
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1007/s10115-012-0569-7

http://hdl.handle.net/10251/47255

Springer Verlag (Germany)

Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Sapena Vercher, O. (2014). A flexible
coupling approach to multi-agent planning under incomplete information. Knowledge and
Information Systems. 38:141-178. doi:10.1007/s10115-012-0569-7.



Under consideration for publication in Knowledge and Information
Systems

A Flexible Coupling Approach to
Multi-Agent Planning under Incomplete
Information
Alejandro Torreño 1, Eva Onaindia1 and Óscar Sapena1

1Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València,
Valencia, Spain

Abstract. Multi-agent planning (MAP) approaches are typically oriented at solving
loosely-coupled problems, being ineffective to deal with more complex, strongly-related
problems. In most cases, agents work under complete information, building complete
knowledge bases. The present article introduces a general-purpose MAP framework de-
signed to tackle problems of any coupling levels under incomplete information. Agents
in our MAP model are partially unaware of the information managed by the rest of
agents and share only the critical information that affects other agents, thus maintain-
ing a distributed vision of the task.

Agents solve MAP tasks through the adoption of an iterative refinement planning
procedure that uses single-agent planning technology. In particular, agents will devise
refinements through the Partial-Order Planning paradigm, a flexible framework to build
refinement plans leaving unsolved details that will be gradually completed by means
of new refinements. Our proposal is supported with the implementation of a fully-
operative MAP system and we show various experiments when running our system
over different types of MAP problems, from the most strongly-related to the most
loosely-coupled.

Keywords: Planning & scheduling; Multi-agent systems

1. Introduction

Planning is the art of building control algorithms that synthesize a course of
action to achieve a desired set of goals from an initial situation. Traditionally,

Received Jan 25, 2012
Revised Jun 15, 2012
Accepted Sep 01, 2012



2 A. Torreño et al

planning has been regarded as a centralized process in which a single entity is in
charge of devising a plan that satisfies the problem goals.

Multi-Agent Planning (MAP) generalizes the problem of planning in domains
where several agents plan and act together. MAP introduces a social approach
to planning (Nguyen and Katarzyniak, 2009), focusing on the collective effort
of multiple planning entities to accomplish tasks by combining their knowledge,
information and capabilities. This is required when agents are unable to solve
their tasks by themselves, or at least can accomplish them better (more quickly,
completely, precisely, or certainly) when working with others (Durfee, 2001).

MAP is concerned with planning by multiple agents, i.e., distributed plan-
ning, and planning for multiple agents, i.e., planning for multi-agent execution,
thus giving rise to a great variety of tools and techniques. The approach tradition-
ally adopted by the Multi-Agent Systems (MAS) research community assumes
that, in general, agents are self-interested and that there is not a common goal to
solve, thus focusing on coordinating the activities of multiple agents in a shared
environment (desJardins, Durfee, Ortiz and Wolverton, 1999). In agent-oriented
approaches, the ultimate objective is to ensure that the agents’ local objectives
(private goals) will be achieved by their plans and so the emphasis is put on
distributed execution, plan synchronization and collaborative activity at run-
time planning (Durfee and Lesser, 1991; Tambe, 1997; Kaminka, Pynadath and
Tambe, 2002). All in all, these techniques use planning as a means to controlling
and coordinating agents rather than building a competent and joint plan, and
so they are very appropriate for the design of real-time systems (Micacchi and
Cohen, 2008).

In planning-oriented approaches dealing with contexts in which agents are
assumed to be cooperative, the objective is to study how planning can be ex-
tended into a distributed environment or, more particularly, on the construction
of a competent plan by several planning entities. There exist different approaches
to address this objective, varying according to the typology of the planning prob-
lem to solve. In particular, the adoption of one or another strategy depends on
the coordination needs of the problem, i.e., to which extent agents are able to
make their own plans without affecting what the other agents are planning to
do. Thus, when agents are assumed to be relatively independent, they carry out
their planning activities individually and exchange information about their local
plans, which they iteratively refine and revise until they fit together in order
to ensure that the resulting plan will jointly execute in a coherent and efficient
manner (desJardins et al., 1999). This has been the predominant approach in
cooperative MAP, existing a large body of research on post-planning coordina-
tion, i.e., solving inconsistencies among local plans that have been constructed
separately. The well-known Partial Global Planning (PGP) framework (Durfee
and Lesser, 1991) is one of the first techniques that allows agents to communicate
and merge their local plans. Ever since, many works on plan merging methods
for building a joint plan given the local plans of each participating agent have
arisen (see section 2 for a detailed description).

The application of MAP to loosely-coupled multi-agent tasks, in which agents
have little interaction to each other, is still an active area of research. Some re-
cent works in this line, where agents are engaged in some cooperative behaviour,
have emerged lately. These works follow a common approach that consists of
coordinating the local solutions developed by the agents. For instance, the work
in (Kvarnström, 2011) considers that agents have sequential threads of execu-
tion and interactions only occur when distributing sub-plans to individual agents



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 3

for plan execution. This approximation follows a single-agent planning and dis-
tributed coordination. The work in (Brafman and Domshlak, 2008) applies indi-
vidual planning and coordinates the local solutions through the resolution of a
Constraint Satisfaction Problem (CSP). In an extension of this latter work, au-
thors use a distributed CSP to solve inconsistencies among agents’ plans (Nissim,
Brafman and Domshlak, 2010).

Most of the aforementioned approaches turn out to be inefficient at the time
of solving strongly-related problems in which the number of coordination points
among agents is large (Nissim et al., 2010). To deal with these problems, other
MAP models use a unified approach in which planning and coordination of activ-
ities are integrated rather than being treated as independent processes (Jonsson
and Rovatsos, 2011; Belesiotis, Rovatsos and Rahwan, 2010). However, these ap-
proaches do not achieve high performance in loosely-coupled problems because
the reasoning procedures rely very strongly on a high degree of interdependency
between the agents’ actions.

The problem of building a competent joint plan among several planning enti-
ties has been generally dismissed by the MAS community, more concerned with
the development of coordination mechanisms for agents, and ignored by the
planning community, which has traditionally resorted to efficient single-agent
algorithms to solve planning problems. MAP is not only about a divide-and-
conquer strategy to tackle large planning problems, it is also about the devel-
opment of techniques for planning entities that are geographically or spatially
distributed. While one might expect the number of coordination points in in-
herently distributed problems not to be very large, another issue that comes up
is the distribution of information among agents. In frameworks like those pre-
sented in (Brenner and Nebel, 2009; Belesiotis et al., 2010) agents communicate
all the available information and build complete knowledge bases, i.e., agents
have complete information on the MAP task. However, in large-size problems
with heterogeneous agents, building complete knowledge bases is not viable. Be-
sides efficiency issues, agents may be unable to manage the information handled
by other agents as they may have different knowledge and abilities.

In this paper, we present a novel approach to cooperative MAP that allows to
efficiently solve problems with any level of interaction among agents. Unlike other
techniques, our MAP system is capable of solving from the most loosely-coupled
problems to the most strongly-related problems. The key point to address this
aspect is to use a refinement planning approach (Kambhampati, 1997) that allows
agents to interleave planning and coordination, or more specifically, to coordinate
their plans during planning. We also allow heterogeneous agents to work under
incomplete information, sharing only the critical information that affects other
agents and maintaining a distributed vision of the MAP task. This issue, which
has been ignored in almost all of the MAP approaches, is of key importance
to efficiently handle inherently distributed problems. Last but not least, our
MAP approach is entirely based on the use of single-agent planning technology
adapted to a multi-agent context. More precisely, agents follow the Partial-Order
Planning paradigm (Nguyen and Kambhampati, 2001; Younes and Simmons,
2003).

As well as introducing the MAP architecture and a theoretical model for
multi-agent planning, our proposal is supported with the implementation of a
fully-operative MAP system. The empirical evaluation of the system demon-
strates this novel approach to be effective when dealing with both strongly-



4 A. Torreño et al

related problems and loosely-coupled problems in which agents manage incom-
plete information.

This paper is organized as follows: section 2 summarizes some background on
the main topics related to this work and reviews the most recent literature on
MAP; section 3 introduces the example MAP scenario we will use to illustrate
the different aspects of our framework; section 4 outlines our MAP architec-
ture; section 5 presents the theoretical planning model upon which our system
is based; section 6 outlines the planning language used to model MAP tasks;
section 7 provides an overview of the MAP algorithm followed by the agents;
section 8 describes the first stage of our MAP algorithm, the initial information
exchange; section 9 outlines second stage of the MAP algorithm, the refinement
planning and coordination protocol; section 10 presents the experimental results,
and finally, section 11 concludes and summarizes our future lines of research.

2. Background

Our MAP model builds upon several single-agent planning techniques. This sec-
tion provides a review on the principal single-agent planning concepts used in
our MAP approach as well as the most relevant and recent approaches to co-
operative MAP. We also outline the most relevant works on MAP architectures
and frameworks and we conclude by summarizing the main contributions and
novelties of our approach.

2.1. Single-agent planning

Single-agent planning is regarded as a search process by which a single entity
synthesizes a set of actions (plan) to reach a set of objectives from an initial sit-
uation (Weld, 1999). Over the last years, single-agent planning has experienced
great advances, specifically in the construction of domain-independent heuristics.
Nowadays, it is possible to find a great variety of planning systems. The most
recent planners combine different techniques in order to increase the algorithms
efficiency: landmarks (Richter and Westphal, 2010), domain transition graphs
(Helmert, 2006), forward-chaining partial-order planning (Coles, Coles, Fox and
Long, 2010), probes (Lipovetzky and Geffner, 2011) or divide-and-conquer strate-
gies (Dréo, Savéant, Schoenauer and Vidal, 2011), among others.

The work in (Blum and Furst, 1997) introduced the concept of Relaxed Plan-
ning Graph, which has proven to be one of the most effective constructs to devise
heuristics in state-space planning (Hoffmann and Nebel, 2001). This technique
has been integrated in many single-agent planning frameworks and has also been
extended to a distributed context (Zhang, Nguyen and Kowalczyk, 2007).

While state-space planners such as Fast Forward (Hoffmann and Nebel, 2001)
are still a relevant research topic, plan-space planning has been replaced by other
more efficient techniques. However, plan-space planning has recently seen a re-
vival since its flexibility makes it specially suitable for distributed environments.

Among plan-space search algorithms, the Partial-Order Planning (POP) ap-
proach (Penberthy and Weld, 1992; Younes and Simmons, 2003) is particularly
relevant. POP performs a plan-based, backward search process, refining partial
plans through the addition of actions, causal links and ordering constraints. POP
is based on the least commitment strategy (Weld, 1994), which defers planning



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 5

decisions during the search process and introduces partial-order relations among
actions rather than enforcing a concrete order among them. The particular na-
ture of the POP paradigm (absence of states, backward search) makes it difficult
to devise competitive heuristics to guide the search process. Although some re-
cent works reformulate the basic algorithm to improve its performance (Coles
et al., 2010), POP has been discontinued by the planning community in favor of
other approaches. Nevertheless, it is still used in temporal planning and MAP
environments as it is a flexible paradigm to handle concurrency (Boutilier and
Brafman, 2001).

2.2. Cooperative Multi-Agent Planning

MAP extends the single-agent planning problem by distributing the planning
task among several entities which work together to devise a competent joint
plan that meets the problem goals. This generalization entails some differences
to the more restrictive single-agent planning approach. MAP can be viewed as
the problem of coordinating agents in a shared environment where information
is distributed (desJardins et al., 1999). This definition emphasizes two aspects
of MAP that are not present in single-agent planning: the coordination of the
planning activities and the distribution of the information among agents.

In general, solving a cooperative MAP task involves the following stages
(Durfee, 2001): 1) global goal refinement, 2) task allocation, 3) coordination be-
fore planning, 4) individual planning, 5) coordination after planning, and 6) plan
execution. Some of the previous stages can be avoided or combined. For instance,
some works do not distribute the goals explicitly (avoiding stage 2) (Belesiotis
et al., 2010; Brenner and Nebel, 2009), while others apply only coordination after
planning (avoiding stage 3) (Van Der Krogt and De Weerdt, 2005; Cox, Durfee
and Bartold, 2005).

MAP problems can be classified according to their coupling level, a measure of
the number of interactions or coordination points among agents that will arise
during the task resolution (Brafman and Domshlak, 2008). In loosely-coupled
problems, each problem goal problem is likely to be solved by a single agent,
while goals in strongly-related problems tend to require the cooperation of several
agents. The number of coordination points in a MAP problem determines which
approaches are more suitable to solve it efficiently.

A wide range of MAP approaches put the emphasis on coordination after
individual planning (coordination is performed at stage 5 of the MAP scheme
described above). This way, these frameworks perform the planning and coordi-
nation stages independently and separately, combining or merging solutions into
a global joint plan (Durfee, 2001; de Weerdt and Clement, 2009; Tonino, Bos,
de Weerdt and Witteveen, 2002; Kaminka et al., 2002).

Different coordination techniques have been proposed for merging and gath-
ering several individual plans into a single joint plan. The Partial Global Plan-
ning framework (Durfee and Lesser, 1991) and its extension, the Generalized
Partial Global Planning approach (Decker and Lesser, 1992), allow agents to
communicate their local plans to the rest of agents and then they merge this
information into their own partial global plan in order to improve it. This it-
erative process goes on until the agents’ local plans fit together. The work in
(Tonino et al., 2002) proposes a post-planning coordination approach based on
the iterative revision of the agents’ local plans. Agents in this model cooperate



6 A. Torreño et al

by mutually adapting their individual plans, with a focus on maximizing their
common or individual profit. (Nissim et al., 2010) introduces a cooperative MAP
approach for loosely-coupled systems in which agents carry out planning indi-
vidually through a state-based planner (Hoffmann and Nebel, 2001; Coles, Fox,
Long and Smith, 2008). The resulting local plans are then coordinated by solving
a distributed Constraint Satisfaction Problem. The approach in (Van Der Krogt
and De Weerdt, 2005) solves inconsistencies among the local plans devised by
self-interested agents through plan repair. Other proposals deal with insincere
agents by combining planning, coordination, and execution (Ephrati and Rosen-
schein, 1996) or consider the communication needs that arise when plans are
being executed (Tang, Norman and Parsons, 2010).

