

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.scico.2013.09.018

http://hdl.handle.net/10251/47187

Elsevier

Alpuente Frasnedo, M.; Ballis, D.; Frechina, F.; Romero, DO. (2014). Using conditional
trace slicing for improving Maude programs. Science of Computer Programming. 80:385-
415. doi:10.1016/j.scico.2013.09.018.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Using Conditional Trace Slicing for improving Maude programs✩

Maŕıa Alpuentea, Demis Ballisb, Francisco Frechinaa, Daniel Romeroa

aDSIC-ELP, Universitat Politècnica de València,
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain.

bDipartimento di Matematica e Informatica,
Via delle Scienze 206, 33100 Udine, Italy.

Abstract

Understanding the behavior of software is important for the existing software to be
improved. In this paper, we present a trace slicing technique that is suitable for analyzing
complex, textually-large computations in rewriting logic, which is a general framework
efficiently implemented in the Maude language that seamlessly unifies a wide variety
of logics and models of concurrency. Given a Maude execution trace T and a slicing
criterion for the trace (i.e., a piece of information that we want to observe in the final
computation state), we traverse T from back to front and the backward dependence
of the observed information is incrementally computed at each execution step. At the
end of the traversal, a simplified trace slice is obtained by filtering out all the irrelevant
data that were found not to influence the data of interest. By narrowing the size of
the trace, the slicing technique favors better inspection and debugging activities since
most tedious and irrelevant inspections that are routinely performed during diagnosis
and bug localization can be eliminated automatically. Moreover, cutting down the
execution trace can expose opportunities for further improvement, which we illustrate
by means of several examples.

Keywords: trace slicing, program debugging and comprehension, model checking,
rewriting logic

1. Introduction

The analysis of computation traces plays an important role in many program anal-
ysis approaches. Software systems commonly generate large and complex execution
traces, whose analysis (or even simple inspection) is extremely time-consuming and, in

✩This work has been partially supported by the EU (FEDER) and the Spanish MEC TIN2010-21062-
C02-02 project, by Generalitat Valenciana, ref. PROMETEO2011/052. Also, D. Romero is supported
by FPI-MEC grant BES-2008-004860 and F. Frechina is supported by FPU-ME grant AP2010-5681.

Email addresses: alpuente@dsic.upv.es (Maŕıa Alpuente), demis@dimi.uniud.it (Demis
Ballis), ffrechina@dsic.upv.es (Francisco Frechina), dromero@dsic.upv.es (Daniel Romero)

Preprint submitted to Science of Computer Programming May 19, 2012

main Manuscript
Click here to view linked References

http://ees.elsevier.com/scico/viewRCResults.aspx?pdf=1&docID=1389&rev=0&fileID=62307&msid={5509E82C-9C38-4478-BB88-41593FAF94C5}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

some cases, unfeasible to perform by hand. Trace slicing is a technique for reducing
the size of execution traces by focusing on selected execution aspects, which makes it
suitable for trace analysis and monitoring [1] and is also helpful for program debugging,
improvement, and understanding [2, 3].

Rewriting Logic (RWL) is a logic of change that is particularly suitable for formal-
izing highly concurrent, complex systems (e.g., biological systems [4] and Web sys-
tems [5, 6]). RWL is efficiently implemented in the high-speed rewriting language
Maude [7]. Roughly speaking, a Maude program consists of a (conditional) term rewrit-
ing system (CTRS), together with an equational theory (also possibly conditional) that
may include equations and axioms (i.e., algebraic laws such as commutativity, associa-
tivity, and unity) so that rewrite steps are applied modulo the equations and algebraic
axioms. Rewriting logic-based tools, like the Maude-NPA protocol analyzer, the Maude
LTLR model checker, and the Java PathExplorer runtime verification tool (just to men-
tion a few [8]), are used in the analysis and verification of programs and protocols
wherein the system states are represented as algebraic entities (elements of an algebraic
data type that is specified by the equational theory) while the system computations are
modelled via the rewrite rules, which describe transitions between states and are per-
formed modulo the equations and axioms. The execution traces produced by these tools
are usually very complex and are therefore not amenable to manual inspection. However,
not all the information that is in the trace is needed to analyze a given piece of infor-
mation in a target state. For instance, consider the following rules that define (a part
of) the standard semantics of a simple imperative language: 1) crl <while B do I,

St> => <skip, St> if <B, St> => false /\ isCommand(I), 2) rl <skip, St> =>

St, and 3) rl <false, St> => false. Then, in the two-step execution trace <while

false do X := X + 1, {}> → <skip, {}> → {}, we can observe that the statement
X := X + 1 is not relevant to compute the output {}. Therefore, the trace could be
simplified by replacing X := X + 1 with a special variable • and by enforcing the log-
ical compatibility condition isCommand(•). This way we guarantee the correctness of
the simplified trace. In other words, any concretization of the simplified trace (which
instantiates the variable • and meets the compatibility condition) is a valid trace that
still generates the target data that we are observing (in this case, the output {}).

The basic debugging aid provided by Maude consists of a forward tracing facility
that allows the user advance through the program execution, letting the user select the
statements being traced. By manually controlling the traceable equations or rules, the
displayed trace view can be reduced. However, the user can easily miss the general
overview because all rewrite steps that are obtained by applying the equations or rules
for the selected function symbols (including all evaluation steps for the conditions of such
equations/rules) are shown in the output execution trace, whereas the algebraic axiom
applications are not recorded in the trace. Thus, the trace is both, huge and incomplete,
and when the user detects an erroneous intermediate result, it is difficult to determine
where the incorrect inference started. Moreover, this trace is either directly displayed or
written to a file (in both cases in plain text format) thus being only amenable for user

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

inspection. This is in contrast with the trace slices described below, which are small,
automatically generated, and complete (all steps are recorded by default). Moreover,
they can be directly displayed or delivered in their meta-level representation and only
consist of the information that is strictly needed to deliver the critical part of observed
results.

The backward tracing approach developed in this paper aims to improve program
analysis and debugging in rewriting-based programming by helping the user to think
backwards –i.e., to deduce the conditions under which a program produces the incorrect
output. In conventional programming environments, for such an analysis the program-
mer must repeatedly determine which statements in the code have an influence on the
value of a given parameter at a given call, which is usually done manually without any
assistance from the debugger. By developing an appropriate notion of antecedents for
RWL, our trace slicing technique tracks back reverse dependences and causality along
execution traces and then cuts off irrelevant information that does not influence the data
observed from the trace. In other words, when execution is stopped at a given computa-
tion point (typically, from the location where a fault is manifested), we are able to undo
the effect of the last statement executed on the selected data by issuing the step-back
facility provided by our slicer (for a given slicing criterion). Thus, by stepwisely reduc-
ing the amount of information to be inspected, it is easier for the user to locate errors
because many computation steps (and the corresponding program statements involved
in the step) can be ignored in the process of localizing the program fault area. More-
over, during the trace slice computation, different types of information are computed
that are related to the program execution, for example, contributing actions and data
and noncontributing ones. After computation of a trace slice, all the noncontributing
information is discarded from the trace, and we can even take advantage of the filtered
information for the purpose of dynamic program slicing.

Contributions. This article offers an up-to-date, comprehensive, and uniform pre-
sentation with examples of the backward tracing slicing methodology as developed in
[2, 9, 10, 11].

Our proposal for conditional trace slicing is aimed at endowing the RWL framework
with a new instrument that can be used to improve the Maude programs, including
any RWL-based tool that produces or manipulates RWL computations (e.g., Maude
execution traces). The contributions of the paper can be summarized as follows:

1. We describe the first slicing technique for Maude programs that can be used to
drastically reduce complex, textually-large system computations w.r.t. a user-
defined slicing criterion that selects those data that we want to track back from a
given point. The distinguishing features of our technique are as follows:

(a) The system copes with the most prominent RWL features, including algebraic
axioms such as associativity, unity, and commutativity.

(b) The system also copes with the extremely rich variety of conditions that occur
in Maude theories (i.e., equational conditions s = t, matching conditions

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

p := t, and rewrite expressions t ⇒ p) by taking into account the precise
way in which Maude mechanizes the conditional rewriting process so that all
those rewrite steps are revisited backwards in an instrumented, fine-grained
way.

(c) Unlike previous backward tracing approaches [9, 12], which are based on a
costly, dynamic labeling procedure, here we use a less expensive, incremental
technique of matching refinement that allows the relevant data to be traced
back.

2. We have developed a tool, called Julienne that implements our conditional slic-
ing technique, and we have carried out a number of experiments that confirm the
usefulness of our approach. Julienne is the first slicing tool that can be used
to analyze execution traces of RWL-based programs and tools. Julienne greatly
reduces the size of the execution traces (up to 98% of the original size according
to our experiments), thus making their analysis feasible even in the case of com-
plex, real-size problems. The implementation comprises a front-end consisting of
a Web graphical user interface and a back-end consisting of a Maude implemen-
tation that uses Maude meta-level capabilities. The tool is publicly available at
http://users.dsic.upv.es/grupos/elp/soft.html.

3. To give the reader a better feeling of the generality and wide application range of
our conditional slicing approach, we describe some applications to debugging and
improvement of Web systems and protocol specifications.

Plan of the paper. The rest of the paper is organized as follows. Section 2 recalls
some fundamental notions of RWL, and Section 3 summarizes the conditional rewriting
modulo equational theories defined in Maude. In Section 4, the backward conditional
slicing technique is formalized by means of a transition system that traverses the ex-
ecution traces from back to front. Section 5 describes Julienne, which is the trace
slicer that implements our theoretical framework, together with some experiments that
have been performed with our tool. We also discuss the use of trace slicing to improve
program analysis, debugging and comprehension in several application domains. The
related work is discussed in Section 7, and Section 8 concludes.

2. Preliminaries

Let us recall some important notions that are relevant to this work. We assume some
basic knowledge of term rewriting [12] and Rewriting Logic [13]. Some familiarity with
the Maude language [7] is also required. Maude [14] is a rewriting logic [13] specification
and verification system whose operational engine is mainly based on a very efficient
implementation of rewriting. A Maude program consists of a composition of modules
containing sort and operator declarations, as well as equations relating terms over the
operators and universally quantified variables. Maude notation will be introduced “on
the fly” as needed in examples.

4

http://users.dsic.upv.es/grupos/elp/soft.html

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2.1. The term-language of Maude

We consider an order-sorted signature Σ, with a finite poset of sorts (S,<) that
models the usual subsort relation [7]. We assume an S-sorted family V = {Vs}s∈S of
disjoint variable sets. τ(Σ,V)s and τ(Σ)s are the sets of terms and ground terms of sort
s, respectively. We write τ(Σ,V) and τ(Σ) for the corresponding term algebras. The
set of variables that occur in a term t is denoted by Var(t). In order to simplify the
presentation, we often disregard sorts when no confusion can arise.

