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Abstract. This paper presents a study on the energy-absorbing capacities of viscoelastic
dampers (VEDSs) for reducing the resonant vibrations of simply supported high-speed railway
bridges of short to medium span. The proposed solution is based on retrofitting the bridge
with a set of discrete VEDs connected to the slab and to an auxiliary structure, placed
underneath the bridge deck and resting on the abutments. In this investigation attention is
focused on mitigating flexural vibrations; therefore, both the bridge and the auxiliary structure
are modelled as simply supported beams with Bernoulli—Euler (B-E) behavior, whereas a
discrete fractional derivative model simulates the behavior of the damping material. Firstly, a
parametric study of this planar model is carried out, which has led to a dimensioning
procedure of the dissipative system. The technical feasibility of this particular retrofit design
is numerically evaluated by applying it to a numerical model of a simply supported railway
bridge with inadmissible vertical accelerations. Numerical results show that the dynamic
response of the structure can be significantly reduced in resonance with the proposed damping

system.
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1. INTRODUCTION

The dynamic behaviour of railway bridges has become an issue of main concern between
scientists and engineers over the last 20 years, due to the extensive construction of new High-
Speed lines and also the use of old lines for higher speeds.

Fast trains can induce resonance situations in railway bridges, being the short-to-medium-
span bridges where the main structural elements are simpy supported (S-S), the most critical
in this regard. When the train travels at a resonant speed, high levels of the deck vertical
acceleration are to be expected, which can result in adverse consequences such as ballast
deconsolidation, passenger discomfort or higher risk of derailment. This fact has been
reported by some members of the D-214 Committee of the European Rail Research Institute:
Fryba [6] and Mancel et al. [13]. In such circumstances, the bridge deck has to be stiffened or
replaced in order to keep the maximum vertical acceleration below the Serviceability Limit
State of 3.5 m/s? for ballasted tracks [5], avoiding maintenance and security problems. Clearly,
one major concern is the cost of the strengthening/replacement operations.

Several authors have evaluated the possibility of controlling high-speed trains induced
vibrations in railway bridges with passive energy dissipation devices, as an alternative to the
classical solutions (deck strengthening/replacement). Kwon et al. [11] and Wang et al. [24]
have investigated the application of Tuned Mass Dampers (TMDs) for this purpose. Aside
from passive TMDs, a couple of authors have also addressed the application of pure viscous
dampers (FVDs) to reduce the amplification in beams traversed by moving loads, such as
Oliveto et al. [21] and Museros and Martinez-Rodrigo [19, 15, 16]. In particular, the latter
authors propose an alternative for the retrofit of existing bridges that show inadequate
dynamic performance under the passage trains at higher speeds. The proposed retrofitting

system consists of a simply supported auxiliary beam placed parallel to the main one (the one
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that supports the passage of the moving loads) and a set of linear FVDs that connect both
beams at several sections. The authors conclude that there exists an optimum combination of
auxiliary beam and value of the FVD constants that minimize the main beam response, and
the proposed retrofitting system may apply to other situations where simply supported beams
vibrate at resonance due to different causes.

From a practical point of view, it is also of interest to investigate the application of
viscoelastic dampers (VEDS) to vibration control in high-speed railway bridges, due to its fine
damping properties, cheap cost, simple construction and excellent performance in time for
what concerns aging properties and maintenance [20]. The application of viscoelastic
materials to civil engineering structures appears to have begun in 1969, when approximately
10000 viscoelastic dampers were installed in each of the twin towers of the World Trade
Center in New York to reduce wind-induced vibrations [12]. Lately, they have been
investigated for earthquake resistant design as a viable candidate to be incorporated either into
new constructions or existing buildings on retrofit for earthquake hazard mitigation (for a
detailed literature review see Samali and Kwok [22]). More recent outdoor applications can
also be found in stay cables of short-span bridges, such as Traunsteg in Wels (Austria), or in
the roof of Chien-Tan railroad Station in Taipei; both of them are related to the control of
wind-induced vibrations. Particularly as regards its application to railway bridges, Choo et al.
[4] propose the retrofit of long-span composite bridges (from 40 to 60 m) with VEDs.
Viscoelastic dampers are normally made of viscoelastic material layers bonded with steel
plates (Fig. 1.), and dissipate energy through shear deformation. The behavior of viscoelastic
dampers is not purely viscous but exhibits also instantaneous elastic response; and is usually
described by two main parameters: the Shear Storage Modulus, Ge and the Loss Factor, 7;
both depend strongly on strain ratio, vibration frequency and temperature [9, 3], and many