The aforementioned plan merging methods follow a common approach: agents
build plans individually while a subsequent independent process is used to coor-
dinate these plans. This approach is suitable for solving loosely-coupled problems
efficiently as the agents’ local solutions in these problems present few interdepen-
dencies with each other. Thus, plan merging through post-planning coordination
is an appropriate method to tackle problems in which agents can solve the differ-
ent problem goals independently and the majority of the environment resources
are not shared.

However, plan merging methods present several limitations. On the one hand,
goals must be a priori allocated to each agent or at least implicitly distributed
among the planning entities, as agents perform their planning activity in an
isolated manner. Because of this, methods based on plan merging lose flexi-
bility against other MAP proposals. On the other hand, the previous merging
approaches have proven to be inefficient when solving strongly-related prob-
lems in which most of the resources are shared and most of the goals require
cooperation among agents (Nissim et al., 2010). The individual planning com-
bined with a post-planning coordination strategy is not adequate to solve these
strongly-related problems, since merging may introduce exponentially many or-
dering constraints in problems which require a coordination effort.

Another research trend on cooperative MAP stresses the importance of com-
bining and integrating planning and coordination activities, i.e., apply coordina-
tion during planning. Hence, this trend can be seen as an extension of single-agent
planning to MAP, providing a unified vision of MAP. Proposals in this line focus
on the cooperative incremental construction of a joint plan, allowing agents to
perform their planning activity over a centralized plan representation. This is a
more suitable approach than the plan merging techniques for tackling strongly-
related MAP problems with a large number of coordination points, as agents
work over a centralized plan representation and planning and coordination of
activities are carried out in an integrated way.

The proposal in (desJardins et al., 1999) applies the continual planning ap-
proach, which interleaves planning and execution and coordinates agents by syn-
chronizing them at execution time (Brenner and Nebel, 2009). The approach in
(Jonsson and Rovatsos, 2011) introduces the best-response planning algorithm,
which iteratively improves the quality of the agents’ plans through single-agent
planning technology. Finally, the works in (Belesiotis et al., 2010; Pajares and
Onaindia, 2012) solve inconsistencies among agents’ plans through a coordina-
tion protocol based on iterated dialogues. Agents discuss and argument about
the different plan proposals until the agents’ viewpoints are aligned and an agree-
ment is reached.

The integrated planning and coordination approach followed by the afore-



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 7

mentioned MAP models copes with a wider range of MAP problems than the
plan merging method, which can only deal with simpler, loosely-coupled prob-
lems. In addition, the continual revision and coordination of the agents’ plans
provides better results in terms of plan quality. However, integrating planning
and coordination entails higher communication costs for loosely-coupled prob-
lems than using plan merging, as coordination has to be performed throughout
the planning process, thus introducing an overhead. Hence, the simpler plan
merging approach is far more effective for small-size and non-complex planning
tasks.

Research on cooperative MAP, traditionally carried out by the planning com-
munity, has generally overlooked the management of incomplete information, an
active research topic, though, within the MAS community. Planning with incom-
plete information has several different meanings: that certain facts of the initial
state are not known, that operators can have random or nondeterministic effects,
or that the plans built contain sensing operations and are branching (Haslum
and Jonsson, 1999). In our case, we interpret incomplete information as agents
not knowing the initial state completely and being total or partially unaware of
the information managed by other agents.

The issue of incomplete information has been treated from two different per-
spectives: the probabilistic way, with the development of formal models such as
Dec-POMDPs (Decentralized Partial Observable Markov Decision Processes) for
coordination among multiple agents in contexts with partial observability (Wu,
Zilberstein and Chen, 2011; Kumar, Zilberstein and Toussaint, 2011); and the
epistemological way, which assumes that agents have beliefs about the state of the
world and beliefs over the other agents’ knowledge (Kraus, 1997; Doshi, 2007).
This latter approach has been widely used in games of incomplete information
(Gmytrasiewicz and Doshi, 2005). Both perspectives define agents as having an
imprecise or uncertain view of the world and of the other agents’ information
but, to the best of our knowledge, there are not proposals to deal with ignorance,
i.e., local views of agents that reflect agent’s unawareness over the information
of the rest of agents. This introduces a complexity factor in the planning pro-
cess as agents can only plan on the basis of their information, being ignorant
on the planning decisions of other agents. It is important to note, though, that
the information unknown to one agent does not have a direct impact on the
agents’ choices because its actions are not involved with the unknown piece of
information. However, this absence of information may have an indirect impact
in the overall planning process and quality of the plan.

2.3. Architectures and frameworks for MAP

The design of architectures and frameworks constitutes another active research
field in MAP. Over the last years, some relevant works in MAP frameworks have
been published. The work in (Wilkins and Myers, 1998) presents a complete
MAP architecture for large-scale problem solving, which organizes agents into
planning cells committed to a particular planning process. The TAEMS domain-
independent coordination framework (Lesser, Decker, Wagner, Carver, Garvey,
Horling, Neiman, Podorozhny, Prasad, Raja et al., 2004) provides agents with
planning capabilities, and applies the GPGP approach to coordinate them.

Other MAP architectures are based on general-purpose MAS platforms, rather
than being designed from the ground up. MAS platforms, such as Magentix2



8 A. Torreño et al

(Fogués, Alberola, Such, Espinosa and Garcia-Fornes, 2010; Argente, Botti, Car-
rascosa, Giret, Julian and Rebollo, 2011) or JADE (Bellifemine, Poggi and Ri-
massa, 2001), provide the sets of services, conventions and knowledge required by
agents to interact with each other. For instance, the domain-independent multi-
agent system infrastructure RETSINA (Sycara and Pannu, 1998) introduced a
planning component (Paolucci, Shehory, Sycara, Kalp and Pannu, 2000). Once
integrated into the agents’ internal architecture, this component provides them
with planning capabilities.

Similarly, our MAP approach builds upon the Magentix2 MAS platform,
which provides the communication services required by the agents. From this
base, we introduce the additional components to provide the agents with planning
capabilities and allow them to tackle MAP tasks.

2.4. Contributions of our model

Our novel approach to cooperative MAP can be classified into the research trend
that integrates planning and coordination. The MAP system achieves two main
objectives: 1) it solves complex strongly-related problems as well as loosely-
coupled problems without losing generality; and 2) it allows heterogeneous agents
to work under incomplete information, sharing only the critical information that
affects other agents and being partially unaware of the other agents’ information
on the MAP task.

Our MAP approach focuses on a novel method that combines single-agent
planning technologies and a refinement-based methodology. More precisely, we
combine a distributed refinement planning procedure (Kambhampati, 1997) and
an individual Partial-Order Planning (POP) (Nguyen and Kambhampati, 2001;
Younes and Simmons, 2003). Agents incrementally build local refinements to
a certain base plan through their local POPs, and coordinate these partial so-
lutions through the refinement planning process. Empirical evaluation proves
this method to perform effectively for both strongly-related and loosely-coupled
problems.

Another key feature of our method is the ability to work under incomplete
information. Unlike many MAP proposals, agents in our approach do not re-
quire to build complete knowledge bases, but they can be partially unaware of
the information on the initial state and the knowledge and abilities of the rest of
agents. Our PDDL3.1 -based MAP specification language (Kovacs, 2011) defines
this partial visibility of the agents, allowing to specify which information can be
shared with other agents for cooperation purposes. Agents exchange the share-
able information with other agents through the construction of a distributed
Relaxed Planning Graph (Zhang et al., 2007) and perform planning while be-
ing partially unaware of the other agents’ knowledge. This way, our proposal
stresses the importance of privacy in a MAP context, as agents share only the
essential information that affects other agents and are partially unaware of the
information held by the rest of planning entities.

3. Motivating example

This section introduces the example MAP scenario we use in the following to
illustrate the concepts presented throughout this paper. The example of appli-



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 9

Fig. 1. Transportation and storage scenario

cation, depicted in Figure 1, describes a transportation and storage scenario
in which two agents (Ag1 and Ag2) take the role of transport agencies and a
third agent (Ag3) manages a storage facility. Transport agents deliver packages
through a network of cities. In turn, the warehouse agent is in charge of storing
and delivering packages to the trucks. Packages can be either raw materials or
final products. Agents in the MAP task are entrusted with two different goals:
deliver the final product p1 to city cA and the raw material p3 to city cE.

This scenario includes bidirectional links among cities that allow transport
agents to move trucks from one city to another. Transport agents Ag1 and Ag2
can perform three different actions: they can load and unload packages in the
trucks and they can move the trucks between cities in their working areas. Ag1
and Ag2 can only move trucks within the cities included in their working areas,
depicted in Figure 1 as two different circles. This way, transport agents have to
interact and cooperate in order to deliver packages to a different working area.

A possible plan to solve the scenario depicted in Figure 1 involves Ag1 loading
the raw material p3 in the truck t1. Then Ag1 would handle t1 to Ag2 in cB
or cD, both included in the working areas of Ag1 and Ag2, and Ag2 would take
care of transporting the product to cE. This leads to a key aspect of our model:
in order to promote cooperation, Ag1 should share with Ag2 the information on
the position of t1 once it reaches cB or cD. As we will discuss in the following
section, agents will share the information that is relevant for other agents in
order to successfully cooperate.

The warehouse agent Ag3 is in charge of interacting with the trucks to store
raw materials and deliver final products. The warehouse has a table in which
packages can be stacked and unstacked. Packages are swapped in the city in
which the warehouse is placed, the exchange city. As seen in Figure 1, cF is the
exchange city used by Ag2 and Ag3 to swap packages.

Ag2 and Ag3 will also share information on the packages they leave in the
exchange city, which will be necessary for them to interact. For example, to
accomplish the first goal of the task (transporting the final product p1 to cA),
Ag3 will deliver p1 to the exchange city cF, informing Ag2 about the position of
the package. Then, Ag2 will load p1 in the truck t1 and will drive t1 to cB or
cD. Finally, Ag1 will perform the final transportation, delivering p1 to city cA.



10 A. Torreño et al

Communication infrastructure

GUI MAP 
manager

Planning agents

Solution plan

Request for
a plan

Planning 
task

Task 
solution

Planning 
domain

database

Planning 
domain

Fig. 2. MAP system architecture

4. Multi-Agent Planning architecture

The architecture of our MAP system is depicted in Figure 2. The MAP architec-
ture basically consists of a set of agents endowed with planning capabilities and
an underlying communication infrastructure that allows them to interact with
each other.

All the agents share the same internal structure, and the internal planning
algorithm followed by each agent is a POP procedure, so they all develop the
same rationale. However, since agents handle different information and knowl-
edge, that is, incomplete information on the MAP task and different planning
abilities, our MAP system features heterogeneous agents. In the example of ap-
plication presented in section 3, two agents play the role of transport agencies
and a third agent manages a storage facility. The first two agents will likely per-
form similar actions like driving vehicles from one location to another, which will
be different from the planning abilities of the third agent devoted to stack and
arrange packages in a warehouse. Additionally, agents will have a different view
of the planning task accordingly to their abilities and initial knowledge; thus,
the first two agents will have information about the trucks and roads connecting
the different locations, and the third agent will manage the information about
the packages and the hoists in the warehouse.

Together with the planning agents, the MAP architecture provides a set of
components that allow the user to interact with the platform. The main compo-
nents of the MAP architecture are:

– Graphical User Interface (GUI): This component allows the user to interact
with the MAP system. The user requests the resolution of a MAP task by
providing, for each agent involved in the task, two input files encoded through
our MAP specification language, the domain and problem file (see section 6).
The first file defines the typology and the planning capabilities of the agent,



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 11

Planning 
module

Communication infrastructure
(Magentix2)

Communication 
module

Refinement 
proposals

Base 
plan

Base 
plan

Discussion on
plan proposals

Planning agent

Reasoning 
module

Discussion on
plan proposals

Refinement 
proposals

Fig. 3. Internal structure of a planning agent

while the second file defines the concrete aspects of the task it has to solve.
Once a solution is found, it is displayed to the user through the GUI.

– MAP manager: This component interacts with the GUI by collecting the user’s
request for a plan and assigning the MAP task to a subset of agents that are
available, i.e., they are not solving any particular planning task at the moment.
Agents are fully reconfigurable and can be reused when they become available
again by assigning a new MAP task to them.

– Pool of planning agents: The architecture includes a pool of planning agents
which all share the same internal structure shown in Figure 3. Agents are
configurable through the domain and problem files provided by the user, which
define the agents’ knowledge and abilities. Once a subset of the agents in the
pool receive a planning task, they start working together to find a solution
plan.

– Communication infrastructure: Agents interact with each other through a com-
munication infrastructure, which allows them to exchange messages by follow-
ing the FIPA communication protocols (Kone, Shimazu and Nakajima, 2000).
The developed MAP system uses the Magentix2 MAS platform (Fogués et al.,
2010) as its communication infrastructure.

The internal structure of the planning agents includes several modules to ac-
complish the requirements of our refinement planning approach. Through these
modules, agents make plan refinements over a base plan, select the best alter-
native from a set of refinement plans and communicate with each other (see
Figure 3). Although agents have the same internal structure, they have different
planning abilities and visibility over the MAP task as defined in the domain and
problem file provided by the user. The internal modules of a planning agent are:

– Communication module: Through this module, each planning agent interacts
with the rest of agents via the communication infrastructure. The commu-
nication module receives messages from the rest of agents and transmits the
received information to the rest of internal modules of the planning agent.



12 A. Torreño et al

When the agent wants to communicate with other agents, this module is in
charge of sending the messages through the communication infrastructure (the
Magentix2 MAS platform). Hence, this module acts as an interface between
the planning agent and the rest of agents in the MAP task.

– Planning module: This module is in charge of performing the actual plan-
ning search. It includes an embedded Partial-Order Planner which has been
modified to be able to start the planning process from an incomplete plan
and return valid refinements instead of complete solution plans. The planning
module receives the current base plan from the communication module and
returns a set of valid refinements over the base plan.

