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Haiyan Zhou, J. Jaime Gómez-Hernández and Liangping Li, Group of Hydrogeology, Depart-

ment of hydraulics and environmental engineering, Universitat Politècnica de València, Camino

de Vera, s/n 46022 Valencia, Spain. (haizh@upvnet.upv.es; zhouhaiyan2006@gmail.com)

1Group of Hydrogeology, Department of

hydraulics and environmental engineering,

Universitat Politècnica de València,
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Abstract. Uncertainty of model predictions is caused to a large extent2

by the uncertainty on model parameters while the identification of model pa-3

rameters is demanding due to the inherent heterogeneity of the aquifer. A4

variety of inverse methods has been proposed for parameter identification.5

In this paper we present a novel inverse method to constrain the model pa-6

rameters (hydraulic conductivities) to the observed state data (hydraulic heads).7

In the method proposed we build a conditioning pattern consisting of sim-8

ulated model parameters and observed flow data. The unknown parameter9

values are simulated by pattern searching through an ensemble of realiza-10

tions rather than optimizing an objective function. The model parameters11

do not necessarily follow a multiGaussian distribution and the nonlinear re-12

lationship between the parameter and the response is captured by the mul-13

tipoint pattern matching. The algorithm is evaluated in two synthetic bimodal14

aquifers. The proposed method is able to reproduce the main structure of15

the reference fields and the performance of the updated model in predict-16

ing flow and transport is improved compared with that of the prior model.17
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1. Introduction

The inverse problem in hydrogeology aims to gain understanding about the characteris-18

tics of the subsurface, i.e., identification of model structure and corresponding parameters19

by integrating observed model responses such as hydraulic head and mass concentration20

data. Several inverse methods have been proposed to solve the inverse problem in the21

last several decades. At the early stages of inverse modeling, a single “best” estimate of22

hydraulic conductivities was pursued. Examples can be found in the works by Kitanidis23

and Vomvoris [1983]; Hoeksema and Kitanidis [1984, 1985], who proposed the geostatis-24

tical method to identify the parameters of the underlying variogram that describes the25

multiGaussian random function used to characterize the spatial heterogeneity of hydraulic26

conductivities; once these parameters were identified, the hydraulic conductivity map was27

obtained by cokriging using the conductivity and piezometric head data. Another exam-28

ple can be found in the work by Carrera and Neuman [1986], who treated the aquifer29

properties as piecewise homogeneous. These approaches produced maps of conductivity30

which were capable of reproducing the observed heads but which were too smooth to be31

used for transport predictions, since they lacked the short scale variability observed in32

the field. It was, thus, realized that the aquifer should be characterized by heterogeneous33

distributions of the parameters [see De Marsily et al., 2005, for a historic perspective34

on the treatment of heterogeneity in aquifer modeling]. There are already several inverse35

methods capable of dealing with this heterogeneity, e.g., the pilot point method [RamaRao36

et al., 1995], the self-calibration method [Gómez-Hernández et al., 1997; Wen et al., 1999;37

Hendricks Franssen et al., 2003], the ensemble Kalman filter [Evensen, 2003; Chen and38
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Zhang , 2006; Hendricks Franssen and Kinzelbach, 2008; Zhou et al., 2011] or the Markov39

chain Monte Carlo method [Oliver et al., 1997; Fu and Gómez-Hernández , 2009].40

In the above referred inverse methods, the groundwater model structure is described41

by a variogram model, which basically measures the correlation between two spatial lo-42

cations. This two-point variogram-based model is not able to characterize curvilinear43

features, e.g., cross-bedded structures in fluvial deposits or erosion fractures in karstic44

formations, while these curvilinear structures play a key role in flow and especially solute45

migration modeling [e.g., Kerrou et al., 2008; Li et al., 2011a]. A solution to address this46

issue is to use multiple-point geostatistics. A “training image”, which contains the types47

of features to be reproduced by the aquifer model, is introduced as a geological conceptual48

model [Guardiano and Srivastava, 1993]. This training image is used to derive experimen-49

tal local conditional distributions that serve to propagate the curvilinear patterns onto50

the simulated aquifer. Several programs based on multiple-point geostatistics are avail-51

able, e.g., SNESIM [Strebelle, 2002], FILTERSIM [Zhang et al., 2006], SIMPAT [Arpat52

and Caers , 2007] and DS [Mariethoz et al., 2010a], and a detailed review on multiple-53

point geostatistics is provided by Hu and Chugunova [2008]. The advantages of using54

multiple-point geostatistics for the characterization of hydraulic conductivity and for flow55

and transport prediction have been confirmed after comparison with variogram-based sim-56

ulation methods, both in synthetic examples and in real aquifers [e.g., Feyen and Caers ,57