authors have investigated different models to simulate the VE behavior. A classical approach



uses a mechanical model based on combinations of springs and dashpots elements, such as
Maxwell model, the Kelvin-Voigt model, and complex combinations of them (see [1]).
However the agreement with the observed behavior is usually poor, unless the model
comprises an elevated number of parameters which renders the method rather cumbersome. A
review of the literature indicates a predominant use of the fractional derivative model for
viscoelastic dampers, since it is capable of characterizing broad-band viscoelastic behaviour
with a small number of model constants [2]. For instance, Koh and Kelly [10] modelled
elastomeric bearings using a fractional-order Kelvin model and observed the superiority of its
performance to that of the standard Kelvin model. Also, Tsai and Lee [23] developed a model
based on fractional derivatives in good agreement with experimental tests, and an advance
finite element formulation for the viscoelastic damper to be implemented in a computer
program.

In the present study we evaluate the retrofit of high speed railway bridges by using the model
proposed by Tsai and Lee [23], which is capable of describing the material behavior at
different temperature and deformation levels.

The approach adopted herein is based on three main facts: (i) In a large number of cases, the
excessive vibrations in simply supported bridges are caused by resonances of the first bending
mode; (ii) if the damping present in the structure were sufficiently high the amplitude of the
first mode resonances would not exceed allowable limits. The required level of damping can
be computed using simple dynamic analysis tools; (iii) when the retrofitting system is
connected to the bridge, the dynamic behavior at resonance is similar to that of a one-degree-
of-freedom (1-DOF) system subjected to harmonic load. Or in other words, the first bending
mode is affected by the damping system approximately as if it were introducing an external

increase of the bridge damping ratio.
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Therefore, a procedure can be devised in order to dimension the damping system in a first
approach. Subsequently, an analysis is carried out with a view to discovering whether the
required level of external damping has been reached. If this were so, the structure would
satisfy the serviceability limits related to the vertical vibrations (accelerations) of the deck.
Otherwise, the damping system is redimensioned following an iterative process until the

maximum accelerations satisfy the serviceability limits.

2. RETROFIT CONFIGURATION

The configuration of the retrofitting system presented here is similar to the one presented in a
previous work of Museros and Martinez-Rodrigo [19]. The difference comes from the use of
VEDs instead of FVDs: in this work a set of VEDs link the bridge with the auxiliary beam,
and the energy is dissipated through shear deformation. Unlike the FVDs, the VEDs do not
only actuate as energy dissipaters, but they also modify the overall stiffness of the system. Fig.
2 shows a possible configuration of the retrofitting system.

The dissipative system consists of two main elements. The first element is an auxiliary steel
or pre-stressed concrete beam placed under the slab, among the original girders of the bridge
deck. The second is a set of VEDs that link the vertical motion of certain sections of both
systems. The auxiliary beam is simply supported at the abutments and does not contact the
slab at any intermediate section. Although Fig. 2 presents a hollow cross-section for the
auxiliary beam, any other kind of section could be used.

The influence of the local deformation of the slab between two adjacent girders, a fact that
could compromise the technical feasibility of this retrofitting system, was also studied by
Martinez et. al in [15] using FVDs, concluding that the proposed solution enables the

transmission of forces with no relevant loses of displacement.



3. PLANAR MODEL OF THE RETROFITTING SYSTEM

The behavior of the bridge with the retrofitting system is modelled using a planar system: a
simply supported Bernoulli—Euler (B—E) main beam, which represents the bridge deck, is
connected to an auxiliary, simply supported B—E beam. The main and auxiliary beams rest
directly on the abutments without any intermediate elastic bearing. In typical applications the
auxiliary beam is placed underneath the main one, and a series of discrete VEDs link the
vertical motion of certain sections of the beams. The resulting system is symmetric with
respect to the mid-span section of the bridge.

As regards railway bridges, the results of the planar model are only applicable to single-track
non-skewed bridges, since the torsion oscillations of beams subjected to eccentric moving
loads are not taken into account. Nevertheless, single-track bridges, particularly medium to
short span ones, are usually the most unfavorable cases found in practice due to their low
linear mass, and in such structures it is highly likely that resonance will be related to
oscillations of the first bending mode. Fig. 3 shows a scheme of the planar model used in this
investigation.

In Fig. 3, Px and dx are the modulus and the distance from the kth load to the beginning of the
beam at t = 0. The loads acting on the structure are assumed to be constant-valued.