– Reasoning module: Agents coordination consists in evaluating the refinement
plans and choosing the most promising one as the next base plan (see section
7). The reasoning module of each agent receives the refinement proposals of
the agents and evaluates them according to the view of the MAP task of
the respective agent. Hence, this module provides agents with facilities to
perform the coordination process, allowing agents to reason about the different
proposals and vote for the next base plan.
In conclusion, the internal design of planning agents provides them with the

basic capabilities required to solve MAP tasks. Agents use their internal com-
ponents to interact with each other through the communication infrastructure,
reason about plans and proceed with the next plan refinement.

5. Planning model

This section presents the MAP model upon which our planning architecture is
based. It also describes the procedure followed by the agents for building and
exchanging plans among them.

The following subsections describe and formalize the main components of a
MAP task and outline the Partial-Order Planning concepts used in the MAP
algorithm (see section 7). In order to illustrate the formal definitions introduced
in this section, we provide simple examples based on the transportation MAP
task presented in section 3. Also, for the sake of clarification of some definitions,
we point out the reader to the figures of plans showed in section 9.

5.1. Formalization of a MAP task

Definition 1. (MAP task) A MAP task is a tuple T = 〈AG,O,V,A, I,G,〉.
AG = {1, . . . , n} is a finite non-empty set of planning agents. O is a finite set of
objects that model the elements of the planning domain over which the planning
actions can act. V is a finite set of state variables that model the states of the
world. Each state variable v ∈ V is mapped to a finite domain of mutually
exclusive values Dv. Each value in a state variables’s domain corresponds to an
object of the planning domain, i.e. ∀v ∈ V, Dv ⊆ O. When a value is assigned to
a state variable, the pair variable-value acts as a ground atom in propositional
planning. A is the set of deterministic actions of the agents. I is the set of values
assigned to the state variables in V and represents the initial state of the MAP
task T . G is the set of goals of the MAP task that agents have to achieve; G
represents the values that the state variables are expected to take in the final
state.



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 13

Information that agents have on the states of the world (problem states) is
modeled through a set of ground atoms or fluents. This includes the initial state,
I, and the goal state, G. As opposite to STRIPS-like models (Fikes and Nilsson,
1971), which apply negation by failure (only positive fluents are represented, the
absence of a fluent implies its negation), we allow to explicitly represent both
true and false information. Thus, our model adopts the open world assumption,
considering that the information which is not explicitly stored in the internal
model of agents is unknown to them. Again, this also refers to the information
in the initial state, I, and the goals, G.
Definition 2. (Fluent) A ground atom or fluent of the problem is a tuple of
the form 〈v, d〉, where v ∈ V and d ∈ Dv. A negative fluent is of the form 〈v,¬d〉.
A positive fluent 〈v, d〉 indicates that the variable v takes the value d, while a
negative fluent 〈v,¬d〉 indicates that the variable v does not take the value d.

As stated in Definition 2, a fluent relates a variable with one of the values
in its domain. For instance, let (at t1) be a variable that refers to the position
of a truck object t1 in the example introduced in section 3. Possible values for
this variable are the cities cA, cB, cC, cD, cE and cF. Then, a positive fluent 〈at
t1, cA〉 indicates that t1 is in cA while a negative fluent 〈at t1, ¬cA〉 indicates
that t1 is not in cA.

In our model, agents are heterogeneous as they may have different knowledge
and planning capabilities. In addition, they may have incomplete information on
the MAP task as this can be distributed across agents. In this case, agents must
cooperate with each other to solve the MAP task. Even though information is
distributed across agents, there must be a subset of state variables shareable
between agents in order to exchange the values of such variables and successfully
communicate between each other. To denote the actions, goals, etc. of an agent
i ∈ AG we will use the superscript notation xi for any such aspect x.

From the set of variables, V, of the MAP task, we distinguish Vi as the set of
variables managed by agent i, which includes the private variables, only known to
agent i, and the public variables, shared with other agents. Thus, V = {Vi}ni=1.
Di
v ⊆ Dv is the set of values of a variable v ∈ Vi that are visible to agent i. The

information of the initial state of the MAP task, I, is modeled through a set
of positive and negative fluents. This information is distributed among agents
under the assumption that agents’ partial knowledge about I is consistent, i.e.
there is not contradictory information among agents. Hence, I can be defined as
I =

⋃
∀i∈AG Ii. It is possible to define MAP tasks in which all the agents have

a complete view of the initial state I, i.e. ∀i ∈ AG, Ii = I.
For example, Ag1 and Ag2 are two transport agents in the MAP scenario of

section 3. Initially, Ag1 knows that the truck t1 is in city cA so the fluent 〈at
t1, cA〉 is part of IAg1. On the contrary, Ag2 does not know where t1 is initially
located, but it knows that the truck is not in city cB. Hence, the fluent 〈at t1,
¬cB〉 belongs to IAg2, the initial state of Ag2.

Each agent i ∈ AG is associated with a set, Ai, of possible actions such that
the set of actions of a planning task is defined as A =

⋃
∀i∈AG Ai. An action α

is said to be public if it is shared by two or more agents, i.e. α ∈ Ai ∧ α ∈ Aj ,
i 6= j. α ∈ Ai is private to agent i iff α 6∈ Aj ,∀j 6= i. An action α ∈ Ai denotes
that agent i has the capability expressed in α. If α forms part of the final plan
then agent i is also responsible of executing α.



14 A. Torreño et al

Definition 3. (Planning rule or action) A planning rule or action α ∈ A
is a tuple 〈PRE(α), EFF (α)〉. PRE(α) = {p1, . . . , pn} is a set of fluents that
represents the preconditions of α, while EFF (α) = {e1, . . . , em} is a set of
operations of the form (v = d) or (v 6= d), v ∈ V, d ∈ Dv, that represent the
consequences of executing α.

An action α may belong to different agents, i.e. α ∈ Ai and α ∈ Aj , i 6= j.
Executing an action α in a world state S gives rise to a new world state S′

generated as the result of applying EFF (α) over S. Particularly:
– An operation (v = d) ∈ EFF (α) implies the addition of a fluent 〈v, d〉 and a
set of fluents 〈v,¬d′〉, ∀d′ ∈ Dv | d′ 6= d, to the world state S′. If 〈v, d′〉 ∈ S
or 〈v,¬d〉 ∈ S, d′ 6= d, the operation (v = d) also implies that the fluents
〈v, d′〉 or 〈v,¬d〉 will not be present in S′. For example, suppose that agent
Ag1 knows that the truck t1 can be placed at the cities cA, cB, cC and cD, i.e.,
DAg1
at t1 = {cA, cB, cC, cD}. If Ag1 knows a positive fluent 〈at t1, cA〉, it also

knows the negative fluents 〈at t1, ¬cB〉, 〈at t1, ¬cC〉 and 〈at t1, ¬cD〉.
– An operation (v 6= d) ∈ EFF (α) implies the addition of a fluent 〈v,¬d〉 to the
world state S′. If 〈v, d〉 ∈ S, the operation (v 6= d) also entails that the fluent
〈v, d〉 will not be present in S′. Note that the only existence of a fluent 〈v,¬d〉
in a state indicates that the value of the variable v is not known in such a
state and, consequently, the rest of values in Dv, except for d, are unknown
values. For example, if the fluent 〈at t1, ¬cB〉 is in the world state of agent
Ag2, then the agent only knows that the truck t1 is not in city cB but the
agent is not aware of the actual position of the truck. Thus, whether t1 is in
cA, cC or cD is unknown to Ag2.
The set of preconditions of an action α, PRE(α), defines the fluents that

must hold in a world state S for that α is applicable in this state. A positive
precondition of the form 〈v, d〉 indicates that the fluent 〈v, d〉 must hold in S,
while a negative precondition 〈v,¬d〉 indicates that the fluent 〈v,¬d〉 must hold
in S. Note that the existence of a positive fluent 〈v, d〉 also implies the existence
of a negative fluent 〈v,¬d′〉 for the rest of values in the variable’s domain, i.e.
(∃〈v, d〉 ∈ S)⇒ (∀d′ ∈ Dv, d′ 6= d, ∃〈v,¬d′〉 ∈ S).

Additionally, agents use a utility function F to evaluate the quality of the
plan proposals. For each agent i, F assigns a cost, cost(viewi(Π)) ∈ R+

0 , to each
plan proposal Π according to the view that agent i has of that plan, viewi(Π).
Finally, the private goals of an agent i, PGi, are fluents that agent i is interested
in attaining. Private goals are encoded as soft constraints (Gerevini and Long,
2006), as it is not mandatory that agents achieve them.

5.2. Concepts on Partial-Order Planning

Our MAP model can be regarded as a multi-agent refinement planning frame-
work, a general method based on the refinement of the set of all possible plans
(Kambhampati, 1997). An agent proposes a plan Π that typically enforces some
of the goals that have not yet been supported (see definition 5); then, the rest
of agents collaborate on the refinement of Π by solving some of these pending
goals in Π. This way, agents cooperatively solve the MAP task by consecutively
refining an initially empty plan.

In this context, Partial-Order Planning (POP) (Barrett and Weld, 1994)



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 15

arises as a suitable approach to address refinement planning, since it is focused
on solving the pending goals progressively. Consequently, agents in our MAP
approach plan concurrent actions through the adoption of the POP paradigm.
In the following, we provide some basic definitions concerning single-agent POP
and its adaptation to a MAP context.

5.2.1. Single-agent Partial-Order Planning

Definition 4. (Partial plan) A partial plan is a tuple Π = 〈∆,OR, CL〉.
∆ ⊆ A is the set of actions in Π. OR is a set of ordering constraints (≺) on
∆. CL is a set of causal links over ∆. A causal link is of the form α

〈v,d〉→ β or
α

〈v,¬d〉→ β, where α ∈ A and β ∈ A are actions in ∆. α 〈v,d〉→ β indicates that there
is an operation (v = d) such that v ∈ V, d ∈ Dv, (v = d) ∈ EFF (α) and a fluent
〈v, d〉 ∈ PRE(β). α 〈v,¬d〉→ β indicates that there is a fluent 〈v,¬d〉 such that
v ∈ V, d ∈ Dv, 〈v,¬d〉 ∈ PRE(β) supported by an operation (v 6= d) ∈ EFF (α)
or an operation (v = d′) ∈ EFF (α), d′ ∈ Dv, d′ 6= d.

This definition of partial plan represents the mapping of a plan into a directed
acyclic graph, where ∆ represents the nodes of the graph (actions) and OR and
CL are sets of directed edges representing the precedences and causal links among
these actions, respectively.

An empty partial plan is defined as Π0 = 〈∆0, OR0, CL0〉, where ∆0 contains
α0 and αf , the initial and final action of the plan, respectively. α0 and αf are
fictitious actions that do not belong to the action set of any particular agent.
OR0 contains the constraint α0 ≺ αf and CL0 is an empty set. This way, a plan
Π for any given MAP task T will always contain the two fictitious actions such
that PRE(α0) = ∅ and EFF (α0) = I, PRE(αf ) = G, and EFF (αf ) = ∅; i.e.
α0 represents the initial situation of the MAP task T , and αf represents the
global goals of T .

Assuming that G 6= ∅, an empty plan is said to be incomplete if the pre-
conditions of αf are not yet supported through a causal link. The POP process
is aimed at introducing causal links to support these preconditions, also called
open goals.

Definition 5. (Open goal) An open goal in a partial plan Π = 〈∆, OR, CL〉
is a fluent og of the form 〈v, d〉 or 〈v,¬d〉, such that v ∈ V, d ∈ Dv, og ∈ PRE(β),
β ∈ ∆, and @α ∈ ∆/α og→ β ∈ CL, i.e., an open goal og is a precondition of ab
action β in the plan Π that is not yet supported by a causal link α og→ β ∈ CL.
openGoals(Π) denotes the set of open goals in Π. A plan is incomplete if it has
open goals. Otherwise, we say it is a complete plan.

As the POP search progresses, the causal links in a partial plan may become
unsafe as a result of the introduction of a new action which is not ordered with
respect to the causal link. These conflicts are called threats.

Definition 6. (Threat) A threat in a partial plan Π = 〈∆,OR, CL〉 represents
a conflict between an action of the plan and a causal link. An action γ causes a
threat over a causal link α 〈v,d〉→ β if ((v = d′) ∈ EFF (γ) ∨ (v 6= d) ∈ EFF (γ)),
where v ∈ V, d ∈ Dv, d′ ∈ Dv and d 6= d′, and there is neither an ordering
constraint γ ≺ α nor β ≺ γ. The action γ will cause a threat over a causal link



16 A. Torreño et al

of the form α
〈v,¬d〉→ β if (v = d) ∈ EFF (γ), where v ∈ V, d ∈ Dv, and there is

neither an ordering γ ≺ α nor β ≺ γ. Threats(Π) denotes the set of threats in
Π.

A threat t ∈ Threats(Π) can be solved by promoting or demoting the threat-
ening action γ with respect to the causal link α 〈v,d〉→ β or α 〈v,¬d〉→ β, i.e. introduc-
ing an ordering constraint γ ≺ α or β ≺ γ. Threats and open goals are referred
to as the flaws of a partial-order plan. The POP process is guided by solving the
pending flaws of an initially empty partial plan.

Figure 4 in section 9 depicts a refinement plan for the example introduced
in section 3. This refinement plan includes a causal link Init

〈at t1, cA〉→ load
t1 p3 cA. Suppose that a new action drive t1 cA cB, that causes the truck
t1 to move from cA to cB, is added to the refinement plan and that this new
action is not ordered with respect to load t1 p3 cA. In this case, (at t1 =
cB) ∈ EFF (drive t1 cA cB). This effect causes a threat over the previous
causal link, as it introduces a fluent 〈at t1, cB〉 that affects the value of the
variable (at t1). This threat can be solved by introducing an ordering constraint
load t1 p3 cA ≺ drive t1 cA cB, i.e., demoting the threatening action drive
t1 cA cB with respect to the causal link.