A position w in a term t is represented by a sequence of natural numbers that ad-
dresses a subterm of t (Λ denotes the empty sequence, i.e., the root position). By
notation w1.w2, we denote the concatenation of positions (sequences) w1 and w2. Posi-
tions are ordered by the prefix ordering, that is, given the positions w1 and w2, w1 ≤ w2

if there exists a position u such that w1.u = w2. Given a set of positions P , the prefix
closure of P is the set P̄ = {u | u ≤ p ∧ p ∈ P}. Given a term t, we let Pos(t) denote
the set of positions of t. By t|w, we denote the subterm of t at position w, and by t[s]w,
we denote the result of replacing the subterm t|w by the term s.

A substitution σ is a mapping from variables to terms {X1/t1, . . . , Xn/tn} such
that Xiσ = ti for i = 1, . . . , n (with Xi 6= xj if i 6= j), and Xσ = X for all other
variables X . Given a substitution σ = {X1/t1, . . . , Xn/tn}, the domain of σ is the set
Dom(σ) = {X1, . . . , Xn}. For any substitution σ and set of variables V , σ |̀V denotes
the substitution obtained from σ by restricting its domain to V , (i.e., σ |̀V (X) = Xσ if
X ∈ V , otherwise σ |̀V (X) = X). Given two terms s and t, a substitution σ is a matcher
of t in s, if sσ = t. By matchs(t), we denote the function that returns a matcher of t in
s if such a matcher exists, otherwise matchs(t) returns fail.

We consider three different kinds of conditions that may appear in a conditional
Maude theory: an equational condition1 e is any (ordinary) equation t = t′, with t, t′ ∈
τ(Σ,V); a matching condition is a pair p := t with p, t ∈ τ(Σ,V); a rewrite expression
is a pair t⇒ p, with p, t ∈ τ(Σ,V).

2.2. Program Equations and Rules

A conditional equation is an expression of the form λ = ρ if C, where λ, σ ∈ τ(Σ,V),
and C is a (possibly empty) sequence c1 ∧ . . .∧ cn, where each ci is either an equational
condition, or a matching condition. When the condition C is empty, we simply write
λ = ρ. A conditional equation λ = ρ if c1 ∧ . . . ∧ cn is admissible, iff (i) Var(ρ) ⊆

Var(λ) ∪
⋃n
i=1 Var(ci), and (ii) for each ci, Var(ci) ⊆ Var(λ) ∪

⋃i−1
j=1 Var(cj) if ci is an

equational condition, and Var(e) ⊆ Var(λ) ∪
⋃i−1
j=1 Var(cj) if ci is a matching condition

p := e.
A conditional rule is an expression of the form λ→ ρ if C, where λ, σ ∈ τ(Σ,V), and

C is a (possibly empty) sequence c1∧ . . .∧cn, where each ci is an equational condition, a

1A boolean equational condition b = true, with b ∈ τ(Σ,V) of sort Bool is simply abbreviated as b.
A boolean condition is a sequence of abbreviated boolean equational conditions.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mod BANK is inc INT .
sorts Account Msg State Id .

subsorts Account Msg < State .
var Id Id1 Id2 : Id .

var b b1 b2 nb nb1 nb2 M : Int .
op empty-state : -> State .

op _;_ : State State -> State [assoc comm id: empty-state] .

op ac : Id Int -> Account [ctor] .
ops A B C D: Id .

ops credit debit : Id Int -> Msg [ctor] .
op transfer : Id Id Int -> Msg [ctor] .

crl [credit] : ac(Id,b);credit(Id,M) => ac(Id,nB) if nB := b + M .
crl [debit] : ac(Id,b);debit(Id,M) => ac(Id,nb) if b >= M /\ nb := b - M .

crl [transfer] : ac(Id1,b1);ac(Id2,b2);transfer(Id1,Id2,M) => ac(Id1,nb1);ac(Id2,nb2)
if ac(Id1,b1);debit(Id1,M) => ac(Id1,nb1) /\ ac(Id2,b2);credit(Id2,M) => ac(Id2,nb2) .

endm

Figure 1: Maude specification of a distributed banking system

matching condition, or a rewrite expression. When the condition C is empty, we simply
write λ → ρ. A conditional rule λ → ρ if c1 ∧ . . . ∧ cn is admissible iff it fulfils the
exact analogy of the admissibility constraints (i) and (ii) for the equational conditions
and the matching conditions, plus the following additional constraint: for each rewrite
expression ci in C of the form e⇒ p, Var(e) ⊆ Var(λ) ∪

⋃i−1
j=1 Var(cj).

The set of variables that occur in a (conditional) rule/equation r is denoted by
Var(r). Note that admissible equations and rules can contain extra-variables (i.e., vari-
ables that appear in the right-hand side or in the condition of a rule/equation but do not
occur in the corresponding left-hand side). The admissibility requirements ensure that
all the extra-variables will become instantiated whenever an admissible rule/equation is
applied.

An order-sorted equational theory is a pair E = (Σ,∆ ∪ B), where Σ is an order-
sorted signature, ∆ is a collection of (oriented) admissible, conditional equations, and
B is a collection of unconditional equational axioms (e.g., associativity, commutativity,
and unity) that can be associated with any binary operator of Σ. The equational theory
E induces a congruence relation on the term algebra T (Σ,V), which is denoted by =E .
A conditional rewrite theory (or simply, rewrite theory) is a triple R = (Σ,∆ ∪ B,R),
where (Σ,∆ ∪ B) is an order-sorted equational theory, and R is a set of admissible
conditional rules2.

Example 2.1
Consider the Maude specification of Figure 1 that encodes a conditional rewrite

theory modeling a simple, distributed banking system. Each state of the system is
modeled as a multiset (i.e., an associative and commutative list) of elements of the form
e1; e2;; en. Each element ei is either (i) a bank account ac(Id,b) where Id is

2Equational specifications in Maude can be theories in membership equational logic, which may
include conditional membership axioms not addressed in this paper.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the owner of the account and b is the account balance; or (ii) a message modeling a
debit, credit, or transfer operation. These account operations are implemented via three
rewrite rules: namely, the debit, credit, and transfer rules.

Note that the rule credit contains the matching condition nb := b + M, while in
the rule debit an equational condition b >= M and a matching condition nb := b - M

occur. Finally, two rewrite expressions ac(Id1,b1);debit(Id1,M) => ac(Id1,nb1)

and ac(Id2,b2);credit(Id2,M) => ac(Id2,nb2) appear in the rule transfer.

The conditional slicing technique formalized in this article is formulated by consid-
ering the precise way in which Maude proves the conditional rewriting steps, which we
describe in the following section (see Section 5.2 in [7] for more details).

3. Conditional Rewriting Modulo Equational Theories

Given a conditional rewrite theory (Σ, E, R), with E = ∆ ∪ B, the conditional
rewriting modulo E relation (in symbols, →R/E) can be defined by lifting the usual
conditional rewrite relation on terms [15] to the E-congruence classes [t]E on the term
algebra τ(Σ,V) that are induced by =E [16], that is, [t]E is the class of all terms that
are equal to t modulo E. Unfortunately, in general, →R/E is undecidable since a rewrite
step t →R/E t′ involves searching through the possibly infinite equivalence classes [t]E
and [t′]E .

The Maude interpreter implements conditional rewriting modulo E by means of two
much simpler relations, namely →∆,B and →R,B, that allow rules and equations to be
intermixed in the rewriting process by simply using an algorithm of matching modulo
B. We define →R∪∆,B as →R,B ∪ →∆,B. Roughly speaking, the relation →∆,B uses the
equations of ∆ (oriented from left to right) as simplification rules: thus, for any term t,
by repeatedly applying the equations as simplification rules, we eventually reach a term
t ↓∆ to which no further equations can be applied. The term t ↓∆ is called a canonical
form of t w.r.t. ∆. On the other hand, the relation →R,B implements rewriting with the
rules of R, which might be non-terminating and non-confluent, whereas ∆ is required
to be terminating and Church-Rosser modulo B in order to guarantee the existence and
unicity (modulo B) of a canonical form w.r.t. ∆ for any term [7].

Formally, →R,B and →∆,B are defined as follows. Given a rewrite rule r = (λ →
ρ if C) ∈ R (resp., an equation e = (λ = ρ if C) ∈ ∆), a substitution σ, a term t, and a

position w of t, t
r,σ,w
→R,B t

′ (resp., t
e,σ,w
→∆,B t

′) iff λσ =B t|w, t
′ = t[ρσ]w, and C evaluates

to true w.r.t σ. When no confusion can arise, we simply write t→R,B t
′ (resp. t→∆,Bt

′)

instead of t
r,σ,w
→R,B t

′ (resp. t
e,σ,w
→∆,B t

′).
Note that the evaluation of a condition C is typically a recursive process, since it

may involve further (conditional) rewrites in order to normalize C to true. Specifically,
an equational condition e evaluates to true w.r.t. σ if eσ↓∆=B true; a matching equation
p := t evaluates to true w.r.t. σ if pσ =B tσ↓∆; a rewrite expression t ⇒ p evaluates

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

to true w.r.t. σ if there exists a rewrite sequence tσ →∗
R∪∆,B u, such that u =B pσ3.

Although rewrite expressions and matching/equational conditions can be intermixed in
any order, we assume that their satisfaction is attempted sequentially from left to right,
as in Maude.

Under appropriate conditions on the rewrite theory, a rewrite step modulo E on
a term t can be implemented without loss of completeness by applying the following
rewrite strategy [17]: (i) reduce t w.r.t. →∆,B until the canonical form t ↓∆ is reached;
(ii) rewrite t ↓∆ w.r.t. →R,B.

An execution trace T in the rewrite theory (Σ,∆ ∪ B,R) is a rewrite sequence

s0 →
∗
∆,B s0↓∆ →R,B s1 →

∗
∆,B s1↓∆ . . .

that interleaves →∆,B rewrite steps and →R,B steps following the strategy mentioned
above.

Given an execution trace T , it is always possible to expand T in an instrumented
trace T ′ in which every application of the matching modulo B algorithm is mimicked
by the explicit application of a suitable equational axiom, which is also oriented as a
rewrite rule [9]. This way, any given instrumented execution trace consists of a sequence
of (standard) rewrites using the conditional equations (→∆), conditional rules (→R),
and axioms (→B).