2006; Huysmans and Dassargues , 2009; Journel and Zhang , 2006].58

Most of the inverse methods construct an objective function to measure the deviation59

between the simulated and observed data. Then, through an optimization algorithm,60

the initial aquifer models are modified until the observed data are well reproduced by61
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the model predictions. However, during the optimization process, the aquifer spatial62

structure may be modified with respect to the structure of the initial guesses and become63

geologically unrealistic [Kitanidis , 2007]. To prevent this departure, techniques such as64

including a regularization term or using a plausibility criterion are combined with the65

objective function to constrain the deviation of the updated model from the prior model66

[Alcolea et al., 2006; Emsellem and De Marsily , 1971; Neuman, 1973]. But these methods67

have been challenged on their theoretical foundations [RamaRao et al., 1995; Rubin et al.,68

2010]. Some recent inverse methods use other avenues in an attempt to preserve the prior69

structure when perturbing the parameter values in the prior fields.70

Considering the limits of the conventional inverse methods and the advantages of71

multiple-point geostatistics, a reasonable solution is to use the multiple-point geostatis-72

tics to characterize the nonlinear structure and to try to preserve this structure when73

the model is updated using inverse methods. In this way, the curvilinear features are74

characterized properly and the model remains physically realistic during the inverse pro-75

cess. A few examples of such inverse methods include the gradual deformation method76

(GDM) [Hu, 2000; Caers , 2003], the probability perturbation method (PPM) [Caers ,77

2002; Caers and Hoffman, 2006] and the probability conditioning method (PCM) [Ja-78

farpour and Khodabakhshi , 2011]. In all three methods, the prior model structure can79

be characterized by multiple-point statistics and the property realizations are updated80

in such a way that the prior model statistics are kept. The difference between the three81

methods resides in the way the observations are integrated and the way the realizations82

are updated. The main idea of the GDM is that the realizations are perturbed by modify-83

ing the random number used to draw from the conditional distribution functions inherent84
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to the sequential simulation algorithm. This random number is chosen through optimiz-85

ing a deformation parameter so that the mismatch between the simulated and observed86

dynamic data is reduced. The PPM is based on modifying the conditional probability87

functions themselves. For the case of PCM, the realizations are updated with a multiple-88

point simulation method under a soft constraint given by a probability map inferred from89

observed flow data. The probability map is built with the help of the ensemble Kalman90

filter.91

Alternatively to the inverse methods formulated in the framework of minimizing an92

objective function, the Markov chain Monte Carlo method provides another way to tackle93

the problem, namely, sampling from a posterior distribution that is already conditioned to94

observations. Two such examples that are capable of dealing with curvilinear structures95

are the blocking moving window algorithm [Alcolea and Renard , 2010] and the iterative96

spatial resampling [Mariethoz et al., 2010b]. Another avenue is treating the inverse prob-97

lem as a search problem, e.g., the distance-based inverse method proposed by Suzuki and98

Caers [2008]. A large number of multiple-point simulations are constructed, from which99

a search scheme is used to select those consistent with the observed dynamic data. The100

spatial structure of the parameters is not disturbed since no modification is performed,101

simply a selection is carried out. The updated model should be geologically realistic as102

long as the prior model is so.103

In this paper, we present a novel approach to constrain hydraulic conductivity realiza-104

tions to dynamic flow data. The most distinct novelty of the proposed method is that105

we formulate the inverse problem on the basis of pattern search instead of minimizing an106

objective function or sampling the posterior distribution. We assume that the hydraulic107
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conductivity to be simulated is related to the geologic structure and to the flow dynam-108

ics in its neighborhood. The value at each simulated cell is determined by searching109

for matches, through an ensemble of realizations, to the conditional pattern composed110

of simulated hydraulic conductivities and observed flow data. The proposed pixel-based111

method is not only convenient to condition to local data but it is also able to capture the112

geologic structure inherent to the initial seed realization. The pattern is searched through113

an ensemble of realizations, all of which are consistent with the geologic structure, so that114

the pattern-search method ensures that the updated fields are physically realistic and the115

prior statistics are preserved.116

The rest of the paper is organized as follows. In section 2, the proposed method is117

presented in detail. In section 3, a synthetic example is described to assess the performance118

of the method. In section 4, the results of the synthetic experiment are presented and119

analyzed. In section 5, the method is further evaluated with another example to test the120

effect of the number of conditioning data and of the boundary conditions. In section 6,121

a few issues about the method are discussed. In section 7, some conclusions about the122

proposed method are given.123

2. Methodology

The method is based on the direct sampling algorithm proposed by Mariethoz et al.124

[2010a]. It has been extended to include transient state observation data, which requires125

the enlargement of the concept of training image to a training ensemble of realizations.126

Also, in the same line as the ensemble Kalman filter approach, the ensemble of realizations127

that serve as training image are updated as new sets of state observation data are collected.128
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2.1. Flow chart of the algorithm

