise magnitude N0  for the ADXL330 is 280 in x 

and y, and 350 Hzg /µ in the z axe. 
 
On the other hand, the typical sampling periods used 
for robot control are between one and ten kilohertz.  A 
higher bandwidth for the sensor does not make sense.  
For a bandwidth of 10 KHz and a noise magnitude of 

350 Hzg /µ (z axe, the worst case), the obtained 
r.m.s. noise will be: 
 

(50) 
 

Simulating the system with this value of noise 
practically no difference has been observed with 
respect to the ideal case (no noise at all). For this 
reason, the case of the filter adjusted to 10 KHz has 
not been represented on the figure. 
 
Simulations have been made with the filter adjusted to 
cut-off frequencies of 100 KHz and 1MHz. Both of 
these values are unrealistically high. Although such 
high sampling rates could be implemented, many 
problems would appear, like the delay of the 
electronics (A/D conversion, etc…) or the frequency 
of pulse width modulation of the power stage of the 
motor (seldom higher than 100 KHz). Nevertheless 
some simulations have been made in these 
unrealistically unfavourable conditions in order to 
estimate the effect of the noise.  
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According to formula (49) a value of r.m.s. noise of 
0.14g has been obtained for 100 KHz, and 0.44272g 
for 1MHz. 
The following figure represents the results of the 
simulations of the system without noise, with a cut-off 
frequency of 1MHZ as well as for the case without 
switching. 
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Figure 8. The effect of noise on the switching. The 
full line represents the force in the ideal case (no noise 
at all) and the line with crosses the case when the 
filter is adjusted to 1 MHz. The maximal mass is 20kg 
and the minimal one 10 kg. The dotted line represents 
the case when no switching at all is made (the mass is 
10 kg all the time).  
 
It may be appreciated that the noise deteriorates the 
effect of switching. The difference between the case 
with noise and the ideal one increases with each 
switching, its effect is accumulative. This may be 
explained by the fact the switching criteria (39) are 
chosen for the optimal dissipation of energy. Any 
other switching law worsens the energy dissipation. 
The noise affects the switchings when acceleration 
goes through zero. When they occur, the switching 
will not be performed exactly according to (39) due to 
the noise. Thus less than optimal energy will be 
dissipated in every switching when the acceleration 
changes its sign. So, there will be more and more 
energy accumulated respecting the case without the 
case noise. 
Nevertheless, the results are much better than in the 
case without switching, even with the unrealistically 
unfavorable level of noise. 
On the other, the noise makes almost no difference for 
the initial peaks that are the most dangerous ones.  
In summary, the noise affects very slightly the energy 
dissipation, and almost not at all in the first, most 
important, peaks.  
 
3.2.2. The stiffness 
 
The partial derivative of (36) respecting the stiffness 
is: 
 

  (51) 
 
   (37) 
According to (51) the following switching law is 
proposed in order to maximize the energy dissipation: 

 
 

(52) 
 
 
 
 
It may be appreciated that the criteria depend on the 
environment stiffness, which was assumed to be 
unknown initially. As consequence, the switching 
conditions cannot be detected. Thus, the switching of 
the stiffness according to (52) cannot be implemented. 
It could be adequate to assign the value Kd=0 to the 
stiffness according to the conclusions of the second 
section, in order to reach the force reference. 
Nevertheless, if the task requires stiffness different 
then zero (typical peg-in-a-hole problem), its value 
may be assigned in the moment the contact is 
achieved.  
 
3.2.3. The damping 
 
The partial derivative of (36) respecting the damping 
is: 

                  
 

(53) 
 

Since it is always negative, this term is always 
dissipative. As consequence, the switching of the 
damping does not improve the performance of the 
impact control. 
 
