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Abstract 

The response of bridges subject to fire is an under researched topic despite the number of 

bridge failures caused by fire. Since available data shows that steel girder bridges are 

especially vulnerable to fire, this papers delves into their fire response by analyzing with a 3D 

numerical model the response of a typical bridge of 12.20 m. span length. A parametric study is 

performed considering: (1) two possibilities for the axial restraint of the bridge deck, (2) four 

types of structural steel for the girders (carbon steel and stainless steel grades 1.4301, 1.4401, 

and 1.4462), (3) three different constitutive models for carbon steel, (4) four live loads, and (5) 

two alternative fire loads (the hydrocarbon fire defined by Eurocode 1 and a fire corresponding 

to a real fire event). Results show that restraint to deck expansion coming from an adjacent 

span or abutment should be considered in the numerical model. In addition, times to collapse 

are very small when the bridge girders are built with carbon steel (between 8.5 and 18 minutes) 

but they can almost double if stainless steel is used for the girders. Therefore, stainless steel is 

a material to consider for steel girder bridges in a high fire risk situation, especially if the bridge 

is located in a corrosive environment and its aesthetics deserves special attention. The 

methodology developed in this paper and the results obtained are useful for researchers and 

practitioners interested in developing and applying a performance-based approach for the 

design of bridges against fire. 
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1. Introduction.  

Bridges are a critical component of the transportation system whose loss can 

result in important social and economical consequences (e.g. [1,2]). While a lot of 

attention has been paid to understanding and predicting the effects on bridges of 

accidental extreme load events such as earthquakes, winds, scour, and ship collisions 

(e.g. [3, 4]), fire hazard has got very little consideration as proved by recent literature 

reviews ([5, 6]). However bridge fires are a major concern for two important reasons. 

First, traffic on bridges damaged by fire is usually hard to detour and affects the traffic 

quality in the region. For example, the collapse of two spans of the MacArthur Maze in 

Oakland, USA on April 29th 2007 due to a fire resulted in repairs and rebuilding 

operations costing more than US $9 million [7]. In addition, the closure of the Maze was 

estimated to have a total economic impact to the San Francisco Bay Area of $6 million 

dollars a day [8]. Secondly, bridge fires are a real threat as shown by data of a 

voluntary bridge failure survey, which was responded by the departments of 

transportation of 18 US states [9]. This survey was conducted in 2011 and collected 

data related to 1746 bridge failures. Although the vast majority of bridges (1001) 

collapsed for hydraulic reasons (scour, flood) and 520 collapsed due to collision, 

overload, or deterioration, 54 bridge collapses were due to fire, and only 19 collapses 

were due to earthquake (seismic states like California participated in the survey).   

Despite of the importance of bridge fires, fire safety engineering and structural fire 

engineering have mainly been concerned with building fire hazards (e.g. [10-15]). 

However, bridge fires deserve special attention because the fire response of a bridge 

and a building is different for many reasons including:  

    (1) Cause of fire: bridge fires are commonly caused by collisions (crashing of 

gasoline trucks and burning of gasoline in the vicinity of the bridge) or construction 

accidents (such as the ignition of wood scaffolding or wood formwork). On the other 

hand, building fires are commonly caused by accidental ignition of the fuel sources in 

the compartment.  Since the fuel is different, the fire loads are different. 

    (2) Fire loads: bridge fires are typically petrol fires, also referred to as 

hydrocarbon fires, which are much more severe than building fires and are 

characterized by fast heating rates or high fire intensities. Thus, the bridge fire is likely 

to be much more intense than typical building fire and can reach very high 

temperatures within the first few minutes of fire exposure.   

   (3) Fire protection: bridge girders typically have no fire protection whereas 

buildings have active and/or passive fire protection.  
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    (4) Beam depth: bridge beams are much deeper than common building beams 

and therefore more susceptible to web buckling since the webs are more slender. 

    (5) Connections:  bridge girders are typically supported by bearing on the 

bottom flange, whereas in buildings the connection is made through the web and/or the 

flanges. 

Within this general context, this paper delves into the fire response of steel girder 

bridges as this type of bridge is especially susceptible to collapse in a fire event [6]. To 

reach this goal, a parametric study of the fire response of a bridge designed by the 

Federal Highway Administration (FHWA henceforth) of the US is performed to analyze 

the influence of: (a) the amount of live load acting on the bridge deck during the fire, (b) 

the type of fire load, (c) the axial restraint imposed to the expansion of the heated 

bridge and (d) the type of steel (carbon steel or stainless steel) used to build the bridge. 

A focus on stainless steel is justified since this material (a) is becoming a more 

common choice in bridge engineering due to its aesthetics possibilities, excellent 

durability and structural performance [16-18], and (b) exhibits a better general fire 

performance than carbon steel [19]. These features make of stainless steel a material 

with a high potential for its use in bridges in corrosive environments where fire risk 

exists, especially if the full life cycle of the structure is analyzed when doing the cost 

assessment. 