Example 3.1
Consider the rewrite theory in Example 2.1 together with the following execution

trace T : credit(A,2+3);ac(A,10)→∆,B credit(A,5);ac(A,10)→R,B ac(A,10) Thus,
the corresponding instrumented execution trace is given by expanding the commutative
“step” applied to the term credit(A,5);ac(A,10) using the implicit rule (X; Y → Y; X)
in B that models the commutativity axiom for the (juxtaposition) operator ; .

credit(A,2+3);ac(A,10)→∆credit(A,5);ac(A,10)→Bac(A,10);credit(A,5)→Rac(A,15)

Also, typically hidden inside the B-matching algorithms, some transformations allow
terms that contain operators that obey associative-commutative axioms to be rewritten
by first producing a single representative of their AC congruence class [9]. For example,
consider a binary AC operator f together with the standard lexicographic ordering
over symbols. Given the B-equivalence f(b, f(f(b, a), c)) =B f(f(b, c), f(a, b)), we can
represent it by using the “internal sequence” of transformations f(b, f(f(b, a), c)) →∗

flatB

f(a, b, b, c) →∗
unflatB

f(f(b, c), f(a, b)), where the first transformation corresponds to a

3Technically, to properly evaluate a rewrite expression t ⇒ p or a matching condition p := t, the
term p is required to be a ∆-pattern —i.e., a term p such that, for every substitution σ, if xσ is a
canonical form w.r.t. ∆ for every x ∈ Dom(σ), then pσ is also a canonical form w.r.t. ∆.

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mod M is inc NAT .
var X : Nat .

var Y : NzNat .
op _mod_ : Nat NzNat -> Nat .

ceq X mod Y = X if Y > X .
ceq X mod Y = (X - Y) mod Y

if Y <= X .

endm

Figure 2: The mod operator

flattening transformation sequence that obtains the AC canonical form, while the second
transformation corresponds to the inverse, unflattening one.

In the sequel, we assume all execution traces are instrumented as explained above.
By abuse of notation, we frequently denote the rewrite relations →∆, →R, →B by →.
Also, we denote the transitive and reflexive (resp. transitive) closure of the relation
→∆ ∪ →R ∪ →B by →∗ (resp. →+).

4. Backward Conditional Slicing

A backward trace slicing methodology for RWL was first proposed in [9] that is only
applicable to unconditional RWL theories, and, hence, it cannot be employed when the
source program includes conditional equations and/or rules since it would deliver incor-
rect and/or incomplete trace slices. The following example illustrates why conditions
cannot be disregarded by the slicing process.

Example 4.1
Consider the Maude specification in Figure 2, which computes the remainder of the

division of two natural numbers, and the associated execution trace T : 4 mod 5 → 4.
Assume that we are interested in observing the origins of the target symbol 4 that
appears in the final state. If we disregard the condition Y > X of the first conditional
equation, the slicing technique of [9] computes the trace slice T • : 4 mod • → 4, which is
not correct since there exist concrete instances of 4 mod • that cannot be rewritten to 4

using the first rule —e.g., 4 mod 3 6→ 4. By contrast, our novel conditional approach not
only produces a trace slice, but also delivers a boolean condition that establishes the
valid instantiations of the input term that generate the observed data. In this specific
case, our slicing technique would deliver the pair [4 mod • → 4, • > 4].

In this section, we formulate our conditional slicing algorithm for RWL computations.
The algorithm is formalized by means of a transition system that traverses the execution
traces from back to front. The transition system is given by a single inference rule
that relies on a backward rewrite step slicing procedure that is based on a substitution
refinement.

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.1. Term slices and term slice concretizations

A term slice of a term t is a term abstraction that disregards part of the information
in t, that is, the irrelevant data in t are simply replaced by special •-variables, denoted
by •i, with i = 0, 1, 2, . . ., which are generated by calling the auxiliary function fresh•4.
More formally, a term slice is defined as follows.

Definition 4.2 (term slice) Let t ∈ τ(Σ,V) be a term, and let P be a set of positions
s.t. P ⊆ Pos(t). A term slice of t w.r.t. P is defined as follows:

slice(t, P) = rslice(t, P,Λ), where

rslice(t, P, p) =

f(rslice(t1, P, p.1), . . . , rslice(tn, P, p.n))

if t=f(t1, . . . , tn) and p ∈ P̄

x if t=x and x ∈ V and p ∈ P̄

fresh• otherwise
When P is understood, a term slice of t w.r.t. P is simply denoted by t•.

Roughly speaking, a term slice t w.r.t. a set of positions P includes all symbols of
t that occur within the paths from the root to any position in P , while each maximal
subterm t|p, with p 6∈ P , is abstracted by means of a •-variable.

Given a term slice t•, a meaningful position p of t• is a position p ∈ Pos(t•) such
that t•|p 6= •i, for some i = 0, 1, By MPos(t•), we denote the set that contains all
the meaningful positions of t•. Symbols that occur at meaningful positions are called
meaningful symbols.

Example 4.3
Let t = d(f(g(a, h(b)), c), a) be a term, and let P = {1.1, 1.2} be a set of positions of

t. By applying Definition 4.2, we get the term slice t• = slice(t, P) = d(f(g(•1, •2), c), •3)
and the set of meaningful positions MPos(t•) = {Λ, 1, 1.1, 1.2}.

Now we show how we particularize a term slice, i.e., we instantiate
•-variables with data that satisfy a given boolean condition that we call compatibil-
ity condition. Term slice concretization is formally defined as follows.

Definition 4.4 (term slice concretization) Let t, t′ ∈ τ(Σ,V) be two
terms. Let t• be a term slice of t and let B• be a boolean condition. We say that t′

is a concretization of t• that is compatible with B• (in symbols t• ∝B•
t′), if (i) there

exists a substitution σ such that t•σ = t′, and (ii) B•σ evaluates to true.

4Each invocation of fresh• returns a (fresh) variable •i of appropriate sort, which is distinct from
any previously generated variable •j.

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Example 4.5
Let t• = •1+•2+•2 and B

• = (•1 > 6∧•2 ≤ 7). Then, 10+2+2 is a concretization
of t• that is compatible with B•, while 4 + 2 + 2 is not.

In the following, we formulate a backward trace slicing algorithm that, given an ex-
ecution trace T : s0 →∗ sn and a term slice s•n of sn, generates the sliced counterpart
T • : s•0 →

∗ s•n of T that only encodes the information required to reproduce (the mean-
ingful symbols of) the term slice s•n. Additionally, the algorithm returns a companion
compatibility condition B• that guarantees the soundness of the generated trace slice.

4.2. Backward Slicing for Execution Traces

Consider an execution trace T : s0 →∗ sn. A trace slice T • of T is defined w.r.t. a
slicing criterion — i.e., a set of positions Osn ⊆ Pos(sn) that refer to those symbols of
sn that we want to observe. Basically, the trace slice T • of T is obtained by removing all
the information from T that is not required to produce the term slice s•n = slice(sn,Osn).
A trace slice is formally defined as follows.

Definition 4.6 Let R = (Σ,∆ ∪ B,R) be a conditional rewrite theory, and let T :

s0
r1,σ1,w1

→ s1
r2,σ2,w2

→ . . .
rn,σn,wn
→ sn be an execution trace in R. Let Osn be a slicing

criterion for T . A trace slice of T w.r.t. Osn is a pair [s•0 → s•1 → . . .→ s•n, B
•], where

1. s•i is a term slice of si; for i = 0, . . . , n, and B• is a boolean condition;

2. s•n = slice(sn,Osn);

3. for every term s′0 such that s•0 ∝
B•
s′0, there exists an execution trace s′0→s′1→ . . .→s′n

in R such that

i) s′i → s′i+1 is either the rewrite step s′i
ri+1,σ

′
i+1

,wi+1

→ s′i+1 or s′i = s′i+1, i =
0, . . . , n− 1;

ii) s•i ∝
B•
s′i, i = 1, . . . , n.

Note that Point 3 of Definition 4.6 ensures that the rules involved in the sliced steps
of T • can be applied again, at the corresponding positions, to every concrete trace T ′

that can be obtained by instantiating all the •-variables in s•0 with arbitrary terms. The
following example illustrates the slicing of an execution trace.

Example 4.7
Consider the Maude specification of Example 2.1 together with the following execu-

tion trace

T : ac(A,30);debit(A,5);credit(A,3)
debit
→ ac(A,25);credit(A,3)

credit
→ ac(A,28).

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Let ac(A,|•1) be a term slice of ac(A,28) generated with the slicing criterion {1} —
i.e., ac(A,•1)=slice(ac(A,28), {1}). Then, the trace slice for T is [T •, •8 ≥ •9] where
T • is as follows

ac(A,•8);debit(A, •9);credit(A,| •4)
debit
→ ac(A,|•3);credit(A, •4)

credit
→ ac(A,•1)

Note that T • needs to be endowed with the compatibility condition •8 ≥ •9 in order
to ensure the applicability of the debit rule. In other words, any instance s•σ of
ac(A,•8);debit(A,•9) can be rewritten by the debit rule only if •8σ ≥ •9σ.

Informally, given a slicing criterion Osn for the execution trace T = s0 →∗ sn,
at each rewrite step si−1 → si, i = n, . . . , 1, our technique inductively computes the
association between the meaningful information of si and the meaningful information
in si−1. For each such rewrite step, the conditions of the applied rule are recursively
processed in order to ascertain from si the meaningful information in si−1, together with
the accumulated condition B•

i . The technique proceeds backwards, from the final term
sn to the initial term s0. A simplified trace is obtained where each si is replaced by the
corresponding term slice s•i .

We define a transition system (Conf , •→) [18] where Conf is a set of configurations
and •→ is the transition relation that implements the backward trace slicing algorithm.
Configurations are formally defined as follows.

Definition 4.8 A configuration, written as 〈T , S•, B•〉, consists of three components:
– the execution trace T : s0 →

∗ si−1 → si to be sliced;
– the term slice s•i , that records the computed term slice of si
– a boolean condition B•.

The transition system (Conf , •→) is defined as follows.

Definition 4.9 Let R = (Σ,∆ ∪ B,R) be a rewrite theory, let T = U →∗ W be
an execution trace in R, and let V → W be a rewrite step. Let B•

W and B•
V be two

boolean conditions, and let W • be a term slice of W . Then, the transition relation •→⊆
Conf × Conf is the smallest relation that satisfies the following rule:

(V •, B•
V) = slice-step(V → W, W •, B•

W)

〈U →∗ V →W, W •, B•
W 〉•→ 〈U →∗ V, V •, B•

V 〉

Roughly speaking, the relation •→ transforms a configuration 〈U →∗ V →W, W •, B•
W 〉

into a configuration 〈U →∗ V, V •, B•
V 〉 by calling the function slice-step(V →W, W •, B•

W)
of Section 4.3, which returns a rewrite step slice for V → W . More precisely, slice-step
computes a suitable term slice V • of V and a boolean condition B•

V that updates the
compatibility condition specified by B•

W .

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

function slice-step(s
r,σ,w
→ t, t•, B•

prev)
1. if w 6∈ MPos(t•)
2. then

3. s• = t•

4. B• = B•
prev

5. else

6. θ = {x/fresh• | x ∈ V ar(r)}
7. ρ• = slice(ρ,MPos(t•

|w
))

8. ψρ = 〈|θ,matchρ•θ(t
•
|w

)|〉

9. for i = n downto 1 do

10. (ψi, B
•
i) = process-condition(ci, σ,

〈|ψρ, ψn...ψi+1|〉)
11. od

12. s• = t•[λ〈|ψρ, ψn...ψ1|〉]w
13. B• = (B•

prev ∧ B•
n... ∧ B

•
1)(ψ1ψ2 . . . ψn)

14.fi
15. return (s•, B•)

Figure 3: Backward step slicing function.