A flow chart of the proposed method is displayed in Figure 1, which consists of the129

following steps:130

Step 1. Generate the prior ensemble of realizations. For the purpose of illustration we131

will consider that hydraulic conductivity is the parameter of interest. Let the ensemble be132

composed of Nr realizations and each hydraulic conductivity field be discretized into Nn133

cells. Multiple-point sequential simulation methods are applied to generate the conduc-134

tivity field ensemble, e.g., using the SNESIM or the DS codes mentioned in the previous135

section. A training image is needed for the generation. This training image will not be136

used again. At this initial stage, no observation state data are considered. The hydraulic137

conductivity hard data are honored if available. Time is set to zero.138

Loop on time t begins.139

Step 2. Increase t to the next time step. Forecast the dependent state variables.140

For each realization of the ensemble, the hydraulic head data for the current time t141

are obtained by solving the transient flow equation, from time zero to time t, on the142

hydraulic conductivity field subject to initial and boundary conditions. (We assume that143

the initial and boundary conditions are known perfectly so that we can focus on the144

uncertainty caused by hydraulic conductivities.) At this stage we have an ensemble of145

hydraulic conductivity realizations that mimic the patterns of the training image, and146

the corresponding ensemble of piezometric head fields. These two ensembles will become147

now the training images in which to look for joint patterns of both conductivities and148

piezometric heads that will permit the generation of a new set of conductivity realizations149
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consistent with the piezometric head measurements. Piezometric head data are observed,150

and become conditioning data.151

Loop on realizations begins.152

Loop on cells begins.153

Step 3. A new ensemble of realizations will be generated. For each realization, define154

a random path visiting each cell except those with hydraulic conductivity measurements.155

For each cell with an unknown value (Ki) in the random path,156

• Step 3A. Determine the conditional data pattern of Ki. In this work, the data pat-157

tern is composed of both hydraulic conductivities and piezometric heads. The conditional158

hydraulic conductivities include measured hard data, if any, and previously simulated159

values. A maximum number M of conditional hydraulic conductivities and a maximum160

number N of conditional piezometric heads are set. Only the closest M hydraulic con-161

ductivities and the closest N observed heads are stored as conditional data constituting162

the conditioning pattern. For instance, in Figure 2, the conditioning data pattern for163

Ki consists of three hydraulic conductivities and two observed heads. The size of the164

conditional data pattern is not determined by a maximum search area but instead by165

the number of conditioning data. The varying-size search neighborhood scheme was pro-166

posed by Mariethoz et al. [2010a]. Advantages of this pattern configuration are two-fold:167

(i) the size of the conductivity data event in the pattern is influenced by the density168

of the known conductivities, i.e., when the known conductivities are sparse, the pattern169

will cover a large area to reach the maximum number of conditioning data (M); on the170

contrary, when the known conductivities are dense, the pattern will cover a small area171

and only the nearest cells are used to account for the local variety. In other words, the172
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flexible search neighborhood scheme has similar effect as multiple-grids [Mariethoz et al.,173

2010a]; (ii) only hydraulic heads located near the unknown cell (N at most) are considered174

rather than all the heads over the field, which helps to avoid potential spurious correlation175

between simulated hydraulic conductivities and head observations.176

• Step 3B. Given the conditional pattern, start a search in the ensemble of training

image couples (hydraulic conductivity-piezometric head) for a match to the conditional

pattern. Randomly start from a realization couple in the ensemble and then follow the

ensemble sequentially. The search is not conducted on the entire realization, but it is

restricted to a close neighborhood around the location of Ki, this restriction is enforced

because hydraulic heads depend not only on hydraulic conductivities but also on the

boundary conditions and the presence of sinks or sources. More specifically, in this work,

we search only within a 3 by 3 square as shown in Figure 3, i.e., only 9 pattern candidates

in a 3 by 3 square are evaluated in each realization. Calculate the distance function (d)

between the conditioning data and the candidate:

d = ωdk + (1− ω)dh (1)

where dk and dh are the distances between the conditioning data and the candidate pattern177

corresponding to hydraulic conductivities and heads, respectively; ω is a trade-off coef-178

ficient used to balance the influence of the two types of conditioning data. This weight179

technique has been applied in many inverse methods and a usual choice for the value of180

ω is 0.5 when two types of conditioning data are taken into account and the distance181

measures are normalized [e.g., Alcolea and Renard , 2010; Capilla and Llopis-Albert , 2009;182