The model adopted here to represent the behavior of VEDs is based on the work of Tsai and
Lee [23], where the authors present an advanced finite element formulation for VEDs based
on fractional derivatives which is in good agreement with experimental results. As a
remarkable feature, this model is able to reproduce the decay of the material properties
observed during the first cycles of oscillation, and also due to ambient temperature variations.
In the mentioned reference, Tsai and Lee use this formulation to study the improvement of

seismic resistance of buildings with VEDs. In the present work, we have applied the same
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approach to the retrofitting of high-speed railway bridges; a brief summary of the method
follows.

From the fractional shear stress-strain relationship of a VED material [2],

o(t) = Gev(t) + G D [y (1)), 1)

where t(t) and y(t) are the shear stress and shear strain, Gg, Gc, are the two constitutive model

parameters, and the term D%[y(t)] is the fractional derivative, defined as follows:

o 1 dpe v
P Ol= r oy ae " @

where I'(+) is the gamma function and 0<a<1. The constitutive model parameters are
G, =G, =G=A {1+ e L o) } 3)

Ao, a, B, n y 0 are coefficients of the viscoelastic material to be determined from the
experimental data, and T and To stand for the ambient temperature and the reference
temperature.

One can discretise equation (1) at time step NAt assuming linear variation of the shear strain

v(t) between two consecutive time steps, (n-1)At and nAt. After doing so, it is rewritten as

[ Gy« G(At) ™
r(NAt){G +—r(2_a)}y(NAt)+r(2_a) H (NAL). (4)

The term H(NAt), called the previous time effect of the strain, is

H(NAY) =[ (N =) + (=N +1- )N~ ]y(0) +

N-1 N . . ®)
+> [-2(N =n)=* + (N =n+D)"* + (N =n—=1)"* [y(nAt),

n=1

where y(-) is the shear strain of the VED. The term H(NAt) depends on the whole time history

of the system and therefore has a significant computational cost. However, when dynamical



oscillating responses are considered, it is possible to truncate the displacement history
considering only the most recent one [8]. Finally, according to Tsai and Lee [23], the damper

force at time step t=NAt along the y direction is

F, (NAt) = K D(NAt) + F, (NAt), (6)
where Kp is
Ke =§e[1+ (A~ ] (72)
h r2-aow)

and S and h are the shear area and thickness of the VED respectively. The previous time effect

of the equivalent VED force, Fv(NAt), and the VED elongation, D(NAt), are given by

_G(at)™
= H(NAD)S, (7b)
D=y, (x5) — Yo (Xlgi ): (7¢)

Subscripts B and b indicate the vertical displacement of the VED end in contact with the main
and auxiliary beam, respectively, and xpi is the location of the ith damper along the X axis of

the main beam. The shear strain y(NAt) is computed as

Y(NAY) =

D(NAt)
== 8)

4. GOVERNING EQUATIONS OF MOTION OF THE RETROFITTING SYSTEM

SUBJECTED TO MOVING LOADS

Several authors, such as Fryba [6, 7], Yang et al. [25] or Museros and Alarcén [18] have
presented the partial differential equation governing the flexural behaviour of a simply
supported beam subjected to a train of concentrated loads. However, if we introduce an

auxiliary beam with several VEDs connecting both beams, the governing equations of motion
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need to be modified. The motion is obtained as the superposition of Ng and N, modes for the
main and auxiliary beams, respectively. The presence of VEDs linking the oscillations in
some sections of the beams causes the modal equations of this two structural elements to be
coupled; for this reason, the time-histories of the modal contributions taken into account are a
function of the order of the modal system of equations (i.e. they are a function of Ng and Np).
When a particular bridge is analyzed, a sensitivity analysis is carried out to determine whether
the response has converged for the values of Ng and Np used in the calculations.

