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Abstract 

This works presents the optimization of the operating conditions of a membrane reactor 

for the oxidative dehydration of ethane. The catalytic membrane reactor is based on a 

mixed ionic-electronic conducting material, i.e. Ba0.5Sr0.5Co0.8Fe0.2O, which presents 

high oxygen flux above 750ºC under sufficient chemical potential gradient. Specifically, 

diluted ethane is fed in the reactor chamber and air (or diluted air) is flushed on the 

other membrane side. A framework based on soft computing techniques has been used 

to maximize the ethylene yield by varying simultaneous five operation variables: 

nominal reactor temperature (Temp); gas flow in the reaction compartment (QHC); gas 

flow in the oxygen-rich compartment (QAir); ethane concentration in the reaction 

compartment (%C2H6); and oxygen concentration in oxygen-rich compartment (%O2). 

The optimization tool combines a genetic algorithm guided by a neural network model. 

It is presented how the neural network model is obtained for this particular problem, and 

the analysis of its behaviour along the optimization process. The optimization process is 

analysed in terms of (1) catalytic figures of merit, i.e., evolution of yield and selectivity 

towards different products, and (2) framework behaviour and variable significance. The 

two experimental areas maximizing the ethylene yield are explored and analysed. The 

highest yield reached in the optimization process exceeded 92%. 
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1. Introduction 

Selective oxidation reactions have emerged as alternative route to functionalize 

short chain paraffins in order to obtain olefins and oxygenated compounds. The 

difficulty in these processes lies in the fact that intermediates and target products are 

usually more reactive than the raw materials and therefore are prone to deeply oxidize to 

COX (Blasco and López-Nieto, 1997; Bhasin, 2003). An example of these processes is 

the ethylene production through the oxidative dehydrogenation of ethane (ODHE). It 

represents a potential alternative process to steam cracking, which is the current 

principal method for industrial ethylene production. ODHE process is exothermic, while 

dehydrogenation and cracking are endothermic, so energy efficiency is improved and 

the presence of oxygen minimizes coke formation. However, the use of pure oxygen or 

enriched air contributes to increase process costs and the coexistence of ethane and 

molecular oxygen leads to undesired combustion reactions (Grasselli, 1999; Rebeilleau-

Dassonneville et al., 2005; Cavani et al., 2007)  

In this context, the use of membrane reactor technology could overcome those 

drawbacks of ODHE. Dense mixed ionic-electronic conducting membranes (MIEC) 

show good oxygen permeation at elevated temperatures without the need of external 

electrical loadings with a theoretical selectivity of 100%. MIEC membrane reactors are 

highly attractive solutions for ODHE reaction since (i) both oxygen separation and 

reaction are integrated in the same unit (Blasco and López-Nieto, 1997; Lu et al., 2000a, 

2000b; Plotkin, 2005) and (ii) ethylene is produced very selectively by avoiding the 

direct contact of oxygen and hydrocarbons, i.e., principally ethane and ethylene, and 

therefore minimizing the oxygen concentration in the reaction side. 

However, the catalytic behavior of a membrane reactor is not only determined by 

the intrinsic catalytic and permeation properties of the membrane but also reactor 

parameters (fluid dynamics, temperature, feed gas composition, contact time, etc.) have 

influence on the obtained results. A typical lab-scale reactor configuration (Figure 1) 

includes: (i) a dense MIEC disk membrane; (ii) an oxygen-rich membrane compartment 

where a mixture of synthetic air and nitrogen is fed; and (iii) a reaction compartment 

where a stream of ethane diluted in argon was fed. Operation temperature is kept in the 

range between 750 and 900ºC. 
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The main purpose of this study is to optimize the operating conditions of high 

temperature catalytic membrane reactors. Using a framework based on Soft Computing 

techniques, it is intended to find the most suitable operating conditions to maximize the 

yield of ethylene in the oxidative dehydrogenation of ethane (ODHE) in a membrane 

reactor. The complexity of this optimization lies in the coupling of several processes 

such as: (i) complex mass transfer phenomena between the gas-phase and the membrane 

surfaces are defined by hydrodynamic conditions in both compartments; (ii) the ODHE 

reaction, especially the secondary reactions of degradation of the produced ethylene, 

and (iii) transport phenomena and separation of solid state oxygen through the dense 

ceramic membrane. 