3.2.4. The feedforward 
 
The partial derivative of (36) respecting the 
feedforward is: 
 
 

(54) 
 
Since in the practical robotic applications: 
 
     
 
It can be assumed: 
 
 

(55) 
 
Thus the switching criteria for the feedforward should 
be: 

 
(56) 

 
 

These criteria are rather logical. When the velocity is 
positive, the robot is penetrating into the environment.  
A low feedforward will have as consequence a lower 
penetrating depth. When the velocity is negative, the 
robot is retiring from the environment and the 
feedforward should be high to push him back inside 
and prevent the rebounding. In both cases the value of 
the feedforward is selected to be opposed to the 
motion of the robot and is acting as a sort of brake. 
Hence, it is a form of energy dissipation. 
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3.2.4.1. Sliding regimes when switching the 
feedforward 
 
The only switching surface is: 
 

0S x= =&              (57) 
 
And its derivative: 
 

0S x= =& &&              (58) 
 
The system crosses the switching surface twice in 
every period: when velocity goes from positive to 
negative and vice versa. Following both cases will be 
analysed one by one. The switching instant will be 
called tsw, the instant immediately before will be 
called tsw- and the one immediately after tsw+. 
 
When velocity passes from positive to negative the 
following statements can be made: 
 

1. ( ) 0 ( ) 0sw swx t x t− +> ∧ <& &           (59) 

2. 0x <&& , otherwise the first statement could not 
be satisfied.     

3. According to (56): 

min max( ) ( )sw swff t ff ff t ff− += ∧ =          (60) 

4. The sliding regime occurs if S&  changes its 
sign when the feedforward is switched. Its 
value just before switching: 

 

min( ) 0e e d e d e
sw

d d d

ff K x B B K K
x t x x

M M M−
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     (61) 

5. S&  after switching: 
 

max( ) 0e e d e d e
sw

d d d

ff K x B B K K
x t x x

M M M+
+ + += − − >&& &  

    (62) 
6. Assuming the velocity is zero near the 

surface, and that Kd is also zero, this 
expression becomes: 

max max( ) 0 0e e e
sw

d d d

ff K x K ff f
x t x

M M M+
+ −= − > ⇔ >&&       

(63) 
Therefore, a sliding regime happens if the assigned 
feedforward is lower than the actual force. It can be 
avoided simply by not performing the switching if the 
force is too low.  This can de predicted because ffmax is 
known and the force can be measured. Another 
alternative is assigning ffmax a value lower than the 
actual force. 
A similar reasoning may be made for the case when 
the velocity goes from negative to positive:  
 

1. ( ) 0 ( ) 0sw swx t x t− +< ∧ >& &                          (64) 

2. 0x >&& , otherwise the first statement could not 
be satisfied.   

3. According to (56): 

max min( ) ( )sw swff t ff ff t ff− += ∧ =           (65)  

4. The sliding regime occurs if S&  changes its 
sign when the feedforward is switched. S&  
before switching: 

max( ) 0e e d e d e
sw

d d d

ff K x B B K K
x t x x

M M M−
+ + += − − >&& &

     (66) 

5. In order a sliding regime to occurS& must 
become negative after the switching:  

min( ) 0e e d e d e
sw

d d d

ff K x B B K K
x t x x

M M M+
+ + += − − <&& &

   (67) 
6. Assuming the velocity is zero on the surface, 

and also Kd is zero according this expression 
becomes: 

min min( ) 0 0e e e
sw

d d d

ff K x K ff f
x t x

M M M+
+ −= − < ⇔ <&&

 

(68) 
 
Therefore, the sliding regime can be avoided by 
assigning to ffmin a value higher than the actual force. 
 
Following will be represented the simulation results. 
The simulations will be realised first increasing the 
values of ffmax. Then they will be performed 
decreasing ffmin. 
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Figure 9. Diagram of the force in function of the time 
when ffmax is switched. a) ffmin =ffmax=1000 (Full line) 
b) ffmin =1000 and ffmax =1200 (Circles) c) ffmin = 1000 
and ffmax =2000 (Crosses). 
 
