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Prefactorized subgroups in pairwise mutually
permutable products.

A. Ballester-Bolinches, J.C. Beidleman, H. Heineken and M.C. Pedraza-Aguilera

Abstract

We continue here our study of pairwise mutually and pairwise to-
tally permutable products. We are looking for subgroups of the prod-
uct in which the given factorization induces a factorization of the sub-
group. In the case of soluble groups it is shown that a prefactorized
Carter subgroup and a prefactorized system normalizer exists. A less
stringent property have F-residual, F-projector and F-normalizer for
any saturated formation F including the supersoluble groups.
Mathematics Subject Classification (2000): 20D10, 20D20
Keywords: finite group, permutability, factorization, saturated forma-
tion

1 Introduction and preliminaries

All groups considered throughout this paper are finite.

A group G is said to be the product of its subgroups A and B if G =
AB. Sometimes such a group is also called factorized by A and B or simply
factorized. A subgroup S of G = AB is called prefactorized if S = (S ∩
A)(S ∩ B). We say that S is factorized if whenever s ∈ S and s = ab
with a ∈ A and b ∈ B, then a ∈ S (and b ∈ S). According to a result of
Wielandt ([1, Lemma 1.1.1]), S is factorized if and only if S is prefactorized
and A∩B ≤ S. In particular, every factorized subgroup of G is prefactorized
and every subgroup of G containing A or B is factorized.

If G = G1G2 . . . Gk is the pairwise permutable product of the subgroups
G1, G2, . . . , Gk, we say that a subgroup S of G is prefactorized with respect
to the above factorization if S = (S ∩G1)(S ∩G2) . . . (S ∩Gk).
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A groupG = G1G2 . . . Gk is said to be the product of its pairwise mutually
permutable subgroups G1, G2, . . . , Gk, if Gi and Gj are mutually permutable
subgroups of G, that is, Gi permutes with every subgroup of Gj, and Gj

permutes with every subgroup of Gi for all i, j ∈ {1, 2, . . . , k}. G is said to
be the pairwise totally permutable product of G1, G2, . . . , Gk if Gi and Gj are
totally permutable subgroups of G, that is, every subgroup of Gi permutes
with every subgroup of Gj for all i 6= j. These kind of products have been
studied extensively with a lot of properties and results available (see [2, 3, 4,
5, 6, 7, 8, 9, 10] and the papers cited therein).

We continue the investigation about certain subgroups of pairwise mutu-
ally and pairwise totally permutable products which began by the authors
in [5] and [6]. The new results presented here are often related to saturated
formations and to subgroups of the given product which are factorized or
prefactorized.

In [5, Lemma 1(ii)], we proved that if G = G1G2 . . . Gk is the pairwise mu-
tually permutable product of G1, G2, . . . , Gk and S is a subgroup of G, then
(S∩G1)(S∩G2) . . . (S∩Gk) is a subgroup of G which is the pairwise mutually
permutable product of its factors. Moreover if S is a normal subgroup of G,
then the above mentioned product is also a normal subgroup of G. We are
concerned here with the case when this product coincides with the subgroup
S itself, that is, when S is prefactorized with respect to G = G1G2 . . . Gk.

The following example shows where we should not try:

Example 1 Let G = A × B where A = 〈u, v〉 is a nonabelian group of
order p3 and B = 〈x〉 is a group of order p with p an odd prime. Then
A and 〈u, vx〉 are mutually permutable subgroups of G and G = A〈u, vx〉.
We have Z(G) = 〈[u, v], x〉 and Z(G)∩A = Z(G)∩〈u, vx〉 = 〈[u, v]〉 6= Z(G).

We begin with a result which allows us to extend the concept of factorized
subgroup in the case of pairwise mutually permutable products.

Lemma 1. Let the group G = G1G2 . . . Gk be the pairwise mutually per-
mutable product of the subgroups G1, G2, . . . , Gk. For a subgroup S of G the
following conditions are equivalent.

(i) If ai1ai2 . . . aik ∈ S, with aij ∈ Gij , where {i1, i2, . . . , ik} = {1, 2, . . . , k},
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then aij belongs to S for all ij ∈ {1, 2, . . . , k}.

(ii) S = (S ∩ G1)(S ∩ G2) . . . (S ∩ Gk) and Gi ∩
∏

j 6=iGj ≤ S for all i =
1, 2, . . . , k.

Proof (i) implies (ii) If x = a1a2 . . . ak is an element of S, with ai ∈ Gi, then
by the hypothesis ai belongs to (S ∩ Gi) for all i = 1, 2, . . . , k. This shows
that S = (S ∩ G1)(S ∩ G2) . . . (S ∩ Gk). Moreover, if x ∈ Gi ∩

∏
j 6=iGj for

some i = 1, 2, . . . , k, then x−1 ∈
∏

j 6=iGj and xx−1 = 1 ∈ S. Thus by (i), x
lies in S.
(ii) implies (i) Let x = ai1ai2 . . . aik be an element of S with aij ∈ Gij where
{i1, i2, . . . , ik} = {1, 2, . . . , k}. Since S = (S∩G1)(S∩G2) . . . (S∩Gk) and the
factors are pairwise permutable, we have also that x = bi1bi2 . . . bik with bij ∈
(S ∩Gij). Therefore b−1i1 ai1 = (bi2 . . . bik)(ai2 . . . aik)−1 ∈ Gi1 ∩Gi2 . . . Gik ≤ S
by (ii) and so ai1 ∈ S. Now we deduce that ai2 . . . aik belongs to S. Argu-
ing as before, ai2 . . . aik = ci1ci2 . . . cik = di2di1 . . . dik with cij ∈ (S ∩Gij) and
dij ∈ (S∩Gij). Therefore d−1i2 ai2 belongs to Gi2∩

∏
j 6=i2Gij which is contained

in S by (ii). Consequently we obtain that ai2 ∈ S and similarly ai3 , . . . , aik
belong to S.

A subgroup S of a pairwise mutually permutable productG = G1G2 . . . Gk

is said to be factorized if it satisfies one of the equivalent conditions of Lemma
1. It is obvious that every subgroup of G = G1G2 . . . Gk which contains all
factors but one is factorized.

The following lemma studies the behaviour of factorized (prefactorized)
subgroups in pairwise mutually permutable products. It is an extension of
some known properties of these type of subgroups in the two factors case (see
[1, Lemma 1.1.2]).

Lemma 2. Let the group G = G1G2 . . . Gk be the pairwise mutually per-
mutable product of the subgroups G1, G2, . . . , Gk. Then:

(i) If S is prefactorized in G, and N is a normal subgroup of G, then SN/N
is a prefactorized subgroup of G/N = (G1N/N)(G2N/N) . . . (GkN/N).