The term Soft Computing refers to the combined use of different computational 

techniques and methodologies that can tolerate some level of imprecision, uncertainty 

and information partially true, being able to obtain low-cost solutions while maintaining 

the necessary robustness and flexibility (Zadeh, 2004). Thus, this kind of solutions 

combines fuzzy logic, neural computing, genetic algorithms, machine learning, 

probabilistic reasoning, etc (Kecman, 2001). Regarding chemical engineering and 

catalysis field, the Soft Computing techniques have been employed to solve complex 

combinatorial problems, in which to work with multi-dimensional predictive models 

(Serra et al., 2003a; Klanner et al., 2003; Gilardoni et al., 2003) is necessary for using 

the previously extracted knowledge from the experimentation in the following 

optimization cycles. 

As mentioned before, in this work a Soft Computing optimization framework was 

applied to optimize the operating conditions required to maximize the ethylene yield in 

the ODHE reaction. This framework combines Neural Networks (NN) and a real-coded 

Genetic Algorithm (GA), which were successfully employed in previous optimizations 

of heterogeneous catalysts (Corma et al., 2005; Serra et al., 2007; Valero et al., 2009). 

Specifically, the NN is used as an approximate model for fitness evaluation, whereas the 

GA finds suitable solutions by analyzing several alternatives simultaneously. 

For this reason, Soft Computing techniques can be employed to optimize the 

ethylene yield by exploring concurrently different operation variables in an ODHE 

membrane reactor. The operation conditions included: (i) nominal reactor temperature; 

(ii) gas flow in the reaction compartment; (iii) hydrocarbon concentration in the reaction 
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compartment; (iv) gas flow in the oxygen-rich compartment; and (v) oxygen 

concentration in such compartment. 

 

2. Related work: advanced computation in chemical engineering 

In recent years, examples of the application of Soft Computing techniques have 

been numerous, either in the design of experiments, kinetic modelling, and reaction 

conditions optimization or in the search for new materials in the field of catalysis. 

In heterogeneous catalysis, the first applications of NN were reported for the design 

of solid catalysts (Hattori and Kito, 1995) for different reactions of interest, such as the 

design of catalysts for the ammoxidation of propylene (Hou et al., 1997), catalysts for 

oxidative coupling of methane (Huang et al., 2001) and the analysis and prediction of 

NO decomposition over Cu\ZSM-5 zeolite (Sasaki et al., 2005). 

NN have been also applied combined with evolutionary strategies in the design of 

catalysts for the ammoxidation of propane (Cundari et al., 2001) and the discovering of 

new materials for the ODHE reaction (Corma et al., 2002a). Specifically, this work 

presents the analysis and prediction of catalytic results obtained by combinatorial 

techniques. Furthermore, NN were employed in the modeling of multiphase crystalline 

systems in the synthesis of zeolites (Moliner et al., 2005; Corma et al., 2006). 

Concerning kinetic modeling, there are diverse applications in which kinetic 

experimental data have been modeled using NN’s while making possible the fast 

modeling of series of catalysts and/or reaction conditions, and the rapid determination 

of optimal operation conditions and catalytic yield for each catalyst (Bulsari, 1995; 

Alaradi and Rohani, 2002; Biniwale et al., 2002; Serra et al., 2003b). 

Support Vector Machine (SVM) has also been successfully employed as models. 

For example, Omata et al., 2010 used SVM to model the correlation between the oxide 

composition and catalytic activities (using the acidity and specific surface area as 

inputs) of the Si-Al-Zr ternary oxide system. 

GA’s have also been successfully applied in the development and optimization of 

catalysts used in light paraffin isomerization (Corma et al., 2002b), in the oxidation of 
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the carbon monoxide (Pereira et al., 2005) and in the oxidative dehydrogenation of 

propane (Wolf et al., 2000). Furthermore, GA’s have been employed to discover new 

homogeneous catalysts using the oxidation of methane by molecular oxygen as a model 

system (Kreutz et al., 2010). 

