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Abstract –In recent years, with the advent of new and cheaper sensors, the use of olfactory sys-
tems in homes, industries, and hospitals has a new start. Multisensor systems can improve the 
ability to distinguish between complex mixtures of volatile substances. To develop multisensor 
systems that are accurate and reliable, it is important to take into account the anomalies that 
may arise because of electronic instabilities, types of sensors, and air flow. In this approach, 32 
metal oxide semiconductor sensors of 7 different types and operating at different temperatures 
have been used to develop a multisensor olfactory system. Each type of sensor has been charac-
terized to select the most suitable temperature combinations. In addition, a prechamber has been 
designed to ensure a good air flow from the sample to the sensing area. The multisensor system 
has been tested with good results to perform multidimensional information detection of two fruits, 
based on obtaining sensor matrix data, extracting three features parameters from each sensor 
curve and using these parameters as the input to a pattern recognition system. 
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I. INTRODUCTION 

A very intensive research about olfactory systems is going on with the objective to find new al-

ternative methods for volatile organic compound classification in different areas. Now, research-

ers can obtain large and heterogeneous signal datasets generated in real time. The data are then 

processed with complex algorithms to extract information that is useful for applications such as 

quality and taste determination, leakage detection, food and medical diagnostics. However, it is 

precisely in medical applications that olfactory systems are very interesting, and several research 

projects are under way. One reason for this is the several dog projects that run around the world 

for medical diagnosis [1-3]. If a dog can be used for these medical applications, why not use an 

electronic olfactory system that offers greater advantages? 

Here, we briefly review the progress in the field of artificial olfaction for medical applications. 

In [4], the authors present a networked electronic nose, which can detect and recognize human 

odors from the armpit region. Studies of characterization of breath from smokers and nonsmokers 

using electronic nose were reported in [5] with the objective of proving the influence of smoking 



 

on breath analyses. Moczko et al. present in [6] an optical diagnostic assay consisting of a mix-

ture of environmental-sensitive fluorescent dyes combined with multivariate data analysis for 

quantitative and qualitative examination of biological and clinical samples using electronic nose 

and electronic tongue systems. Detection and diagnosis of lung cancer based on an electronic 

nose instrument that includes a gas extraction and capillary column to concentrate, desorb, and 

separate volatile organic compounds (VOCs) in patients’ breath is found in a paper by Wang et 

al.  [7]. References [8-9] aim to determine human blood glucose levels through analyzing the ace-

tone present in exhaled breath as a noninvasive method with the help of an electronic nose sys-

tem. Garcia-Cortes et al. propose in [10] a method to detect the presence of cortisol and adrena-

line in body's sweat by electronic noses with resistive sensors as a noninvasive method. Finally, 

studies in [11] have shown the potential for early detection of microbial contaminants in urine 

samples using electronic nose technology. 

A preliminary study of our work was presented in [12] where we use 32 gas sensors from Figa-

ro Engineering Inc. to develop an olfactory system that can be used to classify a wide variety of 

volatile organic compounds. Some related applications that have been developed based on Figaro 

gas sensors are breath alcohol checkers, automatic cooking controls in microwave ovens, and air 

quality/ventilation control systems for home and automobiles. Figaro gas sensors are solid-state 

sensors composed of a sintered metal oxide that detects gases through an increase in electrical 

conductivity when reducing gases are adsorbed on the sensor’s surface. 

A simple electrical circuit shown in Fig. 1 can convert the change in conductivity to an output 

signal that corresponds to the gas concentration. The sensor requires two voltage inputs: heater 

voltage (VHeater) and circuit voltage (Vsensor). The heater voltage (VHeater) is applied to the integrat-

ed heater to maintain the sensing element at a specific temperature, which is optimal for sensing. 



 

Circuit voltage (Vsensor) is applied to allow measurement of voltage (Vout) across a load resistor 

(RL), which is connected in series with the sensor [13-14]. 

The ability to have different sensitivity properties by selecting the most appropriate combina-

tions of the sensor temperature (VHeater) and the possibility that Figaro Engineering Inc. provides 

various types of sensors enables the development of a multisensor olfactory system with 32, 64, 

128, or more sensors. 

Thereafter, the output signals from the sensors are digitized and stored for each sample. In this 

work three features parameters are extracted from each sensor curve: transient slope, saturation 

slope and maximum slope. These parameters are used as the input to a pattern recognition system 

to classify the substance under test.  

II. OLFACTORY SYSTEM 
 

A. Sensor Characterization 
 

The basic assumption behind our olfactory system is that normal variations in the MOS sensors 

from Figaro Engineering Inc. combined with the selected operating temperature lead to a wide 

range of different responses toward volatile organic compounds. We have used seven commercial 

MOS that are sensitive to various types of gases: TGS2610-C00, TGS2610-D00, TGS2611-C00, 

TGS2600-B00, TGS2620-C00, TGS2602-B00, and TGS2442-B02. Because of the high sensitivi-

ty of these sensors, they are used in residential gas alarms, gas leak checkers, indoor air quality 

controls, and residential CO detectors. Subsequently, these sensors can be beneficially used in 

more complex applications, such as in medicine to detect various diseases, particularly different 

types of cancers. 