Christiansen et al., 2011; Hendricks Franssen et al., 2003]. The expression of the distance183

function will be discussed later on.184
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• Step 3C. Assign the value of Ki. If the distance function value d is less than a185

predefined threshold (dt), locate the value of K relative to the conditioning pattern in186

the matching realization and assign it to Ki. If dt = 0, the conditioning data are exactly187

matched; if dt > 0, a certain disagreement is allowed. To explicitly distinguish the misfits188

related with hydraulic conductivities and heads in the conditioning data pattern, we can189

define two thresholds, dt,k and dt,h. In the present work, hydraulic conductivities are190

considered as categorical variables (two facies with uniform values) and the corresponding191

dt,k is set to 0, indicating an exact fit. Normally dt,h is assigned a value larger than 0 to192

account for measurement errors and the difficulty of fitting exactly a continuous variable193

(a value of dt,h = 0.005 was used, after some trial, in the examples following). If no match194

is found with distances below the predefined thresholds, the pattern with the smallest195

distance is used.196

Loop back to step 3A for generation of the next cell until all cells for the current197

realization are visited.198

Loop back to step 3 to start the generation of the next realization until all realizations199

are generated.200

Step 4. Postprocessing. Inconsistencies may appear during data assimilation as shown201

in Figure 4. We can find that the cells indicated by the ellipses are not consistent with202

their neighboring values, and cannot be considered geologically realistic. We simply filter203

these inconsistent values out similarly as Henrion et al. [2010] did. However, this might204

disturb the facies proportions since no proportion control strategy is applied. In order205

to reduce the influence of the artificial filtering on facies proportion, we only consider206

those inconsistent objects consisting of at most three cells. More complex postprocessing207
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methods can be found in image processing algorithms, e.g., kernel principal component208

analysis [Kim et al., 2005; Mika et al., 1999], or others [Falivene et al., 2009].209

Step 5. Update the training images. The set of conductivity realizations generated210

become the new set of training images.211

Loop back to step 2 for the next time step until all transient hydraulic heads have been212

used.213

2.2. Distance function

In the proposed method, the distance function plays a key role and it must be defined

carefully. The Minkowski distance is a commonly used distance function as defined below

[Borg and Groenen, 2005; Duda et al., 2001].

d{d(xn), p(xn)} =

(

n
∑

i=1

|d(xi)− p(xi)|
q

)1/q

(q ≥ 1) (2)

where d{d(xn), p(xn)} is the distance function between the data event d(xn) and the214

conditioning data pattern p(xn), n indicates the size of d(xn) and p(xn), x can be hydraulic215

conductivity and head data, and q is a variable that, if equal to 1, gives rise to the216

Manhattan distance, and if it is equal to 2, to the Euclidian distance.217

1. Manhattan distance (city-block distance) has been used as the dissimilarity measure218

in SIMPAT, a multiple-point geostatistical simulation algorithm [Arpat and Caers , 2007].219

• Categorical variables:

d{d(xn), p(xn)} =
1

n

n
∑

i=1

ai d ∈ [0, 1]

ai =

{

0, if d(xi) = p(xi)

1, otherwise

(3)

The distance values are normalized into the range [0, 1] by dividing by n, which makes it220

convenient to define the threshold values, i.e., threshold values near 0 indicate very low221
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deviation and near 1 very high deviation. It also helps in combining the distances for222

different attributes.223

• Continuous variables:

d{d(xn), p(xn)} =
1

n

n
∑

i=1

|d(xi)− p(xi)|

dmax

d ∈ [0, 1] (4)

where dmax is the maximum deviation between d(xi) and p(xi), together with n used to224

normalize the distance values.225

2. Weighted Euclidean distance attributes different weights to elements in the data226

event depending on their distance to the simulated cell, i.e., the nearer to the simulated227

cell, the more important, while in the unweighted Manhattan distance, all elements share228

the same weight.229

• Categorical variables:

d{d(xn), p(xn)} =
1

∑n
i=1

h−1

i

n
∑

i=1

aih
−1

i d ∈ [0, 1] (5)

where hi is the lag distance from the element in the data event to the simulated cell and230

ai is the same as in Equation 3.231

• Continuous variables:

d{d(xn), p(xn)} =

(

1
∑n

i=1
h−1

i

n
∑

i=1

|d(xi)− p(xi)|
2

d2max

h−1

i

)1/2

d ∈ [0, 1] (6)

where dmax is the same as in Equation 4 and hi is the same as in Equation 5.232

The Manhattan distance and the weighted Euclidian distance functions defined above233

were first proposed in developing the DS [Mariethoz et al., 2010a] and then modified in234

this work. Manhattan distance functions (Equations 3 and 4) are more computationally235

efficient than Euclidian ones (Equations 5 and 6). An alternative to the Minkowski-based236
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distance family is the Hausdorff distance [Dubuisson and Jain, 1994], which has been237

used, for instance, by Suzuki and Caers [2008].238

3. Synthetic example A

A synthetic experiment is designed to evaluate the performance of the proposed method.239

The test aquifer is assumed confined and it covers a domain discretized into 100 × 80 × 1240

cells, with cell dimensions of 1 m × 1 m × 10 m. A training image for the facies (Figure241