5.2.2. Multi-agent Partial-Order Planning

Agents in our MAP model cooperate on the refinement of a base plan Π by
proposing refinement steps that solve some open goals in Π. This way, agents
cooperatively solve the MAP task by consecutively refining Π, the initially empty
base plan.

Definition 7. (Refinement step) A refinement step Πi devised by an agent i
over a base plan Πg, where g ∈ openGoals(Πg), is a triple Πi = 〈∆i, ORi, CLi〉,
where ∆i ⊆ A is a set of actions and ORi and CLi are sets of orderings and
causal links over ∆i, respectively. Πi is a threat-free partial plan that solves g as
well as all the new open goals of the form 〈v, d〉 or 〈v,¬d〉 that arise from this
resolution and can only be achieved by agent i, where (v ∈ Vi)∧(v 6∈ Vj ,∀j 6= i).
That is, when solving a goal of a base plan, agents only accomplish the new
open goals concerning their private fluents, leaving public goals unresolved. In
other words, the refinement method only iterates over the public fluents. Let
g ∈ openGoals(Πg) be a fluent of the form 〈v, d〉 or 〈v,¬d〉; an agent i proposes
a refinement step over Πg iff v ∈ Vi.

In our MAP approach partial plans are multi-agent concurrent plans as two
or more actions can be concurrently executed by different agents. Some MAP
models adopt a simple form of concurrency: two concurrent actions are mutually
consistent if none of them changes the value of a state variable that the other
relies on or affects, too (Brenner and Nebel, 2009). We impose the additional
concurrency constraint that the preconditions of two actions have to be consistent
(Boutilier and Brafman, 2001) for these two actions to be mutually consistent.
This definition of concurrency is straightforwardly extended to a joint action
α = 〈α1, . . . , αn〉.

Definition 8. (Mutually consistent actions) Two concurrent actions α ∈ Ai
and β ∈ Aj are mutually consistent if none of the following conditions holds:



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 17

– ∃(v = d) ∈ EFF (α) and ∃(〈v, d′〉 ∈ PRE(β) ∨ 〈v,¬d〉 ∈ PRE(β)), where
v ∈ Vi ∩ Vj , d ∈ Div ∩ Djv, d′ ∈ Djv and d 6= d′, or vice versa.
– ∃(v = d) ∈ EFF (α) and ∃((v = d′) ∈ EFF (β) ∨ (v 6= d) ∈ EFF (β)), where
v ∈ Vi ∩ Vj , d ∈ Div ∩ Djv, d′ ∈ Djv and d 6= d′, or vice versa.
– ∃〈v, d〉 ∈ PRE(α) and ∃(〈v, d′〉 ∈ PRE(β) ∨ 〈v,¬d〉 ∈ PRE(β)), where
v ∈ Vi ∩ Vj , d ∈ Div ∩ Djv, d′ ∈ Djv and d 6= d′, or vice versa.

Going back to our example in section 3, two concurrent actions drive t1
cA cB, planned by agent Ag1, and drive t1 cA cC, planned by agent Ag2,
are mutually inconsistent as (at t1 = cB) ∈ EFF (drive t1 cA cB) and 〈at
t1, cC〉 ∈ PRE(drive t1 cC cB) (the first condition in Definition 8 holds).
Concurrent actions drive t1 cA cB and drive t1 cA cC are also mutually in-
consistent as (at t1 = cB) ∈ EFF (drive t1 cA cB) and (at t1 = cC) ∈
EFF (drive t1 cA cC) (second condition holds). Finally, concurrent actions
drive t1 cA cB and drive t1 cC cB are mutually inconsistent as 〈at t1,
cA〉 ∈ PRE(drive t1 cA cB) and 〈at t1, cC〉 ∈ PRE(drive t1 cC cB) (third
condition holds).

As agents address concurrency inconsistencies through the detection of threats
over the causal links of their plans, concurrency is ensured among private actions
since a refinement step put forward by an agent is always a threat-free plan.
However, concurrency issues between two public actions introduced by different
agents do not arise until their preconditions are fully supported through causal
links. This way, it is not possible to ensure that two concurrent actions are mu-
tually consistent until their preconditions are fully supported. Thus, our notion
of multi-agent concurrent plan distinguishes between public and private actions
when dealing with concurrency.

Definition 9. (Multi-agent concurrent plan) A partial plan Π = 〈∆,OR,
CL〉 is a multi-agent concurrent plan if for every pair of unequal, concurrent,
public actions α and β, α 6= β, ∀pα ∈ PRE(α), pα 6∈ openGoals(Π), ∀pβ ∈
PRE(β), pβ 6∈ openGoals(Π), α and β are mutually consistent.

Definition 10. (Refinement plan) A refinement plan Π devised by an agent
i over a base plan Πg is a concurrent multi-agent plan that results from the
composition of Πg and a refinement step Πi proposed by agent i. Π is defined as
Π = Πg ◦Πi, where ◦ represents the composition operation.

Thus, an agent i can build a refinement plan Π upon a base plan Πg by
composing Πg and a refinement step Πi that solves at least g ∈ openGoals(Πg),
i.e. Π = Πg◦Πi. As previously mentioned, refinement steps are always threat-free
and their actions are mutually consistent. Hence, if a refinement step brings about
a concurrency inconsistency or a threat on the composite plan, the proposer
agent is responsible for addressing such a flaw. If an agent is not able to come up
with a consistent refinement plan, then it refrains from suggesting it. In case no
refinements for a base plan can be found, the base plan is said to be a dead-end
plan.

Definition 11. (Dead-end plan) A plan Π is called a dead-end plan if ∃g ∈
openGoals(Π) and there is no refinement step Πi such that g 6∈ openGoals(Π ◦
Πi); that is, no refinement step solves the open goal g.



18 A. Torreño et al

Definition 12. (Solution plan) A multi-agent concurrent plan Π is a solu-
tion plan for a planning task T if openGoals(Π) = ∅ (Π is a complete plan),
Threats(Π) = ∅, and every pair of actions α, β ∈ Π are mutually consistent.

That is, a solution plan is a complete multi-agent concurrent plan. Note
that we require Π to be a complete plan so it cannot have pending open goals.
Consequently, the preconditions of the fictitious final action αf will also hold thus
guaranteeing that Π solves the MAP task T . For instance, Figure 6 in section
9 shows a solution plan for the MAP task presented in section 3. The different
shapes of the actions indicate which agent has proposed them. The solution plan
in Figure 6 is a complete, concurrent plan to which all the agents in the MAP
task have contributed.

6. Planning language for MAP tasks

In our MAP system, we define the agents’ planning tasks through several speci-
fication files. These files encode the information of the agent on the MAP task,
namely the variables, Vi; the objects associated to the variables, Oi; the planning
actions, Ai; and the initial state of the agent, Ii. All this information is written
in a planning definition language.

Traditionally, planning has been regarded as a single-agent problem, where
only one centralized planning entity is required. MAP presents new requirements
and challenges that are not present in classical, centralized planning. Planning
agents in our MAP model can withhold their private information, and decide
which information to share with the rest of agents. In addition, planning agents
can have private individual objectives besides the goals of the planning task.
Therefore, the planning language must provide support to allow us to define
shareable information and private goals.

Planning definition languages have experienced a remarkable evolution over
the last years, continuously increasing their expressivity through the addition of
new features. Our MAP language is based on PDDL3.1 (Kovacs, 2011), the most
recent version of PDDL (Ghallab, Howe, Knoblock, McDermott, Ram, Veloso,
Weld and Wilkins, 1998), which was introduced in the context of the 2008 Inter-
national Planning Competition. Unlike its predecessors, that model a planning
domain through logical predicates, PDDL3.1 also incorporates state variables
by adding fluents that map a tuple of objects to an object of the planning task.
We have extended the PDDL3.1 language with some new structures to model
the multi-agent features of a planning task.

In single-agent PDDL language, the user writes two files, one containing the
domain of the task and another one containing the data of the problem to be
solved. The domain file describes the planning actions, the types of objects and
the state variables of the task, while the problem file details the current objects
of the task, the initial state (the initial values of the state variables) and the
task goals. These files have a similar structure to their PDDL counterparts, and
reflects the additional information required by MAP tasks.

In our MAP system, each agent has a domain and a problem file that model,
respectively, the typology of the planning agent and its particular vision of the
MAP task. The domain and problem files also include the information that is
shared among agents. The shared-data structure allows the problem designer
to define which fluents will be shared by each agent and with whom. Through



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 19

this structure, the designer can define the incomplete information of the agent.
This way, the domain knowledge of the agents can be modeled (or specified)
from a complete unawareness to a full visibility of the domain. Additionally,
since agents in MAP may have both global and local goals, this information is
modeled through the structures global-goal and private-goal. Finally, we
have included an additional multi-functions structure in order to simplify the
specification of fluents in the initial state of an agent.

The following subsections analyze the structures that cover the requirements
of MAP domains, i.e. modeling the data shared among agents, and the definition
of local and global goals. The last subsection provides an example that describes
the encoding of the MAP task introduced in section 3 with our language.

6.1. Shared data

The shared-data structure, located on the agent’s problem file, determines
which fluents are shareable and with which agent or agents they will be shared.
As shown in section 8, this structure directly affects the initial information ex-
change that agents perform before planning, and it also defines the partial view
of the planning task of each agent.

As agents only exchange fluents, in the :shared-data structure the problem
designer specifies the fluents that the agent can share and with which agents.
The shared-data structure has the following BNF syntax:
<shared-data-def> ::= (:shared-data <share-def>+)
<share-def> ::= (<atom-formula-def>+ [- <agent-def>?])
<agent-def> ::= <agent> | (either <agent> <agent>+)
<agent> ::= <name>
<atom-formula-def> ::= (<predicate> <typed-list(element)>)
<atom-formula-def> ::= (= <object-fluent> <object>)
<predicate> ::= <name>
<object-fluent> ::= (<name> <object>*)
<object> ::= <name>
<element> ::= <variable> | <constant>
<variable> ::= ?<name>
<constant> ::= <name>
<typed-list(x)> ::= x*

As the BNF syntax shows, it is possible to define fluents or predicates within
the :shared-data section and associate them to one, some or all the agents in
the system (if agent is not specified, the predicates or fluents are shared with
all the agents).

6.2. Private and global goals

A particularity of the MAP approach when compared to traditional planning is
the fact that agents have private and global goals. To reflect this information in
the model, the private-goal and global-goal structures have been included
into the problem files. Similarly to the goal section in PDDL3.1, goals can be
modeled through predicates or fluents. The private-goal and global-goal
structures use the following BNF syntax:
<private-goal-def> ::= (:private-goal <predicate-def>)
<global-goal-def> ::= (:global-goal <predicate-def>)



20 A. Torreño et al

<predicate-def> ::= <atom-formula-def>
<predicate-def> ::= (and <atom-form-def> <atom-form-def>+)
<predicate-def> ::= (or <atom-form-def> <atom-form-def>+)
<atom-form-def> ::= (<predicate> <typed-list(element)>)
<atom-form-def> ::= (= <object-fluent-def> <object>)
<predicate> ::= <name>
<object-fluent-def> ::= (<name> <object>*)
<object> ::= <name>
<element> ::= <variable> | <constant>
<variable> ::= ?<name>
<constant> ::= <name>
<typed-list(x)> ::= x*

As shown in the BNF syntax description, both global and local goals are
described as conjunctions or disjunctions of fluents and predicates, or rather as
a single fluent or predicate.

6.3. Encoding example

This subsection describes the encoding of the MAP task presented in section 3
with our MAP language. This MAP task describes a transportation and storage
scenario in which two agents (Ag1 and Ag2) take the role of transport agencies
and an agent (Ag3) manages a storage facility. Transport agents deliver packages
through a network of cities, while the warehouse agent stores and loads the
packages in trucks. In the following, we provide a description of the domain and
problem files of the agents for this task, stressing the specification of shareable
information.

Planning agents receive two different description files, namely the domain
and problem file. The domain file contains a general description of the capa-
bilities of the agent, including the actions that the agent can perform and the
predicates and functions it can manage. All agents of the same type share the
same domain file, e.g. transport agents Ag1 and Ag2 in this example receive the
same domain file. The problem file models the concrete problem assigned to each
agent, including a description of the objects of the task, the initial situation and
the global goals of the task as well as private goals of the agent. Each agent
receives its particular problem file.

6.3.1. Domain files

The domain file for transport agents specifies bidirectional links among cities,
which allow trucks to move from one city to another. Trucks can only travel
within the cities included in their working areas, depicted in Figure 1 with two
circles. This way, transport agents have to interact and cooperate in order to de-
liver packages to a different area. The domain file for transport agents is modeled
as follows:



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 21

(define (domain Transport)
(:requirements :typing :equality :fluents)
(:types truck package agent city - object

raw-material final-product - package)
(:predicates (empty ?c - city))
(:functions (at ?t - truck) - city

(pos ?p - package) - (either city truck)
)
(:multi-functions (link ?c - city) - city

(area) - city
)
(:action load
:parameters (?t - truck ?p - package ?c - city)
:precondition (and (member (area) ?c)(= (at ?t) ?c)(= (pos ?p) ?c))
:effect (and (assign (pos ?p) ?t)(empty ?c))

)
(:action unload
:parameters (?t - truck ?p - package ?c - city)
:precondition (and (empty ?c)(member (area) ?c)

(= (at ?t) ?c)(= (pos ?p) ?t))
:effect (and (assign (pos ?p) ?c)(not (empty ?c)))

)
(:action drive
:parameters (?t - truck ?c1 ?c2 - city)
:precondition (and (member (area) ?c1)(member (area) ?c2)

(member (link ?c1) ?c2)(= (at ?t) ?c1))
:effect (assign (at ?t) ?c2)

)
)

The domain file shown above is structured similarly as a regular PDDL3.1
file. The main sections of the file are highlighted in bold. The :requirements
section indicates the PDDL features that have been used to encode the domain
information. :types describes the object-type hierarchy of this particular do-
main. As it can be seen, the planning domain of transport agents includes four
different types of objects, namely truck, agent, city and package. A package
can be either a raw-material or a final-product.

