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Abstract: This work is dedicated to the analysis of the
application of active impedance control for the Ireation

of three objectives simultaneously: velocity regjola in
free motion, impact attenuation and finally forcacking.

At first, a brief analysis of active impedance cohts
made, deducing the value of each parameter in otder
achieve the three objectives. It is demonstrateat the
system may be made overdamped with the adequate
selection of the parameters if the characteristidsthe
environment are known, avoiding high overshootfoofe
during the impact. The second and most important
contribution of this work is an additional measurer f
impact control in the case when the characteristitthe
environment are unknown. It consists in switching ragno
different values of the parameters of the impedaimce
order to dissipate faster the energy of the systamniting

the peaks of force and avoiding losses of contathe
optimal switching criteria are deduced for every paeter

in order to dissipate the energy of the systemaas ds
possible. The results are verified in simulation.

Keywords: robot control, impact, force control,
impedance control, switching.

1. INTRODUCTION

Possibly the most characteristic problem of robot
force control is the abrupt change from free to
constrained motion. The importance of this
discontinuity is emphasized by the fact that in the
typical industrial applications the environmenvey
stiff and the dynamics of the system is much faster
during the constrained motion. The system is highly
underdamped. In the transient phase (impact) the
force may reach dangerous peaks.

Before achieving the contact, the magnitude to be
controlled is the velocity, and after, the forcénce
different magnitudes are to be controlled and the
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characteristics of the system have an important
change, it seems logical to use one controlleefmh
phase. In order to make the transition from free to
constrained motion as smooth as possible a third
controller may be introduced. It is called impact
control.

The impact is the most important phase becauge hig
peaks of force may occur and cause irreversible
damage to the robot, the environment or the tool.
Even if that doesn’t happen, smaller peaks of force
deteriorate gradually the mechanics of the robot.
Another potential problem of the impact phase & th
possibility of bouncing. All these drawbacks coblel
easily avoided designing an overdamped contraller i
the characteristics of the environment were known.
Unfortunately it is often not the case. For tlgason,
any a priori selected parameters of the regulatay m
not be adequate, and additional actions could be
necessary if the system appears to be underdamped
when the contact is achieved. An additional
inconvenient of the impact control is the fact ttias
phase is extremely brief and may last just a few
sampling periods. This implies that, for example, a
adaptive controller may be too slow to protect the
system.

The impact control has been extensively researched
and very diverse solutions have been proposed. The
most compilation from different sources as welhas
very exhausting analysis of the impact control has
been published by Broglidtdn 1999. It should be
emphasized that there are two ways to treat the
impact: 2 the rigid and the flexible model. The
former doesn’t consider what is happening during
the contact phase, just before and after it. It is
assumed that the duration of the impact is infipite
short. The relation between the velocities in the
moment of the contact and after the rebound isrgive



by the coefficient of restitution. In the flexible
model the impact is treated analytically considgrin
the robot and/ or the environment as elastic bodies
This model will be used in this article.

Following will be enumerated some methods for
impact control. With the rigid model, Brogliato et
al2® proposed two methods for limiting the number
of rebounds and assuring in this way the stabilfty

the system. There are more works based on the
flexible model. Volpe and Khoslaproposed three
methods for impact control. All three are oriented
avoid contact loss rather than the protection again
peaks of force. Hyde and CutkoSkgroposed in
1994 the modulation with pulses of the feedforward.
These pulses are computed to suppress the transitor
harmonics. Xu, Hollerbach and Rianplemented a

PD force control with feedforward is used for force
reference tracking as well as for the impact cdntro
The parameters of the regulators vary according a
non linear law. They decrease if the robot is
approaching the reference in order to reduce the
residual energy. In the contrary case, they inereas
Ferretti, Magnani and Zavala Riproposed to apply
during the impact a feedforward determined
empirically combined with the force regulator, in
order to avoid contact losses.

The switching of parameters was introduced in force
control by B. Armstrong et &F° in a study similar

to the present work. The authors switch the gain
matrix according to the state of the system. The
essential idea is the same, but a different
mathematical methodology was used. In the work of
B. Armstrong et al. LMI was used to demonstrate
the validity of the method.

From the mentioned sources, it can be deduced that
the techniques for impact are control are very
heterogeneous. They don't use the same model.
Some are dedicated to avoid contact losses
regardless of the possible peaks of force. Others a
limited to guarantee the convergence of the system
after a finite number of rebounds. Some consider th
characteristics of the environment are completely
known.

As stated earlier, in addition to the impact coltero

a position/ velocity and force regulators are also
necessary. A force control task may consist ofehre
controllers and two processes with very different
dynamics. Switching among them is a potential seurc
of bouncing, sliding regime and even stability loss

In order to avoid the switching among controllers,
impedance control may be used. This is a control
strategy theoretically adequate for the three phase
proposed by Nevill Hogdh Its objective is to impose

a desired dynamics to the robot rather than trackin
the force reference. Its main advantage is that the
same controller can be used for both free and
restricted motion. The main disadvantage of
impedance control, as it has been stated in many
sources, for example by De Schutter et ais that it

is necessary to have an exact model of the
environment in order to reach the foreeference.
This assumption may be impossible for some real
applications.

The first contribution of this article is the dedioo
how to select the impedance parameters in order to

overcome this limitation, assuming the charactiesst

of the environment are known. It is demonstrated th
the adequate combination of parameters allows
reaching the reference value of the force regasdbés
the environment, achieving velocity control during
free motion and attenuating the impact. Nevertlseles
this technique does not guarantee behaviour of the
system during the impact if the parameters of the
environment are unknown.

The second and most important contribution of this
paper is an impact controller based on the switchin
of the parameters of the impedance depending on the
dissipated and the generated forms of energy in the
given instant. The basic ideas of this work havenbe
published by the authors in 2085Also, the authors

of this paper published a method for simultaneous
velocity, force, and impact conttél The approach is
similar to this article, but it was applied to exgfil
instead of implicit force control. The parameters a
different, as well as the way to adjust them.

The proposed method guarantees an improvement of
the damping of the system, regardless of the
characteristics of the environment. It needs julgva
sampling periods to be effective.