This paper provides a better understanding of what design parameters affect bridge fire 

performance the most, something that has not been done yet with an extensive number 

of parameters.  Further, this work begins to examine how one can improve the fire 

performance of bridges that are in high fire risk areas (e.g. large number of tanker 

trucks passing through an area that cannot afford to be detoured).  While more 

research is needed to develop a complete set of guidelines for the design or retrofit of 

steel bridge girders, this paper enhances the knowledge-base. 

2. Prototype and numerical model. 

2.1 Prototype

This paper assesses the fire response of a simply supported steel highway 

overpass bridge designed by the FHWA commonly found in the USA (see Fig. 1a and 

b). The bridge spans 12.2 m and its cross section consists of five hot rolled steel 

girders of type W33x141 that support a reinforced concrete slab 0.20 m depth not 

structurally connected to the girders with shear studs (Fig. 2). Transverse diaphragms 
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are placed at mid span and at the supports to provide lateral stability to the bridge 

deck.  The bridge has two expansion joints at its extremities each one having a width of 

3.6 cm. A36 carbon steel [20] with a minimum yield stress of 250 MPa was used in the 

original design, although three alternative designs using stainless steel grades 304 (EN 

No. 1.4301), 316 (EN No. 1.4401) and Duplex 2205 (EN No. 1.4462) are also analyzed 

in this paper. Thermal and mechanical temperature dependent properties of these 

materials are explained in Section 2.3.2. 

2.2 Parameters of the study.

The goal of this paper is to analyze the influence of different parameters in the fire 

response of a typical steel girder bridge to learn from its behavior. The parameters 

considered and the corresponding analysis case studies are summarized in Table 1. 

2.2.1 Gravity loads acting on the bridge deck during the fire event.

Bridge standards related to traffic loads such as the EC-1 part 2 [21] provide the 

live loads to be considered when performing the structural analysis of a bridge 

depending on the limit state to be checked. Current provisions refer to ultimate and 

service limit states as well as to some accidental limit states but no guidance is given 

about the live loads acting on the bridge deck during a fire. However, video 

broadcastings show cars crossing a bridge while fire raged below [22] and therefore 

the influence of the amount of live loads should be studied. This is done in this paper 

by considering the following four possible combinations of dead load (G) and live load 

(Q): G, G+0.3Q, G+0.5Q, and G+Q, the load combinations being based on the 

provisions of the Eurocode [23] for traffic loads on buildings in the event of a fire. The 

specific values of G and Q considered in the analysis are: 

(a) 22542 N per linear meter of steel girder for the dead load. This value 

corresponds to the weight of concrete slab and the wearing surface of the deck 

supported by each girder.  In addition, the girder self weight (2067 N/m) is 

considered. 

(b) A uniform live load equal to 10700 N per linear meter of steel girder according 

to the AASHTO code [24] acting on the full span length. Although the bridge 

was originally designed to support the HS20-44 truck load of the AASHTO 

code [24] this load has not been considered in the analyses as the authors did 

not find any evidence of a truck crossing the bridge while it is on fire. 

2.2.2  Fire load. 
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Bridge or fire standards do not contain any specification related to the fire load to 

be considered when analyzing the fire response of a bridge. In this paper, the effects 

on the bridge of the following two fire curves have been studied: 

(1) The hydrocarbon fire curve of the Eurocode 1 [23] (EC-1 henceforth) given by: 

      T=1080 (1-0.325e-0.167t - 0.675e-2.5t) + T0                                (Eq. 1) 

In Eq. 1, t is the time in minutes and T0 is the ambient temperature (20ºC).  The 

use of the hydrocarbon curve instead of the standard ISO 834 curve is justified as the 

latter represents a fully developed fire in a compartment that might represent building 

fires but that does not match the conditions of bridge fires. These fires are mainly 

caused by overturning or crashing of tankers carrying petrol or some other kind of 

hydrocarbon [6] and they are typically developed in open spaces without any air supply 

limitation. 

(2) The fire curve proposed by Stoddard [25] to estimate the temperatures in a 

prestressed concrete bridge during a fire caused by a railroad tanker collision. 

Note that the railroad tanker involved in this collision carried circa 113 m3 of 

fuel, which was almost four times the amount of fuel commonly carried by the 

tanker trucks involved in most highway fire incidents [6]. 

Fig. 3, compares Stoddard’s, hydrocarbon, and standard fire curves.  It is seen that 

Stoddard’s curve and the hydrocarbon curves, which represent more intense fires than 

the standard curve used for building fires, reach higher temperatures in a smaller 

amount of time than the standard curve.  Fig. 3 shows that Stoddard’s fire is much 

hotter than the hydrocarbon fire as its peak temperature is around 1500ºC with a 

temperature decrease after 46 minutes, whereas the maximum temperature in the 

hydrocarbon fire is 1100ºC. 