(ii) If N is a prefactorized normal subgroup of G = G1G2 . . . Gk and N
is contained in S, then S/N is a prefactorized subgroup of G/N =
(G1N/N)(G2N/N) . . . (GkN/N) if and only if S is a prefactorized sub-
group of G = G1G2 . . . Gk.
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(iii) If N is a normal subgroup of G, a subgroup S/N of the factorized
quotient group G/N = (G1N/N)(G2N/N) . . . (GkN/N) is factorized if
and only if S is a factorized subgroup of G = G1G2 . . . Gk.

(iv) If U is a factorized (prefactorized) subgroup of G and V is a factorized
(prefactorized) subgroup of U , then V is a factorized (prefactorized)
subgroup of G.

(v) If U and V are factorized (prefactorized) subgroups of G, then also
〈U, V 〉 is factorized (prefactorized).

(vi) If U and V are factorized subgroups of G, then U ∩ V is a factorized
subgroup of G.

Proof

(i) Clearly, SN/N = (S ∩ G1)N/N · (S ∩ G2)N/N . . . · (S ∩ Gk)N/N ≤
(SN/N ∩ G1N/N)(SN/N ∩ G2N/N) . . . (SN/N ∩ GkN/N) which is
contained in SN/N . This shows that SN/N is prefactorized.

(ii) If S is prefactorized, it is clear by the preceding statement that S/N
is prefactorized. Conversely, suppose that S/N is prefactorized. Then
using the fact that N is prefactorized and N ≤ S we have S = (S ∩
G1N)(S ∩ G2N) . . . (S ∩ GkN) = (S ∩ G1)(S ∩ G2) . . . (S ∩ Gk)N =
(S ∩ G1)(S ∩ G2) . . . (S ∩ Gk)(N ∩ G1)(N ∩ G2) . . . (N ∩ Gk) = (S ∩
G1)(S ∩G2) . . . (S ∩Gk) ≤ S, which shows that S is prefactorized.

(iii) Let S be a factorized subgroup ofG containingN . If xN = ai1ai2 . . . aikN
is an element of S/N , with x ∈ S and aij ∈ Gij , then x = ai1ai2 . . . aiky,
where y belongs to N ≤ S. Hence ai1ai2 . . . aik = xy−1 belongs to S,
and so aij belongs to S. Therefore S/N is a factorized subgroup of
G/N .
Conversely, suppose that the subgroup S/N is factorized in G/N . Let
x = ai1ai2 . . . aik be an element of S, with aij ∈ Gij . Since xN =
ai1ai2 . . . aikN , it follows that aijN belongs to S/N . Hence aij belongs
to S, and so S is factorized.

(iv) Suppose that U = (U∩G1)(U∩G2) . . . (U∩Gk) and V is a prefactorized
subgroup of U . Then V = (V ∩ (U ∩G1))(V ∩ (U ∩G2)) . . . (V ∩ (U ∩
Gk)) = (V ∩G1)(V ∩G2) . . . (V ∩Gk), that is, V is a prefactorized sub-
group of G. Assume now that U is factorized in G and V is factorized
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in U . Then V is prefactorized in G. Moreover Gi ∩
∏

j 6=iGj ≤ U and
(U ∩Gi)∩

∏
j 6=i(U ∩Gj) ≤ V . Note that the fact that U is factorized in

G yields (U∩
∏

j 6=iGj) ≤
∏

j 6=i(U∩Gj). Consequently Gi∩
∏

j 6=iGj ≤ V
and V is a factorized subgroup of G.

(v) If U = (U ∩G1)(U ∩G2) . . . (U ∩Gk) and V = (V ∩G1)(V ∩G2) . . . (V ∩
Gk), then 〈U, V 〉 = 〈(U ∩ G1)(U ∩ G2) . . . (U ∩ Gk), (V ∩ G1)(V ∩
G2) . . . (V ∩Gk)〉 ≤ 〈(〈U, V 〉 ∩G1), (〈U, V 〉 ∩G2), . . . , (〈U, V 〉 ∩Gk)〉 =
(〈U, V 〉 ∩G1) · (〈U, V 〉 ∩G2) · . . . · (〈U, V 〉 ∩Gk) ≤ 〈U, V 〉. Thus 〈U, V 〉
is a prefactorized subgroup of G. Moreover in the case that U and
V are factorized subgroups of G, we have that Gi ∩

∏
j 6=iGj ≤ U and

Gi ∩
∏

j 6=iGj ≤ V for all i = 1, 2, . . . , k. Consequently Gi ∩
∏

j 6=iGj ≤
〈U, V 〉 for all i = 1, 2, . . . , k and 〈U, V 〉 is a factorized subgroup of G.

(vi) If ai1ai2 . . . aik ∈ U∩V , with aij ∈ Gij , where {i1, i2, . . . , ik} = {1, 2, . . . , k},
then using the fact that U and V are factorized, we have that aij be-
longs to U ∩ V for all ij ∈ {1, 2, . . . , k}. Therefore applying Lemma
1(i), U ∩ V is a factorized subgroup of G.

2 Normal prefactorized subgroups

We begin with some prominent conjugacy classes of subgroups for a positive
statement.

Proposition 1. (i) Let the group G = G1G2 . . . Gk be a product of pair-
wise mutually permutable subgroups. For each prime p dividing | G |
there exists a Sylow p-subgroup of G, P say, such that P is prefactor-
ized, that is, P = (P ∩ G1)(P ∩ G2) . . . (P ∩ Gk). Moreover P ∩ Gi is
a Sylow p-subgroup of Gi for all i = 1, 2, . . . , k.

(ii) Let the group G = G1G2 . . . Gk be a product of pairwise mutually per-
mutable soluble subgroups. For each set of primes π dividing the order
of G, there exists a Hall π-subgroup of G, H say, such that H is prefac-
torized, that is, H = (H ∩G1)(H ∩G2) . . . (H ∩Gk). Moreover H ∩Gi

is a Hall π-subgroup of Gi for all i = 1, 2, . . . , k.

Proof We prove (ii). Since all Gi are soluble, applying [5, Theorem 1] G
is soluble. We proceed by induction on k. The result is clear if k = 1.
Suppose that k > 1 and the result is true for all groups which are pairwise
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mutually permutable products of less than k factors. Consider the product
G1G2 . . . Gk−1. Then there exists a Hall π-subgroup T of G1G2 . . . Gk−1 such
that T = (T ∩ G1)(T ∩ G2) . . . (T ∩ Gk−1). Moreover T ∩ Gi is a Hall π-
subgroup of Gi for all i = 1, 2, . . . , k − 1. Since the product is pairwise
mutually permutable, it follows that TGk is a subgroup of G. Let H be a
Hall π-subgroup of TGk containing T . Then H = H ∩ TGk = T (H ∩ Gk).
Also T ∩ Gi ≤ H ∩ Gi for all i = 1, 2, . . . k − 1. But T ∩ Gi is a Hall π-
subgroup of Gi for all i = 1, 2, . . . k − 1. Therefore T ∩ Gi = H ∩ Gi for
all i = 1, 2, . . . k − 1 and H = (H ∩ G1)(H ∩ G2) . . . (H ∩ Gk). Note that
| TGk : H |=| Gk : H ∩Gk | is a π′-number. Consequently (H ∩Gk) is a Hall
π-subgroup of Gk. Now an argument on the orders shows that H is a Hall
π-subgroup of G.