5) was generated using the object-based geologic modeling program FLUVSIM [Deutsch242

and Tran, 2002]. This training image serves as a conceptual model of the bimodal aquifer243

composed of high permeability sand and low permeability shale. Uniform permeability244

values are assigned to the two facies, i.e., lnK = −4 m/d for the shale and lnK = 1 m/d245

for the sand. DS [Mariethoz et al., 2010a], a pattern-based multiple-point geostatistical246

simulation algorithm, is used to generate the reference facies field (Figure 6) by borrow-247

ing structures from the training image. Hydraulic conductivities at 20 locations in the248

reference are collected serving as the conditioning hard data (see Figure 6 for locations of249

the measurements).250

MODFLOW2000 [Harbaugh et al., 2000], a finite-difference flow simulator, is used to251

solve the transient groundwater flow equation on the reference field subject to the bound-252

ary conditions: impermeable boundaries in the north and south, constant head in the253

west (H = 0 m) and prescribed flow rate in the east (Q = 100 m3/d). Notice that the flow254

pumping rates in the east boundaries are not uniform, but proportional to the conduc-255

tivities at the boundary. The initial head is 0 m everywhere over the field. A simulation256

period of 30 days is discretized into 20 time steps following a geometric sequence of ratio257

1.05. Specific storage is assumed constant and equal to 0.003 m−1. Piezometric head data258
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at 63 observation locations are collected serving as the conditioning data to update the259

prior model parameters. Configuration of the 63 piezometers is shown in Figure 6.260

The number of conditioning data (20 hydraulic conductivity values, and 63 piezometric261

head time series) maybe unrealistically large for practical situations, although it may not262

be in controlled experiments. Example B below uses a reduced number of conditioning263

data. The main purpose of this example is to test the method in an extreme case with264

lots of state conditioning data. The larger the number of state conditioning data, the265

more stress is put on the inverse algorithm to find acceptable solutions.266

The prior ensemble of realizations consists of 500 realizations which are generated by267

DS using the same training image used to generate the reference (the reference field is,268

of course, not a member of the initial ensemble of realizations). The 20 conductivity269

hard data are honored when the prior realizations are generated. The prior ensemble270

is generated so that the uncertainties related with the conceptual model and hydraulic271

conductivity measurement are not considered in this experiment.272

The observed piezometric heads in the first 6 time steps (6.17 days) are used to up-273

date the prior realizations with the proposed method. The results after integrating the274

observations are presented and discussed in the following section.275

4. Results and discussions

4.1. Hydraulic conductivity characterization

Figure 7 shows the first four realizations in the ensemble before and after the head276

data are assimilated. The prior realizations (left column) are conditioned to 20 hydraulic277

conductivity measurements and the updated realizations (right column) are consistent278

with both measured conductivity and observed piezometric head data. We can find that279
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the prior realizations deviate considerably from the reference field while the updated280

realizations resemble closely the reference. In other words, the main channel pattern is281

captured after integrating the observed piezometric heads. However, we notice that the282

updated realizations exhibit a little higher variability near the west boundaries than in the283

east (indicated by the three ellipses in the reference field). This can be attributed partly284

to the boundary conditions, since piezometric heads around prescribed head boundaries285

are not sensitive to hydraulic conductivity fluctuations.286

Figure 8 summarizes the prior and posterior statistic metrics of lnK over the ensemble

of realizations. The ensemble average (the second row of Figure 8, “EA”) of the prior

realizations exhibits no channel trend while the updated EA shows clear channels and

resembles the reference field. The ensemble standard deviation (the third row of Figure

8, “Std. dev.”) shows a significant reduction of uncertainty, i.e., in the prior model the

uncertainties around the hard data are small and the uncertainties grow big when far away

from the hard data locations while in the updated case they are reduced everywhere. We

also plot the RMSE (the bottom row of Figure 8) taking advantage of knowing the

reference field exactly. The RMSE(x)i at a cell i is computed as

RMSE(x)i =

[

1

Nr

Nr
∑

j=1

(xsim
i,j − x

ref
i )2

]1/2

(7)

where Nr is the number of realizations in the ensemble, x can be either the lnK or the287

hydraulic head h, the superscripts sim and ref indicate simulation and reference model,288

respectively. Similarly with the standard deviation, the RMSE(lnK) field confirms the289

importance of assimilating observed piezometric head data in characterizing the structure290

of hydraulic conductivity. The error is clearly reduced in the updated ensemble compared291

with the prior case. Moreover, we calculate the average RMSE(lnK) over the field and292
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it is reduced from 3.0 m/d in the prior model to 1.5 m/d in the updated model. As we293

have mentioned previously, the structure identification near the west boundaries is less294

improved compared with the east part (separated by the dashed line) due to the influence295

of the prescribed head boundaries.296

4.2. Prediction capability of the updated model

To evaluate the prediction capacity of the updated model, we will use it to forecast297

piezometric head evolution and mass transport. The initial and boundary conditions298

remain the same as during the model calibration. Figure 9 shows the evolution of hydraulic299

head with time in the simulation period (30 days) at two of the piezometers, where the left300

column shows predictions with the prior model and the right column shows predictions301

with the updated model after conditioning on the observed hydraulic head data until302