Structures :predicates, :functions and :multi-functions define the state
variables used in the transport domain. During the planning process, these vari-
ables will be instantiated to objects defined in the transport agents’ problems,
thus giving rise to the fluents that will be used throughput the planning process.
For instance, let us consider the function (at ?t - truck) - city, where (at
?t) is a state variable and city is the type of its domain values. Given a truck
object t1 and a city object c1, the previous function will result in a fluent of
the form (= (at t1) c1), which indicates that t1 is located at c1.

The domain file of transport agents include the following predicates, functions
and multi-functions: empty is a predicate to indicate whether a city is empty or
already contains a package (a city can only have one package simultaneously);
function at returns the city in which a certain truck is placed; function pos
describes the position of a package, either a truck or a city; multi-function
link returns the outcoming connections (roads) from a certain city; and area
describes the working area of an agent in terms of the cities it can drive a truck
to.

The last portion of a PDDL3.1 domain file defines the abilities of the agent,
i.e., the actions it can perform. Actions are described through its parameters



22 A. Torreño et al

(objects that take part in the action), preconditions (predicates and func-
tions that must hold for the action to be applicable) and effects (predicates
and functions that describe the consequences of applying the action). As in the
case of predicates, functions and multi-functions, actions are described through
state variables. In particular, preconditions encode queries on fluents that check
whether a variable takes on a particular value, and effects encode assignment
operations on fluents to make a state variable take on a value.

As described in the domain file, transport agents can perform three different
actions: load and unload a package into/from a truck, and drive a truck from
a city to another one of the agent’s area.

The domain file for warehouse agents is similar to the classical blocksworld
domain, in which packages can be stacked and unstacked on/from the table or
other packages. In this case, only one pile of packages can be stacked on the
table, and there are two types of packages, raw materials and final products.
The transportation and storage scenario depicted in Figure 1 includes two final
products (packages p1 and p2) and a raw material (package p3). The warehouse
agent delivers final products to the city in which the warehouse is placed (the
exchange city, cF in Figure 1), and acquires raw materials that are unloaded from
the trucks in the exchange city. Following, we show a sketch of the warehouse
domain file encoding:
(define (domain Warehouse)
(:requirements :typing :equality :fluents)
(:types package agent city table hoist - object

raw-material final-product - package)
(:predicates (empty ?c - city)

(clear ?p - (either package table hoist))
(exchange-city ?c - city)

)
(:functions (pos ?p - package) - (either city package table hoist))
(:action acquire
:parameters (?p - raw-material ?c - city ?h - hoist)
:precondition (and (= (pos ?p) ?c)(clear ?h)(exchange-city ?c))
:effect (and (assign (pos ?p) ?h)(not (clear ?h))(empty ?c))

)

...

)

As the transport agents, warehouse agents manage city, hoist and package
objects. Additionally, warehouse agents consider table and hoist objects. The
hoist is used to deliver and acquire packages, while the table is used to
stack and unstack packages within the warehouse.

Warehouse agents perform the four actions indicated above: they can stack
and unstack a package on top/from a clear table or package; and can also
acquire and deliver a package from/to the exchange-city by using a hoist.
The sketch of the domain file illustrates the encoding of the acquire action.

6.3.2. Problem files

Each agent receives its own problem file that models the particular objects man-
aged by the agent, the initial situation known to the agent and the global and
private goals that the agent must achieve. Moreover, the problem files include
the definition of the shareable fluents and with which agents they can be shared.



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 23

We now explain the problem file of transport agent Ag1 (this problem will be
later used to illustrate the construction of the dis-RPG). Problem files describe
the initial state of the task by including both the positive and negative infor-
mation known by the agent. This way, the information not represented in the
problem file is unknown to the agent. Ag1’s problem file is encoded as follows:

(define (problem Ag1)
(:domain Transport)
(:objects

Ag1 Ag2 Ag3 - agent
t1 - truck
cA cB cC cD cE cF - city
p3 - raw-material
p1 p2 - final-product)

(:shared-data
(empty ?c - city) - (either Ag2 Ag3)
((at ?t - truck) - city)
((pos ?p - package) - (either city truck)) - Ag2
((pos ?p - package) - city) - Ag3

)
(:init

(empty cB) (empty cC) (empty cD) (not (empty cA))
(= (at t1) cA) (not (= (at t1) cB)) (not (= (at t1) cC))
(not (= (at t1) cD)) (= (pos p3) cA) (not (= (pos p3) cB))
(not (= (pos p3) cC)) (not (= (pos p3) cD))
(= (link cA) {cB cC}) (not (= (link cA) {cA cD}))
(= (link cB) {cA cC}) (not (= (link cB) {cB cD}))
(= (link cC) {cA cB cD}) (not (= (link cC) {cC}))
(= (link cD) {cC}) (not (= (link cD) {cA cB cD}))
(= (area) {cA cB cC cD}) (not (= (area) {cE cF}))

)
(:global-goal (and (= (pos p1) cA)(= (pos p3) cE)))
)

Sections of the problem file are also highlighted in bold. A domain file starts
with a description of the :objects that the agent manages. As shown in the
code, agents are represented as objects. Ag1 knows that there is a truck t1 in
the task, and it has knowledge of six different cities, although it only manages
the four cities included in its working area (see Figure 1). The agent also knows
that there are three packages in the MAP task, the final-products p1 and p2
and the raw-material p3.

The :shared-data section is a key aspect of our MAP language, as it defines
the information shareable by the agents and directly affects their knowledge of
the task. The predicates and functions defined in this structure are the patterns
of the fluents that the agent regards as shareable with other agents. For instance,
Ag1’s :shared-data section includes the following pattern: (empty ?c - city)
- (either Ag2 Ag3). This pattern indicates that Ag1 will share the fluents that
match the pattern (empty ?c - city) with both Ag2 and Ag3. Given that Ag1
knows the cities cA, cB, cC, cD, cE and cF, fluents as (= (empty cA) true) or (=
(empty cD) false) match the pattern, and Ag1 shares this information with
Ag2 and Ag3.

The :init section describes the initial state of Ag1, i.e., the initial situation of
the world known to Ag1. It is defined with predicates like (empty cB), functions
like (= (at t1) cA)) and multi-functions like (= (link cA) {cB cC}), that
hold in the initial situation. The initial state includes both positive and negative
information. For instance, the function (not (= (at t1) cC)) indicates that



24 A. Torreño et al

Ag1 knows that truck t1 is not initially placed at city cC. The information
not included in the initial state is considered unknown to Ag1.

While the initial state contains predicates, functions and multi-functions,
internally the system treats all of them as fluents. For instance, a predicate
(empty cB) is internally converted into a fluent (= (empty cB) true), while
functions like (= (at t1) cA) are already in the form of fluents. Multi-functions
are used to easily define multiple functions through a simplified notation. The
conversion into fluents is straightforward: given a multi-function (= (link cA)
cB cC), we generate the fluents (= (link cA cB) true) and (= (link cA cC)
true).

Finally, the :global-goal structure shows the global objective of the MAP
task. In this case, the goal is to transport the raw-material p3 to city cF, and
to deliver a final-product to city cA. Notice that, in this example, there is
not a :private-goal section.

7. MAP algorithm overview

This section summarizes the main stages of the MAP algorithm followed by the
agents to devise, exchange and select refinement plans to come up with a solu-
tion for the MAP task. Agents follow a procedure that integrates planning and
coordination, allowing agents to solve both strongly-related and loosely-coupled
problems without losing generality. Agents perform an individual Partial-Order
Planning (POP) search to build refinements over the current base plan, while
one of the agents leads the process of gathering the new refinement plans and
selecting the next base plan.

Algorithm 1 Overview of the MAP algorithm
Initial information exchange
repeat
Individual refinement process
Coordination process

until a solution plan is found or the search space is completely explored

Algorithm 1 shows the main steps of the MAP algorithm. The stages of the
algorithm are outlined as follows:

– Initial information exchange: The algorithm starts with an initial com-
munication stage by which agents exchange the shareable information on the
planning domain in order to generate the data structures that will be used
in the subsequent planning process. Agents take advantage of the exchanged
information to build a distributed Relaxed Planning Graph, which provides
them with their partial view on the MAP task.

– Resolution process: Once agents have exchanged the shareable information
and the distributed Relaxed Planning Graph is computed, they start the iter-
ative resolution process by which they explore the search space until they find
a solution for the MAP task. As shown in Algorithm 1, this process comprises
two different interleaved stages, an individual planning process by which agents
devise refinements over a centralized base plan and a coordination process to
exchange the new refinement plans and to select the next base plan:



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 25

· Individual refinement process: Agents individually refine the current
base plan of the MAP system. Each planning agent is provided with an
internal POP system. The classical POP algorithm has been adapted to a
MAP context in order to obtain valid refinement plans over an incomplete
base plan (see section 9.1).

· Coordination process: Agents communicate and exchange the new re-
finement plans over the current base plan. Later, they jointly evaluate these
refinement plans and select the most promising one as the next base plan.

The following sections detail the two main stages of the MAP algorithm.
Section 8 describes the initial information exchanging stage performed by the
agents, while section 9 details the resolution process, including both the coordi-
nation process and the individual construction of the refinement plans.

8. Initial information exchange

Prior to the resolution process itself, agents perform a preliminary stage to share
public planning information effectively. This initial stage builds a distributed
Relaxed Planning Graph (dis-RPG), whose construction is inspired by the ap-
proach in (Zhang et al., 2007). Unlike the proposal in (Zhang et al., 2007), which
stops the graph construction once all the problem goals appear in the graph, our
procedure builds a complete dis-RPG by maintaining the incomplete information
of the agents, so they only exchange the information defined as shareable in the
input files (see section 6). This section describes in detail the dis-RPG building
process and subsection 8.1 provides a trace based on the MAP task presented in
section 3 that illustrates this process.

The dis-RPG provides the agents with valuable planning information that
will be used throughout the refinement planning process:
– Agents exchange the fluents defined as shareable in the :shared-data section
of the MAP domain definition files (see subsection 6.1). Fluents are labeled
with the list of agents that can achieve them, giving each agent a view of the
possible interactions that can arise at planning time with other agents.

– An estimate of the best cost to achieve each fluent is computed. This informa-
tion is used to design heuristics to guide the refinement planning process.
Following Algorithm 2, the first step of the dis-RPG construction consists

in computing the initial RPG for each agent i, RPGi, taking only into account
the fluents and actions initially known to the agent. Agents compute this initial
planning graph by following the procedure presented in (Hoffmann and Nebel,
2001). The RPG consists of a set of alternating fluent and action levels. The
first fluent level contains the fluents that are part of the initial state, and the
first action level includes all the actions whose preconditions appear in the first
fluent level. Fluents that are part of the effects of these actions (and have not
been included in the first fluent level) are placed in the second fluent level, and
actions whose preconditions are included in the two prior fluent levels of the
graph (and are not in the first action level) are stored in the second action level.
By following this procedure, the RPG is expanded until no new fluents are found.
This way, the level of the graph in which an action or fluent appears gives an
estimate of the cost of achieving such an action or fluent.

Once all agents have computed their initial RPGs, the iterative composition



26 A. Torreño et al

Algorithm 2 Dis-RPG construction for an agent i
Build initial RPGi
repeat
∀j 6= i, i sends j shareable fluents SF i→j ∈ RPGi of the form 〈v, d〉 or
〈v,¬d〉, where v ∈ Vi ∩ Vj and d ∈ Div ∩ Djv
∀j 6= i, i receives from j shareable fluents SF j→i ∈ RPGj of the form 〈v, d〉
or 〈v,¬d〉, where v ∈ Vi ∩ Vj and d ∈ Div ∩ Djv
RF i ← ∅
∀j 6= i, RF i ← RF i ∪ SF j→i

for all received fluents f ∈ RF i do
if f 6∈ RPGi then
Insert f in RPGi
levelRPGi(f)← level(f)

end if
if (f ∈ RPGi) ∧ (levelRPGi(f) > level(f)) then
levelRPGi(f)← level(f)

end if
end for
Expand RPGi

until RF i = ∅

of the dis-RPG begins. As depicted in Algorithm 2, after computing the initial
RPGi, agent i executes the first iteration of the algorithm and exchanges the
fluents and actions of its RPGi with the rest of agents. Agents only exchange the
fluents defined as shareable in the :shared-data structure of the input files (see
subsection 6.1). Agent i sends agent j the set of fluents SF i→j that are visible to
agent j, i.e., the fluents in RPGi of the form 〈v, d〉 or 〈v,¬d〉, where v ∈ Vi ∩Vj
and d ∈ Div ∩Djv. Likewise, agent i will receive from the rest of agents j 6= i the
shareable fluents of their RPGj that are visible to agent i.

Agent i updates its RPGi accordingly with the new fluents received from the
rest of agents. We will refer to these fluents as RF i (see Algorithm 2). If a fluent
f ∈ RF i is not in RPGi then it is stored according to level(f). If f is already in
RPGi, its level in the graph is updated if levelRPGi(f) > level(f). Hence, agents
only store the best estimated level to reach each fluent, placing each fluent at
the lowest possible level of the graph. After updating RPGi, agent i expands it
by checking wether the new inserted fluents trigger new actions in RPGi or not.
The fluents produced as effects of these new actions will be shared in the next
information exchange iteration. The RPG expansion procedure also updates the
existing actions by placing them at a lower action level if their preconditions
have been updated.

Since agents only exchange those fluents defined as shareable, the dis-RPG
process gives each agent a different view of the planning task, so no agent handles
a complete representation of the dis-RPG. In contrast, each agent i maintains
its own internal RPGi, whose information depends on the fluents other agents
have shared with it, which makes each agent have its own, partial view of the
planning task. Thus, agents design plans under incomplete information, as they
are partly aware of the information on the planning task.