2.2.3 Axial restraint. 

Deck temperature variations due to weather conditions provoke deck movements 

that, if properly designed and maintained expansion joints exist, do not result in internal 

forces in the deck. However, temperature variations in a fire are significantly larger than 

those due to weather changes and it is realistic to consider that the girder may expand 

enough to be eventually restrained by the abutments or an adjacent span.  To take into 

account this possibility, two types of analysis have been considered for each fire load, 

live load and material. The first one is named with the “fre” index and corresponds to a 

situation where the bridge is allowed to freely expand without any restraint. The second 
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one is named with the “fix” index and corresponds to a more realistic situation where 

deck is allowed to expand only up to the width of the expansion joint as detailed in 

Section 2.3.3. 

2.2.4 Type of steel. 

There are five different groups of stainless steels (austenitic, ferritic, martensitic, 

duplex and precipitation-hardening stainless steels) but austenitic and duplex stainless 

steels are the more useful groups for structural applications [25] so its use as structural 

material for the bridge of Fig. 2 is analyzed in this paper. Specifically, austenitic 

stainless steels grades 304 (EN No.1.4301) and 316 (EN No.1.4401) are considered as 

they are the most commonly employed within the construction industry [19] and they 

are suitable for rural, urban, industrial and marine locations [26] -in the case of marine 

and industrial locations only if the environment is not highly corrosive. In addition, 

duplex stainless steel grade 2205 (EN No.1.4462) is also considered as (1) this 

material is suitable for any location and especially for industrial and marine locations 

with higher corrosion than the typical for those environments due to, e.g., persistent 

high humidity or high ambient temperatures [26] and (2) this material has already been 

used in several bridges where corrosion was a major concern such as the Cala 

Galdana Bridge in Menorca (Spain) [16], the Padre Arrupe Bridge in Bilbao (Spain), the 

Via Mala River Gorge Bridge in Switzerland or the Millennium Bridge in York (United 

Kingdom) [17].  Therefore, the use of one type of carbon steel and three types of 

stainless steel is studied in this paper. With regards to carbon steel, three different 

constitutive stress-strain relationships are considered as explained in Section 2.3.2.  

2.3 Numerical model.

2.3.1 Discretization. 

The numerical study was done with the finite element (FE) software Abaqus [27]. 

Due to the symmetry of the problem, only half of the bridge is included in the analysis 

which reduces the size of the model and the computing time. An uncoupled thermo-

mechanical analysis is used where in the first phase (the thermal analysis) the heat 

transfer method provides transient nodal temperatures with respect to time.  In the 

second phase (the structural analysis), the nodal temperatures are read from the 

thermal analysis and corresponding temperature dependent mechanical material 

properties are used to find the equilibrium of the structure.  
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For the thermal analysis, Abaqus element DC3D8 is employed, which is a three 

dimensional eight-noded linear heat transfer brick element with one degree of freedom 

per node. For the structural analysis, Abaqus element C3D8 is used, which is a three 

dimensional eight-noded solid continuum element with three degrees of freedom per 

node. FE analyses include geometric and material non-linearity. A complex FE model 

with solid elements is used instead of a simpler model with beam elements in order to 

capture local phenomena such as web buckling that might control the global response 

and the failure mode of the bridge. 

Since there is no structural connection between the concrete slab and the girder (the 

bridge is not a composite bridge), the slab is included in the thermal phase of the 

analysis, but then is “deactivated” in the structural analysis.  In this manner, only the 

thermal impact of the slab is considered. Fig. 4 depicts the mesh used in the analyses. 

A finer mesh is used near the supports and the stiffeners because these are areas of 

high stress and more susceptible to local buckling. The FE model has 9533 nodes and 

6560 solid elements. The accuracy and efficiency of the mesh and FE model was 

tested (a) by comparing that the difference between the stresses and deflections due to 

dead loads at ambient temperature given by the beam theory, and (b) by checking that 

an increase of the number of elements in the areas where the mesh was coarser did 

not have any significant influence in the thermal and structural results. 

2.3.2 Modeling of the material. 

Thermal properties suggested by EC-2 [28] and EC-3 [29] were used for concrete 

and steel elements respectively. It was assumed that concrete aggregates were 

calcareous. A value for the unit mass of steel, a, of 7850 kg/m3 was used in all the 

analyses and the following stress-strain laws were used to characterize steel in the 

numerical models: 

(1) Carbon steel: Stress strain curves proposed by EC-3 [29] with and without 

strain hardening for steel with a yield stress at ambient temperature, fy, of 250 

MPa. In addition, since the bridge is built with an American steel, the laws 

proposed by the NCSTAR 1-3D [30] and NISTIR 7563 [31] reports based on 

the research conducted in support of the World Trade Center collapse 

investigation, were also used. It must be noted that mechanical properties 

proposed by NCSTAR [30] and NISTIR [31] are valid only until steel reaches a 

maximum temperature of 650ºC. Therefore, once the steel reached this 

temperature, mechanical properties from EC-3 [29] were always used. The 
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goal of using three different types of stress-strain relationships was to check 

the influence of the constitutive model on the fire response of the bridge. 