2. SOME CONSIDERATIONS
REGARDING IMPEDANCE
CONTROL

The dynamics equation of a robot arm subject to an
external force is well knowih 15 16

r—J37(q)F =D(a)g+H (q,4) +G(a) 1)

Where 1 is the vector of motor torques(q) the
Jacobian matrix of the robdk, the vector of external
forces acting on the robot's end effect@r(q) the
inertia matrix of the robot,H(q,q)the matrix of

centrifugal and Coriolis torque&(q) the vector of
gravity torques on the motors, a®f ( and jare

the vector of joint positions, velocities and
accelerations, respectively.
Solving the equation (1) for the acceleration:

g=DHQ)(r-I"(@F -H(q.8)-G() (2

On the other hand, the relation between the Cariesi
and joint velocities & 15 1€

X = J(a)q (3)
And the accelerations:
X= 34+ I(a)q (4)
Solving (4) for§j:
4=3"(@)X-3™"(dI(aq (5)

Replacing (2) in (5) and solving fo¢ :



X = J(a)D " (a)(r ~=IT(@)F = H(q,¢4) -G(q)) +
+3(a)g (6)

This system is highly non-linear. The acceleration
depends not only on the motor torque and the extern
force, but also on the inertia matrix, centrifugal,
Corilois and gravity forces and the robot Jacobian.
These magnitudes vary depending the joint positions
and velocities.

Applying a constant force on the end effector, the
acceleration vector would vary both its intensihda
its direction during motion. The behaviour of the
robot when in contact with the environment would be
complicated to predict for the robot operator.
Impedance control allows an intuitive reaction loé t
robot to external forces. It may be obtained
manipulating the input variable. Some ways to
achieve it are enumerated and briefly described in
subsection 2.1.

Assuming that the torque vectaris set to the exact
value that compensated the centrifugal, coriolid an
gravity forces as well as the ternd(q)q, then

equation 6 becomes:

X =-3(@)D (I (QF -

= F=~(I(@)D (I (@) *X = @
==J(a) " D()I () X =M () X
Where:
M (@) ==3(@) T D(a)I (@) (8)

Represents the real Cartesian inertia matrix of the
system, i.e. the relation between the force and the
acceleration. It should be noted that it varieshwiite
configuration of the robot. Also, it is non diagbXia

the general case). For these reasons, the indréa o
robot changes during motion.

The mechanical impedance is the relation between th
force and the velocity of the system:

_ f(9) _ Ms*X(s) + BsX(s) + KX(s) _
\(s) sX(s) 9)

= Ms+B+5
S

Z(s)

Where Z represents the impedanéethe external
force, v the velocity x the positionM the massB the
damping anK the stiffness of the system.

The impedance control consists in imposing to the
system the desired mass, damping and stiffiilgs (
Bq andKg respectively) instead of the real ones.
Several formulations can be found for the mechéanica
impedance. Some of them are:

F=M_ (X=X )+B, (X=X, ) +K,(X~-X,4)
F=M_X+B,(X =X, )+K,(X=X,)
F=M_X+B,X+K,(X-X,)
F=B,X+K (X~-X,.)

F=B,(X =X )+K,(X=X,)

F=M_X+B,X

The first one is most comm#h!® ¢ The second one
has been used in the original paper of Hégafhe
first three can be found in the work of Seraji and
Colbaugh’. The fourth formulation is also called
stiffness or compliance conttél It has the advantage
that it needs neither acceleration nor force setsor
be implemented. Nevertheless, the inertia is not
controlled and thus the behaviour of the robotesri
in different configurations. The same formulatiwas
been adopted by Christian Ott efalfor the control

of elastic robots. It should be noticed that tkalr
robot is a second order system, while the fourth
formulation is first order. That is due to the facht
that the formulation represents the stationary
behaviour of the system while the inertia, presarhy

in the transient phase, is not included in the #gna
The fifth formulation has been used by Lu éf.din
this case the order of the system is reduced mgussi
sliding mode controller. A first order system is
obtained and thus oscillations are avoided, antheei
peaks of force nor contact losses may occur. Kinall
the sixth formulation may be used for human frigndl
robots that execute tasks in cooperation with higan
or for emulation of human muscfés Since the
stiffness is zero, if the robot is displaced by an
external force, it will not return to its initialgition.

(10)

The first formulation is the most general one alid a
the others may be considered special cases of it. |
may be written in the form:
F=MiX-MX, +BX=ByX, +KyX -
-Ky X, = F=MX+B,X+K,X-FF

(11)

WhereFF is the feedforward term.

Therefore, the impedance is defined by four
parameters: the mass, the damping, the stiffneds an
the feedforward. Following, the effect of all ofeth

will be analysed in constrained and free motion in
order to obtain an adequate performance in all the
phases of the task.

The following figure represents a schema of thé, rea
physical, dynamics of the robot as well as the
dynamics achieved by means of impedance control.
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Figure 1. Schema of the real (a) dynamics of theto
and the dynamics obtained by impedance control (b).
“s” represents the Laplace operator and the block
“D.K.” the direct kinetics.

As it may be observed, in the real dynamics of the
robot (Figure 1, schema a)), the relation betwden t
external forcd= and the Cartesian motion is complex
and highly non- linear. It depends on the actual
configuration of the robot, the join velocities atied
motor torques.

In the impedance control (Figure 1, schema b)) the
behaviour of the system is linear. Physically, the
dynamics is the same as in the schema a) in figure
but the motor torques are manipulated to obtain the
dynamics represented in schema b), which is also
given by equation (11). Next subsection describes t
way it may be achieved.

2.1 The implementation of
control

the impedance

The impedance control may be implemented in
several ways. Canudas de Witt et?aldescribe two
methods: via linear state feedback and by inverse
dynamics. The former is adequate for a one dedree o
freedom robot. The latter is better for severalrdeg

of freedom. Another method for the implementation
of the impedance control is the sliding mode cdfftro

In this article the inverse dynamics method will be
used because it achieves the linealization and the
decoupling of the system. Following will be pressht

a brief description of this method.

In order to obtain the dynamics of the system descr
in equation (11), the acceleration must be:

X, =M (F,,+FF-B,X-K,X) (12)

According to (5), the acceleration in joint space
should be:

Gy =37 (@)(Xy = I(A)g) =
= I A)(M " (Fe + FF = By =Ky X) = J(9)4)

(13)

ext

The final expression for motor torques is obtained
substituting (13) in (1):

7 =D(A)I (@M (Foq + FF =By X — K, X) -
= J(q)q) + H(q,0) + G(q) + 3" (q)F (14)

In this way, not only the system is made lineat, bu
also it is decoupled. The behaviour of the systam i
direction of any Cartesiaaxis is independent of the
other directions.