Moreover, in Valero et al., 2004 a Soft Computing technique allows obtaining the 

best kinetic values for several n-paraffin reactions inside a specific range of input values 

to be determined. Based on this Soft Computing approach, catalysts for the epoxidation 

of olefins were optimized, where the synthesis variables of mesoporous Ti-silicate 

materials were intensively and simultaneously explored (Corma et al., 2005) 

Other proposals based on Soft Computing techniques have been effectively applied 

in catalysis. For example, some evolutionary techniques were applied to design fuel 

additives (Ghosh et al., 2000; Sundaram et al., 2001). Specifically, the additive yield is 

predicted by means of a NN, whereas a GA (especially designed for addressing that 

problem) is used for finding the most convenient additives structures. Another 

interesting work was performed by Nandi et al., 2002, 2004, where NN’s and GA’s are 

used for the optimization of reactor operating conditions in the hydroxylation of 

benzene catalyzed by titanium silicalite zeolite (TS-1). In another approach, the 

temperature gradient profile in the reactor for the synthesis of dim-ethyl ether was 

optimized using a simple binary genetic algorithm, assisted by a NN modeling the 

catalytic activity (Omata et al., 2003). 

 

3. Experimental and Computational Procedure 

3.1. Membrane Reactor Set-up and ODHE Experiment 

The catalytic tests were carried out in a quartz reactor placed inside a tubular 

electrical furnace. The temperature was measured by a thermocouple attached to the 

membrane. A PID controller maintained temperature variations within 2 ºC of the set 

point. The measurements were performed on 15 mm diameter disks. The sample 

consisted of a gastight ~ 0.8 mm thick BSCF disk sintered. The microstructure of the 

BSCF membranes was observed by scanning electron microscopy (SEM) in a JEOL 

JSM6300 electron microscope. 
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Sealing was done using gold gaskets. Oxygen was separated from a mixture of 

synthetic air and N2. Permeate was analyzed by on-line gas chromatography using 

micro-GC Varian CP-4900 equipped with Molsieve5A, Pora-Plot-Q glass capillary, and 

CP-Sil modules. All streams were individually mass flow controlled. Membrane gas 

leak free conditions were ensured by monitoring nitrogen concentration on the products 

gas stream. Data reported are achieved at steady state after half an hour in reaction 

steam also each test has been repeated three times to minimize analysis error, obtained 

an experimental error less than 0.5 %. In addition, after 12 catalytic tests (reaction step), 

the sweep gas was shifted to argon during 12 h at 850ºC (regeneration step), which 

allowed to maintain the perovskite phase of the membrane and regenerate the membrane 

surface (probably carbonated during the ODHE reaction) (Arnold et al., 2007). In order 

to ensure the membrane stability and the reproducibly of the experimental procedure, a 

control test was periodically repeated after 2 reaction-regeneration cycles. Ethane 

conversion, ethylene selectivity and ethylene yield were defined as follows: 
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where i includes all the components with carbon atoms in the permeate gas stream, ni is 

the number of carbon atoms of component i, and Fi is its molar flow. 

3.2. Methodology, Experimental Design and Optimization Architecture 

As mentioned above, the employed Soft Computing technique combines Neural 

Networks (NN’s) and a real-coded Genetic Algorithm (GA), where NN’s are used as 

approximate models for fitness evaluation, whereas the GA finds suitable solutions by 

analyzing several alternatives simultaneously (chromosomes).  
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This Soft Computing technique consists of the following steps (figure 2): setting-

up; NN retraining, modeling of fitness function; and GA operators, simulated evaluation 

and control evaluation (In Valero et al., 2009 and Valero 2010 this framework is 

explained in detail): 

(i) Setting-up. The problem must be properly codified; a starting generation is 

obtained (ensuring diversity). Then, the fitness of those chromosomes, which 

represent the reaction conditions sets in the present case study, is 

experimentally evaluated, and, subsequently, a suitable NN model is obtained 

by selecting the best topology and training parameters. Finally, GA 

parameters are established. 