(2) Stainless steel: Stress strain curves proposed by Annex C of EC-3 [29].  

According to Euro Inox [26] (a) the minimum 0.2% proof strength at ambient 

temperature (f0.2p) for stainless steel grades 1.4301, 1.4401 and 1.4462 was 

taken as 210 MPa, 220 MPa and 460 MPa respectively, and (b) the ultimate 

tensile strength at ambient temperature (fu) for stainless steel grades 1.4301, 

1.4401 and 1.4462 was assumed to be 520 MPa, 520 MPa and 640 MPa 

respectively. 

Finally, engineering values of stresses ( ) and strains ( ) were converted into true 

stress strain laws ( n n) using Equations 2 and 3 and introduced in Abaqus.  

n= (1+ )         (Eq. 2) 

n= ln (1+ )         (Eq. 3) 

2.3.3 Boundary and loading conditions. 

 Appropriate boundary conditions were used at the mid-span section of the 

bridge to consider that only half of its structure was modeled. Specifically, mid-span 

section had free vertical displacement, but it was restrained from rotating and from 

translating on the longitudinal axis. In addition, a vertical support was provided along 

the surface of the bottom flange beneath the stiffener. Finally, and only for the “fix” 

analyses, a rigid solid block was created at a distance from the outer cross section of 

the bridge equal to the width of the expansion joint. This rigid solid block simulated the 

existence of an adjacent span or abutment and its goal was to ensure that axial 

expansion of the nodes of the outer cross section of the bridge was restrained once 

their horizontal (along “X” axis of Fig. 4a) displacement equaled the width of the 

expansion joint. This special feature of the “fix” models was implemented using 

Abaqus’ mechanical contact property option with normal surface-to-surface interaction 

type.  

All the gravity loads detailed in Section 2.2.1 (with the exception of the self weight of 

the steel girder) were applied as uniform pressure acting on the top of the upper flange 

of the steel girder. The self weight of the girder was automatically generated by the 

software. The fire loads described in Section 2.2.2 were applied to the underside of the 

girder and the slab and on the whole girder length. Note that the convective heat 

transfer coefficient, hc, is defined as 50 W/m2K for the hydrocarbon fire per EC-1 [23] 
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and not 25 W/m2K as commonly used in other cases. A value of hc equal to 50 W/m2K 

was also used in the analyses where Stoddard’s fire was used.   

2.3.4 Failure assessment. 

Failure of the structure was assumed to happen when any of the two following 

conditions was fulfilled: 

(1) Fracture occurs, which is assumed to happen when the ultimate strain u of the 

material is attained. This mode of failure is checked by comparing the 

maximum principal strain of the structure with u based on true values (Eq. 3). 

(2) The structure becomes unstable based on a drastic increase in the rate of 

vertical deflections or an inward movement of the roller support towards the 

center of the span.   

If only the previous two conditions are considered, the bridge deflections may be too 

large thus resulting in bridge demolition since repairs would not be possible.  

Therefore, a third criterion similar to those existing for buildings (e.g. BS 476 [32]) and 

related to maximum bridge deflections is desirable. This maximum deflection should 

depend on the bridge type and material as well as on the bridge span length, and its 

definition is considered to be object of future research. However, and to give some 

guidance, a limit value of L/20, as defined by BS 476 [32], has been considered and 

drawn in all the graphics related to bridge deflections.  L is the span length, which is 

equal to 12.2 meters in this study, thus L/20 equals 0.61 meters. 

Note that the analysis results will show that the structure is not submitted to a cooling 

phase because either the hydrocarbon fire is applied (which does not have a cooling 

phase) or the structure fails before temperatures from Stoddard’s fire start to decrease.  

3. Results and discussion. 

3.1 Thermal analysis.

3.1.1 Hydrocarbon fire. 

Fig. 5 shows the evolution of temperatures due to the hydrocarbon fire  

at mid-bottom flange (bottom fiber), mid-web (center thickness) and  

mid-top flange (top fiber) of the cross section of the bridge of Fig. 2  

(points A, B and C, respectively, shown in Fig. 6a). Since stainless steel has a lower 
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thermal conductivity than carbon steel, the bridge section built with stainless steel has 

always lower temperatures than the section built with carbon steel and, therefore, 

exhibits a better thermal behavior. Additionally, Fig. 6b shows the temperatures along 

the vertical axis of the girder at several time steps when carbon steel is used as 

structural material. A nonlinear thermal gradient appears because temperatures in the 

top flange, which is partially protected against fire by the concrete slab, are always 

smaller than in the web and in the bottom flange. As a consequence of this thermal 

gradient, mechanical strains (and therefore stresses) develop to ensure the fulfillment 

of the Bernoulli’s hypothesis (plane cross sections remain plane) even if the structure is 

statically determinate in relation to its support conditions and even if no dead or live 

load is applied.  Similar results are obtained when stainless steel is used. If the bridge 

is built with stainless steel, temperatures do not depend on the stainless steel grade 

since thermal properties of stainless steel according to EC-3 [29] are the same for all 

its grades. 