The torque from equation (14) cannot be computed
when the robot goes through a singularity, i.e. a
configuration where the Jacobian matrix is non-
invertible. The singularities are a major problem i
robotics and its solution is beyond the scope &f th
article. Nevertheless, following will be mentionteb
solutions proposed by other researchers. In tts fir
one* the controller is split in two parts. The firsteon
controls the distance from the singularity. Theosel
one controls the motion in the direction orthogatoal
the singular direction. While this method is addqua
in free motion, it may have problems during the
contact. In the second solutidnit is preferred simply

to avoid the singularities. The introduction of a
second controller which forces the robot to move
away from singularities is proposed. It is actidate
only in the proximity of singularities. The final
control action is obtained as a sum of the outpfits
the two controllers.

Another case when the Jacobian matrix is non-
invertible is when it is not square. That happérike
number of degrees of freedom of the robot is daffer
than six.

If the robot has five or less degrees of freedamill

be unable to control its motion/ force along alk th
directions of space. This may be dangerous in cbnta
tasks since the trajectory in the non- controlled
directions is unpredictable and the robot may
penetrate deeply in the environment causing high
peaks of force. It may be unadvisable to use atrobo
with less than six degrees of freedom in contasitda

If the robot has more than six degrees of freedom i
may achieve the same end effector trajectory with
different combinations of joint motions. It is cadl a
redundant robot. Although the inverse jacobian does
not exist, several solutions for the pseudo invenag

be found in the literature. One of them is the trigh
pseudo-inversé A more general case is a pseudo-
inverse that minimizes the quadratic cost functién
joint velocitieg®.

It should be noticed that the redundancy may help i
many cases to solve the problem of the singularitie
by extracting all the linearly independent equatitin

2.2 The behaviour of the system in constrained
motion

Since it has been demonstrated in section 2.1thleat
system may be decoupled, in the rest of the artiiee
case of a single degree of freedom will be treated
without loss of generality.

Lower case letters will be used instead of capiials
one dimensional variables like force, position,
velocity, etc.



Assuming that the deformation of the environment is
elastic, the reaction force of the environment tl

f =-K_(x-x)—-Bx (15)

Where x. is the coordinate of the environment's
surface.

The dynamics of the position in constrained motion
may be obtained from equations (3) and (10):

ff + K x, =M %+ (B, +B)x+ (K, +K)x (16)
The roots of the characteristic polynomial are:
_ (B, *B)£4/(B, + B, ~4(K, +K M,
2 2M,

17
and the discriminant:
(Bd +Be)2_4(Kd +Ke)Md (18)
In order to make the system as damped as poskible,
is convenient to assign a high valueBg and low
values toMg andKag.

The final value of the position will be:

- ff +(Kd + Ke)xe |f Kd # O (19)
Ky + K,
SfHKXe gk 20
Ke
The final value of the force main be obtained as:
f, =K (X, =%, (20)
Thus:
ff +Kx, if Ky#
f,=K,——4%= d 21
- =K Tk (21)
f =ff if K,=0

This means that choosing, =0 not only damps the
system, but also allows us to reach the refereatgev
of force regardlessly of the characreristics of the
environment.

2.3 The behaviour of the system in free motion

In this casd=ex=0 and the dynamics of the system is
defined by the following equation:
ff =M X+ B,x+ K x (22)

The final valuesf the position and velocity will be:

xm:i Ky %20

Kq (23)
>'<m=1 K,=00B,#0

Bd

Therefore, a stiffness different of zero will matke
robot reach the distance given by equation (23grevh

it will stop. This correponds to position control.
Assigning a stiffness equal to zero will make the
system go to a constant speed. This corresponds to
velocity control. The latter is more practical for
impact control since it does not require previous
knowledge about the position of the environment.

On the other hand, the damping should be chosen the
way to assure the desired final veloaity.

it
V

ref

B, (24)

2.4 Conclusions about the selection of the

impedance parameters

This section will contain a recapitulaton of the
previous conclusions for the selection of the
parameters in order to achieve the desired
performance both in free and constrained motion.

The stiffnesKy should be set to zero for two reasons.
At first, in free motion, velocity control is obtad
instead of position control, what is better suifed
impact achieving a softer impact in the case wien t
exact position of the environment isnknown.
Second,the final value of force does not depend on
the characteristics of the environment and theeforc
reference may be always reached.

The value offf should be selected equal to the
reference force in order to achieve tracking epeno
according to (21).

The dampindq is used to assure the system will have
a velocity equivalent to the reference value duthmey
free motion according to (24).

Regarding the madslg, it is the only parameter that
practically has no importance during free motiomTh
value assigned to the mass should be low in oaler t
damp the system during the impact. If the stiffnefss
the environment is known, the value of the mass tha
makes the system underdamped may be obtained
from (18):

< (Bd + Be)z

‘ 4(Kd + Ke) (25)

Briefly the values to be assigned are the following
- ff=Fr, whereF s is the force reference.
- Kg=0.

- Bg: according to equation (24) in order to
attain the reference speed.

- My if the charachteristics of the system are
known, in order to make the system
overdamped according to (25). Otherwise as
small as possible.

Usually in the applications of force control, thetiae
damping is adjusted for smoothing the impact. ia th



case this is achieved by means of the mass. The
damping is used for velocity control in free motion

It should be emphasized that the selection of the
parameters in the way it is described above assures
that both velocity reference and force referende w
be reached during free and constrained motion
respectively, even if the stiffness of the enviremin

is unknown. Nevertheless, it is not possible to
guarantee that the system will be overdamped, ereith
its behaviour during the transition phase accgydn

(17) and (18).

3. SWITCHING THE VALUES OF THE
PARAMETERS

The previous results show how to select the
impedance parameters if the characteristics of the
environment are known. Nevertheless, in some cases
this is not true, and the behaviour of the systeriné
transition cannot be controlled. Given the poténtia
danger of the impact phase it is convenient to
introduce an additional measure in order to make th
transition as soft as possible.

The proposed method is based on the transformation
of the energy. For example, whtre robot penetrates
into the environment, the kinetanergy it had irfree
motion is transformed in elastic potential enerdy o
the environment. It is convenient to assign a laug

of mass in order to reduce the kinetic energy and a
high stiffness to avoid a deep penetration into the
environment. When the robot starts rebounding, the
inverse energy transformation occurs. Then the mass
should be high to limit the acquired velocity aime t
stiffness low to reduce the elastic force.

Before starting a deeper analysis of the proposed
method, some assumptions made in the article will b
mentioned in this paragraph. It will be considefed
simplicity that all the magnitudes are normalised,
nondimensional quantities. This assumption does not
have any influence on the generality of the
conclusions. It will be also considered that the
position of the environment is on a positive
coordinate, i.e. that positive velocity means tbkot

is leaning towards the environment and negative
velocity means it is moving away. The contrary case
is completely symmetric and the conclusions obtaine
for one case are also valid for the other one.