The dis-RPG process finishes when agents do not receive more fluents from



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 27

F0
[2](empty cB) T [2](link cE cB) T
[2](empty cD) T [2](link cE cD) T
[2](empty cE) T [2](link cF cD) T
[2](empty cF) T [2](area cB) T
[2](link cB cE) T [2](area cD) T
[2](link cD cE) T [2](area cE) T
[2](link cD cF) T [2](area cF) T

Table 1. Initial RPG built by agent Ag2

F0 A0 F1 A1
[1](at t1) cA [1](pos p3) cA load t1 p3 cA [1](pos p3) t1 unload t1 p3 cB
[1](empty cA) F [1](link cC cA) T drive t1 cA cB [1](empty cA) T unload t1 p3 cC
[1](empty cB) T [1](link cC cB) T drive t1 cA cC [1](at t1) cB unload t1 p3 cA
[1](empty cC) T [1](link cC cD) T [1](at t1) cC drive t1 cB cA
[1](empty cD) T [1](link cD cC) T drive t1 cB cC
[1](link cA cB) T [1](area cA) T drive t1 cC cA
[1](link cA cC) T [1](area cB) T drive t1 cC cB
[1](link cB cA) T [1](area cC) T drive t1 cC cD
[1](link cB cC) T [1](area cD) T

F2 A2 F3 A3
[1](empty cB) F load t1 p3 cB [1](empty cD) F load t1 p3 cD
[1](empty cC) F load t1 p3 cC [1](pos p3) cD
[1](at t1) cD unload t1 p3 cD
[1](pos p3) cB drive t1 cD cC
[1](pos p3) cC

Table 2. Initial RPG built by agent Ag1

the others. Following, agents start the resolution process to jointly devise a so-
lution plan.

8.1. dis-RPG example

In order to illustrate the dis-RPG stage of the MAP algorithm, this section
provides an example trace based on the transportation and storage MAP task
introduced in section 3. The planning agents receive the input files presented in
subsection 6.3 and start the MAP algorithm by building the dis-RPG.

In the first stage of Algorithm 2, each agent individually generates an initial
RPG, according to its problem file. To illustrate this stage of the process, we
focus on the initial RPGs built by the transport agents Ag1 and Ag2.

Table 1 shows the initial RPG calculated by agent Ag2. The numbers in
brackets indicate the agents that can generate the fluent, while the values T and
F stand for true and false, respectively. Ag2 does not know the position of the
packages and the truck because they are initially located out of its working area
(see Figure 1 in section 3). Therefore, its initial RPG only includes F0, the first
level of fluents, which stores the fluents on the initial state of Ag2. The initial
RPG of Ag2 does not contain any action level because there are no applicable
actions, that is, their preconditions do not hold in F0.

Agent Ag1 does know the position of the package p3 and the truck t1, and
consequently, it can compute a much larger initial RPG (see Table 2). Notice that
the level A0 includes the actions whose preconditions are satisfied in F0, while
F1 stores the fluents that are part of the effects of the actions in A0 and are not
in F0. For instance, the action drive t1 cA cB, at level A0, has the following
preconditions: (= (area) cA), (= (area) cB), (= (link cA cB) true) and



28 A. Torreño et al

F0 A0 F1 A1
[1, 2](empty cB) T [2](link cE cB) T load t1 p3 cA [1](empty cA) T unload t1 p3 cB
[1, 2](empty cD) T [2](link cE cD) T drive t1 cA cB [1, 2](at t1) cB unload t1 p3 cC
[2](empty cE) T [2](link cF cD) T drive t1 cA cC [1](at t1) cC unload t1 p3 cA
[2](empty cF) T [2](area cB) T [1, 2](pos p3) t1 drive t1 cB cA
[2](link cB cE) T [2](area cD) T drive t1 cB cC
[2](link cD cE) T [2](area cE) T drive t1 cC cA
[2](link cD cF) T [2](area cF) T drive t1 cC cB
[1](empty cA) F [1](at t1) cA drive t1 cC cD
[1](pos p3) cA [2, 3](empty cF) T

F2 A2 F3 A3
[1, 2](empty cB) F load t1 p3 cB [1, 2](empty cD) F load t1 p3 cD
[1](empty cC) F load t1 p3 cC [2](at t1) cF
[1, 2](at t1) cD unload t1 p3 cD [1, 2](pos p3) cD
[2](at t1) cE drive t1 cD cC [2](pos p3) cE
[1, 2](pos p3) cB [2](empty cE) F
[1](pos p3) cC [2, 3](pos p2) cF
[2, 3](pos p1) cF
[1, 2](empty cF) F

F4 A4 F5 A5
[2](pos p3) cF unload t1 p1 cB [1](pos p1) cA load t1 p1 cB
[1, 2](pos p1) t1 unload t1 p1 cC [1, 2](pos p1) cB load t1 p1 cD
[1, 2](pos p2) t1 unload t1 p1 cD [1](pos p1) cC load t1 p2 cB

unload t1 p1 cA [1, 2](pos p1) cD load t1 p2 cD
unload t1 p2 cB [2](pos p1) cE load t1 p1 cC
unload t1 p2 cC [1](pos p2) cA load t1 p1 cA
unload t1 p2 cD [1, 2](pos p2) cB load t1 p2 cC
unload t1 p2 cA [1](pos p2) cC load t1 p2 cA

[1, 2](pos p2) cD
[2](pos p2) cE

Table 3. Final dis-RPG as viewed by agent Ag2

(= (at t1) cA). As Table 2 shows, these fluents are at F0, which triggers the
action drive t1 cA cB at A0.

Once agents have built their initial RPGs, they start the iterative dis-RPG
building process by exchanging the shareable fluents in their RPGs.

In subsection 6.3.2, we show the :shared-data section of Ag1, which shares
with Ag2 fluents that match the following patterns: (empty ?c - city), ((at
?t - truck) - city) and ((at ?t - truck) - city). The fluents shared by
Ag1 and Ag2 are marked in red in Table 2. Ag2 also sends its shareable fluents
to the rest of agents and stores the fluents received from other agents.

Agents expand their RPGs by checking if the fluents they have received trig-
ger new actions in the graph. The process carries on until no new fluents appear
in the dis-RPG. As each agent has a different :shared-data section, the infor-
mation will vary from one RPG to another, giving each agent a different and
incomplete view of the dis-RPG and the MAP task itself.

Table 3 shows the final dis-RPG of the transportation scenario as seen by
agent Ag2. As it can be observed, the dis-RPG provides both an estimate of
the cost of achieving each fluent (this cost corresponds to the level at which the
fluent appears), and the set of agents that achieve that fluent in the RPG.

9. Resolution process

After the information exchange, agents initiate the resolution process (see Algo-
rithm 3), which comprises two interleaved stages: the individual refinement stage
and the coordination stage. The first stage involves agents building individual



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 29

refinements over a centralized base plan by using a POP. In the second stage,
agents follow a coordination process to gradually build a joint solution plan for
the MAP task, exchanging and evaluating the refinements generated individually
and selecting the most promising one in order to reach a solution.

Algorithm 3 Resolution process for an agent i
Π← Π0
R = ∅
repeat
Select open goal g ∈ openGoals(Π)
Refinementsi(Πg)← Refine base plan Πg individually
∀j 6= i, send Refinementsi(Πg) to agent j
∀j 6= i, receive Refinementsj(Πg)
Refinements(Πg)← Refinementsi(Πg)
∀j 6= i, Refinements(Πg)← Refinements(Πg) ∪Refinementsj(Πg)
Evaluate Refinements(Πg)
R← R ∪Refinements(Πg)
Vote for the best plan Πi ∈ R
Π← Πi

if openGoals(Π) = ∅ then
return Π

end if
until R = ∅

9.1. Individual refinement stage

A planning agent i executes its individual POP process in order to refine the
current base plan Π. As shown in Algorithm 3, agent i refines Π by solving a
particular open goal g ∈ openGoals(Π), thus obtaining a set of valid refinement
plans over Πg, Refinementsi(Πg).

Our definition of refinement plan (see subsection 5.2.2) states that a refine-
ment plan Πi of an agent i over a base plan Π solves one of its open goals
g ∈ openGoals(Π), as well as all the private open goals gi of the form 〈v, d〉 or
〈v,¬d〉 that arise from this resolution, where v ∈ Vi ∧ d ∈ Div ∧ ((∀j 6= i, v 6∈
Vj) ∨ (∀j 6= i, d 6∈ Djv)) ∧ (gi 6∈ openGoals(Π)).

We have designed a customized version of the classical POP algorithm com-
pliant with the requirements introduced by the MAP approach. Our POP system
is able to start the search process from any given base plan, rather than starting
with an empty plan as in a traditional POP process. In addition, the POP is
aimed at building refinement plans, rather than complete solution plans.

9.2. Coordination process

The coordination process is based on a democratic leadership in which a lead-
ership baton is scheduled among the agents (initially, the baton is randomly
assigned to one of the participating agents). The resolution process interleaves
the coordination process with the individual refinement stage. A coordination



30 A. Torreño et al

iteration is led by the agent which has the baton (baton agent). Once the coor-
dination iteration is completed, the baton is handed over to the following agent.

Algorithm 3 depicts the main steps of the coordination process. After the
individual refinement stage, agents exchange the refinement plans they have
elicited over the current base plan Π. Following, agents receive the refinement
plans of the other agents and evaluate them according to their view of the plan-
ning task. Agents apply a voting process to adopt the most promising plan as
the next base plan Π, and check if the selected plan is a solution. Otherwise,
agents choose a new open goal of the plan g ∈ openGoals(Π) and each agent
i starts a new individual refinement stage to compute the refinements over Π,
Refinementsi(Πg).

In the first step of the coordination process, the individual refinement plans
are exchanged between agents for their evaluation. An agent i sends the re-
finement plans it has devised over the current base plan Π by solving g ∈
openGoals(Π), Refinementsi(Πg), to the rest of agents in the task. In turn,
agent i receives the refinements devised by each agent j in the task,Refinementsj
(Πg), where j 6= i. Note that agents have a local, partial view of the plans,
so given a refinement plan Π, an agent i will only view the open goals og ∈
openGoals(Π) of the form 〈v, d〉 or 〈v,¬d〉 such that v ∈ Vi and d ∈ Div. The
view agent i has on each refinement plan Π, viewi(Π), ensures agents’ privacy
and directly affects the evaluation of the refinements.

The evaluation of the refinement plans is carried out through a utility function
F , by which agents estimate the quality of the plans. Since an agent i evaluates
a plan accordingly to its view, F(viewi(Π)), the results of the evaluation may be
different from the other agents’. Therefore, agents will have different perspectives
on the quality of the refinement plans.

Once the refinement plans are evaluated, agents vote for the most promising
candidate in R, which stores all the refinement plans that have not yet been
selected as a base plan (see Algorithm 3). Each agent i votes for the best re-
finement plan in R according to the utility function F . In case of a draw, the
baton agent will choose the next base plan among the most voted alternatives.
If R = ∅, the refinement planning process ends with no solution found.

Once a refinement plan is selected, agents adopt it as the new base plan Π.
If openGoals(Π) = ∅, a solution plan is returned. As some open goals might
not be visible to some agents, all agents must confirm that Π is a solution plan
according to their view of Π. Finally, the baton agent selects the next open
goal g ∈ openGoals(Π) to be solved, and a new iteration of the refinement and
coordination process starts.

The resolution process carried out by the agents can be regarded as a joint
exploration of the refinement space. Nodes in the search tree represent refinement
plans and each iteration of the process expands a different node.

9.3. Resolution example

This subsection illustrates the resolution process by showing a partial trace that
follows the trace example described in subsection 8.1. After completing the ini-
tial information exchange and building the dis-RPG, agents proceed with the
resolution process in order to solve the MAP task.

The plan construction starts with an initial empty plan, Π0, which contains
only the two fictitious steps that represent the initial state and the goals of the



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 31

Ag1

Init Goalsload t1 
p3 cA

unload 
t1 p1 cA

(at t1) cA

(at t1) cA

(pos p1) cA(empty cA) T

Fig. 4. Refinement plan Π00

Ag1

Init Goalsdrive t1 
cB cC

drive t1 
cC cA

(at t1) cA

(pos p1) cA(at t1) cC load t1 
p3 cA

unload 
t1 p1 cA

(at t1) cAa)
(pos p3) cA

(empty cA) T

Ag1

Init Goalsdrive t1 
cB cC

drive t1 
cC cA

(pos p1) cAload t1 
p3 cA

unload 
t1 p1 cAb)

(pos p3) cA

(empty cA) T

Fig. 5. Refinement plan Π06 as observed by: a) Ag1 b) Ag3

MAP task. The first open goal selected by Ag1 (which takes the role of baton
agent in this first iteration) for its resolution is (= (pos p1) cA), as it is the
most costly one according to the dis-RPG. The goals of the task are highlighted
in bold in Table 3. This dis-RPG shows that (= (pos p1) cA) has a cost of 5,
(= (pos p3) cF) has a cost of 4, and the only agent that can achieve (= (pos
p1) cA) is Ag1. Hence, Ag1 proposes a set of refinements over Π0, Π00, . . . ,Π09,
while Ag2 and Ag3 refrain from making proposals. The proposed refinements
are evaluated through the utility function F , and the best-valued one, Π00, is
selected as the new base plan.

Figure 4 depicts the refinement plan Π00. Since all the causal links in Π00
involve shareable fluents, all the agents have a complete view of this refinement
plan. However, agents Ag1 and Ag3 have different views of the refinement Π06
(see Figure 5). In order to guarantee privacy, several causal links (black arrows)
of Π06 have been occluded to Ag3, which only sees ordering constraints instead
(grey arrows). According to the problem definition files, the fluents involved in
these causal links are private to the transport agent Ag1 because they are not
shareable data, and therefore, Ag1 does not communicate them to Ag3.

Once the refinement plan Π00 is chosen as the new base plan, Ag1 passes on
the baton to Ag2 and a new iteration of the resolution process starts. The MAP
process will carry on until a solution plan is found. Since some open goals are
not visible to some agents, all participating agents must confirm that the plan
has no pending open goals. Figure 6 depicts the solution plan for the MAP task

Init

Goals

drive t1 
cB cE

unstack p1 
p2 h1

Ag1

Ag2
Ag3

load t1 
p3 cA

drive t1 
cA cB

unload 
t1 p3 cE

drive t1 
cE cD

drive t1 
cD cF

deliver p1 
cF h1

drive t1 
cF cD

load t1 
p1 cF

drive t1 
cD cE

drive t1 
cE cB

drive t1 
cB cA

unload 
t1 p1 cA

Fig. 6. Solution plan for the MAP task



32 A. Torreño et al

at hand, showing in different shapes the actions to be executed by each agent.
As it can be observed, the solution of the MAP task is a joint plan to which all
the participant agents have contributed.