The initial configuration 〈s0 →
∗ sn, slice(sn,Osn), true〉 is transformed until a ter-

minal configuration 〈s0, s
•
0, B

•
0〉 is reached. Then, the computed trace slice is obtained

by replacing each term si by the corresponding term slice s•i , i = 0, . . . , n, in the orig-
inal execution trace s0 →∗ sn. The algorithm additionally returns the accumulated
compatibility condition B•

0 attained in the terminal configuration.
More formally, the backward trace slicing of an execution trace w.r.t. a slicing crite-

rion is implemented by the function backward-slicing defined as follows.

Definition 4.10 (Backward trace slicing algorithm) Let R = (Σ,∆ ∪ B,R) be a
rewrite theory, and let T : s0 →∗ sn be an execution trace in R. Let Osn be a slicing
criterion for T . Then, the function backward-slicing is computed as follows:

backward-slicing(s0 →
∗ sn,Osn) = [s•0 →

∗ s•n, B
•
0]

iff there exists a transition sequence in (Conf , •→)

〈s0 →
∗ sn, s

•
n, true〉•→ 〈s0 →

∗ sn−1, s
•
n−1, B

•
n−1〉•→

∗ 〈s0, s
•
0, B

•
0〉

where s•n = slice(sn, Osn)

In the following, we formulate the auxiliary procedure for the slicing of conditional
rewrite steps.

4.3. The function slice-step

The function slice-step, which is outlined in Figure 3, takes three parameters as

input (a rewrite step µ : s
r,σ,w
→ t (with r = λ → ρ if C5), a term slice t• of t, and a

5Since equations and axioms are both interpreted as rewrite rules in our formulation, we often abuse
the notation λ → ρ if C to denote rules as well as (oriented) equations and axioms.

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

compatibility condition B•
prev) and delivers the term slice s• and a new compatibility

condition B•. Within the algorithm slice-step, we use an auxiliary operator 〈|σ1, σ2|〉
that refines (overrides) a substitution σ1 with a substitution σ2, where both σ1 and σ2
may contain •-variables. The main idea behind 〈| , |〉 is that, for the slicing of the step
µ, all variables in the applied rewrite rule r are näıvely assumed to be initially bound
to irrelevant data •, and the bindings are incrementally refined as we (partially) solve
the conditions of r.

Definition 4.11 (refinement) Let σ1 and σ2 be two substitutions. The refinement of
σ1 w.r.t. σ2 is defined by the operator 〈| , |〉 as follows:

〈|σ1, σ2|〉 = σ|̀Dom(σ1), where

xσ =

xσ2 if x ∈ Dom(σ1) ∩Dom(σ2)
xσ1σ2 if x ∈ Dom(σ1) \Dom(σ2) ∧ σ2 6= fail
xσ1 otherwise

Note that 〈|σ1, σ2|〉 differs from the (standard) instantiation of σ1 with σ2. We write
〈|σ1, .., σn|〉 as a compact denotation for 〈|〈|..〈|σ1, σ2|〉, .., σn−1|〉, σn|〉.

Example 4.12
Let σ1 = {x/•1, y/•2} and σ2 = {x/a, •2 /g(•3), z/5} be two substitutions. Thus,

〈|σ1, σ2|〉 = {x/a, y/g(•3)}.

Roughly speaking, the function slice-step works as follows. When the rewrite step
µ occurs at a position w that is not a meaningful position of t• (in symbols, w 6∈
MPos(t•)), trivially µ does not contribute to producing the meaningful symbols of t•.
Therefore, the function returns s• = t•, with the input compatibility condition B•

prev.

Example 4.13
Consider the Maude specification of Example 2.1 and the following rewrite step µ:

ac(A,30);debit(A,5);credit(A,3)
debit
→ ac(A,25);credit(A,3). Let •1; credit(A, 3)

be a term slice of ac(A,25);credit(A,3). Since the rewrite step µ occurs at position
1 6∈ MPos(•1; credit(A, 3)), the term ac(A,25) introduced by µ in ac(A,25);credit(A,3)
is completely ignored in •1; credit(A, 3). Hence, the computed term slice for

ac(A, 30); debit(A, 5); credit(A, 3)

is the very same •1; credit(A, 3).

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On the other hand, when w ∈ MPos(t•), the computation of s• and B• involves a
more in-depth analysis of the rewrite step, which is based on an inductive refinement
process that is obtained by recursively processing the conditions of the applied rule.
More specifically, we initially define the substitution θ = {x/fresh• | x ∈ V ar(r)} that
binds each variable in r to a fresh •-variable. This corresponds to assuming that all the
information in µ, which is introduced by the substitution σ, can be marked as irrelevant.
Then, θ is incrementally refined using the following two-step procedure.

Step 1. We compute the matcher matchρθ(t
•
|w) and then generate the refinement ψρ of

θ w.r.t. matchρθ(t
•
|w) (in symbols, ψρ = 〈|θ,matchρθ(t

•
|w)|〉). Roughly speaking, the

refinement ψρ updates the bindings of θ with the meaningful information extracted
from t•|w.

Example 4.14

Consider the rewrite theory in Example 2.1 together with the following rewrite

step µdebit : ac(A,30);debit(A,5)
debit
→ ac(A,25) that involves the application

of the debit rule whose right-hand side is ρdebit =ac(Id,nb). Let t• =ac(A,•1)
be a term slice of ac(A,25). Then, the initially ascertained substitution for µ is

θ={Id/•2, b/•3, M/•4, nb/•5}

and matchρdebitθ(t
•) = matchac(•2,•5)(ac(A,•1)) = {•2/A, •5 /•1}. Thus, the

substitution

ψρdebit = 〈|θ, ψρdebit |〉 = {Id/A, b/•3, M/•4, nb/•1}.

That is, ψρdebit refines θ by replacing the uninformed binding Id/•2, with Id/A.

Step 2. Let Cσ = c1σ ∧ . . . ∧ cnσ be the instance of the condition in the rule r that
enables the rewrite step µ. We process each (sub)condition ciσ, i = 1, . . . , n, in
reversed evaluation order, i.e., from cnσ to c1σ, by using the auxiliary function
process-condition given in Figure 4 that generates a pair (ψi, B

•
i) such that ψi is

used to further refine the partially ascertained substitution 〈|ψρ, ψn, . . . , ψi+1|〉 that
is computed by incrementally analyzing conditions cnσ, cn−1σ . . . , ci+1σ, and B

•
i is

a boolean condition that is derived from the analysis of the condition ci.

When the whole Cσ has been processed, we get the refinement
〈|ψρ, ψn, ..., ψ1|〉, which basically encodes all the instantiations required to construct the
term slice s• from t•. More specifically, s• is obtained from t• by replacing the subterm
t•|w with the left-hand side λ of r instantiated with 〈|ψρ, ψn, . . . , ψ1|〉. Furthermore, B•

is built by collecting all the boolean compatibility conditions B•
i delivered by process-

condition and instantiating them with the composition of the computed refinements

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

function process-condition(c, σ, θ)
1. case c of

2. (p := t) ∨ (t ⇒ p) :

3. if (tσ = pσ)
4. then return ({}, true) fi

5. Q = MPos(pθ)
6. [t• →∗ p•, B•] =

backward-slicing(tσ →∗ pσ, Q)
7. t•′ = slice(t,MPos(t•))
8. ψ = matcht•′θ(t

•)
9. e :

10. ψ = { }
12. B• = eθ
12. end case

13. return (ψ, B•)

Figure 4: Condition processing function.

ψ1 . . . ψn. It is worth noting that process-condition handles rewrite expressions, equa-
tional conditions, and matching conditions differently. More specifically, the pair (ψi,
Bi) that is returned after processing each condition ci is computed as follows.

– Matching conditions. Let c be a matching condition with the form p := m in

the condition of rule r. During the execution of the step µ : s
r,σ,w
→ t, re-

call that c is evaluated as follows: first, mσ is reduced to its canonical form
mσ ↓∆, and then the condition mσ ↓∆=B pσ is checked. Therefore, the anal-
ysis of the matching condition p := m during the slicing process of µ implies
slicing the (internal) execution trace Tint = mσ →∗ pσ, which is done by re-
cursively invoking the function backward-slicing for execution trace slicing with
respect to the meaningful positions of the term slice pθ of p, where θ is a re-
finement that records the meaningful information computed so far. That is,
[m• →∗ p•, B•] = backward-slicing(mσ →∗ pσ, MPos(pθ)). The result deliv-
ered by the function backward-slicing is a trace slice m• →∗ p• with compatibility
condition B•.

In order to deliver the final outcome for the matching condition p := m, we first
compute the substitution ψ = matchmθ(m

•), which is the substitution needed to
refine θ, and then the pair (ψ, B•) is returned.

Example 4.15

Consider the rewrite step µdebit of Example 4.14 together with the refined substi-
tution θ = {Id/A, b/•3, M/•4, nb/•1}. We process the condition

nb := b - M

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

of debit by considering an internal execution trace Tint = 30− 5 → 25 6. By
invoking the backward-slicing function, the trace slice result is [•6 → •6, true].
The final outcome is given by match•7−•8(•6), which is fail. Thus θ does not need
any further refinement.

– Rewrite expressions. The case when c is a rewrite expression t ⇒ p is handled
similarly to the case of a matching equation p := t, with the difference that t can
be reduced by using the rules of R in addition to equations and axioms.

– Equational conditions. During the execution of the rewrite step µ : s
r,σ,w
→ t, the

instance eσ of an equational condition e in the condition of the rule r is just
fulfilled or falsified, but it does not bring any instantiation into the output term
t. Therefore, when processing eσ, no meaningful information to further refine
the partially ascertained substitution θ must be added. However, the equational
condition e must be recorded in order to compute the compatibility condition B•

for the considered conditional rewrite step. In other words, after processing an
equational condition e, we deliver the tuple (ψ, B•), with ψ = { } and B• = eθ.
Note that the condition e is instantiated with the updated substitution θ, in order
to transfer only the meaningful information of eσ computed so far in e.

Example 4.16

Consider the refined substitution given in Example 4.15

θ = {Id/A, b/•3, M/•4, nb/•1}

together with the rewrite step µdebit of Example 4.14 that involves the application
of the debit rule. After processing the condition b >= M of debit, we deliver
B• = (•3 >= •4).

The correctness of our backward conditional slicing technique is established in [10].
In order to prove this result, we first demonstrate an auxiliary lemma that establishes
the correctness of the backward-slicing procedure for a single rewrite step. Then we use
this result to prove the correctness of backward-slicing for a generic execution trace.