3.1.2 Stoddard’s fire.   

Fig. 7 compares the temperatures at three points of the cross section (mid-bottom 

flange, mid-web and mid-top flange) of the bridge due to hydrocarbon and Stoddard’s 

fires when carbon steel (Fig. 7a) and stainless steel (Fig. 7b) are used.  Fig. 3 shows 

that in the initial stage of the fire Stoddard’s fire is less severe than the hydrocarbon 

fire. Fig. 7 reflects this difference in the steel temperatures in the early stage of the fire, 

however, the situation reverses (i.e. the Stoddard fire produces higher temperatures) at 

the mid-web point after 20.1 minutes (carbon steel bridge) and 21.3 minutes (stainless 

steel bridge) and for the mid-bottom flange point after 21.8 minutes (carbon steel) and  

22.8 minutes (stainless steel).  Note that once steel reaches a temperature of 1200ºC 

results are purely theoretical and therefore are not included. This is due to the fact that 

steel loses its strength at 1200ºC according to EC-3 and thermal properties given by 

EC-3 are not valid beyond temperatures of 1200ºC. This happens after 21.7 minutes 

when carbon steel is used or after 23.5 minutes when stainless steel is employed. 

3.2 Structural analysis.

Times to failure (as defined in Section 2.3.4), failure mode and deflections at the   

time of failure are summarized in Table 2 for all the analyses performed. Detailed 

discussion of the results is provided next. 
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3.2.1 Influence of the live loads. 

Fig. 8 displays the evolution of deflections at the mid-span section of the bridge 

when carbon steel is used as structural material for the different amounts of live load 

considered in this study and the hydrocarbon fire (EC1) is applied. This figure and 

Table 2 show that the times to failure are very small and vary between 8.5 and 9.9 min. 

for the “fre” models and between 8.9 and 10.10 min. for the “fix” models. The largest 

times to failure occur when no live load is on the bridge deck whereas the smallest 

times to failure correspond to the bridge fully loaded. In any case, times to failure are 

almost always below 10 min, which give little time to undertake any action to extinguish 

the fire and avoid bridge collapse. It is important to note that the amount of live load 

does not have a strong influence in the collapse event as (1) it does not change the 

type of the failure and (2) a bridge with a full live load (G + Q case) fails only 14 % and 

12 % sooner than the case with no live load in the “fre” and “fix” models, respectively.  

Due to these observations, the rest of analyses in this paper assume that no live 

load is on the bridge. This assumption is also supported by the fact that it is very 

unlikely that a bridge remains completely loaded during the full fire event.  As an 

example, in the fire event reported in [22] only seven cars crossed the bridge during the 

fire. 

3.2.2 Influence of the boundary conditions.

Fig. 9 plots the horizontal displacement of the roller support for (a) the “fre” cases 

and (b) the “fix” cases.  The width of the expansion joint is 0.036 m, and Fig. 9a shows 

that the maximum horizontal displacements of the outer section of the bridge in the 

“fre” models are much bigger than the expansion joint width, which is what justifies the 

analysis of the “fix” models. Fig. 9b shows that for the “fix” models, the roller does not 

move towards the center of the span (i.e., the direction of the displacement does not 

reverse) and the horizontal displacements of the roller support are always equal to the 

width of the expansion joint once the contact with the adjacent span or abutment is 

established. 

Fig. 10 plots the evolution of mid-span deflections for the (a) “fre” models, and (b) “fix” 

models.  Note that the deflections for the “fix” models are much smaller than that for the 

“fre” models.  Also, the mid-span deflections are very similar within the first 7 min. of 

the fire for all the “fre” models and within the first 9 min. of the fire for all the “fix” 

models. There is less of a distinction in the evolution of displacements for the stainless 

steels compared to the carbon steel. Mid-span deflections fall well below the limit 
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established by BS476 [32] (L/20 equal to 0.61 m) suggesting that this deflection 

criterion is not critical when using “fix” models to analyze the fire response of the 

bridge.  Also for the “fix” models, when contact with the adjacent span or abutment 

occurs (circa 2 minutes) there is a sharp change in the slope of the plot of the mid-span 

deflections of the bridge which, for about one minute, decreases instead of increases. 