(ii) NN retraining. The NN model is updated in order to enhance its precision, 

employing the last control generation obtained, whose fitness was 

experimentally evaluated. 

(iii) Modeling of fitness function. The NN is used to approximate the fitness value 

of a chromosome both in the crossover operator employed by the GA and in 

the simulated (in-silico) evaluation stage. 

(iv) GA operators. The first mutation operator acts over some chromosomes, 

modifying some genes (which compose each chromosome and represent each 

variable under study) in a haphazard way, jumping randomly anywhere 

within the allowed gene domain. Second, the crossover operator is based on 

confidence intervals and proposes new solutions assisted by the NN. New 

chromosomes are obtained taking into account its fitness and the genetic 

material of the best ones of each generation. Both operators take into 

consideration the rules defined in the codification. 

(v) Simulated evaluation. The chromosomes (reaction conditions sets, in the 

present case) are selected from a candidate generation, getting a control 

generation. This in silico selection is done by using the NN model, i.e., the 

chromosomes presenting the most promising fitness have more probabilities 

to be selected, according the approximations made by the NN. The resulting 

control generation size corresponds to a fixed percentage of chromosomes of 
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the GA candidate generation. This control generation has to be 

experimentally evaluated in the membrane reactor. 

(vi) Control evaluation, in this final step the fitness value of each chromosome 

that belongs to the control generation is experimentally evaluated. Thus, the 

approximation values of the fitness functions predicted by the NN are 

replaced by the experimental ones. 

A real-coded codification is used, which was specifically developed to permit 

establishing rules at different levels that the obtained solutions must satisfy. For that 

reason, this codification allows studying diverse kinds of problems. In this case, the 

problem consists of optimizing the required operation conditions to maximize the 

ethylene yield in the ODHE, and its codification was shown in the figure 3. Each 

chromosome represents a particular operation condition set, which comprises five 

genes: (i) nominal reactor temperature (Temp); (ii) gas flow in the reaction compartment 

(QHC); (iii) gas flow in the oxygen-rich compartment (QAir); (iv) ethane concentration 

in the reaction compartment (%C2H6)); and (v) oxygen concentration in oxygen-rich 

compartment (%O2). In table 1 it is depicted the allowed range for each operation 

parameters studied. The objective function optimized by the GA is the same that the 

employed to calculate the fitness value assigned to each particular operation condition 

set or chromosome. Thus, the fitness value (Eq. 3) corresponds to the ethylene yield in 

the ODHE reaction. 

The GA parameters employed1 were those obtained in a previous study (Serra et al., 

2007). Moreover, the GA suggests 51 new operation conditions sets (chromosomes) in 

each new generation. However, only the 63% of those chromosomes are experimentally 

tested. These selected operation conditions sets constitute the control generation, and its 

fitness corresponds to the experimental ethylene yield results.  

  

                                                            
1 Mutation probability = 5%, genes mutated = 1; α = 0.9; parents = 10%; population = 
51; reduction ratio = 37%. 
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4. Results and Discussions 

4.1. Experimental and Reproducibility Procedure 

As indicated above, this work was performed using a Ba0.5Sr0.5Co0.8Fe0.2O 

(BSCF) membrane reactor. This perovskite-material exhibits the highest oxygen 

permeation flux due to its high ionic and electronic conductivity. However, when BSFC 

membranes are exposed to CO2-containing gas mixtures, the oxygen permeation flux 

decreased. The original flux could also be recovered by switching back to CO2-free 

atmosphere at temperatures higher than 550 ºC. The degradation is associated to the fact 

that earth alkali metals (included in the perovskite structure) tend to form carbonates 

(Arnold et al., 2007; Yan et al., 2008) at temperatures below 800ºC. Moreover, when 

lower percentages of CO2 (< 5 %) are used, the carbonates layer reaches an equilibrium 

thickness that still allows oxygen permeation even though with a reduced performance. 