The system of equations of the retrofitting system, written in matrix form and in modal

coordinates is
ME(t) + CE&(t) + K&(t) + R'K, ()RE(t) + RTF, (t) = Q(1). (9)

The column vector of modal displacements, which are the unknowns, is

gn=(g g 8 o). (10a)

This system of equations will be numerically integrated with an implicit predictor-corrector
method. The total number of equations, or dimension of the modal space, is equal to Ng+Nb.
In general superscripts B and b indicate magnitudes associated to the main and auxiliary beam
respectively. M, C and K are the mass, damping and stiffness square matrices of the system in

modal coordinates,

M, 0 C, O Ky O
M:( ® j ,cz( ® j ,K:( ® j . (10b)
0 Mb Ng+Np 0 Cb Ng+Np 0 Kb Ng+Np
Where
MB:[MB,iijszTLB, i=1,2,...N,, Mb=[|\/|b,“]=mbzl‘b, i=1,2,...N,, (10¢)
Cy =[Cyy |=CP0fmgly, i=12..Ny, C,=[C,;|=ComL,, i=12_.N,, (10d)



Ko =[Keu |=(08) Mole, i=12...Ng, K, =[K,;]=(0F) mL, i=12...N,, (10¢)

In the previous equations, m and L are, respectively, the linear mass and length of the beams;
and wi, i stand for the modal frequency and damping.

R is the transformation matrix which transforms the modal coordinates &(t) into elongations

of the dampers D(t), D(t) = RE(t)

B B b b ]
. T . Nqym . TX T
sinZ osin—e™ _gip ™4 sin 21 3
D B LB Lb Lb :
1 B B b b :
. TX . NL7mx . TX . N, mx
D2 Sm_2 S”']B—2 _5|n_2 _Sm# }’;EB
e L, Ly L, L e (10f)
M . . . . 1
DNd xe N, mx3 Xl N, P :
sin—< ... sin——  _gjn —sin——" || &,
L LB LB Lb Lb n

The elongations of each of the Ng dampers installed in the retrofitting system are D,

D2, ... Dy, , and xu, X, ... Xy, are the locations of each of the VEDs, measured along the X

direction of the main or auxiliary beams.
In equation (9), Kp and Fv contain the VED terms of the fractional model, defined in

equations (7):

K, = . R=(R - R¥). (109)
0 Ko

Finally, Q(t) is the vector of moving modal forces, defined as

Np _ _ T
Q(’t):Z:F’k(H(t—(\j/—k)—H(t—dk\;r I')){sin n(vi % . sinw 0 - Oj (10h)
k=1 B B

10
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where Np is the total number of axle loads, Pk is the value of the kth load and H(—1) is the
Heaviside unit function acting at time to. V stands for the constant train speed and dx is the
initial distance from the kth load to the beginning of the beam.

As it can be seen, equation (9) is a non-linear coupled system of equations that is solved by

mode superposition and numerically integrated using a predictor-corrector method.

5. SENSITIVITY ANALYSIS

5.1. SIMPLIFIED EQUIVALENT SYSTEM WITH TWO DEGREES OF FREEDOM
SUBJECTED TO HARMONIC EXCITATION

In order to identify the main governing parameters of the damping system and how they affect
its dynamic behaviour, the planar model shown in Fig. 3 will be first analyzed under the
action of a harmonically varying force, which is able to capture the essential features of the
system behavior at resonance. The following assumptions will be considered in the planar
model for this study: (i) the main and auxiliary beams are vertically aligned and their lengths
are equal; (ii) in single-track bridges it is more likely that resonance is related to oscillations
of the first bending mode [18]; therefore, only the first flexural mode of the main beam will
be taken into account in the computation of the dynamic response. Also, the oscillations of
this fundamental mode tend to create a symmetric distribution of damper forces with respect
to the mid-span section, which excite the movement of the auxiliary beam. Consequently, the
auxiliary beam will be analyzed in a first approach considering the sole contribution of its first
bending mode; (iii) as for the VED, a simpler numerical model will be used, the so-called
Kelvin model, which consists of a spring-dashpot system connected in parallel with constant-
valued model parameters. Therefore, the evolutionary behavior of VE material subjected to

variations of temperature, strain and frequency is not considered in this first approach.
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Assuming the previous hypotheses, the dynamic response of the retrofitted bridge at
resonance can be approximately described by means of the two degrees of freedom (2-DOF)

system shown in Fig. 4, expressed in modal space coordinates.

Since only the first mode of both beams is considered, any number of VEDs located at
different sections is equivalent to a single VED located at mid-span, with Cp and Kp as the
equivalent constants of the dashpot and spring element. The expression of the equivalent
parameters Cp and Kp can be written as

Np _
Cp = GenAep ZsinZ(ml(_Du j’

Wglep -t

(11)
Ko = 0%
n
and the shear-strain relationship is, therefore, t(t) = Ggy(t) + G.y(t). (12)

In equations (11), all the VED are considered to be identical (same material and properties)
and symmetrically distributed between both beams with respect to the mid-span section. Ge
and 7 are, respectively, the Shear Storage Modulus and the Loss Factor of the VE material,
evaluated at a constant temperature and frequency; Avep and hvep are, respectively the shear
area and thickness of the VED layers of material; wg is the fundamental circular frequency of
the main beam; Np is the total number of VEDs, and x; and L are, respectively, the location of
the ith damper measured along X axis and the length of each beam.