Using the same arguments as above we obtain (i) for non-soluble groups.

The following example shows that in a mutually permutable product
(even if it is a totally permutable one) there is not necessarily a factorized
Sylow subgroup for each prime p dividing the order of G.

Example 2 Let X = 〈x, y | x3 = y2 = 1, xy = x−1〉 be a group isomorphic
to the symmetric group of degree 3 and Y = 〈a, b | a5 = b2 = [a, b] = 1〉 '
C5 × C2. Consider G = X × Y , A = 〈y〉 × 〈a〉 × 〈b〉 and B = 〈x〉 × 〈b〉.
Then G = AB is the totally permutable product of A and B. Moreover
A ∩B = 〈b〉 and 〈x〉 is Sylow 3 subgroup of G which is clearly prefactorized
but not factorized.

Remark Assume that a certain normal subgroup N of a pairwise mutu-
ally permutable product G = G1G2 . . . Gk satisfies that N/M is prefactor-
ized in G/M = (G1M/M)(G2M/M) . . . (GkM/M) for each minimal nor-
mal subgroup M of G contained in N . Then either N is prefactorized in
G = G1G2 . . . Gk or N is a minimal normal subgroup of G.

Assume that N is not prefactorized in G. Then N 6= 1. If N is not a
minimal normal subgroup of G, there exists a minimal normal subgroup M
of G with M ≤ N . By hypothesis, N/M is prefactorized in G/M , that is,
N/M = ((G1M/M)∩(N/M))((G2M/M)∩(N/M)) . . . ((GkM/M)∩(N/M))
and from here N = (N ∩ G1)(N ∩ G2) . . . (N ∩ Gk)M . On the other hand,
by [5, Lemma 1(ii)], (N ∩G1)(N ∩G2) . . . (N ∩Gk) is a normal subgroup of
G. If (N ∩G1)(N ∩G2) . . . (N ∩Gk) 6= 1, then it contains a minimal normal
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subgroup of G, R say, and this implies N = (N ∩G1)(N ∩G2) . . . (N ∩Gk),
that is, N is prefactorized, contrary to assumption. Therefore we may as-
sume that (N ∩ G1)(N ∩ G2) . . . (N ∩ Gk) = 1. Thus N = M and N is a
minimal normal subgroup of G.

We present now an example of a p-group in which the derived subgroup
is not prefactorized.

Example 3 Consider the group M = (〈a〉 × 〈b〉 × 〈x, y〉)/N with N =
〈a2b2x2〉, a and b elements of order 4 and 〈x, y〉 ' Q8, the quaternion
group of order 8. Denote by u∗ the class uN of M . We show that M =
〈a∗〉〈a∗x∗〉〈b∗〉〈b∗y∗〉 is a pairwise mutually permutable product: Since two of
the factors are normal subgroups, we have to check only one case, and we ob-
tain (a∗x∗)(b∗y∗) = a∗b∗x∗y∗ = a∗b∗y∗x∗(a∗b∗)2 = b∗y∗a∗x∗(b∗y∗)2(a∗x∗)2 =
(b∗y∗)−1(a∗x∗)−1 since (a∗x∗)2 = (b∗)2 and (b∗y∗)2 = (a∗)2. Note that all
squares belong to the center of M , so given relation leads to all the other fur-
ther relations to be checked, so if {e, f} ⊆ {1,−1} we find (a∗x∗)e(b∗y∗)f =
(b∗y∗)−f (a∗x∗)−e. Note the subgroup M ′ = M ′M4 is not prefactorized.

We will now exhibit some positive results.

Theorem 1. Let the group G = G1G2 . . . Gk be the product of the pairwise
mutually permutable subgroups G1, G2, . . . , Gk. Then

(i) The subgroup of G which is generated by all Π-elements of G (where Π
denotes a set of primes dividing the order of G) is prefactorized in G.

(ii) Gp = 〈xp | x ∈ G〉 is prefactorized in G for each prime p.

(iii) If M and N are prefactorized normal subgroups of G and N has expo-
nent p, p a prime, then also [M,N ] is prefactorized in G.

Proof

(i) Denote by N the subgroup generated by all Π-elements of G, Π a set
of primes dividing the order of G. Assume that N is not prefactor-
ized and choose for G a couterexample of minimal order. Then N/M
is prefactorized in G/M = (G1M/M)(G2M/M) . . . (GkM/M) for each
minimal normal subgroup M of G contained in N . By the above Re-
mark, N is a minimal normal subgroup of G and so Gi ∩ N = 1 for
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all i = 1, 2, . . . , k. Since G/N is a Π′-group, it follows that GiN/N is
also a Π′-group for all i. Therefore G is a Π′-group. This inplies that
N = 1, contrary to assumption. Hence N is prefactorized.

(ii) Let N = Gp. Assume that N 6= (N ∩ G1)(N ∩ G2) . . . (N ∩ Gk) and
let G be of minimal order. Arguing as in (i), N is a minimal normal
subgroup of G and so N ∩Gi = 1 for all i = 1, 2, . . . , k. In particular,
Gi have exponent p for all i. Hence G is a p-group and | N |= p.
Choose x ∈ Gj. Then 〈x〉Gi = Gi〈x〉 and Gi is a subgroup of index at
most p in the product Gi〈x〉. Thus Gi is normalized by all elements x
of Gj and so by G.
Let t be an element of G. Then t = u1u2 . . . uk with ui ∈ Gi, i =
1, 2, . . . , k. Suppose that tp 6= 1 and choose t with least number of
nontrivial factors. Let uw be the first nontrivial factor. Then t = uws
and sp = 1 by our choice of t. Since Gw is normal in G, it follows
that every conjugate of uw belong to Gw. We have tp = (uws)

ps−p =
uw(suws

−1)(s2uws
−2) . . . (sp−1uws

1−p) ∈ Gw. This means that tp ∈
N ∩ Gw = 1, against the choice of t. Therefore G has exponent p and
N = Gp = 1, the final contradiction.