That indicates a competition between two reactions: (i) stabilization to perovskite phase 

due to oxygen permeation, as commonly known in literature (Vente et al., 2006); and 

(ii) carbonation. If no competition between these reactions would take place, the oxygen 

permeation flux would stop after a certain time in each applied CO2 concentration since 

a continuously increase of the carbonate would occur. In all reaction tests, the BSCF 

membrane showed a good chemical stability, in spite of the CO2 presence, likely due to 

the low concentration of CO2 in the reaction side and the high oxygen permeation flux. 

In addition, after each reaction cycle a regeneration step was carried. 

The microstructure of the BSCF membranes is showed in the figure 4. Although 

some pores appear on the cross-section of the BSCF membrane before catalytic test 

(figure 4a), they are proved to be closed pores by the leakage test. Figure 4b showed the 

facture cross-section of the membrane after 150 h on stream. The analysed area 

corresponds to the closest to the reaction side surface. The membrane morphology has 

undergone degradation and the formation of Ba-rich particles along the grain boundary, 

which might be due to segregation of different phases (mixed Ba and Sr-carbonates) 

during the catalytic tests.  

Reproducibility of the catalytic tests was carried out following the experimental 

procedure depicted above. A control test was repeated in the same operating conditions 



10 

after 2 reaction-regeneration cycles. The values of ethylene yield obtained have a 

standard deviation of  1.5 % (figure 5). Mostrar tambien selectividad 

 

4.2. Getting a Suitable NN Model 

As mentioned in section 3.2, it is necessary to study the different factors involved 

in the NN prediction performance in order to obtain a suitable NN model for the fitness 

approximation. In this case, the data employed to carry out this analysis comes from a 

previous experiment in which 27 operation conditions sets for the ODHE reaction 

where tested. Obviously, the variables and allowed range values were the same (table 

1). This analysis consisted in the study of several topologies, training algorithms and 

learning parameters. Table 2 describes all the analyzed possibilities (6720 experiments). 

In all these experiments, a tangential activation function was employed, because this 

was postulated as a suitable option for the catalysis field in Serra et al., 2003. Due to the 

complexity of this analysis and the experimental procedure followed, this analysis was 

performed in advance (prior to membrane reactor starting up), since the reactor could 

not be stopped, or left to wait long enough to perform the steps necessary to get the NN. 

In order to obtain a suitable NN topology, an incremental method based in the 

supervised learning was applied. Therefore, different topologies based on the multilayer 

perceptron were test. Starting by only one hidden layer and few neurons, the topology is 

modified increasing the number of neurons (double of inputs as maximum), repeating 

the process with two hidden layers. The training algorithms studied (Backpropagation 

and Backpropagation momentum) were those that offer good results for the majority 

kids of problems according with the literature when multilayer perceptrons are 

employed (Bishop, 1996; Duda et al., 2001). 

As the initial number of samples was small (only 27), a cross-validation technique 

on the data set was used (Bishop, 1996). Using this technique, the training set was 

randomly divided into ten subsets of training, validating and testing samples. Therefore, 

each experiment was carry out with different combinations of subsets, taking into 

account the medium values of the predictions made in the test phase. 



11 

A selection of the best experiments carried out is shown is table 3. The best 

performance was obtained for an NN model with 5 nodes in its input layer, 9 nodes in 

its 1st hidden layer, 9 nodes in its 2nd hidden layer and 1 node in its output layer and it 

was trained employing the Backprop with momentum training algorithm, and with the 

learning parameters η=0.5, µ=0.6. This NN model was the selected model for the Soft 

Computing optimization technique. 

4.3. Soft Computing Optimization Evolution 

The optimization process consisted of an iterative process with 4 steps, i.e., 4 

different generations. The Soft Computing framework suggested one starting generation 

of 51 random operation conditions sets (generation 1). In each of the next 3 iterations, a 

candidate generation of 51 possible operation condition sets was suggested while a 

control generation of 32 operation condition sets was selected and experimentally 

tested. Thus, the GA explored 204 possible solutions but only 147 where finally tested 

in the membrane reactor. 