Lemma 4.17 Let R be a rewrite theory. Let T : s
r,σ,w
→ t be a (one-step) execution

trace in the rewrite theory R, and let Ot be a slicing criterion for T . Then, the pair
[s• → t•, B•] computed by backward-slicing(T , Ot) is a trace slice for T .

6 Note that the trace 30-5→25 involves an application of the Maude built-in operator “-”. Given a
built-in operator op, in order to handle the reduction a op b → c as an ordinary rewrite step, we add
the rule a op b ⇒ c to the considered rewrite theory.

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. (sketch) Given a rewrite step µ : s
r,σ,w
→ t, where r = λ → ρ if c1 ∧ . . . ∧ cn,

the proof is an induction on the sum of the lengths of all the (internal) execution traces
needed to prove the instantiated condition (c1 ∧ . . . ∧ cn)σ. This way, each recursive
call to backward-slicing, that is used to evaluate a given ciσ, generates a trace slice by
inductive hypothesis. Such trace slices are used, by the auxiliary function slice-step, to
deliver a pair (ψi, B

•
i) for each ci, where ψi records the relevant instantiations derived

from the processing of the condition ci, and B
•
i is the associated compatibility condition.

Another key factor of the proof is that the inclusion of the redex pattern7 of the rule r in
s• (i.e., s• = t•[λ〈|ψρ, ψn...ψ1|〉]w) guarantees the applicability of r to each concretization
of s• that is compatible with B•.

Theorem 4.18 (correctness) [10]. Let R be a rewrite theory. Let T : s0
r1,σ1,w1

→

...
rn,σn,wn
→ sn be an execution trace in the rewrite theory R, with n > 0, and let Osn be

a slicing criterion for T . Then, the pair [s•0 → ... → s•n, B
•
0] computed by backward-

slicing(T , Osn) is a trace slice for T .

Proof. (sketch) The proof proceeds by induction on the length of T : s0
r1,σ1,w1

→ . . .
rn,σn,wn
→

sn. Basically, by inductive hypothesis, we assume that [s•1 → . . .→ s•n, B
•
1] is the trace

slice generated by invoking backward-slicing on the (sub)trace s1
r2,σ2,w2

→ . . .
rn,σn,wn
→ sn

w.r.t. the slicing criterion Osn . We then use Lemma 4.18 to determine the trace slice

for the first step s0
r1,σ1,w1

→ s1 of T w.r.t. the slicing criterion induced by term slice s•1
(i.e., MPos(s•1)). Finally, we prove the theorem by composing the two trace slices in
the obvious way.

5. The Julienne system

The slicing methodology for conditional RWL computations developed so far has
been implemented in the slicing tool Julienne. The slicing engine of Julienne is
written in Maude and consists of about 170 Maude function definitions (approximately
1K lines of source code). Julienne also comes with an intuitive Web user interface that
is based on the AJAX technology, which allows the slicing engine to be used through
a Java Web service. The implementation uses Maude meta-level capabilities and is
extremely efficient. Actually, the current version of Maude can do more than 3 million
rewritings per second on state-of-the-art processors, and the Maude compiler can reach
up to 15 million rewrites per second. Julienne generalizes and supersedes a previous
unconditional slicer mentioned in [9].

The architecture of Julienne, which is depicted in Figure 5, consists of three system
modules named IT-Builder, Slicer, and Pretty-Printer.

7 A redex pattern is the nonvariable part of the left hand side of a rule. For example, consider the
rule r : f(g(x), a) → h(x) such that f, g, a are operators and x is a variable; then, the redex pattern of
r is the term f(g(�), a) where � is a hole that can eventually be filled in by virtue of a rewrite step.

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 5: Julienne architecture

IT-Builder. The Instrumented Trace Builder (IT-Builder) module is a pre-processor
that provides an expanded instrumented version of the original trace in which all re-
duction steps are explicitly represented, including equational simplification steps and
applications of the matching modulo algorithm that are not explicitly recorded within
the trace meta-representation given by the Maude meta-level operators. Showing all
rewrites is not only required to successfully apply our trace slicing methodology in [10],
but it can also be extremely useful for debugging purposes because it permits the user
to inspect the equational simplification subcomputations that occur in a given trace.
Slicer. This module implements the trace slicing method by using Maude reflection
and meta-level functionality. Specifically, it defines a new meta-level command called
back-sl (backward-slicing) that takes as input an instrumented trace t →∗ s (given as
a Maude term of sort Trace) and a slicing criterion that represents the target symbols
of the state s to be observed. It then delivers (i) a trace slice in which the data that
are not relevant w.r.t. the chosen criterion are replaced by special •-variables, and (ii)
a compatibility condition that ensures the correctness of the generated trace slice. This
module is also endowed with a simple pattern-matching filtering language that helps
to select the target symbols in s without the encumbrance of having to refer to them
by their addressing positions. Roughly speaking, the slicing criterion is specified by
a pattern p that consists of two wild cards (? and) that are used to identify (resp.
discard) the data of interest (resp. of no matter) inside s. Target symbols in s are
then automatically retrieved by pattern matching s within p. For instance, the slicing
criterion

ac(B, ?) ; ; ac(D, ?)

is matched by the term

ac(B, 20) ; ac(C, 16) ; ac(D, 30)

and identifies as being relevant only the balance values of B and D (20 and 30, respec-
tively), while any other data in the configuration (for C’s account) are disregarded.

Pretty-Printer. This module implements the command prettyPrint, which provides
a human-readable, nicely structured view of the generated trace slice where the carried

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mod BANK_ERR is inc INT .
sorts Account Msg State Id .

subsorts Account Msg < State .
var Id Id1 Id2 : Id .

var b b1 b2 nb nb1 nb2 M : Int .
op empty-state : -> State .

op _;_ : State State -> State [assoc comm id: empty-state] .

op ac : Id Int -> Account [ctor] .
ops A B C D: Id .

ops credit debit : Id Int -> Msg [ctor] .
op transfer : Id Id Int -> Msg [ctor] .

crl [credit] :credit(Id,M);ac(Id,b) => ac(Id,nb) if nb := b+M .
crl [debitERR] :debit(Id,M);ac(Id,b) => ac(Id,nb) if nb := b-M .

crl [transfer] :transfer(Id1, Id2,M);ac(Id1,b1);ac(Id2,b2) => ac(Id1,nb1);ac(Id2,nb2)
if debit(Id1,M);ac(Id1,b1) => ac(Id1,nb1) /\ credit(Id2,M);ac(Id2,b2) => ac(Id2,nb2) .

endm

Figure 6: Faulty Maude specification of a distributed banking system.

compatibility condition can be displayed or hidden, depending on the interest of the
user. The pretty printer takes as input either a trace slice (typically the one delivered
by the Slicer module) or any instrumented trace given by the user and delivers a pretty
representation of the trace as a term of sort String that is aimed to favor better inspection
and debugging activities within the Maude environment.

6. Julienne at work

In general, using conventional debuggers is an inefficient and time-consuming ap-
proach for understanding the program behavior, especially when a programmer is inter-
ested in observing only those parts of the program execution that relate to the incorrect
output. In order to make program debugging and comprehension more efficient, it is
important to focus the programmer’s attention on the essential components (actions,
states, equations and rules) of the program and their execution. Backward trace slicing
provides a means to achieve this by pruning away the unrelated pieces of the computa-
tion.

6.1. Debugging Maude programs with Julienne

In debugging, one is often interested in analysing the specific execution of a program
that exhibits anomalous behavior. However, the execution of Maude programs typically
generates large and clumsy traces that are hard to browse and understand even when
the programmer is assisted by tracing tools such as the Maude built-in tracing facility.
This is because the tracer does not provide any means for identifying the contributing
program parts of the program being debugged, and does not allow the programmer to
distinguish related computations from unrelated computations. The inspection of these
traces for debugging purposes is thus a cumbersome task that very often leads to no
conclusion. In this scenario, backward trace slicing can play a meaningful role, since
it can automatically reduce the size of the analyzed execution trace keeping track of

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

all and only those symbols that may cause the existence of an error or anomaly in the
trace.

Basically, the idea is to feed the Julienne slicer with an execution trace T that
represents a wrong behavior of a given Maude program, together with a slicing criterion
that observes an erroneous outcome. The resulting trace slice is typically much smaller
than the original one, since it only includes the information that is responsible for the
production of the erroneous outcome. Thus, the programmer can easily navigate through
the trace slice for program bugs to hunt. Let us see an example.

Example 6.1
Consider the Maude program BANK_ERR of Figure 6, which is a faulty mutation of

the distributed banking system specified in Figure 1. More precisely, the rule debit

has been replaced by the rule debitERR in which we have intentionally omitted the
equational condition M <= b. Roughly speaking, the considered specification always
authorizes withdrawals even in the erroneous case when the amount of money to be
withdrawn is greater than the account balance.

Now let us consider an execution trace Tbank that starts in the initial state

ac(A,50) ; ac(B,20) ; ac(D,20) ; ac(C,20) ;

transfer(B,C,4) ; transfer(A,C,15) ;

debit(D,5) ; credit(A,10) ; transfer(A,D,20) ;

debit(C,50) ; credit(D,40)

and ends in the final state

ac(A,25) ; ac(B,16) ; ac(D,75) ; ac(C,-11)

We observe that the final state contains a negative balance for the client C, which is
a clear symptom of malfunction of the BANK_ERR specification, since we assume that
balances must be non-negative numbers. Therefore, we execute Julienne on the trace
Tbank w.r.t. the slicing criterion specified by the pattern ac(C,−11) in order to determine
the cause of such a negative balance. The output delivered by Julienne is given in Table
1 and shows the (instrumented) input trace Tbank in the Execution Trace column, the
simplified trace T •

bank in the Sliced trace column, the computed compatibility condition,
and some other auxiliary data such as the size of the two traces, the reduction rate
achieved, and the rules that have been applied in Tbank and T •

bank .
It is worth noting that the trace slice T •

bank greatly simplifies the trace Tbank by
deleting all the bank accounts and account operations that are not related to the client
C as well as all the internal flat/unflat rewrite steps, which are needed to implement
rewriting modulo associativity and commutativity. In fact, the computed reduction
rate is 78%, which clearly shows the drastic pruning that we have obtained.

Now, a quick inspection of T •
bank allows the existence of a misbehaving account oper-

ation to be recognized. Specifically, state 12 in the trace slice T •
bank has been obtained by

reducing the term debit(C, 50) by means of the rule debit_ERR even though the current

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1: Julienne output for the trace Tbank w.r.t. the criterion ac(C,-11)

balance of C was only 20. This suggests to us that debit_ERR might be faulty since it
does not conform to its intended semantics, which forbids any withdrawal greater than
the current funds available.