(iii) Assume the result is not true and let G be a minimal counterexample.
By Lemma 2(v), MN is a prefactorized subgroup of G. If we suppose
that MN is a proper subgroup of G, then it is clear that MN satisfies
the same hypotheses as G. By the choice of G, [M,N ] is prefactorized
in MN . Lemma 2(iv) yields [M,N ] is prefactorized in G. Therefore
we may assume that G = MN . Then [M,N ] is a normal subgroup of
G and by the remark we may assume that [M,N ] is a minimal normal
subgroup of G such that [M,N ] ∩Gi = 1 for every i = 1, 2, . . . , k. Let
1 6= x ∈ N ∩ Gj. Then x has order p since Np = 1. In particular,
it normalizes Gi since | Gi〈x〉 : Gi |∈ {1, p}. This implies that N ∩
Gj normalizes M ∩ Gi for all i = 1, 2, . . . , k. On the other hand, by
hypotesis we have M = (M ∩G1)(M ∩G2) . . . (M ∩Gk) and N = (N ∩
G1)(N ∩G2) . . . (N ∩Gk). Hence [M,N ] = [(N ∩G1)(N ∩G2) . . . (N ∩
Gk), (M∩G1)(M∩G2) . . . (M∩Gk)]. Applying [11, A; 7.4(f)], [M,N ] =
[N ∩G1,M ][N ∩G2,M ] . . . [N ∩Gk,M ]. Let z ∈ [N ∩Gj,M ]. By [11,
A; 7.2], z = x1x2 . . . xk with xi ∈ [N ∩Gj,M ∩Gi]

g, g ∈ G. Therefore

xi ∈ Gg
i∩[N,M ]. Now xg

−1

i ∈ Gi∩[N,M ] = 1 and xi = 1. Consequently
z = 1 and from here [M,N ] = 1. This final contradiction proves the

8



claim.

Corollary 1. (i) If G = G1G2 . . . Gk is a pairwise mutually permutable
product of exponent p, then every term of the descending central series
and every term of the derived series of G is prefactorized in G. Fur-
thermore for every prefactorized normal subgroup M of G, we have that
[M,G] and M ′ are prefactorized subgroups of G.

(ii) If G = G1G2 . . . Gk is a pairwise mutually permutable product, then
GpG′ is prefactorized in G.

(iii) If G = G1G2 . . . Gk is a pairwise mutually permutable product and m
is a squarefree integer, then GmG′ is prefactorized in G.

Proof (i) is a direct consequence of part (iii) of Theorem 1.
To prove (ii), notice that applying (i), (G/Gp)′ = GpG′/Gp is prefactor-

ized in G/Gp and Gp is prefactorized in G by Theorem 1(ii). The result now
follows from Lemma 2(ii).

We proceed by induction on the number k of prime factors of m for
statement (iii). The result is true if m is a prime by (ii). Assume the result
is true for all squarefree integers which are products of k−1 primes and choose
a prime p dividing m. Then m = pn and Hn = GnG′ and Hp = GpG′ are
prefactorized by the induction hypothesis. Hence (Hn)p(Hn)′ and (Hp)

n(Hp)
′

are prefactorized in G. Now we have the following inclusions:

Gm(G′)p ⊆ (Hn)p(Hn)′ ⊆ GmG′

Gm(G′)n ⊆ (Hp)
n(Hp)

′ ⊆ GmG′

and thereforeGmG′ = ((Hn)p(Hn)′(Hp)
n(Hp)

′) is prefactorized inG by Lemma
2(v).

Note that the hypothesis about m in the above corollary is essential (see
Example 3).

The following statement gives an indication that there is quite a range of
prefactorized normal subgroups.

Corollary 2. Let the soluble group G = G1G2 . . . Gk be a pairwise mutually
permutable product of the subgroups G1, G2, . . . , Gk. Then there is a descend-
ing sequence of characteristic prefactorized subgroups G = A0 ⊃ A1 ⊃ A2 ⊃
. . . ⊃ Am = 1 such that every quotient As/As+1 is an elementary abelian
p-group.
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Proof Since G 6= 1 is soluble, we have G′ 6= G. Choose a prime dividing
| G/G′ |. Then also GpG′ 6= G and we may take A1 = GpG′ by the state-
ment (ii) of the above result. The corollary now follows by induction on | G |.

The following result shows that F -residuals, for F a saturated forma-
tion of soluble groups, have a good behaviour concerning pairwise mutually
permutable products and prefactorizations.

Theorem 2. Let the group G = G1G2 . . . Gk be the product of the pairwise
mutually permutable subgroups G1, G2, . . . , Gk. If F is a saturated formation
of soluble groups, then GF , the F-residual of G, is prefactorized.

Proof Denote by N = GF the F -residual of G. Assume the result is not
true and let G be a counterexample of minimal order. By the remark we
may assume that N is a minimal normal subgroup of G and N ∩Gi = 1 for
all i = 1, 2, . . . , k. Since G/N is soluble, we that Gi ' GiN/N are soluble
and so G is soluble by [5, Theorem 1]. Then N is an elementary abelian
p-group for some prime p. Let F denote the canonical local definition of
F , that is, the uniquely determined function defining F which is integrated
and full, that is, F (q) ⊆ F and F (q) = SqF (q) for all primes q (see [11,
IV; 3.9]). Clearly GF is contained in L = GF (p), the F (p)-residual of G
and L/N is p-nilpotent by [11, IV; 3.2(b)]. Denote by M/N the normal
Hall p′-subgroup of L/N . By Proposition 1(ii), there exist a prefactorized
Hall p′-subgroup H of G. Then H = (H ∩ G1)(H ∩ G2) . . . (H ∩ Gk) is
a product of pairwise mutually permutable subgroups, GiH is a subgroup
of G and the Sylow p-subgroups of Gi are Sylow p-subgroups of GiH. Now
HGi∩N is a normal p-subgroup of HGi and so it is contained in every Sylow
p-subgroup of HGi. In particular it is contained in every Sylow p-subgroup
of Gi. Consequently HGi ∩ N = 1. Now M ∩ H is a Hall p′-subgroup
of M . Since M/N is a p′-group, it follows that M = (M ∩ H)N . Then
M ∩ HGi = (M ∩ H)N ∩ HGi = (M ∩ H)(N ∩ HGi) = M ∩ H. This
implies that M ∩H is normalized by all Gi and therefore also by G. There-
fore M = (M ∩ H) × N and M ≤ CG(N). Since N is a minimal normal
p-subgroup of G, we have that G/CG(N) does not possess nontrivial normal
p-subgroups. Consequently LCG(N)/CG(N) = 1, that is, L ≤ CG(N) . We
have that G/N is an F -group and G/CG(N) ∈ F (p). Therefore applying
[11, IV; 3.2], G ∈ F and N = 1. This is a contradiction.
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Unfortunately F -residuals, even for subgroup-closed saturated forma-
tions, are not necessarily factorized subgroups in the group as the following
example shows:

Example 4 Consider the group G as in Example 2. Then it is clear that the
nilpotent residual of G, GN , is equal to 〈x〉 which is clearly prefactorized in
G. However A ∩B = 〈b〉 is not contained in GN .

3 Prefactorized projectors and normalizers

¿From now on all groups considered will be finite and soluble.

In this section we analyze the behaviour of projectors and normalizers as-
sociated to saturated formations in pairwise totally and mutually permutable
products.

Lemma 3. Let the group G = G1G2 . . . Gk be the pairwise totally permutable
product of the subgroups G1, G2, . . . , Gk. If G is a primitive group, then either
G is supersoluble or

∏
i 6=jGj = 1 for some i ∈ {1, 2, . . . , k}.