The evolution of the fitness obtained for the different solutions studied is shown in 

figure 6. Figure 6a shows the evolution of the fitness approximations (predictions of the 

NN) followed by the candidates generations suggested by the GA. Specifically, in 

figure 6b it is possible to observe how the control generations evolved, showing the 

fitness values (ethylene yields) obtained for the reaction conditions sets suggested by 

the Soft Computing framework. As can be also seen in figure 7, the evolution of the 

mean fitness values of ethylene yield for the different generations are quite similar in 

both cases, improving from one generation to another. Thus, the noise introduced by the 

NN prediction error does not alter apparently the performance of the Soft Computing 

framework. 

Figure 8a shows the evolution of the conversion obtained for the four evolved 

generations. The highest value of ethane conversion was obtained in the generation 1 

and they were achieved at low concentrations of ethane (< 2%), while in the fourth 

generation a higher ethane conversion was reached (~ 98%) with an ethane 

concentration > 10% even at high temperatures of reaction. Taking into account the 

evolution of the average ethane conversion along the optimization process (Fig. 8d), an 

improvement is achieved through the first optimization steps. In the second generation, 
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an improvement in the ethylene selectivity is visible. Although, the highest selectivity to 

ethylene (~ 95%) is obtained in generation 1, this corresponds to a rather low ethane 

conversion and therefore a low ethylene yield (~ 35%) was achieved (Fig. 8b). Fig. 8c 

shows the evolution of CO2 selectivity with the evolved generations. Similarly, the 

highest CO2 selectivity is observed for a particular operation conditions set (Temp = 

900 ºC; %C2H6 = 1.5 %; %O2 = 21 %) in generation 1. This is ascribed to the diversity 

and the exploratory character of this first generation. It is possible to see in figure 8e 

and 8f that the methane selectivity slightly improves from the first to the fourth 

operation condition sets, while the C3 selectivity increases in the first iterations and then 

decreases in the last one. 

Concerning the topology of the experimental space (ethylene yield), it seems that 

there are two areas maximizing the yield, i.e. an area located at high temperature (875ºC 

or above) and an area located at moderate temperature (850ºC). The first one is a 

relatively large area, which combines high yields but considerable selectivity to 

secondary products (C3 or methane), while the second one is a rather small area at 

certain combinations of QHC and %C2H6. This last area presents higher ethylene 

selectivity and it is studied more in detail in section 4.4. The optimization framework 

focused on the first broad high-yield zone, i.e. it converges toward higher reaction 

temperatures in the last optimization steps. Certainly, the GA identified a greater 

potential of improvement in this area although a singular maximum has been found at 

low temperature. This behavior would be due to the limitations of the NN models, 

because singularities or very particular maximum areas are not well modeled and 

predicted by them. This fact has been proved by looking to the predicted space by the 

NN models and will be shown in section 4.5 and figure 11. In the second generation, a 

significant qualitative improvement was obtained in the ethylene yield (candidates and 

control generations). However, the enhancement in the third and fourth generations is 

very slight, since the Soft Computing framework had been located in one region of the 

search space considered as a promising area of operating conditions. 

Figure 9 shows the evolution of the mean square error2 (MSE) obtained by the 

model to predict the fitness of the different control generations suggested during the 

                                                            
2 Mean square error =  (real-predicted)2/n, where n is the number of samples. 
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optimization process. As can be seen, the model was gradually adapting to the problem 

under study, as higher amount of experimental data becomes available. 