The definition of the following dimensionless ratios

Frequency ratio: 0 =0, log (13)
Excitation frequency ratio: Q = of /w8 (14)
Mass ratio: = mp/ms (15)
Supplemental damping ratio: {p = Cp/(ws msL) (16)
Supplemental stiffness ratio: «p = 2Kp/(ws’msL) (17)

leads to a dimensionless expression of the equations of motion of the 2-DOF system subjected

to harmonic excitation

12
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. . 2P
¢ +C g 1+x —K 3 0
{1 0} ;.B +20,| B P D ;B +02 b 9 b B || T (@Y . (18)

In the previous equations, subscripts B and b indicate magnitudes associated to the main and
auxiliary beam respectively; &g and &, are the amplitudes of the first flexural mode in each
beam; mg and my are the linear masses of the beams; and (g and Cp, are their modal viscous

damping ratios.

If resonance is induced by a train of a large number of loads (as the high-speed trains), the
maximum response will correspond to the steady-state vibration. The forced solution of
equation (18) leads to the following expression of the forced modal amplification of the main

beam, divided by the static deflection caused by the concentrated load Po,

. J[u(¢2—QZ)+KD]2+4QZ<cb<pu+aD)2

E? + 4Q°F? ’ (19)

being
E= H((Pz _Qz)(l_Qz +KD)+(1_QZ)KD _4Q2[C.:b(P“'(C.:B +Cp)+CpCs1, (20a)
F =Cou—Q° +xp) +p(0° Q) (L +8p ) + 8o (1— Q%) + L. (20b)

The main beam modal acceleration is also of great interest, because of its relation with ballast

stability. In the steady-state the nondimensional amplitude of the acceleration ag is:

a, = A, (21)
Equation 19 shows that the response of the main beam depends on the following six
parameters: Q, ¢, 1, Cp, g and Cp, since kp can be calculated with this alternative expression:

2
N(wg)

Co- (22)

Kp =

13



5.2. SENSITIVITY PLOTS
In order to visualize how the governing parameters of this system affect the main beam

dynamic amplification and modal acceleration, Ag and as, the response of this beam has been
computed as a function of Q for different values of the nondimensional parameters. Some of
these results are shown in Fig. 5. Except for Fig 5f, in all plots the structural damping ratios of
the main and auxiliary beam are 2% and 0.5% respectively.

Figs. 5a and 5b show the acceleration ag versus Q; the family of curves have been obtained by
increasing solely {p, which represents an increase in the area (or number) of VED, and with a
VE material loss factor,n, of 1.2. The following behaviour is observed: (i) as the damper
constant Cp increases and so does {p (and also kp), the maximum response decreases
monotonically until a minimum value is reached, and increases again if the damper constant
keeps increasing; (ii) the value of Q for which resonance occurs shifts sideways depending
on the frequency ratio ¢: if the stiffness of the auxiliary beam is higher than the one of the
main beam, ¢>1, the maximum peak response shifts to the right, and if <1, it shifts to the
left. Consequently, for each value of 7 and u there is an optimum value of {p which leads to
the minimum value of the maximum amplification. Although not depicted here, a similar
behavior is observed for the dynamic amplification Ag.

Figs. 5¢c and 5d gather the influence of the mass ratio, u, in the acceleration an, as the ratio of
frequencies, ¢, damping ratio Cp, and loss factor n remain constant (¢=1.9-0.5, {p=0.12, n =
1.2). The main beam acceleration decreases monotonically as p increases. The minimum ag
would correspond, therefore, with an infinity value of u. In that case the main beam behaves
as if it were attached through the external damper to a fixed reference.

In Fig 5e ag is plotted versus Q for fixed values of u, {p and ), showing the influence of the

frequency ratio ¢ in the response. The maximum ag is attained when ¢=1, since both masses

14
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tend to vibrate in phase; whereas the reductions obtained with ¢ >1 can be higher than the
reductions obtained with ¢ <1.

Finally, Fig 5f show the influence of the VE material loss factor, n, in the reduction of the
response. As n increases, the maximum peak response decreases and shifts to the left, due to
the reduction of kp according to equation 22.