To fully assess the practicability of our approach, we coupled Julienne with the Web-
TLR system [5]. Web-TLR is a RWL-based tool, which is built on top of Maude,
that allows real-size Web applications to be formally specified and verified by using
the built-in Maude model-checker. In Web-TLR, a Web application is formalized by
means of a Maude specification and then checked against a property specified in the
Linear Temporal Logic of Rewriting (LTLR [19]), which is a temporal logic specifically
designed to model-check rewrite theories. When a property is refuted by the LTLR
model-checker, a counter-example in the form of a rewrite sequence that reveals an
undesired, erroneous behavior is yielded. Backward trace slicing is then used to provide
a simplified view of counter-examples which facilitates their inspection and debugging.
A complete debugging session using backward trace slicing for the specification of a
complex Webmail application was thoroughly described in [2].

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mod MINMAX is inc INT .
sorts List Pair .

subsorts Nat < List .
op _;_ : List List -> List [ctor assoc] .

op PAIR : Nat Nat -> Pair .
op 1st : Pair -> Nat .

op 2nd : Pair -> Nat .

op Max : Nat Nat -> Nat .
op Min : Nat Nat -> Nat .

op minmax : List -> Pair .
var N X Y : Nat .

var L : List .
var P : Pair .

crl [Max1] : Max(X,Y) => X if X >= Y .
crl [Max2] : Max(X,Y) => Y if X < Y .

crl [Min1] : Min(X,Y) => Y if X > Y .
crl [Min2] : Min(X,Y) => X if X <= Y .

rl [1st] : 1st(PAIR(X,Y)) => X .
rl [2nd] : 2nd(PAIR(X,Y)) => Y .

rl [minmax1] : minmax(N) => PAIR(N,N) .
crl [minmax2] : minmax(N ; L) => PAIR(Min(N,1st(P)) , Max(N,2nd(P))) if P := minmax(L).

endm

Figure 7: Maude specification of the minmax function

6.2. Trace querying with Julienne

Execution traces of programs are a helpful source of information for program compre-
hension. However, they provide such a low-level picture of program execution that users
may experience several difficulties in interpreting and analyzing them. Trace querying
[20] allows a given execution trace to be analyzed at a higher level of abstraction by
selecting only a subtrace of it that the user considers relevant.

Trace querying of Maude execution traces is naturally supported and completely
automated by the trace slicer Julienne. Indeed, execution traces can be simply queried
by providing a slicing criterion (in the form of a filtering pattern) that specifies the target
symbols the user decides to monitor. Hence, backward trace slicing is performed w.r.t.
the considered criterion to compute an abstract view (i.e., the trace slice) of the original
execution trace that only includes the information that is strictly required to yield the
target symbols under observation. This way, users can focus their attention on the
monitored data, which might otherwise be overlooked in the concrete trace.

Moreover, backward trace slicing correctness provides, for free, a means to under-
stand the program behavior w.r.t. partially-defined inputs since the computed com-
patibility condition constrains the possible values that non-relevant inputs (modeled
by •-variables) might assume. In other words, a trace slice T • can be thought of as
an intensional representation of all the possible concrete traces, which are compatible
concretizations of T •, that lead to the production of the monitored target symbols.

Example 6.2
The Maude specification of Figure 7, inspired by a similar one in [21], specifies the

operator minmax that takes as input a list of natural numbers L and computes a pair
(m,M) where m (resp., M) is the minimum (resp., maximum) of L.

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 2: Julienne output for the trace T •

minmax w.r.t. the criterion PAIR(?,)

Let Tminmax be the execution trace that reduces the input term minmax(4;7;0) to
the normal form PAIR(0,7). Now, assume that we are only interested in analyzing the
subtrace that generates 0 in PAIR(0,7) —i.e., the minimum of the list 4;7;0.

Thus, we can query Tminmax by specifying the pattern PAIR(?,) that allows us to
trace back only the first argument of PAIR, while the second one is discarded. Julienne
generates the trace slice T •

minmax, that is given in Table 2, whose compatibility condition
is C• = •23 > 0 ∧ •19 > 0. The slice T •

minmax isolates all and only those function calls
in the trace T that must be reduced to yield the minimum of the list 4;7;0. Now,
by analyzing the trace slice, it is immediate to see that the operators 2nd and Max do
not affect the observed result since they are not used in the trace slice. Also, by the
correctness of our slicing technique, we can state that for every concrete instance Lc
of the partially-defined input •23; •19; 0 that meets the compatibility condition C•, the
minimum computed by the call minmax(Lc) will be 0.

6.3. Dynamic program slicing

By running Julienne, we are able to obtain not only a more compact and focused
trace that corresponds to the execution of the program, but also to uncover statement
dependences that connect computationally related parts of the program. Hence a single
walk of these dependences is sufficient to implement a form of dynamic program slicing.

Program slicing is the computation of the set of program statements, the program
slice, that may affect the values at some point of interest. A program slice consists of
a subset of the statements of the original program, sometimes with the additional con-
straint that a slice must constitute a syntactically valid, executable program. Relevant

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

applications of slicing include software maintenance, optimization, program analysis,
and information flow control. An important distinction is that between static and dy-
namic slicing: whereas static slicing is performed with no other information than the
source code itself, dynamic program slicing works on a specific execution of the pro-
gram (i.e., a given execution trace) [22], hence it only reflects the actual dependences of
that execution, resulting in smaller program slices than static ones. Dynamic slicing is
usually achieved by dynamic data-flow analysis along the program execution trajectory.
Although dynamic program slicing was first introduced to aid in user level debugging to
locate sources of errors more easily, applications aimed at improving software quality,
reliability, security and performance have also been identified as candidates for using
dynamic program slicing.

Let us show how backward trace slicing can support the generation of dynamic
program slices by detecting unused program rules in a given trace slice.

Example 6.3
Consider the trace slice T •

minmax of Example 6.2 for the execution trace

minmax(4; 7; 0) →∗ PAIR(0, 7)

w.r.t. the criterion PAIR(?,). Since operations 2nd and Max are never used in T •
minmax,

we can generate a dynamic program slice of the MINMAX Maude module by deleting the
rule definitions of 2nd and Max and (possibly) replacing any function call to 2nd or Max
in the right-hand side or condition of the remaining rules by a special dumb constant
2 typed with an appropriate sort. Hence, the resulting program slice consists of the
following rules:

crl [Min1] : Min(X,Y) => Y if X > Y .

crl [Min2] : Min(X,Y) => X if X <= Y .

rl [1st] : 1st(PAIR(X,Y)) => X .

rl [minmax1] : minmax(N) => PAIR(N,N) .

crl [minmax2] : minmax(N ; L) => PAIR(Min(N,1st(P)),2) if P := minmax(L).

6.4. Experimental evaluation

We have experimentally evaluated our tool in several case studies that are available
at the Julienne Web site [23] and within the distribution package, which also contains
a user guide, the source files of the slicer, and related literature.

To properly assess the performance and scalability, we have tested Julienne on
several execution traces of increasing complexity: More precisely, we have considered

• two execution traces that model two runs of a fault-tolerant client-server commu-
nication protocol (FTCP) specified in Maude. Trace slicing has been performed
according to two chosen criteria that aim at extracting information related to a

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Example Original Slicing Sliced %

trace trace size criterion trace size reduction

FTCP.T1 2054
FTCP.T1.O1 294 85.69%
FTCP.T1.O2 316 84.62%

FTCP.T2 1286
FTCP.T2.O1 135 89.40%
FTCP.T2.O2 97 92.46%

Maude-NPA.T1 21265
Maude-NPA.T1.O1 2249 89.42%
Maude-NPA.T1.O2 2261 89.36%

Maude-NPA.T2 34681
Maude-NPA.T2.O1 3015 91.30%
Maude-NPA.T2.O2 3192 90.79%

Web-TLR.T1 19114
Web-TLR.T1.O1 3982 79.17%
Web-TLR.T1.O2 3091 83.83%

Web-TLR.T2 22018
Web-TLR.T2.O1 2984 86.45%
Web-TLR.T2.O2 2508 88.61%

Web-TLR.T3 38983
Web-TLR.T3.O1 2045 94.75%
Web-TLR.T3.O2 2778 92.87%

Web-TLR.T4 69491
Web-TLR.T4.O1 8493 87.78%
Web-TLR.T4.O2 5034 92.76%

Table 3: Backward trace slicing benchmarks.

specific server and client in a scenario that involves multiple servers and clients,
and tracking the response generated by the server according to a given client re-
quest.

• two execution traces generated by Maude-NPA [24], which is an RWL-based anal-
ysis tool for cryptographic protocols that takes into account many of the algebraic
properties of cryptosystems. These include cancellation of encryption and decryp-
tion, Abelian groups (including exclusive-or), exponentiation, and homomorphic
encryption. The considered traces model two instances of a well-known man-in-
the-middle attack to the Needham-Schroeder network authentication protocol [25].
Specifically, they consist of a sequence of rewrite steps that represents the mes-
sages exchanged among three entities: an initiator A, a receiver B, and an intruder
I that imitates A to establish a network session with B. The chosen slicing criteria
selects the intruder’s actions as well as the intruder’s knowledge at each rewrite
step discarding all the remaining session information.

• four counter-examples produced by model-checking a real-size Webmail application
specified in Web-TLR. The chosen slicing criteria allowed several critical data to
be isolated and inspected —e.g., the navigation of a malicious user, the messages
exchanged by a specific Web browser with the Webmail server, and session data
of interest (e.g., browser cookies).

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The results of our experiments are shown in Table 3. The execution traces for the
considered cases consist of sequences of 10–1000 states, each of which contains from
60 to 5000 characters. In all the experiments, the trace slices that we obtained show
impressive reduction rates (up to ∼98%).

Other benchmark programs we have considered (e.g., the banking system specifi-
cation of Figure 6 and a Maude program solving the famous crossing river puzzles)
are available at the Julienne Web site. In most cases, the delivered trace slices were
cleansed enough to be easily inspected by hand. Also, it is worth noting that that the
slicer does not remove any information that is relevant, independently of the skills of
the user.

With regard to the time required to perform the analyses, our implementation is
extremely time efficient; the elapsed times are small even for very complex traces and
scale linearly. For example, running the slicer for a 20Kb trace in a Maude specification
with about 150 rules and equations –with AC rewrites– took less than 1 second (480.000
rewrites per second on standard hardware, 2.26GHz Intel Core 2 Duo with 4Gb of RAM
memory).

7. Related Work

There are very few approaches that address the problem of tracing rewrite sequences
in term rewrite systems [9, 12, 26, 27], and all of them apply to unconditional systems.
The techniques in [9, 12, 26] rely on a labeling relation on symbols that allows data
content to be traced back within the computation; this is achieved in [27] by formalizing
a notion of dynamic dependence among symbols by means of contexts. In [12, 26],
non-left linear and collapsing rules are not considered or are dealt with using ad-hoc
strategies, while our approach requires no special treatment of such rules. Moreover,
the first and only (unconditional) trace slicing technique that supports rules, equations,
sorts, and algebraic axioms is [9].