3.1. Physical principle of the energy dissipation by
means of the switching of the parameters

During constrained motion, the system is typically
underdamped. While it oscillates around the
equilibrium point, the kinetic energy is transfourie
potential and vice versa. Considering an ideal ,case
system without dissipation the total energy in gver
moment should be the sum of the potential and the
kinetic energy:

E=Ek+Ep=%k)3+% i% (26)

Wherek is the stiffness anoh the mass of the system.

In the instant when velocity is zero, the position
reaches its extreme point and the system has only
potential energy (it will be assumed for simplicihat

the origin of the coordinate system is in the
equilibrium point):
E=E =1k 27)
“ TS )§1ax
2
The extreme values of the position:
(28)

Xextreme:i E
V k

In the instant when the position is zero, the spesesl
an extreme point and there is only kinetic energy:

E=E = mX,, (29)
The extreme value of the velocity:
Xextreme: i E (30)
m

In the phase plane the system is represented by an
ellipse. It is obvious from (28) that decreaskill

make ellipse higher and from (30) that decreadieg t
mass will make it wider, as it may be appreciated i
the following figures.

3
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Figure 2. Phase diagrams of the system when the
stiffness is higher than the mass for three vahidke
energy.

Velocity

Position

Figure 3. Phase diagrams of the system when the mas
is higher than the stiffness for three values & th
energy.

Assigning a high mass and low stiffness in the sdco
and fourth quadrant, and doing the opposite irfitee



and the third one, the system will be closer to the
equilibrium point every time it intersects any tiet
axes. This is represented in the following figure.

0.1

0.08
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0.04

Velocity

0.02

0

-0.02

-0.04
-1
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Figure 4. Phase diagram of the system when the mass

is higher than the stiffness in the even quadrants
(dashed line) and the opposite in the odd ones$ (ful
line). The initial state is (0,0.1).

Switching the parameters in the instants of chaoges
guadrant a conservative system is made dissipdtive.
is a form of energy dissipation, and thus it may be
used for impact control.

It should be emphasized that the previous reasoning

has been made for an idealized system rather than a

real one. The main difference is that the equilitori
point changes when the stiffness is switched,
according to (19). Also, the damping has not been
taken into account. The analysis made in this cecti
is more descriptive than precise. The exact oneftis
for the next section.

3.2. Switching criteria and diding regimes

In order to deduce the optimal switching criteitie t
following energy Lyapunov-like function is used:

1., 1., 2
V==xX+= - (31)
2x 2(x X,)

It represents the Euclidian distance from the
equilibrium pointx_in the phase plane. It is evident

that faster convergence means faster energy
dissipation. On the other hand, the term

%(x—xw)zis equivalent to the elastic potential

energy of the environment, scaled by a factor ity

depend on the units. In the same way, the tér)zﬁ is
2

proportional to the kinetic energy. Therefore, ym
be stated thaV equivalent to the total energy of the
system. Any quadratic function of velocity and
distance of the origin would have the same effect.

It should be emphasized that in the typical
applications of Lyapunov functions, the origin ot

coordinate system is located at the equilibriummpoi

and hence it is not taken into account. Nevertlseles
when a parameter is switched, the equilibrium point
may also change, which may influence the stability
and generally the behaviour of the system. For this

reason,X_ is included in the considerations.

The derivative o¥:

Vo= XX+ X(x-Xx,) (32)
Assuming the dynamics of the system:
M X+(B, + B) X+ (K, + K) x= ff+ K,x, (33)
And
go ffHKx, _B+B.. KoK,
Md M d M d (34)
The substitution of the expression (34) in the
expression (32) gives:
. + +
V= ff Kexe)_(_ B, Bexz_
+
et Be e x- )
Introduting the expression fog, from (19):
. + +
V= ff MKeXeX— BTVI Bexz_
d d (36)
+ +
Ky +K, XK+ 3 X ff Kexe)

This formula will uséd tS deduce the switching
criteria for the parameters. They will be analyseé
by one in the following subsections.

3.2.1. The mass

This subsection is dedicated to the deduction ef th
switching criteria of the mass in function of thate
of the system in order to dissipate the energythnd
to soften the impact. Also, the possibility of &lig
regimes provoked by the switching will be analyzed.
Finally, a study of the effect of the noise of the
acceleration sensor will be made.
It will be assumed that the mass is switched betwee
two values: the minimal and the maximal one. It wil
also be assumed that only non- negative value raay b
assigned to the mass although the contrary would be
possible in impedance control.
For the achievement of a soft impact it is necgskar
dissipate the energy of the system very fast. The
derivative of the energy should be always as sasll
possible.
In order to appreciate the effect of the mass @n th
behaviour of the system, the partial derivativeVof
with respect to the mass is deduced:

Y ff + K X, .

d

(37)

(38)




When this expression is positive the energy is

dissipated slower as the mass increases. When it i

negative the energy is dissipated faster as thes mas

increases.

It seems logical to assign a high value to the mass

when (38) is negative and a low one in the contrary

case. For this reason the following switching law i

proposed:

M, ={m““" <o (39)
m.,, if Xx>0

If XX is positive, the term associated to the mass is
absorbing energy from the system. In the contrary
case it is delivering energy. It should be notitleat

XX corresponds to the derivative of the square of the
velocity and thus of the kinetic energy. Therefore,
xX<0 means that the kinetic energy is decreasing,
i.e. being transformed into elastic potential egerg
Assigning a small value of the mass will mean
reducing the amount the kinetic energy to be
dissipated. In the contrary case, whgi >0, the
kinetic energy is increasing, i.e. potential energy
transformed in kinetics.

The switching criteria (39) have been verified by
means of simulations. These were made at first
assigning smaller and smaller valuesntgin, while
keepingmmax constant. Next, the contrary was made:
Mmin Was kept constant, while the valuesmwfax were
increased in several successive experiments. Bestin
the two cases separately, the effectiveness of the
switching criteria is verified. Otherwise, the fin®
results in one case could compensate the negative
ones of the other, giving a false appearance of the
validity of the method.

The adopted values for the simulations are the
following: Mq =10 kg (if not switched)Bs=10 Ns/m,
Kq=0, ff=1000 N (if not switched)Ke=100000 N/m,
Be=10 Ns/m,x.=0 (for simplicity). It is assumed that
that the robot impacts with the environment in the
instantt=0. The adopted value for the stiffness of the
environment is very high and the system is highly
underdamped, what corresponds to the reality in the
force control applications.