6.17 days. The prediction uncertainty is substantially reduced in the updated lnK model303

compared with the prior model. The average RMSE(h) at each time step over the304

hydraulic field is calculated and shown in Figure 10. We can argue that the hydraulic305

head prediction with the updated model is improved not only at the observation locations306

but over the whole field. Figure 11 summarizes the ensemble average, standard deviation307

andRMSE of the flow prediction at the end of the simulation with the prior and calibrated308

model, separately.309

Figure 12 illustrates the configuration of the transport prediction experiment. Con-310

servative particles are released linearly along x = 10 m and three control planes across311

the field are placed to record the arrival times of the particles. The random walk par-312

ticle tracking program RW3D [Fernàndez-Garcia et al., 2005; Salamon et al., 2006; Li313

et al., 2011b] is used to solve the transport equation in the lnK fields once the flow has314
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reached steady state. Advection and dispersion are both considered, with longitudinal315

and transverse dispersivities of 0.5 m and 0.05 m, respectively. The porosity is assumed316

constant as 0.3. Figure 13 shows the breakthrough curves (BTCs) at the three planes for317

the prior ensemble (left column) and for the updated ensemble (right column). We can318

see that the updated model reproduces the reference BTCs better than the prior model319

does, i.e., the median of the travel times in the updated model resembles the reference320

BTCs. Moreover, the prediction uncertainties measured by the 5th and 95th percentiles321

are significantly reduced, i.e., the confidence interval is narrower, after the hydraulic heads322

are conditioned.323

5. Synthetic example B

5.1. Reference

In the previous synthetic example there are 20 hard conductivity data and 63 piezome-324

ters used to calibrate the prior model. To further examine the performance of the proposed325

method we test another application in a more realistic example where the observations are326

available at only 9 locations. The inclusion of a pumping well in the center of the domain327

also allows to investigate the method under a different flow configuration. This example328

is similar to the one in Alcolea and Renard [2010] with respect to the conditioning hard329

data, hydraulic head piezometers and boundary conditions.330

The research domain of 100 m × 100 m × 10 m is discretized into 100 × 100 × 1 cells.331

The reference field is generated with the multiple point geostatistical simulation algorithm332

SNESIM [Strebelle, 2002] using the training image in Figure 14A. The reference field is333

shown in Figure 14B, where the hydraulic conductivities are assumed constant within each334

facies, i.e., K = 10 m/d for sand and K = 10−3 m/d for shale. The transient flow equation335
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is solved on the reference confined aquifer under the boundary conditions: prescribed head336

boundaries in the west (H = 1 m) and in the east (H = 0 m) and impermeable boundaries337

in the north and south. A pumping well with a production of 100 m3/d is located at well338

9 in Figure 14B. The initial head is 0 m over the field. The simulation period of 30 days339

is discretized into 20 time steps following a geometric sequence of ratio 1.2.340

5.2. Prior model and conditioning data

The prior model ensemble consists of 500 realizations which are generated with the same341

algorithm (SNESIM) and the same training image (Figure 14A). This ensemble does not342

include the reference field. Each realization is conditioned to the lithofacies measured from343

the reference field at the 9 wells (Figure 14B), 6 of which are in sand the the other 3 are in344

shale. The location of the conditioning wells does not correspond to a random sampling,345

but it implicitly assumes that there is a priori geological/geophysical information that346

helps drilling most of the wells in highly conductive zones. The head dynamics at the 9347

wells in the reference field are collected for the first 10 time steps (4.17 days) and used as348

conditioning data. The resulting model will be evaluated from facies recognition and flow349

prediction capacity.350

5.3. Calibrated model

5.3.1. Facies recognition351

Figure 15 summarizes the reproduction of the facies by the conditional realizations. On352

the first row a single realization is shown. It can be seen how, after updating, the channel353

location is much closer to the one in the reference, the main channel features around the354

conditioning wells are reproduced; however they fail to match the entire length of the355

isolated branch towards the bottom of the reference, and the branch on the upper right356
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corner. In both cases the difficulty to identify these two channel branches has to do with357

the small sensitivity that conductivity at these locations has with respect to piezometric358

heads. Notice that both unidentified areas are connected to the no flow boundaries in one359

of their extremes, so the flow channeling effect, particularly for the branch in the upper360

right corner, does not exist. (This latter fact can better be noticed in Figure 16.) The361

second row in Figure 15 shows the probability that a given cell is in sand, and the third362