Proof Let N be the unique minimal normal subgroup of G. We know that N
is abelian and CG(N) = N . Applying [4, Lemma 1], the supersoluble residual
(Gi)

U of Gi is a normal subgroup of G for all i = 1, 2, . . . , k. If (Gi)
U = 1

for all i ∈ {1, 2, . . . , k}, then G is supersoluble by [4, Theorem 1]. Hence we
may assume without loss of generality that (G1)

U 6= 1. Then N is contained
in (G1)

U . Applying [3, Corollary], G2 . . . Gk centralizes (G1)
U . Therefore

G2 . . . Gk ≤ CG(N) = N ≤ G1. Consequently G = G1. This implies that,
if i 6= 1, all subgroups of Gi are permutable in G. Assume that Gi 6= 1 for
some i ∈ {2, 3, . . . , k} and consider a cyclic subgroup W of prime order of Gi.
Then, if K is a complement of N in G, we have that WK is a subgroup of G
and W = N ∩WK is a normal subgroup of G. The minimality of N implies
that N = W and G is supersoluble, contrary to assumption. Consequently
Gi = 1 for all i ∈ {2, 3, . . . , k}.

Lemma 4. Let the group G = G1G2 . . . Gk be the pairwise totally permutable
product of the subgroups G1, G2, . . . , Gk. If G is supersoluble and it is a
primitive group with unique minimal normal subgroup N , then one of the
following cases holds:
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(i) If N ≤ Gi for all i ∈ {1, 2, . . . , k} then there exists r ∈ {1, 2, . . . , k}
such that G = Gr 6= N and either Gi = N for all i 6= r or G = G1 =
G2 = . . . = Gk = N .

(ii) If N ≤ Gi for i = 1, 2, . . . , r, r < k, and Gj 6= 1, for some j > r, then
G1 = G2 = · · · = Gr = N and Gr+1Gr+2 . . . Gk 6= 1 is a complement of
N in G.

(iii) If N ≤ Gi for i = 1, 2, . . . , r, k > r ≥ 2 and Gj = 1 for all j > r, then
there exists 1 ≤ s ≤ r such that G = Gs 6= N and either Gi = N for
all s 6= i ≤ r, or G = G1 = G2 = . . . = Gr = N .

(iv) There exists i ∈ {1, 2, . . . , k} such that G = Gi and Gj = 1 for all
j 6= i.

Proof Let p be the prime dividing |N |. Since G is supersoluble, we have that
N is of order p and CG(N) = N = 〈x〉 is the Sylow p-subgroup of G. Let
M denote a core-free complement of N in G. Then M = 〈y〉 is an abelian
maximal subgroup of G with exponent dividing p− 1. In particular, M is a
Hall p′-subgroup of G. Therefore N has to be contained in at least one of
the factors Gi, i = 1, 2, . . . , k.

(i) Assume first that N ≤ Gi for all i ∈ {1, 2, . . . , k}. Consider one of the
factors Gi and take Gj with Gj 6= Gi. We see that Gi = N or Gj = N .
It is clear that Gi = 〈x〉〈yαi〉 and in the same way Gj = 〈x〉〈yαj〉 with
〈yαi〉 6= 〈yαj〉. Suppose that yαi 6= 1 6= yαj . Write H = 〈xyαi〉. If p
divides the order of H, then N ≤ H. Since H is abelian, H = N and
so yαi ∈ N and Gi = N . This contradiction implies that H = 〈xyαi〉 is
a p′-group. Now the fact that Gi and Gj are totally permutable yields
that 〈xyαi , yαj〉 = 〈xyαi〉〈yαj〉 is a p′-group and therefore it is abelian.
Consequently [xyαi , yαj ] = 1. Moreover [yαi , yαj ] = 1. Let s = yαi . By
[11, A; 7.2(c)], 1 = [xyαi , yαj ] = [x, yαj ]s[yαi , yαj ] = [x, yαj ]s. Hence
yαj = 1, which contradicts our assumption. Therefore if Gi 6= Gj we
have either Gi = N or Gj = N . Assume that M 6= 1. Then at least
one of the factors has a non-trivial Hall p′-subgroup. Without loss of
generality, we may suppose that M ∩ G1 6= 1. The above argument
implies that either Gi = G1 or Gi = N for every i 6= 1. Assume that
Gj = G1 for some j 6= 1. Applying the above argument, 1 6= yαj

centralizes x. This contradiction shows that G2 = . . . = Gk = N and
then G = G1.
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(ii) Suppose that N ≤ Gi for i = 1, 2, . . . , r, r < k. Then N ∩Gj = 1 for all
j > r. Assume that Gj 6= 1, for some j > r. Then Gj = 〈z〉 is a non-
trivial p′-subgroup of G. Suppose there exists i ≤ r such that Gi 6= N .
Then Gi = N〈yαi〉 and yαi 6= 1. Consider H = 〈xyαi〉. Arguing as in
(i), H is a p′-group. Moreover as Gi and Gj are totally permutable,
H permutes with Gj and HGj is a p′-subgroup of G and hence HGj

is abelian. Therefore [xyαi , z] = 1. It is also clear that 〈yαi〉 permutes
with 〈z〉. Therefore 〈yαi〉〈z〉 is an abelian p′-group. Hence [yαi , z] = 1.
Therefore z centralizes x. This contradiction yields Gi = N for all
i = 1, 2, . . . , r. Therefore Gr+1Gr+2 . . . Gk is a complement of N in G.

(iii) If N ≤ Gi for i = 1, 2, . . . , r, k > r ≥ 2, and Gj = 1 for all j > r, then
we are in case (i). Hence there exists 1 ≤ s ≤ r such that G = Gs 6= N
and Gi = N for all s 6= i ≤ r, or G = G1 = G2 = . . . = Gr = N .

The remaining possibility is case (iv).

Definition 1. If X is a class of groups, a maximal subgroup M of a group G
is called X -abnormal in G if G/CoreG(M) does not belong to X . A subgroup
S is called sub-X -abnormal in G if either G = S or there exists a chain

S = S0 ≤ S1 ≤ . . . ≤ Sn = G

with Si an X -abnormal maximal subgroup of Si+1 for all i = 0, 1, . . . , n− 1.

Theorem 3. Let the group G = G1G2 . . . Gk be the pairwise totally per-
mutable product of the subgroups G1, G2, . . . , Gk. If F is a saturated for-
mation containing the class U of all supersoluble groups, then every sub-F-
abnormal subgroup of G is factorized.

Proof. We proceed by induction on the index |G : S| of S in G. Sup-
pose that S is a maximal F -abnormal subgroup of G. If CoreG(S) = 1,
then, by Lemma 3, G is either supersoluble or there exists i ∈ {1, 2, . . . , k}
such that

∏
i 6=jGj = 1 and G = Gi. Since F contains U and S is F -

abnormal, it follows that G is not supersoluble. Hence G = Gi for some
i. It is clear that in this case S is a factorized subgroup of G. Assume that
D = CoreG(S) 6= 1. As G/D does not belong to F , it cannot be supersol-
uble. Applying now Lemma 3 to G/D = (G1D/D)(G2D/D) . . . (GkD/D)
we obtain that there exists i ∈ {1, 2, . . . , k} (we can assume without loss
of generality that i = 1) such that G2G3 . . . Gk is contained in D. Then
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S = G2G3 . . . Gk(S ∩ G1) = (S ∩ G2)(S ∩ G3) . . . (S ∩ Gk)(S ∩ G1) and
Gi ∩

∏
j 6=iGj ≤ S for all i = 1, 2, . . . , k. Hence S is factorized.