Table 2 shows that the type of failure is different for the “fre” and “fix” models.  The 

“fre” models all fail by excessive deflections and, with the exception of the bridge built 

with EN No. 1.4301 and EN No. 1.4401, by simultaneous instability as defined by the 

movement of the roller support moving towards the center span (this is seen in Fig. 9a 

as the reversal of horizontal displacement).  None of the “fix” models fail in this way.  

Instead, the failure mode depends on the type of material: 

 If carbon steel is used, then the bridge fails due to a combination of buckling 

of the bottom flange near the supports and fracture (based on strains larger 

than ultimate) in the bottom part of flange that is in contact with the roller 

(see Fig. 11a).  

 If stainless steel is used, failure of the section starts with the buckling of the 

bottom flange and then the girder experiences flexural-torsional buckling 

(see Fig. 11b and 12). In this case, the part of the bottom flange supported 

by the roller also experiences important strains.  

3.2.4 Influence of the constitutive model and type of steel. 

Comparing the results of the -ECSH- models to the -EC- models in Table 2 and 

Fig. 10, one sees that considering strain hardening does not significantly affect the 

structural response.  The evolution of the deflections in the models using the EC-3 

does not vary depending on whether strain hardening is taken into account or not and 

the type of failure does not change. 

Comparing the bridge girder response of those analyzed with NIST’s constitutive model 

to those analyzed with the EC model, Fig. 10 shows that the girder that uses the NIST 

constitutive model is slightly stiffer (due to the higher values of the temperature 

dependent Modulus of Elasticity proposed by NIST) and experiences smaller 

deflections while temperatures in the cross section remain below 650ºC. Beyond that 

limit, the NIST model is not valid and the EC-3 constitutive equations are used, which is 

what causes the final results to be almost independent of the model employed to 
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perform the analysis.  Table 2 shows that there is no significant difference in the results 

if the NIST model is used.   

Comparing the response of the carbon steel models to stainless steel, one observes 

that use of stainless steel improves the fire response of the bridge.  Table 2 shows that 

times to failure for the 1.4301, 1.4401 and Duplex 1.4462 stainless steels are, 

respectively, 63%, 87% and 78% higher than for the A36 carbon steel in the “fre” 

models and 62%, 60% and 16% higher than for the A36 carbon steel in the “fix” 

models.  Note that, if duplex 1.4462 stainless steel is used as construction material for 

the girders, then the time to failure is smaller than if the bridge is built with stainless 

steel grades 1.4301 and 1.4401. This is explained by the lower ultimate strain ( u, ) at 

high temperatures of the duplex grade –e.g., at 700ºC u,  equals to 0.15 for the duplex 

1.4462 grade and 0.30 for the 1.4301 and 1.4401 grades. It is worthy to note that the 

better behavior of stainless steel bridges is due mainly to its mechanical properties and 

not to its thermal properties. This is proved by Fig. 13 which shows the bridge mid-span 

deflections for four different construction materials: (1) A36 carbon steel, (2) stainless 

steel grade 1.4301, (3) a theoretical material with the thermal properties of stainless 

steel grade 1.4301 and the mechanical properties of A36 and, (4) a theoretical material 

with the thermal properties of A36 and the mechanical properties of stainless steel 

grade 1.4302. It is clear from the figure that the theoretical material whose behavior is 

the closest to stainless steel grade 1.4301 is the one with the thermal properties of A36 

and the mechanical properties of 1.4301. 

3.2.5 Influence of the fire load. 

 Fig. 14 compares the evolution of the mid-span deflections of the bridge 

depending on the fire load (EC-1 or Stoddard’s fire) for the bridge built with carbon 

steel (14a) and stainless steel EN No 1.4462 (14b). Table 2 provides the main results 

of the analyses for all the materials studied in this paper. The main conclusions are: 

 If the bridge is heated with Stoddard’s fire, its time to failure is larger than if 

heated with the hydrocarbon fire.  Fig. 3 shows that in the early stages of 

the fire, the Stoddard fire has significantly smaller temperatures, which is 

why the prototype bridges subject to the Stoddard fire survive longer. 

 The increase in time to failure is largest under the Stoddard fire if carbon 

steel is used as bridge material (increments of  80% and 78 % for the “fre” 

and “fix” models respectively) since the carbon steel girder fails when 
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bottom  flange and web temperatures are close to 750ºC and 850ºC 

respectively, and these temperatures are reached after circa 10 min. for the 

hydrocarbon fire and 18 min. for Stoddard’s fire. 

 The increase in time to failure is less noticeable if the bridge is built with 

stainless steel grades 1.4462 (increments of 30% and 25% in the “fre” and 

“fix” models, respectively), 1.4301 (increments of 17% and 27% in the “fre” 

and “fix” models, respectively) and 1.4101 (increments of 22% and 62% in 

the “fre” and “fix” models, respectively). Since the stainless steel bridges fail 

at a larger time than the carbon steel bridges, and at that time the 

temperature difference between the two fire curves is smaller (see Fig. 3), 

the increase in time to failure is smaller (with the exception of the analysis 

fix-1.4462-0-EC1). 