row, the ensemble variance map. When analyzing these last two maps, it is noticeable the363

improvement that incorporating the piezometric head data brings to the characterization364

of the hydraulic conductivity field. It is clear that the characterization is best for the365

channels which are most affected by the presence of the pumping well. It is also clear366

that if no wells had been located in the channels, their identification would have been less367

precise. The largest uncertainties after updating are next to the left boundary, again due368

to the lack of sensitivity of the hydraulic conductivities to the piezometric heads next to369

prescribed head boundaries.370

5.3.2. Flow prediction371

Regarding flow predictions beyond the conditioning period, Figure 16 shows the flow372

prediction at the end of simulation period (30 days) in one realization of the ensemble,373

and Figure 17 displays the head evolution at the 9 wells in the prior and updated model.374

From Figure 16 we can reach similar conclusions as when analyzing the characterization375

of the conductivities, the updated model does quite a good job except for the part of376

the channel branch towards the bottom that the conditioning model is not capable of377

capturing. Figure 17 shows the head evolution up to and past the conditioning period in378

all the 500 realizations before and after updating. We can appreciate the large reduction on379
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the spread of the piezometric head evolution in the different realizations. Analyzing each380

well individually, we notice that piezometric head assimilation allows setting the barriers381

that prevent the effect of the pumping to reach wells 7 and 8; well 1 still displays too much382

fluctuation in the updated model, this is due to the difficulty of the updating algorithm to383

capture the blob of shale which is in the reference field between wells 1 and 9, this failure384

to capture such a feature may be due to the fact that such a feature is not too recurrent in385

the training image and therefore it does not replicate often in the 500 realizations; wells 2,386

3 and 4 are much better reproduced since the main channel branches connecting them to387

well 9 are present; well 5 evolution is related to its connection to the prescribed west head388

boundary and to the large shale barrier between the well 5 and the pumping well 9, the389

reproduction of these two features in the updated fields produces such a good reproduction390

for well 5; well 6 is very well reproduced during the conditioning period, but afterwards391

the drawdowns are larger than observed, probably if the conditioning period had been392

larger, better results could have been obtained; finally, well 9, the one with the largest393

drawdowns reduces substantially its fluctuations with regard to the initial realizations, but394

the conditioning is not as good as in the rest of the wells in absolute terms. The difficulty395

to match better well 9 is related to the very large variability on the drawdowns at well396

9 in the seed realizations; trying to find close matches to the conditional patterns when397

generating the conductivity values for the nodes around the pumping well is particularly398

difficult for the initial time steps, because the initial seed conductivities can have quite399

different pattern structure, and therefore, quite heterogeneous piezometric heads around400

the pumping well.401
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6. Discussion

The method we have presented takes advantage of the latest developments on multiple402

point geostatistics and presents what we believe is a conceptually completely new approach403

to inverse modeling in hydrogeology. While the method has been demonstrated to work404

in two quite different experimental setups, there remain a number of issues that should405

be further investigated in the future, such as:406

• How to handle continuos hydraulic conductivities. The main attractiveness of the407

DS simulation is that it can handle easily continuous distributions of the parameters408

being simulated; however, in our first attempts of implementing the inverse pattern-search409

algorithm using continuous hydraulic conductivities, it was always too difficult to find close410

enough matching patterns to the conditional one, resulting, at the end, in too noisy images.411

For this reason, we resorted back to the binary definition of the hydraulic conductivity412

field to ease the finding of the matching patterns. The inverse pattern-search algorithm413

should work with continuous conductivities but there is a need to explore the impact of414

the size of the ensemble of realizations, to optimize the searching strategy and to come415

up with good postprocessing algorithms that filter out the noise that appears in the final416

realizations.417

• Fine tune the distance functions. Which distance function to use when comparing418

patterns to the conditioning one was already an issue in the DS algorithm. This issue419

is augmented when the simulation is multivariate and two different variables have to be420

considered. Each variable will have its own distance, how should these two distances be421

combined? Should they be equally weighted? Should the Euclidean distance from the422

cells in the pattern to the cell being simulated be considered in computing the distance423
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between patterns? Which should the acceptance thresholds be? These are questions424

that require further analysis. In our case, we ended with an equal weight for both the425

normalized conductivity distance and the normalized piezometric head distance, and we426

used a threshold equal to zero for the conductivities, and a threshold of 0.005 for the heads;427

in the latter case, we had to do some trial-and-error analysis, since when the threshold428

was too small, it was difficult to find any match, but if it was too high, the matches were429

not too good, and noise was apparent in the realizations.430

• Sample space represented by the final ensemble of realizations. At this point, it is431

difficult to make any assertion on whether the final ensemble of realizations spans a space432

of uncertainty similar to the one that would be obtained by, for instance, sampling from433

a posterior distribution by a Markov chain Monte-Carlo algorithm.434

7. Summary and conclusions

We present a novel inverse method in this paper to estimate model parameters by435

assimilating the observed flow data. The proposed method aims at recognizing the spatial436

heterogeneity of the nonGaussian distributed model parameters while guaranteeing the437

flow responses consistent with the observations. The model parameters are characterized438

by multiple-point geostatistics what not only relaxes the assumption that the parameters439

follow a Gaussian distribution but also is able to characterize complex curvilinear geologic440

structures. The inverse method is based on the Direct Sampling of Mariethoz et al.441