The technique in [9] computes the reverse dependence among the symbols involved in
an execution step by using a procedure (based on [26]) that dynamically labels the calls
(terms) involved in the steps. In this paper, we describe a more general slicing technique
that copes with conditional rewrite theories and simplifies the formal development in
[9] by getting rid of the complex dynamic labeling algorithm that was needed to trace
back the origins of the symbols of interest, replacing it with a simple mechanism for
substitution refinement that allows control and data dependencies to be propagated
between consecutive rewrite steps. Our technique also avoids manipulating the origins
by recording their addressing positions; we simply and explicitly record the origins of
the meaningful positions within the computed term slices themselves, without resorting
to any other artifact.

We are not aware of any trace slicer that is comparable to Julienne for either
imperative or declarative languages. To the best of our knowledge, there are just a
couple of tools that only slightly relate to ours. Spyder [28] is a prototype debugger for C

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

that, thanks to the combination of dynamic program slicing and execution backtracking
techniques, is able to automatically step-back, statement by statement, from any desired
location in order to determine which statements in the program affect the value of an
output variable for a given test case, and to determine the value of a given variable when
the control last reached a given program location. In contrast to Spyder, our technique is
based on trace slicing rather than dynamic program slicing, and needs much less storage
to perform flow-back analysis, as it requires neither the construction of data and control
dependence graphs nor the creation of an execution history.

The Haskell interactive debugger Hat [29] also allows execution traces to be explored
backwards, starting from the program output or an error message (computation abort).
Similarly to Spyder, this task is carried out by navigating a graph-like, supplementary
data structure (redex trail) that records dependencies among function calls. Even if Hat
is able to highlight the top-level “parent” function of any expression in the final trace
state, it cannot be used to compose a full trace slice. Actually, at every point of the
recreated trail, the function arguments are shown in fully evaluated form (the way they
would appear at the end of the computation) even though, at the point at which they
are shown, they would not yet have necessarily reached that form. A totally different,
bytecode trace compression was proposed in [30] to help perform Java program analysis
(e.g., dynamic program slicing [31]) over the compact representation.

8. Conclusions

We have developed a slicing transformation technique for rewriting logic programs
that are written and executed in the Maude system. The technique can drastically
reduce the size and complexity of the traces under examination. It is useful for execution
trace analyses of sophisticated rewrite theories that may include conditional equations,
equational axioms, and rules. An implementation of the proposed technique reveals
that it does not come at the expense of performance with respect to existing Maude
tools.This makes the tool attractive for Maude users, especially taking into account that
program debugging and trace analysis in Maude is tedious with the current state of tools
in its realm. The tool can be tuned to reveal all relevant information (including applied
equation/rule, redex position, and matching substitution) for each single rewrite step
that is obtained by (recursively) applying a conditional equation, algebraic axiom, or
rule, which greatly improves the standard view of execution traces in Maude and their
meta-representations. Moreover, it can provide both, a textual representation of the
trace and its meta-level representation to be used for further automated analysis.

The Maude system currently supports two different approaches for debugging Maude
programs: the internal debugger described in [14] (Chap. 22) and the declarative de-
bugger of [32]. The first one is a traditional trace-based debugger that allows the user to
define break points in the execution by selecting some operators or statements. When
a break point is found, the debugger is entered, and the next rewrite is executed with
tracing turned on. The user can also execute another Maude command, which in turn

28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

can enter the (fully re-entrant) debugger. For large programs such repeated program
executions may be very cumbersome. The declarative debugger of Maude is based on
Shapiro’s algorithmic debugging technique [33] and allows the debugging of wrong re-
sults (erroneous reductions, sort inferences, and rewrites) and incomplete results (not
completely reduced normal forms, greater than expected least sorts, and incomplete sets
of reachable terms) [32]. The debugging process starts from a computation considered
incorrect by the user (typically from the initial term to an unexpected one) and locates
a program fragment responsible for that error symptom. Then the debugger builds a
debugging tree representing this computation and guides the user through it to find the
bug, with several options to build, prune, and traverse the debugging tree. During the
process, the system asks questions to an external oracle (generally the user or another
program or formal specification) until a so-called buggy node is found, i.e., a node that
contains an erroneous result but whose children have all correct results. Since a buggy
node produces an erroneous output from correct inputs, it corresponds to an erroneous
fragment of code that is pointed out as an error. Typical questions to the user have the
form “Is it correct that term t rewrites (or fully reduces) to t′?” Since one of the main
drawbacks of declarative debugging is the size of the debugging trees and the complex-
ity of the questions to the oracle, the tool allows the debugging trees to be reduced in
several ways (e.g., by considering as fully trusted code some statements and even whole
modules). Sometimes, the user answers allow the tree to be further pruned and the cor-
responding questions referring to the nodes of the eliminated subtrees are consequently
discarded. We think that our trace slicing technique can provide a complementary source
of information to further shorten the declarative debugging process. By not considering
some (sub-)computations that were proven by the trace slicer to have no influence on
a criterion of interest, we might avoid many unnecessary questions to the user, which
we plan to investigate as future work. In order to achieve this, we intend to develop
a trace querying scheme for more sophisticated theories that may include membership
axioms and to address the full integration of our tool within the formal tool environment
of Maude. We also plan to explore other challenging applications of our trace slicing
methodology, such as runtime verification [34] which is concerned with monitoring and
analysis of system executions. Consider a programming language L which is given a
RWL executable semantics. Then one can use the semantics as an interpreter to exe-
cute L programs (given as terms) directly within the semantics of their programming
language as in [35], and hence Maude can be used to trace such executions. Then, by
querying the trace slice w.r.t. a reference specification, runtime verification might be
semantically grounded in our setting while it is commonly offhacked in more traditional
approaches by means of program instrumentation.

References

[1] F. Chen, G. Rosu, Parametric trace slicing and monitoring, in: TACAS, volume
5505 of LNCS, Springer, 2009, pp. 246–261.

29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[2] M. Alpuente, D. Ballis, J. Espert, F. Frechina, D. Romero, Debugging of Web
Applications with WEB-TLR, in: Proc. of 7th Int’l Workshop on Automated
Specification and Verification of Web Systems WWV 2011, volume 61 of Electronic
Proceedings in Theoretical Computer Science (EPTCS), pp. 66–80.

[3] M. A. Francel, S. Rugaber, The Value of Slicing while Debugging, Sci. Comput.
Program. 40 (2001) 151–169.

[4] M. Baggi, D. Ballis, M. Falaschi, Quantitative Pathway Logic for Computational
Biology, in: Proc. of 7th Int’l Conference on Computational Methods in Systems
Biology (CMSB ’09), volume 5688 of LNCS, Springer, 2009, pp. 68–82.

[5] M. Alpuente, D. Ballis, J. Espert, D. Romero, Model-checking Web Applications
with Web-TLR, in: Proc. of 8th Int’l Symposium on Automated Technology for
Verification and Analysis (ATVA 2010), volume 6252 of LNCS, Springer, 2010, pp.
341–346.

[6] M. Alpuente, D. Ballis, D. Romero, Specification and Verification of Web Applica-
tions in Rewriting Logic, in: Formal Methods, Second World Congress FM 2009,
volume 5850 of LNCS, Springer, 2009, pp. 790–805.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, C. Talco,
Maude Manual (Version 2.6), Technical Report, SRI Int’l Computer Science Labo-
ratory, 2011. Available at: http://maude.cs.uiuc.edu/maude2-manual/.

[8] N-Mart́ı-Oliet, M. Palomino, A. Verdejo, Rewriting logic bibliography by topic:
1990-2011, Journal of Logic and Algebraic Prohramming (2012). To appear.

[9] M. Alpuente, D. Ballis, J. Espert, D. Romero, Backward Trace Slicing for Rewriting
Logic Theories, in: Proc. of 23rd Int’l Conference on Automated Deduction CADE
2011, volume 6803 of LNCS/LNAI, Springer, 2011, pp. 34–48.

[10] M. Alpuente, D. Ballis, F. Frechina, D. Romero, Backward Trace Slicing for Con-
ditional Rewrite Theories, in: Proc. of the 18th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning LPAR-18, volume 7180 of
LNCS, Springer, 2012, pp. 62–76.

[11] M. Alpuente, D. Ballis, F. Frechina, D. Romero, Julienne: A Trace Slicer for
Conditional Rewrite Theorie, in: Proc. of the 118th Int’l Symposium on Formal
Methods FM 2012, LNCS, Springer, 2012. To appear.

[12] TeReSe (Ed.), Term Rewriting Systems, Cambridge University Press, Cambridge,
UK, 2003.

[13] J. Meseguer, Conditional Rewriting Logic as a Unified Model of Concurrency,
Theoretical Computer Science 96 (1992) 73–155.

30

http://maude.cs.uiuc.edu/maude2-manual/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[14] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, C. Talcott,
All About Maude: A High-Performance Logical Framework, volume 4350 of LNCS,
Springer-Verlag, 2007.

[15] J. Klop, Term Rewriting Systems, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.),
Handbook of Logic in Computer Science, volume I, Oxford University Press, 1992,
pp. 1–112.

[16] R. Bruni, J. Meseguer, Semantic Foundations for Generalized Rewrite Theories,
Theoretical Computer Science 360 (2006) 386–414.

[17] F. Durán, J. Meseguer, A Maude Coherence Checker Tool for Conditional Order-
Sorted Rewrite Theories, in: Proc. of 8th International Workshop on Rewriting
Logic and Its Applications (WRLA’10), number 6381 in LNCS, Springer, 2010, pp.
86–103.

[18] G. D. Plotkin, A Structural Approach to Operational Semantics, J. Log. Algebr.
Program. (2004) 17–139.

[19] J. Meseguer, The Temporal Logic of Rewriting: A Gentle Introduction, in: Con-
currency, Graphs and Models: Essays Dedicated to Ugo Montanari on the Occasion
of his 65th Birthday, volume 5065, Springer-Verlag, Berlin, Heidelberg, 2008, pp.
354–382.

[20] M. Ducassé, Opium: An Extendable Trace Analyzer for Prolog, Journal of Logic
Programming 39 (1999) 177–223.

[21] Y. A. Liu, S. D. Stoller, Eliminating Dead Code on Recursive Data, Science of
Computer Programming 47 (2003) 221–242.

[22] B. Korel, J. Laski, Dynamic Program Slicing, Inf. Process. Lett. 29 (1988) 155–163.

[23] M. Alpuente, D. Ballis, F. Frechina, D. Romero, The julienne web site, 2012.
Available at: http://safe-tools.dsic.upv.es/julienne/.

[24] S. Escobar, C. Meadows, J. Meseguer, Maude-NPA: Cryptographic Protocol Anal-
ysis Modulo Equational properties, in: FOSAD 2007/2008/2009 Tutorial Lectures,
volume 258(1) of LNCS, Springer, 2009, pp. 1–50.