 When Stoddard’s fire is used, bridges built with stainless steel exhibit better 

behavior than the equivalent bridge built with A36 carbon steel as they can 

stand an additional percentage of time between 6% and 22% depending on 

the analysis case as derived from Table 2. 

4. Summary and Conclusions. 

Available data has shown that bridge fires are a major concern due to the number 

of fire events and the social and economic consequences; but not many studies have 

been carried out on this topic.  Steel girder bridges are especially sensitive to fire and, 

therefore, deserve special attention. This paper examined the fire response of steel 

girder bridges through a finite element analysis of a simply supported 12.2 m bridge 

designed by the Federal Highway Administration of the USA. Specifically, the 

influences of several parameters were studied including the axial restraint conditions, 

the type of steel, the amount of live load and the fire load.   

The results of this study are summarized as follows: 

 Thermal gradients develop through the bridge depth, which in turn produce 

mechanical strains and stresses.  Further, stainless steel has a lower thermal 

conductivity and thus experiences lower temperatures than carbon steel.  

 The amount of live load present in the bridge has little effect on the time to failure. 

 In a fire, the bridge will want to expand much more than a typical expansion joint 

permits.  Therefore, the heated bridge will abut against the adjacent span (or 

support) and thus be restrained from expanding.  This axial restraint affects the 

bridge response and should be represented when modeling bridges under fire. 
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 The analyses that consider axial restraint from the adjacent bridge (“fix” models) 

deflect significantly less than those that are free to expand (“fre” models).  Further, 

the “fre” models fail by excessive deflection, whereas the “fix” models fail by 

buckling or large strains. 

 Including strain hardening in the constitutive model does not affect the results.  In 

addition, both NIST and Eurocode constitutive models considered for carbon steel 

lead to very similar results.  

 Using stainless steel can increase the time to failure by up to 87% more than 

carbon steel.  This improved behavior of stainless is mostly due to its superior 

mechanical properties at elevated temperatures, not the thermal properties. 

 When the bridge was heated with a fire that simulated a real fire event, the time to 

failure was larger than when heated with the hydrocarbon fire. 

Overall, stainless steel was able to sustain the fire load for a larger amount of time than 

carbon steel, which makes this material a promising alternative for bridges in high fire 

risk areas and corrosive environments.  More studies need to be done for different 

span lengths, beam depths, and composite construction.  Nevertheless, this research 

has produced some practical results for beginning to understand how to design a 

bridge against a fire and how to model its behavior in such an event. 
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Figure 2. Half section of the prototype bridge near the bearing support. 
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Figure 3. A comparison of three different fire curves: hydrocarbon fire, standard fire 
and Stoddard’s fire. 
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Figure 4. Views of the Finite Element models. The FE model contains only half of 
the bridge. 
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Figure 5. Hydrocarbon fire curve of EC1. Temperature evolution at three points of 
the cross section of the bridge. Structural materials: carbon steel and stainless 
steel.  
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Figure 6. (a) Cross section of the bridge showing points A, B and C where 
temperatures are plotted (b) profile of temperatures along the vertical axis of the 
girder due to the hydrocarbon fire of the bridge built with carbon steel. 
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Figure 7. . Temperature evolution at three points of the cross section of the bridge 
due to the hydrocarbon fire and Stoddard’s fire (a) Bridge built with carbon steel 
and (b) Bridge built with stainless steel. 
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Figure 8. The effects of varying amounts of live load for the prototype bridge built 
with carbon steel and loaded with the EC-1’s hydrocarbon fire. Evolution of mid-
span deflections for the (a) “fre” models and (b) “fix” models. 
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Figure 9. Evolution of the horizontal displacement of the roller for the prototype 
bridge built with carbon steel and stainless steel and loaded with the EC-1’s 
hydrocarbon fire: (a) “fre” models, and (b) “fix” models. 
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Figure 10. Evolution of mid-span deflections for the bridge built with carbon steel and 
stainless steel and loaded with the EC-1’s hydrocarbon fire: (a) the “fre” models, and 
(b) the “fix” models. 
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Figure 11. Deformed meshes and true strains at different time steps for “fix” axial 
restraints in (a) carbon steel model fix-ECSH-0-EC1 and (b) stainless steel model 
fix-1.4301-0-EC1. 
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Figure 12. Plot of the undeformed shape (orange) and deformed shape (grey) of the 

“fix” stainless steel model fix-1.4401-0-EC1 at different time steps. 