The results are represented on the following graphi
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Figure 5. Force in function of the time when
switching mmin and keeping the valuewa=10 in all
the cases. anmin=10 (full line) b) mmwi=5 (circles) c)
Mmir=1 (crosses).

It can be appreciated that when the valuemgf, is
decreased, the peaks of force are reduced. Also, th
convergence of the system is faster.
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Figure 6. Force in function of the time when
switching Mmax while myi=10 in all the cases. @max
=10 (fulle line) b) Mmnax =20 (circles) ¢)Mmax =50
(crosses).

It can be appreciated that increasing:x also reduces
the peaks of force. Nevertheless, it slows the
convergence of the system.

It may be concluded that the simulations results
confirm the validity of the switching criteria (39)
regarding the protection of the system, as both
decreasingnmin and increasingnmax reduce the peaks.

3.2.1.1. Sliding regimes when switching the mass

The analysis of sliding regimes and sliding modes i
very extensive field and thus beyond the scopdisf t
work. Nevertheless a brief explanation will be give
in order to improve the clarity of the article. Eher
information can be found in different sourées

A parameter switches when the state variablesfgatis
a given condition that can be expressed as
S=0 (40)
When this condition is true it said that the sysiem
on the switching surface.

If the system is not on the surface, there are four
possible cases:

S<0 and S0 (41)
S>0 and 0 (32
S>0 and S0 ((314)
S<0 and %0



Fig. 7. The four possible cases. The thick line
represents the switching surfac&=0. Above the
surfaceS>0, and below itS<0. The following cases

are possible: ap<0 and S>0, the system tends
towards the surface. b$<0and S<O0, the system is

moving away from the surface, 80 andS>0, the
system is moving away from the surface, S0 and

S <0, the system heads for the surface.

If any of the conditions (43) or (44) is true, thestem

is moving away from the switching surface. The
mathematical demonstration of this statement wéll b
omitted, but its meaning is rather logical. In firet
case, both the value db and its derivative are
positive. In the second ca&and its derivative are
negative. Thus, in both cases the distance from the
surface is increasing.

In the contrary case, if any of the conditions (4t)
(42) is true, the system is tending towards the
switching surface.

In summary, if the values & and its derivative have
the same sign, the distance of the switching sarfac
increasing. If their signs are opposite, the distais
increasing.

If a system satisfies both conditions (41) and ,(42)
will remain on the surface once it has reachedlits

is called a sliding regime. It is a harmful phenome
because the system is stuck on the surface instead
tracking the reference values.

In impedance control, the system is second order,
typically underdamped. Its behaviour is oscillatdty
crosses the switching surface in every period. When
this happens, it is obvious that the signSafhanges.

In order to cross the surface, the system must fogad

it (conditions (41) or (42)), passes through thdeme
(S=0 for an instant), and move away from it
(conditions (43) or (44). Therefore, in an ostily
system, if no switching is performed, the signSof
changes when crossing the surface, while the sign o
remainsS the same. Nevertheless, the switching of a
parameter may provoke a change of the sigh.ofn

this case, the system is pushed back to the surface
whichever is the sign ofs. The system becomes
unable to leave the surface and remains on it.

In summary, a sliding regime may occur if therais
possibility the switching of a parameter to provoke
change of the sign ab when crossing the surface.

In order to analyze the conditions of the sliding
regime for the concrete case of the switching ef th
mass, it is important to emphasize that, according
(39) the mass switches four times in every peried a
both the speed and the acceleration change tlygir si
twice. Therefore, there are two switching surfaces,
when velocity and acceleration go through zero:

S =%=0
S2 =%=0
Given that the acceleration is the derivative & th
velocity, when the former passes through zero, the
latter has an extreme point. When the acceleration
passes from positive to negative, it is evident tha
velocity has a maximum and therefore it is positive
The productsx goes from positive to negative. In the
second case of change of sign acceleration, when it
becomes positive, it corresponds to a minimum ef th
velocity, which is therefore negative. The prodyict
goes from positive to negative like in the previous
case. Thus, taking into account the condition (89)
both cases of change of sign of the acceleratien th
mass switches to its minimal value from the maximal
value.

These conclusions are represented in the following
tables.

(45)

Table 1. Signs of relevant magnitudes and valudef
mass when acceleration changes its sign from pesiti
to negative.

Magnitude Before After crossing
crossing the the surface
surface

Acceleration >0 <0

Velocity >0 >0

XX >0 <0

mass Mimax Mimin

Table 2. Signs of relevant magnitudes and valubef
mass when acceleration changes its sign from
negative to positive.

Magnitude Before After crossing
crossing the the surface
surface

Acceleration <0 >0

Velocity <0 <0

X >0 <0

mass Mmax Mmin

A similar analysis can be made for the changes®f t
sign of the velocity. In order to change its sigonfi
positive to negative the acceleration must be megat
and therefore the product becomes positive. To
change from negative to positive, the acceleration
must be positive, and thugx goes positive again.
This is summarized in the following tables:



Table 3. Signs of relevant magnitudes and valubef
mass when velocity changes its sign from positore t
negative.

Magnitude Before After crossing
crossing the the surface
surface

Velocity >0 <0

Acceleration <0 <0

X <0 >0

mass Mmin Mmax

Table 4 Signs of relevant magnitudes and valudef t
mass when velocity changes its sign from negative t
positive.

Magnitude Before After crossing
crossing the the surface
surface

Velocity <0 >0

Acceleration >0 >0

XX <0 >0

mass Mhin Mhax

Summarizing, the mass switches to:

- mmin When the acceleration changes its
sign.
- mmaxWhen the velocity changes its sign.

Following will be realised the analysis of the
possibility of occurrence of a sliding regime inttbo
surfaces.

The derivative ofg is:

$=')'(= ff +K.x, By+ B, e Kyt K
M d M d M d
Given that both position and velocity are continsiou
and therefore don't change when the mass is
switched, and thdt, Kg, By, Ke, Be andxe are constant,
the change of the value of the mass (assuming it is

always positive) doesn'’t influence directly the rsig
ofS. As consequence, the switching of the mass

cannot change the sign of the surface nor provioke t
appearance of a sliding regime.
The derivative ofs, is:

L B,+B .. K +K,.