 

4.4. Promising Area Exploitation 

Considering the results proposed by the algorithm, a promising area of operating 

conditions was explored in detail although it was outside of the main area investigated 

by the Soft Computing framework during the last optimization steps. Figure 10 shows 

the ethylene yield obtained in this area as a function of different operating conditions. In 

this area, the ethylene selectivity remained almost constant at high values (
42HCS ~ 90 

%) while CH4 (
4CHS ~ 8 %) was obtained as by-product. Ethane conversion increases 

with the temperature while ethylene selectivity slightly decreases due to higher 

selectivity of secondary reactions to form CH4 and COX. It can be observed that the 

maximum ethylene yield is at 850 ºC (Figure 10a). These results are consistent with the 

reported by other authors with a similar membrane (Rebeilleau-Dassonneville et al., 

2005; Wang et al., 2006). Figure 10b shows the ethylene yield as a function of the 

ethane concentration in the reaction mixture. As expected, the ethylene yield decreases 

when the ethane concentration increases in the feed although the ethylene productivity 

(ml/min cm2) rises. Figure 10c shows the ethylene yield as a function of feed flow rate 

in the reaction side. The ethane conversion decreases with an increase of the feed flow 

rate because this implies a shorter residence time. The opposite trend is observed for the 

ethylene selectivity. A shorter residence time involves a lower probability of oxidation 

of the ethylene produced, so its selectivity increases. Thus, the ethylene yield reached a 

maximum when the feed flow rate in the reaction side was 400 ml(STP)/min. However, 

in the range of operating conditions studied, no clear influence of the oxygen content in 

the air side was seen (figure 10d). 

4.5. NN Modelling of Whole Experimental Space 

It this section, it is shown the modeling results with the NN model fitted using the 

experimental data obtained during the membrane reactor operation. Thus, all the 

experimental data obtained during the optimization process and those obtained during 

the process of exploitation of a promising are were employed. Therefore, the 178 

samples (conditions sets) were split into training (80%), test (10%) and validation 
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(10%) data sets. A MSE of 0.0289 was obtained for the performance of this NN when it 

approximates the fitness value of the test samples. 

Concerning the topology of the NN in silico space used by the Soft computing 

framework during the optimization, Figure 11 shows 2D contour representations taking 

into account the three most important variables, i.e. hydrocarbon feed flow rate QHC, 

ethane concentration in feed %C2H6 and temperature. Specifically, Figure 11 shows the 

variation of QHC and %C2H6, varied in the whole range studies -Table 1- for three 

different temperatures. When increasing the operating temperature the high-yield area is 

larger although the selectivity toward secondary products increases. There exists always 

an area at high QHC and medium-to-high C2H6%, which maxims the ethylene yield. 

However, at 850ºC it cannot be observed the local maximum at C2H6% = 2% and QHC 

= 400 ml(STP)/min experimentally observed and this could be one of the reasons for the 

convergence towards the high-temperature maximum. 

 

5. Conclusions 

The optimization of the operating conditions of a membrane reactor for the 

oxidative dehydration of ethane is shown. The optimization algorithm combines a 

genetic algorithm and a neural network. The NN model is obtained using the 

experimental data from previous iterations and it is employed by the GA to in silico 

screen larger generation sizes and reduce the number of conditions to be 

experimental tested in the membrane reactor. This framework based on soft 

computing techniques has been used to maximize the ethylene yield by varying 

simultaneous five operation variables: nominal reactor temperature (Temp); gas 

flow in the reaction compartment (QHC); gas flow in the oxygen-rich compartment 

(QAir); ethane concentration in the reaction compartment (%C2H6); and oxygen 

concentration in oxygen-rich compartment (%O2). The most important variables are 

temperature and those related to the reaction compartment (%C2H6 and QHC). For 

a given temperature, there exists a certain combination of %C2H6 and QHC, which 

maximizes the ethylene yield. Through the optimization process two maximums 

have been identified and explored. The framework explored thoroughly the high 

temperature maximum area. Moreover, it is shown how the NN model (topology, 
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training algorithm and learning parameters) is obtained, and the analysis of its 

behaviour along the optimization process. The highest yield reached in the 

optimization process exceeded 92%. 
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TABLES 

Table 1. Range of values allowed for the operation parameters studied 

Operation Parameter Minimum Maximum Delta 

Temp 700 ºC 900ºC 50 
QHC 50 ml/min 500 ml/min 10 
QAir 50 ml/min 500 ml/min 10 
%C2H6 1.5 % 14% 0.5 
%O2 2 % 21 % 0.5 
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Table 2. NN topologies, training algorithms and training parameters studied 