14 

Figure 13. Evolution of mid-span deflections for the “fre” models. Bridge built with 
A36 carbon steel, stainless steel grade 1.4301 and two theoretical materials. The 
bridge is loaded with the EC-1’s hydrocarbon fire. 
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Figure 14. Comparison of mid-span deflections for the prototype bridge subjected 
to the EC fire and to Stoddard’s fire. Bridge built with (a) carbon steel (b) stainless 
steel EN No. 1.4462. 
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Analysis name 

Axial 
restraint 

at the 
supports1

Material Constitutive 
model 

Gravity 
Loads 

Fire 
Load 

fre-ECSH-0-EC1 free EC-3 w/strain hardening G EC-1 

fre-ECSH-0.3-EC1 free EC-3 w/strain hardening G+0.3Q EC-1 

fre-ECSH-0.5-EC1 free EC-3 w/strain hardening G+0.5Q EC-1 

fre-ECSH-1-EC1 free EC-3 w/strain hardening G+Q EC-1 

fre-EC-0-EC1 free 
EC-3 without strain 

hardening 
G EC-1 

fre-NIST-0-EC1 free NISTIR G EC-1 

fre-1.4301-0-EC1 free Annex C of EC-3  G EC-1 

fre-1.4401-0-EC1 free Annex C of EC-3  G EC-1 

fre-1.4462-0-EC1 free Annex C of EC-3  G EC-1 

fre-ECSH-0-St free EC-3 w/strain hardening G Stoddard

fre-1.4301-0-St free Annex C of EC-3  G Stoddard

fre-1.4401-0-St free Annex C of EC-3  G Stoddard

fre-1.4462-0-St free Annex C of EC-3  G Stoddard

fix-ECSH-0-EC1 fixed EC-3 w/strain hardening G EC-1 

fix-ECSH-0.3-EC1 fixed EC-3 w/strain hardening G+0.3Q EC-1 

fix-ECSH-0.5-EC1 fixed EC-3 w/strain hardening G+0.5Q EC-1 

fix-ECSH-1-EC1 fixed EC-3 w/strain hardening G+Q EC-1 

fix-EC-0-EC1 fixed 
EC-3 without strain 

hardening 
G EC-1 

fix-NIST-0-EC1 fixed NISTIR  G EC-1 

fix-1.4301-0-EC1 fixed Annex C of EC-3  G EC-1 

fix-1.4401-0-EC1 fixed Annex C of EC-3  G EC-1 

fix-1.4462-0-EC1 fixed Annex C of EC-3  G EC-1 

fix-ECSH-0-St fixed EC-3 w/strain hardening G Stoddard

fix-1.4301-0-St fixed Annex C of EC-3  G Stoddard

fix-1.4401-0-St fixed Annex C of EC-3  G Stoddard

fix-1.4462-0-St fixed Annex C of EC-3  G Stoddard

1 See section 2.2.3 for a detailed explanation of the difference between the free and 
fixed models 

Table 1. Parameters considered in the Finite Element analyses. 
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Analysis name 

Failure  Deflection at 
time of failure 

(m) 
Time 
(min) 

Mode1

fre-ECSH-0-EC1 9.9 R, D 0.61 

fre-ECSH-0.3-EC1 9.2 R, D 0.61 

fre-ECSH-0.5-EC1 8.9 R, D 0.61 

fre-ECSH-1-EC1 8.5 R, D 0.61 

fre-EC-0-EC1 9.9 R, D 0.61 

fre-NIST-0-EC1 10.0 R, D 0.61 

fre-1.4301-0-EC1 16.1 D 0.61 

fre-1.4401-0-EC1 18.5 D 0.61 

fre-1.4462-0-EC1 17.6 R, D 0.61 

fre-ECSH-0-St 17.8 R, D 0.61 

fre-1.4301-0-St 21.0 R, D 0.61 

fre-1.4401-0-St 21.7 R, D 0.61 

fre-1.4462-0-St 21.5 B, D 0.61 

fix-ECSH-0-EC1 10.1 B, S 0.24 

fix-ECSH-0.3-EC1 9.7 B, S 0.22 

fix-ECSH-0.5-EC1 9.4 B, S 0.22 

fix-ECSH-1-EC1 8.9 B, S 0.21 

fix-EC-0-EC1 10.1 B, S 0.24 

fix-NIST-0-EC1 10.2 B, S 0.27 

fix-1.4301-0-EC1 16.4 B, S  0.31 

fix-1.4401-0-EC1 16.2 B, S  0.29 

fix-1.4462-0-EC1 11.7 B, S  0.13 

fix-ECSH-0-St 18.0 B, S 0.24 

fix-1.4301-0-St 20.5 B, S  0.30 

fix-1.4401-0-St 20.6 B, S 0.28 

fix-1.4462-0-St 19.0 B, S  0.13 

1
 B: instability due to buckling, D: deflection equal to L/20 reached, R: 

instability noticed by the movement of the roller support towards the 
center of the span, S: ultimate strain reached. See Section 2.3.4 for more 
details

Table 2. Main results of the analyses. 