Sz ="X=- d e X— d e N
Ivld Md

Assuming that in the proximity of the switching

surface the value of the acceleration is nearly,zde
following can be assumed:

€y (46)

(47)

%=0
B,+B,, __ K,*K

"X (48)

d d
: Ky +K, .
=——_0¢ ek
S, M.
Therefore, the switching of the mass would not
change the sign of the derivative of the surgceand

thus there cannot be sliding regime in this surface

3.2.2.2. The effect of the noise of the accelenatio
measurement

The switching criteria of the mass (39) require the
knowledge of the value of the acceleration.
Nevertheless, the acceleration measurement is&ubje
to noise. The analysis of the effect of this noisk

be presented in this section.

In order to have realistic values, the data for the
analysis will be taken from the datasheet of the
Analog Devices ADXL330. It is a low cost, 3-axis,

on-chip accelerometer. It is extended in the resear

as well as in the commercial applications.

The bandwidth in each axis is selected by the biger
means of capacitors connected to the measured
outputs. It is basically a low pass filter. WitHoaver
bandwidth the noise filtering is improved but the
resolution of the accelerometer is deteriorated. A
trade-off should be found for each application. The
user should limit the bandwidth to the lowest
frequency needed by the application to maximize the
resolution and dynamic range of the accelerometer.

According to the datasheet, the root mean square
noise should be calculated by the formula:

N = N,~/16B

WhereN is the r.m.s. noiseé\l, the noise magnitude
andB the bandwidth.

(49)

The noise magnitudd, for the ADXL330 is 280 in x

¢a/Hz

and y, and 35 in the z axe.

On the other hand, the typical sampling periodsluse
for robot control are between one and ten kiloheAz
higher bandwidth for the sensor does not make sense
For a bandwidth of 10 KHz and a noise magnitude of

350 Mg/~ |_|Z(z axe, the worst case), the obtained
r.m.s. noise will be:

N =350X10°y/16X10000= 004272g  (50)
Simulating the system with this value of noise
practically no difference has been observed with
respect to the ideal case (no noise at all). F th
reason, the case of the filter adjusted to 10 KHg h
not been represented on the figure.

Simulations have been made with the filter adjusted
cut-off frequencies of 100 KHz and 1MHz. Both of
these values are unrealistically high. Althoughhsuc
high sampling rates could be implemented, many
problems would appear, like the delay of the
electronics (A/D conversion, etc...) or the frequency
of pulse width modulation of the power stage of the
motor (seldom higher than 100 KHz). Nevertheless
some simulations have been made in these
unrealistically unfavourable conditions in order to
estimate the effect of the noise.



According to formula (49) a value of r.m.s. noide o
0.14g has been obtained for 100 KHz, and 0.44272g
for 1IMHz.

The following figure represents the results of the
simulations of the system without noise, with a-afit
frequency of 1IMHZ as well as for the case without
switching.
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Figure 8. The effect of noise on the switching. The
full line represents the force in the ideal caser{aise

at all) and the line with crosses the case when the
filter is adjusted to 1 MHz. The maximal mass i& @0
and the minimal one 10 kg. The dotted line reprissen
the case when no switching at all is made (the nsass
10 kg all the time).

It may be appreciated that the noise deteriordtes t
effect of switching. The difference between theecas
with noise and the ideal one increases with each
switching, its effect is accumulative. This may be
explained by the fact the switching criteria (39 a
chosen for the optimal dissipation of energy. Any
other switching law worsens the energy dissipation.
The noise affects the switchings when acceleration
goes through zero. When they occur, the switching
will not be performed exactly according to (39) dae
the noise. Thus less than optimal energy will be
dissipated in every switching when the acceleration
changes its sign. So, there will be more and more
energy accumulated respecting the case without the
case noise.

Nevertheless, the results are much better thahen t
case without switching, even with the unrealistical
unfavorable level of noise.

On the other, the noise makes almost no differéoice
the initial peaks that are the most dangerous ones.

In summary, the noise affects very slightly thergge
dissipation, and almost not at all in the first, sho
important, peaks.

3.2.2. The stiffness

The partial derivative of (36) respecting the gtffs
is:

N
5Kd

ESE 1 &8 (51)
Md

(Kg+K)*

According to (51) the following switching law is
proposed in order to maximize the energy dissipatio

Ko I ok KK o
K = My (Kq+Ko)
L=
kmin if —i)'(X+ Xﬁ+—KeX62>0
M, (K +KY)

(52)

It may be appreciated that the criteria dependhen t
environment stiffness, which was assumed to be
unknown initially. As consequence, the switching
conditions cannot be detected. Thus, the switcbing
the stiffness according to (52) cannot be implement

It could be adequate to assign the vetueO to the
stiffness according to the conclusions of the sdcon
section, in order to reach the force reference.
Nevertheless, if the task requires stiffness dffer
then zero (typical peg-in-a-hole problem), its alu
may be assigned in the moment the contact is
achieved.

3.2.3. The damping

The partial derivative of (36) respecting the damgpi
is:

v __i)-(z

5B, M, (53)
Since it is always negative, this term is always
dissipative. As consequence, the switching of the
damping does not improve the performance of the
impact control.

3.2.4. The feedforward

The partial derivative of (36) respecting the
feedforward is:

N_x__ X

off M, K,+K, (54)
Since in the practical robotic applications:

Md << Kd + Ke

It can be assumed:

N x

off M, (55)

Thus the switching criteria for the feedforward slilo
be:

{ffmax if %<0
ff =

x>0

(56)
ff ., if

min

These criteria are rather logical. When the vejorst
positive, the robot is penetrating into the envimamt.

A low feedforward will have as consequence a lower
penetrating depth. When the velocity is negatite, t
robot is retiring from the environment and the
feedforward should be high to push him back inside
and prevent the rebounding. In both cas Z e \wlue
the feedforward is selected to be op%% d to the
motion of the robot and is acting as a sort of brak
Hence, it is a form of energy dissipation.



3.2.4.1. Sliding regimes when switching the
feedforward

The only switching surface is:

S=X%=0 (57)
And its derivative:
S=%=0 (58)

The system crosses the switching surface twice in
every period: when velocity goes from positive to
negative and vice versa. Following both cases hvll
analysed one by one. The switching instant will be
called tu, the instant immediately before will be
called tw- and the one immediately aftegt

When velocity passes from positive to negative the
following statements can be made:

1 X, )>00x(t,)<0 (59)
2. %<0, otherwise the first statement could not

be satisfied.
3. According to (56):

ff (tsw—) = ffmin D ff (tS\M') = ffmax (60)
4. The sliding regime occurs i§ changes its

sign when the feedforward is switched. Its
value just before switching:

min + Kexe Bd+ Be N Kd+ Ke
- X— X
Md Md Md
(61)

<0

f(t,, )=

5. S after switching:

o ¥ KXo Byt BeX_ K,+ Kex
Md Md Md
(62)
6. Assuming the velocity is zero near the

>0

X(tow) =

surface, and thatkq is also zero, this
expression becomes:
X(to) = Mot KX, K, x>0 < Mg = >0
Md M d M d
(63)

Therefore, a sliding regime happens if the assigned
feedforward is lower than the actual force. It dan
avoided simply by not performing the switchinghét
force is too low. This can de predicted becdtisgis
known and the force can be measured. Another
alternative is assigninffmax a value lower than the
actual force.