[25] G. Lowe, Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR, in: Proceedings of the Second International Workshop on Tools and Algo-
rithms for Construction and Analysis of Systems, volume 1055 of LNCS, Springer,
1996, pp. 147–166.

[26] I. Bethke, J. W. Klop, R. de Vrijer, Descendants and origins in term rewriting, Inf.
Comput. 159 (2000) 59–124.

31

http://safe-tools.dsic.upv.es/julienne/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[27] J. Field, F. Tip, Dynamic dependence in term rewriting systems and its application
to program slicing, in: Proc. of the 6th Int’l Symposium on Programming Language
Implementation and Logic Programming, PLILP ’94, Springer-Verlag, London, UK,
1994, pp. 415–431.

[28] H. Agrawal, R. A. DeMillo, E. H. Spafford, Debugging with Dynamic Slicing and
Backtracking, Softw., Pract. Exper. 23 (1993) 589–616.

[29] O. Chitil, C. Runciman, M. Wallace, Freja, Hat and Hood - A Comparative Evalu-
ation of Three Systems for Tracing and Debugging Lazy Functional Programs, in:
Implementation of Functional Languages, 12th International Workshop, IFL 2000,
volume 2011 of LNCS, Springer, 2000, pp. 176–193.

[30] T. Wang, A. Roychoudhury, Jslice: A Dynamic Slicing tool for Java Programs,
2008. Available at: http://jslice.sourceforge.net/.

[31] F. Tip, A Survey of Program Slicing Techniques, J. Prog. Lang. 3 (1995).

[32] A. Riesco, A. Verdejo, N. Mart́ı-Oliet, Algebraic methodology and software tech-
nology - 13th international conference, amast 2010. revised selected papers, in:
M. Johnson, D. Pavlovic (Eds.), AMAST, volume 6486 of Lecture Notes in Com-
puter Science, Springer, 2010, pp. 216–225.

[33] E. Y. Shapiro, Algorithmic Program Diagnosis, in: Conference Record of Ninth
Annual ACM Symposium on Principles of Programming Languages, POPL’82, pp.
299–308.

[34] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace, G. Rosu,
O. Sokolsky, N. Tillmann (Eds.), Runtime Verification - First International Confer-
ence, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, volume 6418
of Lecture Notes in Computer Science, Springer, 2010.

[35] A. Farzan, F. Chen, J. Meseguer, G. Rosu, Formal analysis of Java programs in
JavaFAN, in: CAV, pp. 501–505.

32

http://jslice.sourceforge.net/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

IT-Builder
Slicer

Trace
Instrumented Trace

Slicing Criterion

Trace SlicePretty-PrinterPretty Trace (String)

Trace Slice / Instrumented Trace

U
S
E
R

Maude meta-level

Instrumented Trace

Trace Slice

Julienne architecture
Click here to view linked References

http://ees.elsevier.com/scico/viewRCResults.aspx?pdf=1&docID=1389&rev=0&fileID=62330&msid={5509E82C-9C38-4478-BB88-41593FAF94C5}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

%DFNZDUG�7UDFH�6OLFLQJ�IRU�&RQGLWLRQDO�5HZULWH�7KHRULHV

0DUtD�$OSXHQWH��'HPLV�%DOOLV��)UDQFLVFR�)UHFKLQD��DQG�'DQLHO�5RPHUR�

>$EVWUDFW@��>([DPSOHV@��>'RZQORDG@��>%HQFKPDUNV@��>-XOLHQQH�2QOLQH�7UDFH�6OLFHU@��>7HFKQLFDO�5HSRUW@

-XOLHQQH�2QOLQH�7UDFH�6OLFHU

7UDFH�VOLFH

6WHS 5XOH1DPH ([HFXWLRQ�WUDFH 6OLFHG�WUDFH

�
6WDUW DF�$�������DF�%�������DF�'�������DF�&�������FUHGLW�$������
FUHGLW�'�������GHELW�'������GHELW�&�������WUDQVIHU�$�'������
WUDQVIHU�$�&�������WUDQVIHU�%�&���

DF�&����������������������GHELW�&����������WUDQVIHU��&������WUDQVIHU��&�������

� XQIODWWHQLQJ GHOHWHG

� FUHGLW DF�%�������DF�'�������DF�&�������FUHGLW�'�������GHELW�'�����
GHELW�&�������WUDQVIHU�$�'�������WUDQVIHU�$�&������
WUDQVIHU�%�&������DF�$����

DF�&�������������������GHELW�&����������WUDQVIHU��&������WUDQVIHU��&�������

��� IODWWHQLQJ��
XQIODWWHQLQJ

GHOHWHG

� FUHGLW DF�$�������DF�%�������DF�&�������GHELW�'������GHELW�&������
WUDQVIHU�$�'�������WUDQVIHU�$�&�������WUDQVIHU�%�&������DF�'����

DF�&����������������GHELW�&����������WUDQVIHU��&������WUDQVIHU��&�������

��� IODWWHQLQJ��
XQIODWWHQLQJ

GHOHWHG

� GHELW(55 DF�$�������DF�%�������DF�&�������GHELW�&�������WUDQVIHU�$�'����
��WUDQVIHU�$�&�������WUDQVIHU�%�&������DF�'����

DF�&����������������GHELW�&�������WUDQVIHU��&������WUDQVIHU��&�������

����� IODWWHQLQJ��
XQIODWWHQLQJ

GHOHWHG

�� GHELW(55 DF�$�������DF�%�������DF�'�������WUDQVIHU�$�'������
WUDQVIHU�$�&�������WUDQVIHU�%�&������DF�&�����

DF�&�����������������WUDQVIHU��&������WUDQVIHU��&�������

����� IODWWHQLQJ��
XQIODWWHQLQJ

GHOHWHG

�� WUDQVIHU DF�%�������DF�&��������WUDQVIHU�$�&�������WUDQVIHU�%�&�����
DF�$�������DF�'����

���DF�&��������������WUDQVIHU��&������WUDQVIHU��&����

����� IODWWHQLQJ��
XQIODWWHQLQJ

GHOHWHG

�� WUDQVIHU DF�%�������DF�'�������WUDQVIHU�%�&������DF�$�������DF�&����� ������DF�&�����������WUDQVIHU��&���

����� IODWWHQLQJ��
XQIODWWHQLQJ

GHOHWHG

�� WUDQVIHU DF�$�������DF�'�������DF�%�������DF�&����� ���������DF�&�����

�� IODWWHQLQJ GHOHWHG

&RQGLWLRQ� 758(

7RWDO�VL]H� ���� ���

5HGXFWLRQ�����

&RPSUHVVHG�YLHZ

���&RPSOHWH���&RPSOHWH

Julienne output bank slice trace
Click here to view linked References

http://ees.elsevier.com/scico/viewRCResults.aspx?pdf=1&docID=1389&rev=0&fileID=62317&msid={5509E82C-9C38-4478-BB88-41593FAF94C5}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

5/19/12 Backward Trace Slicing for Conditional Rewrite Theories

1/2localhost:8080/julienne/slicer.html

%DFNZDUG�7UDFH�6OLFLQJ�IRU�&RQGLWLRQDO�5HZULWH�7KHRULHV

0DUtD�$OSXHQWH��'HPLV�%DOOLV��)UDQFLVFR�)UHFKLQD��DQG�'DQLHO�5RPHUR�

>$EVWUDFW@��>([DPSOHV@��>'RZQORDG@��>%HQFKPDUNV@��>-XOLHQQH�2QOLQH�7UDFH�6OLFHU@��>7HFKQLFDO�5HSRUW@

-XOLHQQH�2QOLQH�7UDFH�6OLFHU

7UDFH�VOLFH

6WHS 5XOH�QDPH ([HFXWLRQ�WUDFH 6OLFHG�WUDFH

�
6WDUW PLQPD[����������� PLQPD[�������������

� XQIODWWHQLQJ PLQPD[����������� GHOHWHG

� PLQPD[� 3$,5�0LQ����VW�PLQPD[����������0D[����QG�PLQPD[���������� 3$,5�0LQ����VW�PLQPD[�����������0D[������

� PLQPD[� 3$,5�0LQ����VW�3$,5�0LQ����VW�PLQPD[������0D[����QG�PLQPD[���������0D[����QG�PLQPD[���������� 3$,5�0LQ����VW�3$,5�0LQ����VW�PLQPD[������������0D[������

� �VW 3$,5�0LQ���0LQ����VW�PLQPD[�������0D[����QG�PLQPD[���������� 3$,5�0LQ���0LQ����VW�PLQPD[�������0D[������

� PLQPD[� 3$,5�0LQ���0LQ����VW�PLQPD[�������0D[����QG�3$,5�0LQ����VW�PLQPD[������0D[����QG�PLQPD[��������� GHOHWHG

� �QG 3$,5�0LQ���0LQ����VW�PLQPD[�������0D[���0D[����QG�PLQPD[������� GHOHWHG

� PLQPD[� 3$,5�0LQ���0LQ����VW�3$,5���������0D[���0D[����QG�PLQPD[������� 3$,5�0LQ���0LQ����VW�3$,5����������0D[������

� �VW 3$,5�0LQ���0LQ�������0D[���0D[����QG�PLQPD[������� 3$,5�0LQ���0LQ�������0D[������

�� 0LQ� 3$,5�0LQ������0D[���0D[����QG�PLQPD[������� 3$,5�0LQ������0D[������

�� 0LQ� 3$,5���0D[���0D[����QG�PLQPD[������� 3$,5���0D[������

�� PLQPD[� 3$,5���0D[���0D[����QG�3$,5��������� GHOHWHG

�� �QG 3$,5���0D[���0D[������� GHOHWHG

�� 0D[� 3$,5���0D[������ GHOHWHG

�� 0D[� 3$,5����� 3$,5�����

&RQGLWLRQ� ���!���DQG����!��

7RWDO�VL]H� ��� ���

5HGXFWLRQ�����

&RPSUHVVHG�YLHZ

Julienne output minmax slice trace
Click here to view linked References

http://ees.elsevier.com/scico/viewRCResults.aspx?pdf=1&docID=1389&rev=0&fileID=62318&msid={5509E82C-9C38-4478-BB88-41593FAF94C5}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Julienne architecture
Click here to view linked References

http://ees.elsevier.com/scico/viewRCResults.aspx?pdf=1&docID=1389&rev=0&fileID=62333&msid={5509E82C-9C38-4478-BB88-41593FAF94C5}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Julienne output bank slice trace
Click here to view linked References

http://ees.elsevier.com/scico/viewRCResults.aspx?pdf=1&docID=1389&rev=0&fileID=62334&msid={5509E82C-9C38-4478-BB88-41593FAF94C5}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Julienne output minmax slice trace
Click here to view linked References

http://ees.elsevier.com/scico/viewRCResults.aspx?pdf=1&docID=1389&rev=0&fileID=62335&msid={5509E82C-9C38-4478-BB88-41593FAF94C5}