The following conclusions can be extracted from this analysis: (i) for each value of n and p
there is an optimum Cp which leads to the minimum value of the maximum acceleration, as it
was also pointed out in [19]; (ii) the amplification Ags has a similar behavior, but the value of
Cp which is optimal for the acceleration is slightly different from the optimal one for the
amplification; (iii) the two resonant peaks expected for the system are not perceptible, and the
response is similar to the one expected for a one degree of freedom system (1-DOF). This has
been confirmed in the ranges of interest of these parameters (1.5 < ¢ <2.5,0.05< n<0.3,0<
Cs <0.05, 0 < <0.05); (iv) previous point (iii) could be used to estimate the total amount
of damping that the retrofitting system can introduce in the bridge: since {p would only be a
measurement of the damping ratio introduced in the main beam in case it were linked to a
fixed reference (floor) by means of the VEDSs, an estimation of the effective damping ratio can
be obtained by calculating the properties of an equivalent 1-DOF system which has the same
amplification at resonance as the 2-DOF at the same excitation frequency. To this end, one

can use the following expressions:

Ci-por =\/A§ — (Ag)z -1 y O pop =0 4 % , (23)
2Ay | (AF)? -1

being AS and Qg the amplification of the 2-DOF system and the excitation frequency ratio at

resonance, respectively.
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6. DIMENSIONING PROCEDURE OF THE DAMPING SYSTEM: RETROFIT OF

VINIVAL BRIDGE

As an example of the application of VEDs to the retrofit of railway bridges, the dynamic
behavior of a simply supported, single-track bridge due to the passing of High-Speed trains is
analyzed with a view to assessing the effectiveness of the retrofitting system.

Vinival is a 9.70 m single bay simply supported railway bridge belonging to the Spanish
railway network. The structure is composed by four independent decks, the outermost ones

support the sidewalks and the two inner ones carry the ballasted tracks, as shown in Fig 6.

The only difference between the inner decks is the track eccentricity, being the less

eccentric one (0.25 cm) the deck selected for the subsequent dynamic analyses,

since the eccentricity is not considered in a planar model.

The main mechanical properties of the bridge are gathered in Table 1. This bridge has been
selected because it is expected that the vertical acceleration will exceed the upper limit given

by Eurocode [5], for ballasted tracks (3.5m/s?) due to its short length and low mass.

At first, the dynamic response of Vinival bridge is computed considering B-E behaviour,
under the circulation of the HSLM-A trains from Eurocode 1 and seven European High-Speed
trains: THALYS, TGV, ETR-Y, ICE2, EUROSTAR, VIRGIN and the Spanish TAV, in the
range of velocities [144, 306] km/h discretized in 3.6 km/h steps. The response in terms of
accelerations for each train and circulating velocity is obtained in the time domain by modal
superposition, accounting for modes under 30 Hz, as per European Standards [5]. Fig. 7
shows the acceleration envelopes in the main beam for every circulating velocity and load

model.
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The maximum vertical acceleration reaches 6.14 m/s? under the circulation of the composition
HSLM-A2 at 220 km/h, corresponding to a fourth resonance of its first bending mode.

The optimization procedure of the damping system able to reduce the maximum vertical deck
acceleration below 3.5m/s?, is an iterative process consisting on finding the smallest
dimension of an auxiliary beam, which combined with the optimum VED size, keeps the
acceleration below 3.5 m/s? in the main beam [17]. The following subsections summarize the

steps performed.

6.1. ESTIMATION OF THE DAMPING REQUIREMENTS IN THE BRIDGE

As Martinez-Rodrigo and Museros propose [19], the maximum response of the bridge under
the circulation of the bare train composition (HSLM-AZ2) is recalculated by increasing the
structural damping ratio of the bridge progressively, until the acceleration falls below 3.5m/s?.

The results are shown in Fig. 8.

It is well known that viscoelastic material properties are temperature dependent, and the
energy-absorbing capacities of VEDs decrease as a result of rising ambient temperature.
Consequently, the optimum combination of retrofitting elements at a certain ambient
condition is not the optimal selection for a different one. As Fig. 5a indicates, if the damper
constants are somewhat higher than the optimum values, only a slight decrease in the system
performance is observed. This kind of behaviour gives engineers enough margin for finding a
suitable damper-beam combination valid for a variable-temperature environment. Considering
a range of temperatures of performance between 0 and 40°C, the way of proceeding in order
to find such a combination could be the selection of the optimum damping system able to
achieve a reduction in the acceleration of 30% below the Serviceability Limit State of 3.5

m/s® at the average temperature of the interval (20°C). As Fig. 8 shows, the structural

17



damping requirement to achieve this reduction is {g=5.5%. Since in the retrofitted bridge the

structural damping is estimated by means of an equivalent 1-DOF (equation 23), £1-00r=5.5%.