A similar reasoning may be made for the case when
the velocity goes from negative to positive:

1. x(t,.)<00Ox(t,)>0 (64)

2. X>0, otherwise the first statement could not
be satisfied.

3. According to (56):
ff (t,.) = . O ff (tg,) = (65)

4. The sliding regime occurs i§ changes its
sign when the feedforward is switcheg.
before switching:

X(tsw—): ﬁ:max+KeXe_ Bd+ Be)‘(_ Kd+ Kex>o
Md Md Md
(66)

5. In order a sliding regime to occBmust
become negative after the switching:
" ffin T KX, Byt B,. K +K
X(tsw») = min ee _ e X—

Md M d M d
(67)

6. Assuming the velocity is zero on the surface,
and alsoKq is zero according this expression

£x<0

becomes:
X(tsvw) = ﬁmin + KeXe — Ke X<o - ffmin - f < 0
M d M d M d
(68)

Therefore, the sliding regime can be avoided by
assigning tdfmin a value higher than the actual force.

Following will be represented the simulation result
The simulations will be realised first increasirte t
values of ffmax Then they will be performed
decreasingfmin.
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Figure 9. Diagram of the force in function of thmé
whenffmax is switched. affmin =ffma=1000 (Full line)
b) ffmin =1000 andfmax=1200 (Circles) cJfmin = 1000
andffmax=2000 (Crosses).

It can be observed that the valueffafx does not have
any influence on the first peak, because it is not
activated until after the peak is reached. Nevéztse

the increase dfmaxreduces the subsequent peaks.

The switching happens in all the cases near the
extreme values of the force what corresponds
approximately to the value zero of the velocity. édh
ffmax IS @augmented to 1200, the system is damped and
the extreme values are reduced until the third peak
after approximately 150 milliseconds, when the
system enters into a sliding regime. It happens
because the force in the instant of switching gelo
then ffmax (1200N). For the casHmax is 2000N, the
sliding regime happens at the first switching, hsea
the peak in this instant is lower thdfa.x (2000N).
The sliding regime appears according the theoletica
results reflected in equation (63).

The sliding regimes may be avoided by omitting the
switching or by modifyingffmax The next figures
represent the three possible cases. In the first the
switching of the feedforward is made when any ef th
switching criteria (56) is true. As consequende t
system enters a sliding regime after the third peak
(Figure 10). In the next case (Figure 11), the



possibility of sliding regime is predicted accomglito
condition (63), and the switching is not performed.
The sliding regime is avoided but the damping &f th
system is poor. At last, the sliding regimes are
predicted according the equation (63) and the vafue
ffmaxis modified in order to avoid them (Figure 12). In
this example the law for compulfe.ax has been:
f — ﬁ;min

max 2
In this way it is always smaller than the actuatén
and condition (63) is not verified. The sliding
regimes are avoided and the damping is improved.

(69)
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Figure 10. Diagram of the force (dashed line) and
feedforward (full line) forffmin =1000 andfmax=1200.
A sliding regime appears at the third peak of force
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Figure 11. Diagram of the force (dashed line) and
feedforward (full line) forffnin =1000 andfmax =1200
when switching of the feedforward is not perforna¢d
the third peak avoiding the sliding regime.
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Figure 12. Diagram of the force (dashed line) and
feedforward (full line) forffnin =1000 andfmax =1200
whenffmayis readjusted according to (69).

The figure 13 represents the force in functionhaf t
time when for different values dffnin. It may be
appreciated that as the peaks of force are smadler
ffmin decreases, but the also the system enters sooner a
sliding regime.
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Figure 13. Diagram of the force in function of the
time whenffmin is switched. ajfmin = ffmax =1000 (full
line) b)ffmin =800 (circles). cjfmin = 600 (crosses).

It may be appreciated that decreadiiag reduces the
peaks of force until a sliding regime happens.his t
case, a solution could be assigning a higher vedue
ffmin according to (62).

In summary, in both cases the switching f
improves the impact control until the system enters
sliding regime, what can be easily avoided.

4. THE CONTACT LOSS

All the previous analysis treated the case when the
robot and the environment are in contact. It haanbe
demonstrated that the switching of the parameters
accorded to laws (39) and (56) increases the
dissipation of the energy and thus softens the atmpa
Given that it reduces the amplitudes of the
oscillations, it also reduces the probability ohtaet
loss. Nevertheless, the contact loss may happes. T
section studies the effect of the switching of in@ss
and the feedforward in the case when contact ts los

In the case of contact loss, the system is in free
motion and its behaviour is given by equation (22).
According to previous conclusions (subsections 2.4
and 3.2.2), it will be assumed that the activeresgs

is zero Kq=0).The dynamics of the system is given by
the following equation:
ff =M X+ B,X (70)

In the next subsections will be studied the effexts
the switching of the mass and the feedforward
respectively for the dynamics of the system given i
(70).

The main criterion for the evaluation will be the
velocity of the robot on a new impact, after a echt
loss. It will be assumed that the switching of a
parameter improves the impact control if it reduces
the velocity on the instant the contact is achieved
again.

On the other hand, it is empirically known thatcal{p
that rebounds on the ground, without any human



intervention, is a stable system and the number of
rebounds is finite. So, it will be considered ththe
switching reduces the impact velocity in each
subsequent contact, the energy dissipation is
improved compared with the case when no action at
all has been applied. For this reason, the fedtthe
impact velocity is reduced in each impact will be
considered as a sufficient condition to demonstitzge
stability of the system, as well as a countable lmem

of impacts.

4.1. The effect of the switching of the mass

In the instant of the loss of contact, the robot is
moving away from the environment. The feedforward
term is pushing it back to the surface and it slows
until it stops and reverses the speed.

Therefore, it may be stated that a rebound congfsts
two phases. In the first one it is going in the ogife
direction of the environment and thus its velodgy
negative. It goes slower and slower, thus the
acceleration is positive.

In the second phase, the robot is moving towards th
environment so its velocity is positive. Since gt i
moving faster and faster, the acceleration is also
positive.