NN topology  Training algorithms 

Layer Neurons   Name Parameters 

Input layer 5   Backprop η= {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} 
1st hidden layer [1,10]   
2nd hidden layer [0,10]   Backprop 

momentum  
η= {0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8} 

µ={0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8} Output layer 1   
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Table 3. Selection of NN models studied: mean square error in test (MSE) 

NN topology  Training algorithms 
MSE 

In 1st 2nd Out  Name Parameters 
5 4 5 1  Backprop η=0.8 0.0173773612 
5 5 10 1  Backprop Mom. η=0.2, µ=0.7 0.0153971969 
5 8 7 1  Backprop Mom. η=0.3, µ=0.7 0.015035905 
5 9 6 1  Backprop Mom. η=0.4, µ=0.7 0.0145730314 
5 9 9 1  Backprop Mom. η=0.5, µ=0.6 0.0114666878 
5 9 2 1  Backprop Mom. η=0.6, µ=0.7 0.0146375867 
5 7 9 1  Backprop Mom. η=0.7, µ=0.7 0.0123018692 
5 4 4 1  Backprop Mom. η=0.8, µ=0.6 0.0131072584 
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FIGURE CAPTIONS 

Fig. 1. Schematics of the lab-scale membrane reactor design. 

Fig. 2. Steps of the applied Soft Computing Technique to optimize the MIEC-catalytic 

membrane reactors. 

Fig. 3. Problem codification. Example of a chromosome that represents a particular 

operation conditions set, formed by five genes which correspond to five operating 

conditions employed in the optimization. The established rules are: minimum, 

maximum, allowed increments (delta) values for the different genes. 

Fig. 4. SEM pictures of the fracture cross-section of Ba0.5Sr0.5Co0.8Fe0.2O3- (BSCF) 

membrane: (a) before catalytic tests, (b) after catalytic tests. 

Fig. 5. Ethylene yield evolution using the same experimental condition as 

reproducibility test. Temp = 800 ºC, QHC = 50 ml(STP)/min, QAir = 420 ml(STP)/min, 

8.4 %C2H6, 18.5 %O2. Each point was repeated three times within a 0.1 % S.D. 

Fig. 6. Oxidative dehydrogenation of ethane behaviour (ethylene yield) for the four 

generations: (a) Predicted performance for the different candidates (51 sets) suggested 

in each generation; and (b) Experimental results obtained in the control generations (32 

sets).  

Fig. 7. Mean ethylene yield for the different generations (candidates generations and 

control generations).  

Fig. 8. Experimental results in terms of ethane conversion and selectivity toward the 

different reaction products for the four evolved control generations.  

Fig. 9. Mean Square Error (MSE) evolution of the approximations made by the NN 

model through the optimization process. For each control generation, the MSE reached 

in the fitness approximation of its chromosomes is showed.  

Fig 10. Ethylene yield, different operating conditions. (a) as a function of reaction 

temperature: 5.4 %C2H6, 4 %O2, QHC = 400 ml(STP)/min, QAir = 200 ml(STP)/min; 

(b) as a function of percentage of C2H6 in the feed: Temp = 850 ºC, 4 %O2, QHC = 400 

ml(STP)/min, QAir = 200 ml(STP)/min; (c) as a function of feed flow rate: Temp = 850 
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ºC, 4 % O2, 5.4 %C2H6, QAir = 200 ml(STP)/min; and (d) as a function of percentage 

of O2: Temp = 850 ºC, 5.4 %C2H6, QHC = 400 ml(STP)/min, QAir = 200 ml(STP)/min.  

Fig 11. 2D space mapping plots obtained using the NN model trained with the whole 

experimental data. Uniquely the variables concerned with the hydrocarbon feed are 

considered for three different temperatures. The variation ranges is 50-500 ml(STP)/min 

for QHC and 1.5-14% for %C2H6. The fixed variables are QAir (210 ml(STP)/min) and 

% O2 (5%). 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 11 
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