Assume now that S is not a maximal subgroup of G and let S1 be an
F -abnormal maximal subgroup of G containing S such that S is sub-F -
abnormal in S1. Then S1 is a factorized subgroup of G and |S1 : S| < |G : S|.
The induction hypothesis implies that S is a factorized subgroup of S1. Then
S is factorized in G by Lemma 2(iv).

Applying [11, IV; 5.11] and [11, V; 3.10], F -projectors and F -normalizers
associated to a saturated formation F are sub-F -abnormal subgroups. Hence
we have:

Corollary 3. Let the group G = G1G2 . . . Gk be a pairwise totally permutable
product of the subgroups G1, G2, . . . , Gk. If F is a saturated formation con-
taining the class U of all supersoluble groups, then the F-projectors and F-
normalizers of G are factorized subgroups of G.

For the saturated formationN of nilpotent groups we have a much weaker
statement.

Theorem 4. Let the group G = G1G2 . . . Gk be the pairwise totally per-
mutable product of the subgroups G1, G2, . . . , Gk. Then there is a prefactor-
ized Carter subgroup of G.

Proof Assume the result is not true and let G be a counterexample with
| G | + | G1 | + | G2 | + . . .+ | Gk | minimal. If G is a nilpotent group,
then G is its own Carter subgroup and the conclusion follows. Assume G
is not nilpotent and let C denote a Carter subgroup of G. Then there ex-
ists a non-normal maximal subgroup M of G with C ≤ M . Denote by
K = CoreG(M). If K = 1, then G is a primitive group. By Lemma 3,
there exists i ∈ {1, 2, . . . , k} such that

∏
j 6=iGj = 1 and G = Gi or G is

supersoluble. In the first case, it is clear that C is prefactorized. If G is
supersoluble, then G = NM with N = CG(N) = GN the unique minimal
normal subgroup of G, | N |= p, p a prime, and M an abelian comple-
ment of N with trivial core. By [11, IV; 5.18], the Carter subgroups of
G are the complements of N in G. Applying Lemma 4, C is prefactor-
ized. This contradiction yields K 6= 1. Then G/K = (N/K)(M/K) is
a primitive group, N/K is the unique minimal normal subgroup of G/K,
CG/K(N/K) = N/K and M/K is a maximal subgroup of G/K with trivial
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core. Also G/K is the pairwise totally permutable product of the subgroups
G1K/K,G2K/K, . . . , GkK/K. Applying Lemma 3, G/K is either supersolu-
ble or there exists i ∈ {1, 2, . . . , k} (we can assume without loss of generality
that i = 1), such that G2G3 . . . Gk ≤ K ≤ M . Assume that G/K is not su-
persoluble. Then M = G2G3 . . . Gk(M ∩G1) is a pairwise totally permutable
product. By the choice of G, M has a prefactorized Carter subgroup. But
C is a Carter subgroup of M . Therefore there exists m ∈ M such that Cm

is prefactorized in M . By Lemma 2(iv), Cm is prefactorized in G. Conse-
quently we may assume that G/K is supersoluble. In particular, | N/K |= p
and M/K is abelian of exponent dividing p− 1.

On the other hand, applying [5, Lemma 1], W = (K∩G1)(K∩G2) . . . (K∩
Gk) is a normal subgroup of G. If W 6= 1, then the choice of G implies that
G/W has a prefactorized Carter subgroup, CgW/W , for some g ∈ G. Since
W is prefactorized, it follows that CgW is prefactorized in G by Lemma 2(ii).
Now CgW is a proper subgroup of G because it is contained in M g. Clearly
Cg is a Carter subgroup of CgW . By the minimal choice of G, there exists
t ∈ CgW such that Cgt is prefactorized in CgW . Lemma 2(iv) implies that
Cgt is prefactorized in G. Consequently we may assume that W = 1, that is,
K ∩ Gi = 1 for all i = 1, 2, . . . , k. It now follows that Gi is supersoluble so
that G is also supersoluble by Theorem 3 of [4].

It is clear that p is the largest prime dividing the order of G/K. Assume
p is not the largest prime dividing the order of G and let Q 6= 1 denote
a Sylow q-subgroup of G with q the largest prime divisor of the order of
G, q 6= p. Then Q is a normal subgroup of G and Q ≤ K. Moreover, by
Proposition 1(i), Q is prefactorized in G. Arguing as above we obtain Q = 1.
This contradicts the choice of Q. Thus we may suppose that p is the largest
prime dividing the order of G and G has a normal Sylow p-subgroup, P say
and PK/K = N/K.

Now we apply Lemma 4 to G/K and analyze all the cases appearing
there. Assume we are in the hypotheses of Lemma 4(ii). Then G1K/K =
G2K/K = . . . = GrK/K = N/K for some r < k and (Gr+1Gr+2 . . . Gk)K/K
is a complement of N/K in G/K. Since K ∩ Gi = 1 for all i = 1, 2, . . . , k,
we have | Gi |= p for i = 1, 2, . . . , r and Gj is an abelian p′-group for
j > r. Further P = G1G2 . . . Gr is the normal Sylow p-subgroup of G and
Gr+1Gr+2 . . . Gk is a Hall p′-subgroup of G. In particular, P is a prefactorized
subgroup of G. The above arguments imply that G = CgP = CP . Hence
the nilpotent residual GN of G is contained in P .

On the other hand, P = G1G2 . . . Gr with | Gi |= p for all i = 1, 2, . . . , r.
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Assume that Gi = Gj for i 6= j ∈ {1, 2, . . . , r}. Then G can be regarded as
a pairwise totally permutable product of less than k factors. The choice of
G implies that there is a conjugate of C which is prefactorized with respect
to this new factorization. This clearly implies that this conjugate is actually
prefactorized with respect to G = G1G2 . . . Gk. Hence we may assume that
Gi 6= Gj for i 6= j ∈ {1, 2, . . . , r}. This clearly implies that [Gi, Gj] = 1 for
all i 6= j, i, j ∈ {1, 2, . . . , r}, that is, P is elementary abelian. Next we prove
that P = G1×G2×G3× . . .×Gr. Assume that G1∩(G2G3 . . . Gr) 6= 1. Then
G1 is contained in G2G3 . . . Gr and then G = G2G3 . . . Gk. By the choice of
G, there exists a Carter subgroup T of G which is prefactorized with respect
to this new factorization. This clearly implies that T is prefactorized in
G = G1G2 . . . Gk. Hence we have that G1 ∩ (G2G3 . . . Gr) = 1. Repeating
the argument with the other factors, we have that P is the direct product of
G1, G2, . . . , Gr. In particular, GN is abelian and so it is complemented in G
by C (see [11, IV; 5.18]). If P = GN , then C would be a Hall p′-subgroup
of G and, by Proposition 1(ii), C would have a prefactorized conjugate,
contrary to hypothesis. Hence GN is a proper subgroup of P . By Theorem
2, GN = (GN∩G1)(G

N∩G2) . . . (G
N∩Gr). Since all the factors Gi have order

p, it follows that GN is the product of all factors Gj which are contained in
GN . Without loss of generality, we may assume that GN = G1G2 . . . Gh for
some h < r. Let T = (Gh+1Gh+2 . . . Gr)(Gr+1Gr+2 . . . Gk). Thus G = GNT
and GN ∩ T = 1. Furthermore T is a Carter subgroup of G which is clearly
prefactorized, against supposition.