[2010a] and it is formulated on the basis of pattern searching, i.e., search an ensemble442

of realizations for a data set which matches the conditional pattern composed of model443

parameters and observations. A distance function is introduced to measure the misfit444

between the conditional pattern and candidates. The searching scheme avoids the need445
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to use any optimization approach, and therefore, the danger of falling onto local minima.446

Another advantage of the proposed method is that it is not only easy to condition to hard447

data, since it is a pixel-based method, but it also capable of describing complex geologic448

features while preserving a prior random function model.449

The performance of the proposed method is assessed by two synthetic experiments in450

an aquifer composed of two facies, sand and shale with contrasting hydraulic conductivity451

values. The prior hydraulic conductivity models are updated by integrating observed452

piezometric head data using the proposed method. The main channel structures in the453

reference field are found to be well reproduced by the updated models. Furthermore, the454

prediction capacity of the updated models are evaluated in flow and transport simulations,455

for which both prediction error and uncertainty are significantly reduced.456
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Figure 1. Flow chart of the proposed pattern searching-based multiple-point ensemble inverse

method. d is the distance function value, Nn is the number of grids in each realization and Nr is

the number of realizations.
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Figure 2. A pattern example consisting of conditional hydraulic conductivity and head data.

Ki is the value to be simulated.
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Figure 3. Sketch map of the searching strategy. The dashed line indicates the exact location of

Ki through the ensemble. The candidates in the 3 by 3 square in each realization are evaluated to

find the match consistent with the conditioning hydraulic conductivities and observed piezometric

heads.

Figure 4. Sketch of filtering out noise. The black/white cells are converted to white/black so

as to be consistent with the values in the neighborhood.

D R A F T November 1, 2011, 2:38pm D R A F T



X - 34 ZHOU ET AL.: A PATTERN SEARCH BASED INVERSE METHOD

Training image    			

East

N
or

th

0 500
0

400

shale

sand

Figure 5. Training image used to generate the ensemble of binary facies realizations.
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Figure 6. Reference facies field.
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Figure 7. The first four realizations in the ensemble. The left column shows four prior facies

fields and the right column shows the corresponding updated facies. The reference field is also

shown for comparison.
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Figure 8. Ensemble average (the second row), standard deviation (the third row) and RMSE

(the bottom row) of lnK over the ensemble before and after head data conditioning. The reference

field (the top row) is also shown for comparison.
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Figure 9. Piezometric head evolution at two conditioning piezometers, positions of which are

shown in Figure 6. Results are shown for the prior ensemble and the updated ensemble. The

dots represent the piezometric head in the reference field.
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Figure 10. Evolution of average RMSE of piezometric heads over the field.
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Figure 11. Ensemble average (the second row), Standard deviation (the third row) and RMSE

(the bottom row) of hydraulic head over the ensemble before and after head data conditioning.

Reference head field (the top row) is also shown for comparison.
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Figure 12. Configuration of the transport prediction experiment.
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Figure 13. Summary of the breakthrough curves. The 5th percentile, the median, and the 95th

percentile of the travel times are computed as a function of normalized concentration. Dashed

lines correspond to the 5th and 95th percentiles, the solid line corresponds to the median, and the

dotted line is the breakthrough curve in the reference. Results are shown for the prior ensemble

and the updated ensemble.
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Figure 14. Training image and reference field. (A) Training image [Strebelle, 2002]. (B)

Reference hydraulic conductivity field, in which the conductivities are measured at the 9 points

serving as the hard data to generate the prior model and the piezometric head data at these wells

are used to calibrate the prior model.
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Figure 15. Comparison of the prior and calibrated hydraulic conductivity model. A realization

of the ensemble (the first row), probability of being sand (the second row) and variance (the third

row).
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Figure 16. Hydraulic head at the end of simulation period in the reference field, prior model

and updated model. Only one sample of the realization stack is shown. Hydraulic prediction

uncertainty is assessed in the following figure.
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Figure 17. Piezometric head evolution at the 9 conditioning piezometers, the positions of

which are shown in Figure 14B. Results are shown for the prior ensemble (the first 9 plots) and

the corresponding updated ensemble (the second 9). The dotted lines represent the piezometric

head in the reference. Only the first 6 days were used as conditioning data.
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