If the switching criteria are made according to)(39
the value of the maskly is given in the following
table.

Table 5 Signs of relevant magnitudes and valudef t
mass for the two phases of a rebound.

Magnitude First phase Second phagse
Acceleration >0 >0

Velocity <0 >0

X <0 >0

mass Mhin Mha

Therefore the mass isnmin while the robot is
rebounding ananmax While it is returning back to the
surface.

The fact the mass is low while the robot is bougcin
back means that, for a given initial velocity, itllw
stop faster since it has less inertia. The disténeeél
cover will be shorter.

When the robot heads for the surface again, itssmas
will be higher. Thus, the acceleration will be love
and it will reach less velocity while traveling tkame
distance.

Therefore, the velocity of the impact will be snaall
than the one the robot had in the instant of cantac
loss.

The following simulations confirm the previous
conclusion. It will be assumed that the robot lethee
environment with the velocity of -0.1 m/s. It wilso

be assumed that the travelled distance in both
directions is equal.

0.1

oof —— L+t St

006 —— 1 —— 71— -1/

004 — — - — S o e ]
5
| | GOV L eee

& 002 — -+ - —+ T - -
£ | |

> of--L__ [ D R S
g | |

< I | | |

S o0fb--L_ ALt

T
I

-
I

-+
I
1

L4 -4 —
L4 -4 —

-
|
.
|
1 1

1000 1500 2000 2500 3000 3500 4000 4500
Time [miliseconds]

Figure 14. The change of the velocity when switghin
Mmax (Mmin =10 kg in all the cases). The full line
represents the case whenax =10 kg (no switching),
the line marked with ‘X’mmax =20 kg, the one with
diamondsmmax =50 kg and the one with circlégmax
=100 kg.

The two phases may be appreciated in the diagram:
the first one lasts until the velocity reaches zdroe
second phase ends when the contact is achievenl agai
Since the damping is relatively small comparecht® t
mass and the feedforward, the acceleration is
practically constant during each phase. For trasoa

the change of velocity seems linear and thus looks
like a straight line in the figure.

It should be emphasized that during the first pliase
mass has the value o, according to table 5 (In this
simulation it corresponds to 1000 milliseconds)the
figure this line is the same for all four valuesaa

left as a full line, without any additional elemgnt
Finally, it may be appreciated in the figure that
increasingmmax the impact velocity is decreased. This
seems a logical result, because the acceleratibbevi
smaller for a greater inertia. Thus, the velocity
reached for the same travelled distance will also b
smaller.

In the next figure are represented the simulations
when switchingmmin.
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Figure 15. The change of the velocity when switghin
Mmin (Mnax =10 kg in all the cases). The full line
represents the case whemin =10 kg (no switching),
the line marked with ‘X'mmin =5 kg, the one with
diamondsmmin =2 kg and the one with circl@gmin =1
kg.

It may be concluded that decreasingi, reduces
impact velocity. It also makes shorter the timenfro
contact loss to the new impact.
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4.2. The effect of the switching of the feedforward

Switching the feedforward according to (56) means
two things:
1. It will be high while the robot is bouncing

back. Thus the robot will be stopped faster
limiting the traveled distance.

2. The feedforward will be low when the robot
is heading for the surface. Thus the robot
will accelerate slower and reach a lower
velocity in the instant of the impact.

For this reasons the switching the feedforwardesisft
the impact: at first the traveled distance is lader
and second, the acceleration when it returns back t
the environment is decreased. Both facts are falera
for reducing the impact velocity and thus for soifitg

the impact.
Following will be
results.

represented some simulation
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Figure 16. The change of the velocity when switghin
ffmin(ffnax =1000 N in all the cases). The full line
represents the case whién, =1000 N (no switching),
the line marked with ‘Xffmin =500 N, the one with
diamondsffmin =200 N and the one with circldin
=100 N.
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Figure 17. The change of the velocity when switghin
ffmax (ffmin =1000 N in all the cases). The full line
represents the case whefinax =1000 N (no
switching), the line marked with ‘¥fnax=2000 N, the
one with diamonddfnax =5000 N and the one with
circlesffmax=10000 N.

It may be appreciated in the figure that decreasing
ffmin, reduces both the impact velocity and the duration
the time between the contact loss and the nextdmpa

Concluding, the switching the mass and feedforward
improves the impact control in the case of contact
loss.

On the other hand, in the case of loss of contact,
strategiedifferent than switching of parameters may

be used.

5. CONCLUSIONS

This article is dedicated to the analysis of the
application of impedance control in order to obtain
velocity control in free motion, impact attenuatimd
force reference tracking. The emphasis is put en th
impact because it is the most dangerous part of the
task and possibly the most interesting from thentpoi
of view of control.

At first, a general analysis of the impedance aintr
was made. The conclusion has been made that an
impedance controller is defined by four parameters:
the feedforward, the mass, the damping and the
stiffness. Also, it has been demonstrated thathadle
phases of the task can be controlled with the same
impedance controller.

The feedforward must be set to the value of theefor
reference in order to reach it. The value of the
stiffness must be zero. Contrary to the usual tiend
impedance control, the damping is used for velocity
control in the free motion. If the stiffness of the
environment is known, the value of the mass may be
computed to make the system underdamped, avoiding
force overshoots and the possibility of bouncing an
thus achieving a perfect impact control.

If the stiffness of the environment is unknown, an
improvement of the impact control may be made by
means of switching between parameters of the
mechanical impedance. This is the most important
contribution of this article.

The four parameters have been analysed and it has
been demonstrated that the effect of switching is
different for each of them.

The switching criteria for the stiffness cannot be
detected unless the characteristics of the envieoim
are known. Therefore there is no sense to switish th
parameter.

The switching of the damping does not provide any
advantage, since the term associated to it always
dissipates energy.

The switching of the feedforward improves the
performance of the system initially, but after avfe
periods the system may go into a sliding regime.
Nevertheless, the first periods are the most afitied
thus the switching of this parameter is useful when
is most important. The sliding regimes may be
predicted and avoided.

Finally, the mass is possibly the best-suited patam
for switching. The switching criteria do not depend



the characteristics of the environment and theesyst
never enters a sliding regime.

The case of a loss of contact has also been adalyse

has been deduced that both switching the mass and

the feedforward reduce the velocity of the nextaetp
and thus improve the impact control.

In summary, the switching of the parameters, when
used in the way described in this article, always
improves the softening of the impact, regardleshef
characteristics of the environment. Hence, it is a
robust method.

The switching of the parameters also has the
advantage that it needs just a few sampling petiods
be effective.
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