Now we assume G/K satisfies Lemma 4(i). If G1K/K = G2K/K =
. . . GkK/K = N/K, then G/K = N/K is abelian. Hence M/K = 1, that
is, M = K, contrary to assumption. Therefore there exists i ∈ {1, 2, . . . , k},
we suppose i = 1, such that G/K = G1K/K and GiK/K = N/K for
all i 6= 1. Since K ∩ Gi = 1 for all i, we have | Gi |= p for all i 6= 1,
G = G1K and M = K(M ∩ G1). Thus M ∩ G1 is a p′-group. Moreover
N = G2G3 . . . Gk(N ∩G1). Now (N ∩G1)K/K is a subgroup of N/K which
is of order p. Hence either (N ∩ G1)K/K = 1 or N = (N ∩ G1)K. If
(N ∩G1)K/K = 1, then N ∩G1 ≤ K ∩G1 = 1. Therefore N = G2G3 . . . Gk

and G = G1N . Furthermore G/N is abelian. Thus G1 is also abelian. But
then G/K is abelian and M = K, contrary to supposition. Consequently
N = (N ∩ G1)K and |N ∩ G1| = p. In particular, N and K are both p-
groups. Now G = NM = NK(M ∩G1) = N(M ∩G1). Thus N is the Sylow
p-subgroup of G and M ∩ G1 is a Hall p′-subgroup of G. Also N ∩ G1 is a
Sylow p-subgroup of G1, and G1 = (N∩G1)(M∩G1). Arguing as in case (ii),
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we obtain that N is elementary abelian. We prove that N = (N ∩G1)×G2×
G3× . . .×Gk. Suppose that G2 ≤ (N ∩G1)G3 . . . Gk, then G = G1G3 . . . Gk

and, by the choice of G, there exists a Carter subgroup prefactorized with
respect to G = G1G3 . . . Gk. Now an standard argument shows that this
Carter subgroup is factorized with respect to G = G1G2 . . . Gk. This is a
contradiction. If N ∩ G1 ≤ G2G3 . . . Gk, then G = (M ∩ G1)G2G3 . . . Gk.
By the choice of G, there exists a Carter subgroup T of G such that T =
(T ∩M ∩ G1)(T ∩ G2) . . . (T ∩ Gk) ≤ (T ∩ G1)(T ∩ G2) . . . (T ∩ Gk) ≤ T ,
and T is prefactorized, against supposition. Note that this argument could
be used with every factor of the decomposition of N . Consequently N =
(N ∩G1)×G2×G3× . . .×Gk. In particular, GN ≤ N is abelian and so it is
complemented in G by C (see [11, IV; 5.18]). If N = GN , then C would be a
Hall p′-subgroup of G and, by Proposition 1(ii), C would have a prefactorized
conjugate, contrary to hypothesis. Hence GN is a proper subgroup of N . By
Theorem 2, GN = (GN ∩G1)(G

N ∩G2) . . . (G
N ∩Gk) = (GN ∩N ∩G1)(G

N ∩
G2) . . . (G

N∩Gk). Assume first that GN∩G1 = 1, Gi ≤ GN for i = 1, 2, . . . , h
and Gj ∩ GN = 1 for i = h + 1, . . . , k. Then G = GN (Gh+1 . . . Gk)(N ∩
G1)(M ∩ G1) = (G2 . . . Gh)(Gh+1 . . . Gk)(N ∩ G1)(M ∩ G1). Now let T =
(Gh+1 . . . Gk)(N ∩G1)(M ∩G1). Arguing as in case (ii), GN ∩ T = 1 (recall
that N is a direct product of the subgroups (N ∩G1), G2, . . . , Gk). Therefore
T is a Carter subgroup of G and by construction it is prefactorized. On
the other hand, if N ∩ G1 ≤ GN , then a similar argument yields GN =
(N ∩G1)G2 . . . Gh and G = GNT where T = Gh+1 . . . Gk(M ∩G1) is a Carter
subgroup of G and it is clearly prefactorized in G. We reach a contradiction
in both cases.

Assume we are in case (iii) of Lemma 4. Note that if GjK/K = 1 for
j ≥ r+ 1, then as Gj ∩K = 1, we obtain Gj = 1 for all j ≥ r+ 1. Therefore
we will be in case (i).

Finally if we are in the hypotheses of (iv) in Lemma 4, we have G/K =
GiK/K for some i and GjK/K = 1 for all j 6= i. As before, this means that
Gj = 1 for all j 6= i. Therefore G = Gi and a Carter subgroup of G is clearly
prefactorized, the final contradiction.

Theorem 5. Let the group G = G1G2 . . . Gk be the pairwise totally per-
mutable product of the subgroups G1, G2, . . . , Gk. Then G has a prefactorized
system normalizer.

Proof Denote by r the nilpotent length of the soluble group G. Then G ∈
N r, the class of soluble groups with nilpotent length at most r. If r = 2,
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then by [11, V; 4.2], the system normalizers of G coincide with the Carter
subgroups of G. Therefore the conclusion follows by Theorem 4. Thus we
may assume that r > 2. Set G = H0 and denote by Hi anN r−1−iN -projector
of Hi−1 for i = 1, 2, . . . , r−1. By [11, V; 4.3(b)], Hr−1 is a system normalizer
of G. We have the chain:

1 = Hr ≤ Hr−1 ≤ . . . ≤ H1 ≤ H0 = G

Since the class U of all supersoluble groups is contained in N 2 ⊆ N r, we can
apply Corollary 3 and Lemma 2(iv) to conclude that Hr−2 is factorized in
G. Now Hr−1 is a Carter subgroup of Hr−2. Therefore, by Theorem 4, there
exists h ∈ Hr−2 such that Hh

r−1 is prefactorized in Hr−2. By Lemma 2(iv),
Hh
r−1 is prefactorized in G. The proof of the theorem is now complete.

The following example shows that a Carter subgroup of a group need not
be factorized.

Example 5 Consider the group

G = 〈a, b, c | a3 = b7 = c7 = [b, c] = 1, a2ba = b2, a2ca = c2〉

G is the totally permutable product of the subgroups A = G and B = 〈b〉.
Moreover the Carter subgroups of G (which coincide with the system nor-
malizers of G) are the conjugates of 〈a〉 which are not factorized in G.