10. Experimental results

Several tests have been performed to evaluate the performance of our MAP
system. The tests compare the MAP model with a single-agent approach to an-
alyze its advantages and shortcomings against a centralized planning model. We
have used two different planning domains for our experiments. Next subsections
present the MAP domains and analyze the results of the different tests.

10.1. Multi-agent planning domains

The two planning domains used to test the MAP system have been taken from
real-life problems or adapted from well-known case studies. The two domains
were designed such that we could test the performance and the quality of the
solutions obtained with a wide range of problems. We tested our MAP system
with different levels of complexity: from loosely-coupled problems, in which inter-
actions among agents are rather low, to strongly-related problems, that require
a strong coordination effort to be solved. Additionally, we created both a multi-
agent and a single-agent version for each problem.

In section 3, we described a transportation and storage domain, in which
agents take the roles of transport agencies and storage facilities, which work
together to transport raw materials and final products to different cities. This
domain gives rise to strongly-related problems as interactions between agents are
required in order to accomplish the different objectives. Agents in the transporta-
tion domain have different abilities, so they should cooperate with each other in
order to achieve the different goals.

We defined an additional planning domain, the picture domain. This domain
gives rise to simpler, loosely-coupled problems as agents can work independently
in order to solve the objectives, and hence cooperation and interactions among
agents are not mandatory to find a solution. Planning agents in the picture
domain (workers) are not specialized, they all share the same abilities and so
they all can perform the same actions. In addition, agents in this domain do
not keep private information for themselves but all the problem information is
shared among the agents. Next subsection describes the picture domain.

10.1.1. Picture domain

This domain, adapted from the case study in (Parsons, Sierra and Jennings,
1998), presents a situation in which several workers have to cooperate to hang
a set of pictures on walls. To do so, they have to acquire different tools that are
scattered over several locations. Agents move through the locations to get the
tools and hang the pictures. The domain defines a set of bidirectional links that
connect the locations.

Figure 7 depicts an example of this planning domain. In contrast to the
transportation domain, agents in the picture domain share the same capabili-
ties: agents can pickUp and putDown a tool in the location where the agent



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 33

Fig. 7. Picture domain example

and the tool are placed; an agent can also pass the tool it is carrying on to
another agent at the same location; agents can walk from one location to
another through the link that connects both locations; finally, an agent can hang
a picture on a certain location with the tool it is carrying.

This domain gives rise to loosely-coupled problems because an individual
agent is likely to solve the problem goals by itself in most cases. Moreover,
agents share the same abilities and have access to all the locations, so they are
able to work independently and cooperation is not a requirement to complete
the task. Cooperation is however useful to improve the quality of the solutions
and to solve conflicts on the use of the tools, as they are limited resources shared
by all the participating agents.

10.2. Tests and results

The following subsections show the experimental results. We carried out two
different tests1. The first one compares the quality of the solution plans obtained
by a single agent and by a set of planning agents working together on the problem.
To do so, we defined a set of MAP problems and the single-agent equivalent
version. Finally, we measured the robustness and scalability of the MAP system
by executing a planning problem several times, increasing each time the number
of planning agents in the system.

10.2.1. Multi-Agent vs. Single-Agent Planning

This first set of tests compares the quality of the solution plans of our MAP
approach versus the centralized single-agent framework. The testbed includes
twenty planning problems (ten problems per domain) of increasing difficulty.

As stated in subsection 10.1, the transportation problems present a high cou-
pling level because agents are required to interact between each other to solve
most of the problem goals. In contrast, agents in the picture problems can solve

1 All the tests were performed on a single machine with a 2.83 GHz Intel Core 2 Quad CPU
and 8 GB RAM.



34 A. Torreño et al

Init

Goals

walk Ag2 l6 l3

Ag1

Ag2

pickUp 
Ag1 h1 l1

walk Ag1 
l1 l2

walk Ag2 l3 l6

pickUp 
Ag1 d1 l2

walk Ag1 
l2 l3

pass Ag1 
Ag2 d1 l3

walk Ag1 
l3 l4

walk Ag2 l6 
l7

walk Ag1 
l4 l5

hang Ag2 p2 
d1 l7

hang Ag1 
p1 h1 l5

Fig. 8. Solution plan for the Picture2 MAP problem

the goals independently in most cases so the coupling level in these problems
is rather low. Another key difference between both domains is that planning
agents in the picture domain (workers) are also the entities that execute the
plans, whereas agents in the transportation domain are merely planning entities.
This way, given two parallel actions in a plan of the picture domain, each one
is associated to a different agent (worker) whereas two parallel actions in a plan
of the transportation domain can be associated to two different trucks of the
same transport agent, which is the planning entity. In other words, concurrency
is associated to the agents in the picture domain and to the resources managed
by the agents (trucks, hoists, etc.) in the transportation domain.

Table 4 shows the obtained results. #Ag indicates the number of agents that
perform the planning problem in the MAP tests. #Actions and #TS refer to the
number of actions and time steps of the solution plan, respectively (notice that
we do not count the plans’ fictitious actions). Finally, Parallelism indicates the
maximum number of parallel branches in the MAP solution plans.

Time steps are the number of time units necessary to execute the plan, i.e.,
the duration of the plan. For instance, Figure 8 depicts the solution plan for
the Picture2 MAP problem. Although the plan is composed of twelve planning
actions (without taking into account the two fictitious actions), it can be executed
in only eight time steps, since most of its actions can be executed in two parallel
branches. Then, the duration of the plan in Figure 8 is 8 time units.

Discussion on the results. In the transportation domain, the MAP approach
obtains the same results than the single-agent approach w.r.t. the number of
actions and time steps. The single-agent approach performs rather well in this
particular domain, obtaining good-quality solutions, if not optimal, for almost
all the tested problems. Notice that the single-agent approach features a single
planning entity that has a full visibility on the planning problem. Despite the
fact that the participating agents on the MAP tests have an incomplete view of
the problem, the results show that MAP agents cooperate effectively, obtaining
plans of the same quality as the single-agent approach, both in terms of number
of actions and plan duration (time steps).

In the transportation domain, planning agents have a set of resources at their
disposal (truck and hoists) to execute the actions of the plan. Since partial-order
planners allow for parallelism, both the MAP and single-agent plans contain
parallel actions. Actions in this domain are executed by the trucks and hoists in-
stead of the planning agents themselves. Hence, the number of parallel branches
and the duration of the solution plans of this domain is only conditioned by
the number of available resources (trucks and hoists). For this reason, both ap-



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 35

Problem Multi-Agent Planning Single-Agent Planning
#Ag #Actions #TS Parallelism #Actions #TS

Transportation1 2 14 11 2 14 11
Transportation2 2 11 9 2 11 9
Transportation3 3 9 5 2 9 5
Transportation4 3 11 6 2 11 6
Transportation5 4 13 6 3 13 6
Transportation6 4 11 5 3 11 5
Transportation7 5 10 8 2 10 8
Transportation8 5 15 9 3 15 9
Transportation9 6 11 5 3 11 5
Transportation10 6 17 10 3 17 10

Picture1 2 11 6 2 14 14
Picture2 2 12 8 2 11 11
Picture3 3 6 2 3 8 8
Picture4 3 11 7 2 11 11
Picture5 4 8 2 4 11 11
Picture6 4 10 6 2 10 10
Picture7 5 8 5 2 8 8
Picture8 5 10 2 5 14 14
Picture9 6 9 5 2 9 9
Picture10 6 12 2 6 17 17

Table 4. Single-Agent vs. Multi-Agent Planning comparison

proaches give rise to plans with the same number of actions and time steps. On
the basis of these results, we can affirm that the quality of the MAP plans is not
diminished by the limited view and incomplete information of the agents and
the existence of private information among agents.

The results of the picture domain present more differences between both ap-
proaches. The single-agent approach obtains sequential plans because the single
planning agent is also the only execution entity. MAP, however, takes advantage
of having several planning/execution agents cooperating. MAP enforces cooper-
ation as agents can work together to reach an objective. For instance, Figure 8
shows that an agent can pick up a tool and pass it on to another agent. This
cooperation improves the solution because it prevents the agent from going for
the tool and retrace its steps, thus reducing the number of actions of the plan.
Agents also cooperate by proposing different parts of the plan that can be exe-
cuted concurrently, which reduces the duration of the plans with respect to the
centralized approach. Table 4 shows that all the MAP solution plans for the
picture domain include at least two parallel branches of actions, meaning that at
least two agents work concurrently, which improves the quality of the solutions
as shown in Table 4.

In conclusion, while being a more costly approach (see next subsection for
scalability tests), MAP obtains equal or better solution plans in terms of both
number of actions and duration of the plans than the single-agent model. We have
shown that MAP promotes cooperation among agents thus improving the quality
of the solution. In addition, MAP agents manage their incomplete information on
the MAP task efficiently as the quality of the solution plans is not affected, being
at least on par with the single-agent approach. Moreover, results show that our
approach obtains good-quality solution plans for problems with different coupling
and complexity levels, from loosely-coupled to strongly-related problems.



36 A. Torreño et al

 0

 100

 200

 300

 400

 500

 600

 700

 1  2  3  4  5  6  7  8

M
e

s
s
a

g
e

s

Agents

Messages - Transport planning task

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  2  3  4  5  6  7  8

T
im

e
 (

s
e

c
o

n
d

s
)

Agents

Time - Transport planning task

Fig. 9. Scalability results for the transportation domain

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1  2  3  4  5  6  7  8

M
e

s
s
a

g
e

s

Agents

Messages - Picture planning task

 0

 50

 100

 150

 200

 250

 300

 350

 1  2  3  4  5  6  7  8

T
im

e
 (

s
e

c
o

n
d

s
)

Agents

Time - Picture planning task

Fig. 10. Scalability results for the picture domain

10.2.2. Scalability analysis

In this subsection we evaluate the scalability of our MAP framework, i.e., how
the number of agents in the MAP system affects its efficiency. To do so, eight
different test problems were generated for both the transportation and the picture
domains. Each test increases the number of agents by one, keeping the rest of
the planning problem’s parameters unchanged.

All the transportation tests include ten different cities, one truck, one empty
table in the warehouse and one package of raw material. All the problems include
a single warehouse agent, and each of them adds an extra transport agent, up to
eight transport agents. The problem goal for all the test problems is to deliver
the raw material to the warehouse, which must place it on the empty table. The
optimal solution plan for all the problems includes ten actions and involves the
participation of at least one transport agent and the warehouse agent.

As for the picture domain, all the test problems include two different tools and
twelve different locations. The goal for all the problems is to hang two different
pictures. The optimal solution plan for these problems has eight actions and
involves the participation of two different agents. Each agent picks up one tool
and hangs one picture.

Figures 9 and 10 depict the results for each domain. As it can be observed, the
number of messages experiences a notable increase with each new agent included



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 37

in the MAP process. So does the execution time, which is conditioned by the
number of messages exchanged among agents.
Discussion on the results. These results are caused by the growing number of
refinement plans proposed by the agents. Refinement plans are communicated to
all the agents in the MAP system, reason why the addition of a planning agent
represents such an overhead as each new agent proposes and communicates a
number of extra refinement plans. In addition, the refinement plans proposed by
each new planning agent increase the complexity of the search tree as they may
also be adopted as base plans at some point.

Notice that the number of messages is much larger in the case of the picture
problems, even though we have defined similar size and complexity problems for
the two planning domains. This is due to the loosely-coupled nature of the picture
problems because agents in this domain share the same abilities and every agent
can make a plan proposal over any base plan.

As opposite to the picture domain, agents in the transportation domain are
specialized, which makes them unable to make plan refinements over every base
plan. Transport agents are limited by their working areas, while warehouse agents
cannot take part in the transportation of the packages. This fact limits the
number of exchanged messages, which also benefits the execution time. This
way, our system proves to be more stable when solving strongly-related problems
like the transportation tests since the addition of a new agent causes a lower
increase in the number of messages, which directly affects the execution time.

In conclusion, the number of agents in the MAP system is a parameter that
has a significant influence on its efficiency because the number of messages among
agents constitutes one of the bottlenecks of the system. This issue is more no-
ticeable when dealing with loosely-coupled problems, as agents can devise plan
proposals over almost any base plan, whereas our MAP system shows a more ro-
bust behavior when solving strongly-related problems. Therefore, our immediate
challenge is to reduce the number of messages between agents. This way, we will
improve the scalability of the system and we will be able to test more complex
planning problems.

11. Conclusions

This article presents a MAP model that allows agents to plan under incomplete
information. Our approach is suitable to solve a wide range of MAP problems,
from strongly-related problems with a high degree of interaction among agents
to simpler loosely-coupled problems, which present limited interactions among
agents. Our model allows for heterogeneous agents with different information,
capabilities and private goals to cooperatively build a joint plan while handling
an incomplete view of the MAP task. Agents keep their private data and share
only the relevant information for their interactions with other agents, thus being
unaware of part of the information managed by the rest of agents.

Shareable information is defined through our MAP language, extended from
PDDL3.1. The information exchange is carried out through the construction of
a distributed Relaxed Planning Graph, by which agents share the public fluents
and estimate the best cost to achieve them.

The MAP resolution process is based on a refinement planning procedure
whereby agents propose successive refinements to an initially empty base plan
until a consistent joint plan is obtained. This procedure, that iteratively combines



38 A. Torreño et al

planning and coordination, uses single-agent planning technology to build the
refinement plans. More precisely, we adapt the POP paradigm to a MAP context,
which allows agents to build refinement plans leaving details unresolved that will
be gradually completed by other agents until a solution plan is found.

Conclusions drawn from the experiments show that MAP agents obtain so-
lution plans of equal or better quality than a single-agent approach for both
loosely-coupled and strongly-related problems. Despite agents do not have a com-
plete view of the MAP task and keep private information, the quality of the MAP
solution plans is not affected, neither in terms of number of actions nor plan du-
ration. Hence, we can affirm that our model tackles large MAP tasks in which
information is distributed among a number of planning entities at least as effec-
tively as a single-agent planning approach working under complete information.