 

Figaro sensors require a small amount of power to operate the sensor element at elevated tem-

peratures between 200 ̊C to 400 ̊C. By varying the operating temperature, changing VHeater, we 

can alter the sensor’s response to various combustible gases. The seven types of sensors used in 

this work were investigated with the measurement setup illustrated in Fig. 2 to determine their 

VHeater range. 

The sensor characterization system is based on a virtual instrumentation system, where two in-

struments are connected to a computer via GPIB bus, and the LabVIEW is used to handle them. 

A power source (FA-851) supplies two drive currents, one for the sensor (Rs) and the other for 

the heater (Rh). Then, a digital multimeter (HP 33120A) is used to measure the output voltage of 

the sensor on the load resistor (RL). Table I lists the range results in the form of current instead of 

voltage for some sensors. 

B. System Design 
 

The complete system is shown in Fig. 3 consisting of two parts: the electrical part and the part 

of the preprocessing of the samples, the prechamber. The electrical design of the system consists 

of eight identical electronic boards with four sensors in each of them. Each board includes a volt-

age regulator (LP38692MP-ADJ), which supplies the heater (VHeater) for each of the four sensors. 

This regulator is controlled by the user interface and allows us to vary the supply voltage during 

the measurement process. The output voltage (Vout) of each sensor is fed into an amplifier 

(OP074) in a voltage follower configuration. 

For data acquisition, we use an ADC from the National Instruments (NI USB-6218, 16 Bits, 

250 kS/s, Isolated M. Series MIO DAQ, Bus-Powered). The NI USB-6218 has 32 analog inputs 

that we use for data collection from the 32 sensors and only two analog outputs that are used to 



 

adjust the output voltage of the regulator and to control the electrovalve. In addition, it has 32 

digital I/O lines that can be used to control some functions of the system by software. 

The first part of the prechamber has a clean air pump. The air flow is adjusted manually with a 

small valve. This air is split into two streams, one that goes through the sample chamber and 

thereafter to the electrovalve and the other that goes directly to the electrovalve. The electrovalve 

is controlled automatically from the interface. The process is as follows: clean air passes through 

the system to clean it during a predetermined time and then passes air flow through the sample 

chamber during another fixed time. 

The setup of the parameter for the measurements is controlled by a dedicated graphical user in-

terface (GUI) implemented using LabVIEW on a personal computer [15]. This highly GUI al-

lows to configure the hardware with full control and flexibility. 

From the GUI, we can configure individually each sensor. Figure 4 shows the configuration 

panel in different colors corresponding to the eight electrical boards. 

III.      DATA ANALYSIS 

For classification, the analysis process involves presenting the multisensor measurements to the 

input of a classification machine for a given slice of time. However, the raw data can be quite 

large and/or noisy to be effective, so a preprocessing step is needed to reduce the raw data to a 

smaller input data set that highlights particular features in the signals. In our case, data prepro-

cessing is done using the software functions from LabVIEW. For example, we have designed an 

IIR low-pass digital filter of second order with variable cutoff frequency to eliminate any possi-

ble ripple. 



 

The measurement steps used in our system are presented in Fig. 5. The first step in the olfacto-

ry analysis is to present a reference gas (clean air) to the sensor to obtain a reference line. Then 

the sensor is exposed to an odoriferous substance, causing changes in its output until the sensor 

reach a steady state. Finally, the odorant is flushed out of the sensor using the reference gas, and 

the sensor returns to its original state. From the software, we can set the open, acquisition, and 

close times depending on the substance to be analyzed. 

The classification features used in our system are presented in Fig. 6 and are late saturation, 

saturation slope, early saturation, transient slope, and time to threshold [16-17]. 

The system has been tested with a number of substances working well. The analysis presented 

here is on the response of two fruits: pear and apple. Ten samples of every one. The output of the 

sensors consists of 32 independent analog voltages, each varying with time and odor. The voltage 

is sampled at 100 samples/second, and the raw data file is compacted to a data matrix consisting 

of 32 columns by 2000 rows. 

As in previous works [18], the sampled signals are reduced to three numbers for each sensor: 

transient slope, saturation slope, and late saturation—three features that are believed to describe 

the origin of the signals well. 

Pattern recognition algorithms are necessary to extract useful information from sensor outputs. 

One of the most common pattern recognition techniques used is principal component analysis 

(PCA) [19-20]. PCA is a linear data reduction technique, which reduces multivariate data into 

two or three dimensions. This technique extracts features by projecting the high-dimensional data 

set into a dimensionally reduced space formed by the uncorrelated and orthogonal eigenvectors of 

the covariance matrix calculated from the sensor responses, called principal components. The 

magnitude of the single eigenvector or percentage of information is expressed by the eigenvalue, 

which gives a measure of the variance related to that principal component [21]. 