In the final part of the section we study F -projectors and F -normalizers
in mutually permutable products of two factors and obtain that they are not
in general factorized although they are always prefactorized subgroups of the
group.

Lemma 5. [7, Lemmas 1 and 2] Assume G is the product of two mutually
permutable subgroups A and B. Then:

(i) If N is a minimal normal subgroup of G, then {N∩A,N∩B} ⊆ {N, 1}.

(ii) If N ≤ A is a minimal normal subgroup of G and N ∩ B = 1, then
either N ≤ CG(A) or N ≤ CG(B); if furthermore N is noncyclic, then
N ≤ CG(B).

(iii) If N is a minimal normal subgroup of G and N ∩A = N ∩B = 1, then
| N |= p, where p is a prime, and either N ≤ CG(A) or N ≤ CG(B).
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Theorem 6. Let the group G = AB be the mutually permutable product of
the subgroups A and B. If F is a saturated formation containing the class
U of all supersoluble groups, then every sub-F-abnormal subgroup of G is
prefactorized.

Proof Assume the result is false and let G be a counterexample of min-
imal order. Then there exists a sub-F -abnormal subgroup S of G which
is not prefactorized. Let us take S of maximal order. If S is not a maxi-
mal subgroup of G, then there exists M an F -abnormal maximal subgroup
of G with S ≤ M and S is sub-F -abnormal in M . By the choice of S,
M = (M ∩ A)(M ∩ B). Now the minimality of G implies S is prefactorized
in M and therefore in G by Lemma 2(iv). Consequently, we may suppose
that S is an F -abnormal maximal subgroup of G.

Then G satisfies the following properties:

(i) CoreG(A ∩B) = 1.

Assume there exists a minimal normal subgroup N of G such that
N ≤ A ∩ B. Suppose that N ≤ S. Now S/N is an F -abnormal
subgroup of G/N . By induction, S/N is prefactorized in G/N . But
N is prefactorized in G. By Lemma 2(ii), S is prefactorized, contrary
to supposition. Therefore G = SN , S ∩ N = 1, A = N(S ∩ A) and
B = N(S ∩B). Consequently G = NS = N(S ∩A)(S ∩B). Therefore
S = (S ∩ A)(S ∩B), which contradicts the choice of G.

(ii) Every minimal normal subgroup of G is contained in S.

Assume there exists a minimal normal subgroup M of G which is not
contained in S. Then G = SM .

(a) Suppose that M ∩ A = M ∩ B = 1. Then by Lemma 5(iii)
|M | = p, p a prime number. Therefore G/CG(M) is an F -group
and GF ≤ CG(M). Applying [11, IV; 1.17(b)], SF ≤ GF and so
SF is normal in G. If SF = 1, then S ∈ F . In this case, G =
SM would be the totally permutable product of two F -subgroups.
Therefore, by [3, Lemma 4], G ∈ F , contrary to the fact that S is
F -abnormal in G. Hence SF 6= 1. On the other hand, G/SF is the
totally permutable product of S/SF and MSF/SF and both are
F -groups. A new application of [3, Lemma 4] yields G/SF is an
F -group and so GF = SF . The minimality of G implies that S/SF
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is prefactorized in G/SF and, by Theorem 2, SF is prefactorized in
G. By Lemma 2(ii), S is prefactorized in G, against supposition.

(b) Suppose that M = (M ∩ A)(M ∩ B). We know by (i) that M
is not contained in A ∩ B. Assume that M ≤ A and M ∩ B =
1. Now A = M(S ∩ A). We claim that S ∩ A 6= 1. Suppose,
arguing by contradiction, that S ∩ A = 1. Then A = M , G =
AB = MB = MS and A ∩ B = M ∩ B = 1. Let X be a
subgroup of A of prime order. Then X = XB ∩M is normalized
by B. Consequently, X is normal in G and X = M , that is,
|M | = p, where p is a prime. Now consider the quotient group
G/CoreG(S) = (MCoreG(S)/CoreG(S))(S/CoreG(S)). It is a
primitive group and MCoreG(S)/CoreG(S) has order p. Thus
G/CoreG(S) is supersoluble, contradicting the fact that S is F -
abnormal in G. Hence S ∩ A 6= 1. On the other hand, applying
Lemma 5(ii), either M is cyclic of prime order or M ≤ CG(B).
We prove that S ∩A is a maximal subgroup of A. If M has prime
order it is clear that S ∩ A is a maximal subgroup of A. Assume
that M ≤ CG(B). Then M is a minimal normal subgroup of A
and S ∩A is a proper subgroup of A because M is not contained
in S. Thus S∩A is a maximal subgroup of A. Suppose that A∩B
is not contained in S ∩A. Then A = (S ∩A)(A∩B), since A∩B
is a permutable subgroup of A. Thus G = (S ∩ A)(A ∩ B)B =
(S ∩ A)B and S = (S ∩ A)(S ∩ B), contrary to the choice of
S. Consequently we may assume that A ∩ B is contained in S.
On the other hand, by [9, 3.5], A ∩ B is a subnormal subgroup
of G. Therefore M normalizes A ∩ B by [11, A; 14.3]. Then
T = (A ∩ B)G = (A ∩ B)S ≤ S. If A ∩ B = 1, then the product
of A and B is totally permutable and S is factorized by Theorem
3. This contradiction yields A ∩B 6= 1. Since A ∩B is contained
in (T ∩ A)(T ∩ B), it follows that (T ∩ A)(T ∩ B) is a nontrivial
factorized normal subgroup of G contained in S. By induction,
S/(T ∩A)(T ∩B) is prefactorized in G/(T ∩A)(T ∩B). Applying
Lemma 2(ii), S is prefactorized. This contradiction proves (ii).

Let N be a minimal normal subgroup of G. Then N ≤ S. If N =
(N ∩A)(N ∩B), the minimal choice of G implies that S/N is prefactor-
ized in G/N . By lemma 2(ii) the same is true for S. This contradiction
yields N ∩A = N ∩B = 1 for all minimal normal subgroups of G. This
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is to say that CoreG(A)CoreG(B) = 1, which contradicts [8, Theorem
1]).

Our last example shows that there exist mutually permutable products
in which the U -projectors (U -normalizers) are not factorized.

Example 6 ConsiderG ' Σ4 = [C2×C2][C3]C2 the symmetric group of
degree 4. ThenG = AB is the mutually permutable product ofA andB
where A denotes the alternating group of degree 4 and B ' [C2×C2]C2.
Now consider H ' [C3]C2 a subgroup of G isomorphic to the symmetric
group of degree 3. Then it is an U -projector of G (it is also an U -
normalizer of G) which is prefactorized in G but not factorized.

We bring the paper to a close with the following.
Open questions

(a) Can Theorems 4 and 5 be extended to pairwise mutually permutable
products?

(b) Is Theorem 6 true for mutually permutable products with more than
two factors?
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