Moreover, our MAP approach enforces cooperation among agents since they
work together to solve goals more efficiently. MAP improves plan concurrency as
agents can solve different goals in parallel, which reduces the duration and the
number of actions of the solution plans.
Acknowledgements. This work has been partly supported by the Spanish MICINN
under projects Consolider Ingenio 2010 CSD2007-00022 and TIN2011-27652-C03-01,
and the Valencian Prometeo project 2008/051.

References
Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V. and Rebollo, M. (2011), ‘An

abstract architecture for virtual organizations: the THOMAS approach’, Knowledge and
Information Systems 29(2), 379–403.

Barrett, A. and Weld, D. S. (1994), ‘Partial-order planning: Evaluating possible efficiency
gains’, Artificial Intelligence 67(1), 71–112.

Belesiotis, A., Rovatsos, M. and Rahwan, I. (2010), Agreeing on plans through iterated disputes,
in ‘Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems’, pp. 765–772.

Bellifemine, F., Poggi, A. and Rimassa, G. (2001), JADE: a FIPA2000 compliant agent devel-
opment environment, in ‘Proceedings of the 5th international conference on Autonomous
Agents (AAMAS)’, ACM, pp. 216–217.

Blum, A. and Furst, M. L. (1997), ‘Fast planning through planning graph analysis’, Artificial
Intelligence 90(1-2), 281–300.

Boutilier, C. and Brafman, R. (2001), ‘Partial-order planning with concurrent interacting ac-
tions’, Journal of Artificial Intelligence Research 14(105), 136.

Brafman, R. and Domshlak, C. (2008), From one to many: Planning for loosely coupled multi-
agent systems, in ‘Proceedings of the 18th International Conference on Automated Planning
and Scheduling (ICAPS)’, pp. 28–35.

Brenner, M. and Nebel, B. (2009), ‘Continual planning and acting in dynamic multiagent
environments’, Journal of Autonomous Agents and Multiagent Systems 19(3), 297–331.

Coles, A., Coles, A., Fox, M. and Long, D. (2010), Forward-chaining partial-order planning, in
‘Proceedings of the 20th International Conference on Automated Planning and Scheduling
(ICAPS)’, pp. 42–49.

Coles, A., Fox, M., Long, D. and Smith, A. (2008), Teaching forward-chaining planning with
JavaFF, in ‘Colloquium on AI Education, 23rd AAAI Conference on Artificial Intelligence’.

Cox, J., Durfee, E. and Bartold, T. (2005), A distributed framework for solving the multiagent
plan coordination problem, in ‘Proceedings of the 4th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS)’, ACM, pp. 821–827.

de Weerdt, M. and Clement, B. (2009), ‘Introduction to planning in multiagent systems’,
Multiagent and Grid Systems 5(4), 345–355.

Decker, K. and Lesser, V. R. (1992), ‘Generalizing the Partial Global Planning algorithm’,
International Journal of Cooperative Information Systems (IJCIS) 2(2), 319–346.

desJardins, M., Durfee, E., Ortiz, C. and Wolverton, M. (1999), ‘A survey of research in
distributed continual planning’, AI Magazine 20(4), 13–22.



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 39

Doshi, P. (2007), On the role of interactive epistemology in multiagent planning, in ‘Artificial
Intelligence and Pattern Recognition’, pp. 208–213.

Dréo, J., Savéant, P., Schoenauer, M. and Vidal, V. (2011), Divide-and-evolve: the marriage
of Descartes and Darwin, in ‘Proceedings of the 7th International Planning Competition
(IPC)’, Freiburg, Germany.

Durfee, E. H. (2001), Distributed problem solving and planning, in ‘Multi-agents Systems and
Applications: Selected tutorial papers from the 9th ECCAI Advanced Course (ACAI) and
AgentLink’s Third European Agent Systems Summer School (EASSS)’, Vol. LNAI 2086,
Springer-Verlag, pp. 118–149.

Durfee, E. H. and Lesser, V. (1991), ‘Partial Global Planning: A coordination framework for
distributed hypothesis formation’, IEEE Transactions on Systems, Man, and Cybernetics,
Special Issue on Distributed Sensor Networks 21(5), 1167–1183.

Ephrati, E. and Rosenschein, J. S. (1996), ‘Deriving consensus in multiagent systems’, Artificial
Intelligence 87(1-2), 21–74.

Fikes, R. and Nilsson, N. (1971), ‘STRIPS: A new approach to the application of theorem
proving to problem solving’, Artificial Intelligence 2(3), 189–208.

Fogués, R., Alberola, J., Such, J., Espinosa, A. and Garcia-Fornes, A. (2010), Towards dy-
namic agent interaction support in open multiagent systems, in ‘Proceedings of the 2010
conference on Artificial Intelligence Research and Development: Proceedings of the 13th
International Conference of the Catalan Association for Artificial Intelligence’, IOS Press,
pp. 89–98.

Gerevini, A. and Long, D. (2006), Preferences and soft constraints in PDDL3, in ‘ICAPS
Workshop on Planning with Preferences and Soft Constraints’, Vol. 6, Citeseer, pp. 46–53.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D. and
Wilkins, D. (1998), ‘PDDL - the Planning Domain Definition Language’, AIPS-98 Planning
Committee .

Gmytrasiewicz, P. and Doshi, P. (2005), ‘A framework for sequential planning in multi-agent
settings’, Journal of Artificial Intelligence Research 24, 49–79.

Haslum, P. and Jonsson, P. (1999), Some results on the complexity of planning with incomplete
information, in ‘Proceedings of the 5th European Conference on Planning (ECP)’, pp. 308–
318.

Helmert, M. (2006), ‘The Fast Downward planning system’, Journal of Artificial Intelligence
Research 26(1), 191–246.

Hoffmann, J. and Nebel, B. (2001), ‘The FF planning system: Fast planning generation through
heuristic search’, Journal of Artificial Intelligence Research 14, 253–302.

Jonsson, A. and Rovatsos, M. (2011), Scaling up multiagent planning: A best-response ap-
proach, in ‘Proceedings of the 21st International Conference on Automated Planning and
Scheduling (ICAPS)’, AAAI, pp. 114–121.

Kambhampati, S. (1997), ‘Refinement planning as a unifying framework for plan synthesis’,
AI Magazine 18(2), 67–97.

Kaminka, G. A., Pynadath, D. V. and Tambe, M. (2002), ‘Monitoring teams by overhearing: A
multi-agent plan-recognition approach’, Journal of Artificial Intelligence Research 17, 83–
135.

Kone, M., Shimazu, A. and Nakajima, T. (2000), ‘The state of the art in agent communication
languages’, Knowledge and Information Systems 2(3), 259–284.

Kovacs, D. L. (2011), Complete BNF description of PDDL3.1, Technical report.
Kraus, S. (1997), ‘Beliefs, time and incomplete information in multiple encounter negotia-

tions among autonomous agents’, Annals of Mathematics and Artificial Intelligence 20(1-
4), 111–159.

Kumar, A., Zilberstein, S. and Toussaint, M. (2011), Scalable multiagent planning using prob-
abilistic inference, in ‘Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI)’, Barcelona, Spain, pp. 2140–2146.

Kvarnström, J. (2011), Planning for loosely coupled agents using partial order forward-chaining,
in ‘Proceedings of the 21st International Conference on Automated Planning and Schedul-
ing (ICAPS)’, AAAI, pp. 138–145.

Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D.,
Podorozhny, R., Prasad, M., Raja, A. et al. (2004), ‘Evolution of the GPGP/TAEMS
domain-independent coordination framework’, Autonomous Agents and Multi-Agent Sys-
tems 9(1), 87–143.

Lipovetzky, N. and Geffner, H. (2011), Searching for plans with carefully designed probes, in



40 A. Torreño et al

‘Proceedings of the 21th International Conference on Automated Planning and Scheduling
(ICAPS)’.

Micacchi, C. and Cohen, R. (2008), ‘A framework for simulating real-time multi-agent systems’,
Knowledge and information systems 17(2), 135–166.

Nguyen, N. and Katarzyniak, R. (2009), ‘Actions and social interactions in multi-agent sys-
tems’, Knowledge and Information Systems 18(2), 133–136.

Nguyen, X. and Kambhampati, S. (2001), Reviving partial order planning, in ‘Proceedings of
the 17th International Joint Conference on Artificial Intelligence (IJCAI)’, Morgan Kauf-
mann Publishers, pp. 459–464.

Nissim, R., Brafman, R. and Domshlak, C. (2010), A general, fully distributed multi-agent
planning algorithm, in ‘Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS)’, pp. 1323–1330.

Pajares, S. and Onaindia, E. (2012), Defeasible argumentation for multi-agent planning in
ambient intelligence applications, in ‘Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS)’, pp. 509–516.

Paolucci, M., Shehory, O., Sycara, K., Kalp, D. and Pannu, A. (2000), ‘A planning component
for RETSINA agents’, Intelligent Agents VI. Agent Theories Architectures, and Languages
pp. 147–161.

Parsons, S., Sierra, C. and Jennings, N. (1998), ‘Agents that reason and negotiate by arguing’,
Journal of Logic and computation 8(3), 261.

Penberthy, J. and Weld, D. (1992), UCPOP: A sound, complete, partial order planner for ADL,
in ‘Proceedings of the 3rd International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR)’, Morgan Kaufmann Publishers, pp. 103–114.

Richter, S. and Westphal, M. (2010), ‘The LAMA planner: Guiding cost-based anytime plan-
ning with landmarks’, Journal of Artificial Intelligence Research 39(1), 127–177.

Sycara, K. and Pannu, A. (1998), The RETSINA multiagent system (video session): towards
integrating planning, execution and information gathering, in ‘Proceedings of the 2nd In-
ternational Conference on Autonomous Agents (Agents)’, ACM, pp. 350–351.

Tambe, M. (1997), ‘Towards flexible teamwork’, Journal of Artificial Intelligence Research
7, 83–124.

Tang, Y., Norman, T. and Parsons, S. (2010), ‘A model for integrating dialogue and the
execution of joint plans’, Argumentation in Multi-Agent Systems pp. 60–78.

Tonino, H., Bos, A., de Weerdt, M. and Witteveen, C. (2002), ‘Plan coordination by revision
in collective agent based systems’, Artificial Intelligence 142(2), 121–145.

Van Der Krogt, R. and De Weerdt, M. (2005), Plan repair as an extension of planning, in
‘Proceedings of the 15th International Conference on Automated Planning and Scheduling
(ICAPS)’, pp. 161–170.

Weld, D. (1994), ‘An introduction to least commitment planning’, AI magazine 15(4), 27.

Weld, D. (1999), ‘Recent advances in AI planning’, AI Magazine 20(2), 93–123.

Wilkins, D. and Myers, K. (1998), A multiagent planning architecture, in ‘Proceedings of the
4th International Conference on Artificial Intelligence Planning Systems (AIPS)’, pp. 154–
162.

Wu, F., Zilberstein, S. and Chen, X. (2011), ‘Online planning for multi-agent systems with
bounded communication’, Artificial Intelligence 175(2), 487–511.

Younes, H. and Simmons, R. (2003), ‘VHPOP: Versatile heuristic partial order planner’, Jour-
nal of Artificial Intelligence Research 20, 405–430.

Zhang, J., Nguyen, X. and Kowalczyk, R. (2007), Graph-based multi-agent replanning al-
gorithm, in ‘Proceedings of the 6th Conference on Autonomous Agents and Multiagent
Systems (AAMAS)’.



A Flexible Coupling Approach to Multi-Agent Planning under Incomplete Information 41

Author Biographies
Alejandro Torreño majored in Computer Science at Universitat
Politècnica de València, Spain, in 2007 and received an M.Sc. degree
in 2011. Since 2008 he does research work in the Grupo de Tecnología
Informática - Inteligencia Artificial in the context of the Consolider-
Ingenio Agreement Technologies project. He is also a Ph.D. student
at the Departamento de Sistemas Informáticos y Computación, Uni-
versitat Politècnica de València, Spain. He has published several arti-
cles in scientific conferences and journals, such as ECAI, AAMAS and
CoopIS. His research interests include Artificial Intelligence, Planning
& Scheduling, Multi-Agent Systems and Computer Graphics.

Eva Onaindia is an Associate Professor of Computer Science at the
Universitat Politècnica de València. She received her Ph.D. in Com-
puter Science from the same University in 1997. She currently leads
the Group of Reasoning on Planning and Scheduling where she con-
ducts research in classical and temporal planning, and multi-agent
planning. She is currently collaborating in the Agreement Technolo-
gies project where she is working on the application of new technologies
and techniques, such as negotiation or argumentation, for the design
and implementation of multi-agent planning systems. She has led sev-
eral national research projects as well as sitting on various scientific
committees in her field (IJCAI, ICAPS, AAAI, ECAI, etc.). She has
published about 120 articles in specialized conferences and scientific
journals related to topics of Artificial Intelligence, Planning and Argu-
mentation. Since 1994, she teaches undergraduate and master courses
in Artificial Intelligence and Planning.

Óscar Sapena is an Associate Professor of Computer Science at the
Politècnica de València. He obtained his Ph.D. in Computer Science
in 2005 and he is a member of the Group of Reasoning on Planning
and Scheduling. His main research interests are Planning and Execu-
tion and Distributed and Collaborative Planning. He has published
about 40 articles in specialized conferences and scientific journals re-
lated to topics of Artificial Intelligence. He is currently collaborating
in the Consolider-Ingenio Agreement Technologies project, applying
new technologies, such as negotiation or argumentation, to the design
of multi-agent planning systems.

http://gti-ia.upv.es/
http://gti-ia.upv.es/
http://www.agreement-technologies.org/
http://www.agreement-technologies.org/
http://users.dsic.upv.es/grupos/grps/
http://users.dsic.upv.es/grupos/grps/
http://users.dsic.upv.es/grupos/grps/
http://www.agreement-technologies.org/