 

This work uses PCA to visualize the similarities and differences between the various measure-

ments in the dataset, using the first feature, transient slope. Fig. 7 shows the result plot of data in 

the PC1-PC2-PC3 plane of pear and apple. It is shown that the measurements are divided into 

two different groups. 

 

 The primary data are the 32 signals from the sensors (different sensors operating at different 

temperatures each) which are digitized and stored for each sample. Three features parameters are 

extracted from each sensor curve (transient slope (TS), saturation slope (SS) and maximum slope 

(MS) when the sample is closed), making a total of 96 parameters for each sample. Those param-

eters are used as the input to the pattern recognition systems: WEKA [22]. This is an open source 

data mining toolbox (written in Java) developed by Ian Witten’s group at the University of Wai-

kato. It provides tools for all the tasks usually performed in data mining, including numerous al-

gorithms for pre-processing, classification, regression and clustering. Here we utilized 10 differ-

ent classification algorithms in WEKA. We used their default parameters unless otherwise stated.  

   Here are the classification algorithms used in our work with their default parameters unless 

otherwise stated: 

• BayesNet creates a Bayesian Network with implementation of the standard naïve Bayes al-

gorithm, where normal distribution is for numerical features. 

• RBFNetwork is an implementation of radial basis functions. 

• SimpleLogistic constructs linear logistic regression models. 

• SMO is a sequential minimum optimization algorithm for building support vector machine. 



 

• IB1 is a nearest-neighbor algorithm that classifies an instance according to the nearest 

neighbor identified by the Euclidean distance. 

• The Kstar algorithm uses entropic distance measure, based on the probability of transform-

ing one instance into another by randomly choosing between all possible transformations, 

and turns out to be better than Euclidean distance for classification. 

• VFI finds intervals for each feature and attributes each class according to the number of in-

stances with the class in the training set for the specific interval. Voting is used to select the 

final class for an instance. 

• ADTree algorithms create trees as models. 

• NNge is a nearest-neighbor algorithm that learns rules based on the hyper rectangles that it 

divides the instance space. 

• PART constructs rules based on partial decision treesOur inexhaustible power source sup-

plies. 

Table II gives the results for 20 runs (10 pears and 10 apples) from our experiment. 

 

V. CONCLUSION 

This work has used 32 gas sensors (seven different types of sensors) from Figaro Engineering 

Inc. to develop an olfactory system that can be used to classify a wide variety of volatile organic 

compounds. A wide range of responses can be obtained by selecting the most appropriate combi-

nations of the sensor working temperature. To know the most suitable temperature combinations, 

we have characterized each sensor. 



 

The olfactory system has been verified with tests of two fruits, pear and apple, and classifica-

tion algorithms such as PCA and others found in WEKA with good results. 
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Figure and Table Captions 
 
Figure. 1. Basic measuring circuit. 

Figure 2. Sensor characterization setup. 
 
Figure 3. The complete system: electrical design of the system and the prechamber. 
 
Figure 4. Sensor configuration panel. 
 
Figure 5. Measurement steps. 
 
Figure 6. Classification features.  
 
Figure 7. PCA using Transient Slope. 
 
 

TABLE I.RANGE OF SENSOR TEMPERATURES 

TABLE II.CLASSIFICATION RESULTS WITH WEKA 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
Figure 1.  Basic measuring circuit 



 

 
 

 
Figure 2.  Sensor characterization setup 



 

 
 

 
Figure 3.  The complete system: electrical design of the system and the prechamber 



 

 
 

 
Figure 4.  Sensor configuration panel   



 

 
 

 
Figure 5.  Measurement steps  

 



 

 
 

 
Figure 6.  Classification features 



 

 
 

 

 
Figure 7.  PCA using Transient Slope  

  



 

 
      

   

TABLE I.  RANGE OF SENSOR TEMPERATURES 

Sensor Isensor 
(mA) 

IHeater 
(mA) 

TGS2600 
TGS2602 
TGS2610-C00 
TGS2610-D00 
TGS2611 
TGS2620 
TGS2442 

2.5-6.0 
3.0-6.0 
2.5-6.0 
2.5-6.0 
2.5-6.0 
2.0-6.0 
NC* 

30-38 
35-45 
30-45 
30-45 
30-38 
25-35 
NC* 

 * Not Characterized due it uses different circuit diagram 



 

 
 

TABLE II.  CLASSIFICATION RESULTS WITH WEKA 40 SAMPLES 

 

Classification Al-
gorithm Pear Apple 

Total (%) 
Correctly 
Classified 

Bayes Network 
RBF Network 
SimpleLogistic 
SMO 
IB1 
KStar 
VFI 
ADTree 
NNge 
PART 

37/39 
38/39 
39/39 
39/39 
39/39 
39/39 
34/39 
39/39 
39/39 
38/39 

38/40 
36/40 
38/40 
39/40 
40/40 
38/40 
36/40 
36/40 
38/40 
36/40 

94 
93 
97 
99 
100 
97 
89 
95 
97 
94 

 
 
 