6.2. SELECTION OF THE MINIMUM SIZE OF THE AUXILIARY BEAM AND

OPTIMUM DAMPER

At this stage a VE material is chosen first; its properties should be optimal at 20°C and at a
frequency equal to the fundamental frequency of the bridge (12.8 Hz). For this particular case,
the VE material presented in the work of Tsai et. al. [23] has been selected, whose fractional
model parameters are gathered in Fig. 9. This figure also shows in grey trace the hysteretic
curve of this VED at 20°C while a sinusoidal shear strain of realistic amplitude 0.05 at a
frequency equal to the natural frequency of the bridge, 12.8 Hz, is induced; this evolutionary
behavior has been predicted with the fractional derivative model. In black trace, the
approximate equivalent hysteretic behaviour of a Kelvin model is also included, whose main
model parameters (Gg, n) at the same conditions of temperature, shear strain and frequency

are gathered as well.

Two pre-stressed, identical concrete I members are selected to form the auxiliary beam
system, with E, = 36 MPa and (p = 1%. They are to be placed underneath the deck,
symmetrically at each side of the track axis, so that if resonance of a bending mode occurs
(most likely the fundamental one as shown in [18]), they act in phase as a single beam with

double mass.

The sectional properties of the selected beams only depend on the beam height, h. Therefore,
the dimensionless ratios ¢ and p defined in equations (13) and (15) are both dependent on h

and could be rewritten as
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|U

3

Consequently, the six governing parameters of the 2-DOF system defined in section 5.1, Q, o,
u, Cp, &g and &p, change to Q, h, Cp, Cg and &p. As the bridge properties are known, and also &p
and the properties of the VED Kelvin model at 20°C (Fig. 9), the acceleration of the main
beam in the 2-DOF system of Fig. 4 can be computed for different retrofitting systems, each
one defined by a pair (h, {p), with h varying between 0.7 and 1.3 m, and {p between 0 and 0.4.
The results of this sensitivity analysis are gathered in Fig. 10.

Fig 10b shows the maximum values of ag computed with the 2-DOF, with h ranging from 0.7
to 1.3 m and Cp from 0 to 0.4. The dotted black trace indicates the optimum pairs h-Cp, which
produce the minimum maximum acceleration at resonance. As it can be seen, once the size h
of the auxiliary beam is fixed, the acceleration of the system decreases while {p is increased.
But when the dotted line is reached (the optimum Cp for the selected h), the increase of Cp
produces a progressive increase of the response of the system. Also the damping ratio of the
equivalent 1-DOF system defined by equations (23) is computed at each point of the dotted
black trace. As stated before, this is referred to as effective damping ratio. Therefore, the
effective damping ratio that the optimum combination h-Cp introduces in the main beam is
obtained and plotted in Figure 10a. Using Figure 10a a value h=1.07 m is obtained for the
auxiliary beam to achieve an effective damping ratio equal to 5.5% at 20°C. Finally, with the
help of Fig. 10b, the optimum value of {p associated to the selected beam height, h = 1.07 m,
is selected ({p = 8.8%). Once the size of the auxiliary beam and the supplemental damping
ratio is chosen, the number of VEDs, dimensions, and locations can be selected so that the

value of {p = 8.8% is reached.
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6.3. OPTIMIZATION OF THE DAMPING SYSTEM IN THE TEMPERATURE

RANGE

The previous results give an approximate estimation of the dimensions required for the
retrofitting system at 20°C. Subsequently, the dynamic behavior of the retrofitted bridge needs
to be computed again by using the fractional VED model, under the passage of the same train
compositions, and at different temperatures within the range of interest. Due to the coupling
of the dynamic equations through the damping and stiffness matrices (equation 9), the
accuracy of the modal responses increases with the order of the system of equations. A
sensitivity analysis of the number of modes required is performed first ensuring the
convergence of the modal responses. Fig. 11 presents the main characteristics selected for the
damping system (obtained from the dimensioning procedure explained in the previous
section). Details of how the beams and dampers are placed and connected to the deck would
depend on the precise typology of the bridge.