It can be observed that the value of ffmax does not have 
any influence on the first peak, because it is not 
activated until after the peak is reached. Nevertheless, 
the increase of ffmax reduces the subsequent peaks.  
The switching happens in all the cases near the 
extreme values of the force what corresponds 
approximately to the value zero of the velocity. When 
ffmax is augmented to 1200, the system is damped and 
the extreme values are reduced until the third peak, 
after approximately 150 milliseconds, when the 
system enters into a sliding regime. It happens 
because the force in the instant of switching is lower 
then ffmax (1200N). For the case ffmax is 2000N, the 
sliding regime happens at the first switching, because 
the peak in this instant is lower than ffmax (2000N). 
The sliding regime appears according the theoretical 
results reflected in equation (63). 
The sliding regimes may be avoided by omitting the 
switching or by modifying ffmax. The next figures 
represent the three possible cases. In the first one, the 
switching of the feedforward is made when any of the 
switching criteria (56) is true.  As consequence, the 
system enters a sliding regime after the third peak 
(Figure 10). In the next case (Figure 11), the 



     

xBxMff dd &&& +=

possibility of sliding regime is predicted according to 
condition (63), and the switching is not performed. 
The sliding regime is avoided but the damping of the 
system is poor. At last, the sliding regimes are 
predicted according the equation (63) and the value of 
ffmax is modified in order to avoid them (Figure 12). In 
this example the law for compute ffmax has been: 

min
max 2

f ff
ff

−=              (69) 

In this way it is always smaller than the actual force, 
and condition (63) is not verified.  The sliding 
regimes are avoided and the damping is improved. 
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Figure 10. Diagram of the force (dashed line)  and 
feedforward (full line) for ffmin =1000 and ffmax =1200. 
A sliding regime appears at the third peak of force. 

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time [miliseconds]

F
or

ce
 [

N
ew

to
ns

]

 
Figure 11. Diagram of the force (dashed line) and 
feedforward (full line) for ffmin =1000 and ffmax =1200 
when switching of the feedforward is not performed at 
the third peak avoiding the sliding regime. 

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

1800

2000

F
or

ce
 [

N
ew

to
ns

]

Time [miliseconds]  
Figure 12. Diagram of the force (dashed line) and 
feedforward (full line) for ffmin =1000 and ffmax =1200 
when ffmax is readjusted according to (69). 
 

The figure 13 represents the force in function of the 
time when for different values of ffmin. It may be 
appreciated that as the peaks of force are smaller as 
ffmin decreases, but the also the system enters sooner a 
sliding regime. 
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Figure 13. Diagram of the force in function of the 
time when ffmin is switched. a) ffmin = ffmax =1000 (full 
line) b) ffmin =800 (circles). c) ffmin = 600 (crosses).  
 
It may be appreciated that decreasing ffmin reduces the 
peaks of force until a sliding regime happens. In this 
case, a solution could be assigning a higher value to 
ffmin according to (62). 
In summary, in both cases the switching of ff 
improves the impact control until the system enters a 
sliding regime, what can be easily avoided. 
 

4. THE CONTACT LOSS 
 
All the previous analysis treated the case when the 
robot and the environment are in contact. It has been 
demonstrated that the switching of the parameters 
accorded to laws (39) and (56) increases the 
dissipation of the energy and thus softens the impact. 
Given that it reduces the amplitudes of the 
oscillations, it also reduces the probability of contact 
loss.  Nevertheless, the contact loss may happen. This 
section studies the effect of the switching of the mass 
and the feedforward in the case when contact is lost.  
  