In the retrofitted case four bending modes of the main beam are included in the problem
formulation in modal space, along with the first two bending modes of the auxiliary concrete
beams, which are merged into a single auxiliary beam in the planar model of Fig. 3.
Subsequently, the response of the main beam is computed from the sole contribution of its
first bending mode because the higher ones have frequencies above 30 Hz. In Fig. 12 the
envelope of maximum acceleration for all velocities under the circulation of the most
unfavourable train composition HSLM-A2 is presented. Different temperatures within the
range have been considered. As it can be seen, at 0°C the maximum acceleration reaches 4.06
m/s?; in this case the performance of the system is less efficient, since the damper dimensions
are somewhat higher than the optimum values. Despite the aforementioned drawback, a

reduction of 33.9 % in maximum acceleration is attained. At 20°C the maximum acceleration
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in the main beam attains 2.84 m/s?, and a value of 3.6 m/s? is reached at 40°C. The controlling
effect of the retrofitting system is apparent, as well as the influence of the ambient
temperature in its energy absorbing capacities. In a view to achieve a better performance in a
wide range of temperatures, the damping system can be redimensioned following an iterative
process where the height of the auxiliary beam h is increased until the maximum accelerations
at 0°C and 40°C are kept below the desired limits.

Fig. 13a shows the maximum envelopes of accelerations attained in the retrofitted bridge
under the passage of HSLM-A2 train model, with an auxiliary beam size h=1.2 m (close to
the original one, 1.07 m), and with the VEDs dimensions and locations outlined in Fig. 11. In
this case, the acceleration level at 40°C is kept below 3.5m/s?, and at 0°C the maximum
acceleration attains 3.85m/s?, which corresponds to a reduction of 37.2 %. Figs. 13b, (c) and
(d) show the acceleration envelopes of the retrofitted bridge at different temperatures and
shear areas of VED. As it can be observed, the optimal dimension of VED area at 0°C (0.02
m?2) that leads to the minimum envelope shown in red line, is not optimal at 20°C nor at 40°C.
A similar behaviour of the damping system can be observed at 40°C (Fig. 13c), where the
optimum VED shear area and the selected value for the retrofitting system are not coincident.
The best performance of the damping system is attained at 20°C, since the selected VEDs area
(0.12 m?) is close to the optimum value (0.14 m?).

In what concerns the economic feasibility, the cost of the proposed retrofitting solution was
compared to the cost of demolishing and installing a new deck (classical solution) in this

particular example, concluding that the proposed damping system is economically feasible.
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7. SUMMARY AND CONCLUSIONS
In the present study the authors present a retrofitting system based on viscoelastic dampers

(VEDs) which is capable of reducing the inadmissible accelerations of existing simply
supported railway bridges under the circulation of modern high-speed traffic.

The VEDs are modelled using an advanced non-linear formulation based on fractional
derivatives, which was previously proposed and used by Tsai and Lee [23] to study the
energy-absorbing capacities in structures during earthquakes. A specific predictor-corrector
algorithm has been developed in order to integrate numerically the equations of motion of the
bridge deck, modelled as a simply-supported Euler-Bernoulli beam, along with the

corresponding retrofitting system.

As an example of the application of VEDs to the retrofit of railway bridges, the dynamic
behavior of a simply supported, single-track bridge due to the passing of high-speed trains is
numerically evaluated with a view to assessing the effectiveness of the retrofitting system.
Firstly, a sensitivity analysis of this system has led to a dimensioning procedure of the
damping system, able to estimate the main dimensions of the auxiliary beams and VEDs in a
first approach. Subsequently, an analysis is carried out with a view to discovering whether the
retrofitting system keeps the maximum accelerations below the Serviceability limits for every
temperature in the range of interest. If this is not accomplished, the damping system is
redimensioned following an iterative process until the maximum accelerations satisfy the
Serviceability Limits. The numerical results show that the maximum vertical acceleration can
be drastically decreased by using a proper combination of auxiliary beams and VEDs in an
outdoor environment. In this example, only one VED per beam is proposed, but the dampers

could also be distributed along the length of the beams.
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Finally, it should be pointed out that the proposed retrofit solution can be feasible from an

economical point of view.
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Length, L (m) 9.70
Mass per unit length, mg (kg/m) | 9754

Inertia, 1zs (M?) 0.159
Young modulus, Eg (Pa) 3.6 10
Natural frequency, fos (Hz) 12.8

Modal damping ratio, &g (%) 2
Table 1. Mechanical properties of Vinival bridge
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