In the case of contact loss, the system is in free 
motion and its behaviour is given by equation (22). 
According to previous conclusions (subsections 2.4 
and 3.2.2), it will be assumed that the active stiffness 
is zero (Kd=0).The dynamics of the system is given by 
the following equation: 

(70) 
 
In the next subsections will be studied the effects of 
the switching of the mass and the feedforward 
respectively for the dynamics of the system given in 
(70).  
The main criterion for the evaluation will be the 
velocity of the robot on a new impact, after a contact 
loss. It will be assumed that the switching of a 
parameter improves the impact control if it reduces 
the velocity on the instant the contact is achieved 
again. 
On the other hand, it is empirically known that a body 
that rebounds on the ground, without any human 



     

intervention, is a stable system and the number of 
rebounds is finite. So, it will be considered that, if the 
switching reduces the impact velocity in each 
subsequent contact, the energy dissipation is 
improved compared with the case when no action at 
all has been applied.   For this reason, the fact that the 
impact velocity is reduced in each impact will be 
considered as a sufficient condition to demonstrate the 
stability of the system, as well as a countable number 
of impacts.  
 
4.1. The effect of the switching of the mass 
 
In the instant of the loss of contact, the robot is 
moving away from the environment. The feedforward 
term is pushing it back to the surface and it slows 
until it stops and reverses the speed.  
Therefore, it may be stated that a rebound consists of 
two phases. In the first one it is going in the opposite 
direction of the environment and thus its velocity is 
negative. It goes slower and slower, thus the 
acceleration is positive. 
In the second phase, the robot is moving towards the 
environment so its velocity is positive. Since it is 
moving faster and faster, the acceleration is also 
positive. 
If the switching criteria are made according to (39), 
the value of the mass Md is given in the following 
table.  
 
Table 5 Signs of relevant magnitudes and value of the 
mass for the two phases of a rebound. 
Magnitude First phase Second phase 
Acceleration >0 >0 
Velocity <0 >0 

xx&&&  <0 >0 
mass mmin mmax 

 
Therefore the mass is mmin while the robot is 
rebounding and mmax while it is returning back to the 
surface.  
The fact the mass is low while the robot is bouncing 
back means that, for a given initial velocity, it will 
stop faster since it has less inertia. The distance it will 
cover will be shorter. 
When the robot heads for the surface again, its mass 
will be higher. Thus, the acceleration will be lover 
and it will reach less velocity while traveling the same 
distance. 
Therefore, the velocity of the impact will be smaller 
than the one the robot had in the instant of contact 
loss. 
The following simulations confirm the previous 
conclusion. It will be assumed that the robot leave the 
environment with the velocity of -0.1 m/s. It will also 
be assumed that the travelled distance in both 
directions is equal. 
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Figure 14. The change of the velocity when switching 
mmax (mmin =10 kg in all the cases). The full line 
represents the case when mmax =10 kg (no switching), 
the line marked with ‘x’ mmax =20 kg, the one with 
diamonds mmax =50 kg and the one with circles mmax 
=100 kg. 
The two phases may be appreciated in the diagram: 
the first one lasts until the velocity reaches zero. The 
second phase ends when the contact is achieved again. 
Since the damping is relatively small compared to the 
mass and the feedforward, the acceleration is 
practically constant during each phase. For this reason 
the change of velocity seems linear and thus looks 
like a straight line in the figure. 
It should be emphasized that during the first phase the 
mass has the value of mmin according to table 5 (In this 
simulation it corresponds to 1000 milliseconds). In the 
figure this line is the same for all four values and is 
left as a full line, without any additional elements.  
Finally, it may be appreciated in the figure that 
increasing mmax the impact velocity is decreased. This 
seems a logical result, because the acceleration will be 
smaller for a greater inertia. Thus, the velocity 
reached for the same travelled distance will also be 
smaller. 
In the next figure are represented the simulations 
when switching mmin. 
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Figure 15. The change of the velocity when switching 
mmin (mmax =10 kg in all the cases). The full line 
represents the case when mmin =10 kg (no switching), 
the line marked with ‘x’ mmin =5 kg, the one with 
diamonds mmin =2 kg and the one with circles mmin =1 
kg. 
It may be concluded that decreasing mmin reduces 
impact velocity. It also makes shorter the time from 
contact loss to the new impact. 
 
 



     

4.2. The effect of the switching of the feedforward 
 
Switching the feedforward according to (56) means 
two things: 

1. It will be high while the robot is bouncing 
back. Thus the robot will be stopped faster 
limiting the traveled distance. 

2. The feedforward will be low when the robot 
is heading for the surface. Thus the robot 
will accelerate slower and reach a lower 
velocity in the instant of the impact. 

For this reasons the switching the feedforward softens 
the impact: at first the traveled distance is lowered, 
and second, the acceleration when it returns back to 
the environment is decreased. Both facts are favorable 
for reducing the impact velocity and thus for softening 
the impact. 
Following will be represented some simulation 
results. 
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Figure 16. The change of the velocity when switching 
ffmin(ffmax =1000 N in all the cases). The full line 
represents the case when ffmin =1000 N (no switching), 
the line marked with ‘x’ ffmin =500 N, the one with 
diamonds ffmin =200 N and the one with circles ffmin 
=100 N. 
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Figure 17. The change of the velocity when switching 
ffmax (ffmin =1000 N in all the cases). The full line 
represents the case when ffmax =1000 N (no 
switching), the line marked with ‘x’ ffmax =2000 N, the 
one with diamonds ffmax =5000 N and the one with 
circles ffmax =10000 N. 
 
It may be appreciated in the figure that decreasing 
ffmin, reduces both the impact velocity and the duration 
the time between the contact loss and the next impact. 

 
Concluding, the switching the mass  and feedforward 
improves the impact control in the case of contact 
loss.   
On the other hand, in the case of loss of contact, 
strategies3 different than switching of parameters may 
be used. 
 

5. CONCLUSIONS 
 

This article is dedicated to the analysis of the 
application of impedance control in order to obtain 
velocity control in free motion, impact attenuation and 
force reference tracking. The emphasis is put on the 
impact because it is the most dangerous part of the 
task and possibly the most interesting from the point 
of view of control. 
  
At first, a general analysis of the impedance control 
was made. The conclusion has been made that an 
impedance controller is defined by four parameters: 
the feedforward, the mass, the damping and the 
stiffness. Also, it has been demonstrated that all three 
phases of the task can be controlled with the same 
impedance controller. 
 
The feedforward must be set to the value of the force 
reference in order to reach it. The value of the 
stiffness must be zero. Contrary to the usual trend in 
impedance control, the damping is used for velocity 
control in the free motion. If the stiffness of the 
environment is known, the value of the mass may be 
computed to make the system underdamped, avoiding 
force overshoots and the possibility of bouncing and 
thus achieving a perfect impact control. 
 
If the stiffness of the environment is unknown, an 
improvement of the impact control may be made by 
means of switching between parameters of the 
mechanical impedance. This is the most important 
contribution of this article. 
 
The four parameters have been analysed and it has 
been demonstrated that the effect of switching is 
different for each of them.  
 
The switching criteria for the stiffness cannot be 
detected unless the characteristics of the environment 
are known. Therefore there is no sense to switch this 
parameter. 
 
The switching of the damping does not provide any 
advantage, since the term associated to it always 
dissipates energy. 
 
The switching of the feedforward improves the 
performance of the system initially, but after a few 
periods the system may go into a sliding regime. 
Nevertheless, the first periods are the most critical and 
thus the switching of this parameter is useful when it 
is most important. The sliding regimes may be 
predicted and avoided. 
 
Finally, the mass is possibly the best-suited parameter 
for switching. The switching criteria do not depend on 



     

the characteristics of the environment and the system 
never enters a sliding regime. 
 
The case of a loss of contact has also been analysed. It 
has been deduced that both switching the mass and 
the feedforward reduce the velocity of the next impact 
and thus improve the impact control.  
  
In summary, the switching of the parameters, when 
used in the way described in this article, always 
improves the softening of the impact, regardless of the 
characteristics of the environment. Hence, it is a 
robust method.  
 
The switching of the parameters also has the 
advantage that it needs just a few sampling periods to 
be effective.  
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