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Garment Smoothness Appearance Evaluation through Computer Vision 

Abstract: The measurement and evaluation of the appearance of wrinkling in textile products 

after domestic washing and drying is performed currently by the comparison of the fabric with 

the replicas. This kind of evaluation has certain drawbacks, the most significant of which are its 

subjectivity and its limitations when used with garments. In this paper, we present an 

automated wrinkling evaluation system. The system developed can process fabrics as well as 

any type of garment, independent of size or pattern on the material. The system allows us to 

label different parts of the garment. Thus, as different garment parts have different influence 

on human perception, this labeling enables the use of weighting, to improve the correlation 

with human visual system. The system has been tested with different garments showing good 

performance and correlation with human perception. 
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1. Introduction and related work 

Human perception of a garment or of fabric is strongly influenced by how wrinkled it is, as this 

is one of the most visible properties. Therefore, objective evaluation of this is important in 

many different situations, such as for example, fabric quality control as it is an important 

aesthetic parameter; for the design of washing machines and driers or automatic pressing 

machines, given that the satisfaction of the end user is closely related to the perception of how 

wrinkled a garment or fabric is. The problems for an objective evaluation are the definition of 

wrinkled are size of the area on the garment to be evaluated. In this sense, the concept of 

wrinkled could be interpreted as a special characteristic of the fabric’s texture. The definition 

of this super set can already be considered as ambiguous. Thus, IEEE [1] defines texture as an 

attribute represented by the spatial distribution of grey levels in the pixels of a particular area. 

Livens [2] stated that a texture can be defined as a collection of local properties found in the 

same vicinity of grey levels in a particular area of the image. Another author, Jain [3], stated 

that a texture is a structure composed of similar patterns and elements, but none of these 

particularly draw the attention, such that the viewer has an impression of global uniformity. 

  

 



Therefore, in order to talk of texture, we have to talk of a window of a determined size, not of 

a single point of the image which would be a function of the levels of grey in this area. This 

definition could be valid for fabric, as can be seen in Fig 1. However, it has no real value for the 

evaluation of real garments. Therefore, an important limitation that is often overlooked is the 

difficulty and limitation when using these measurements on real garments which have been 

printed or have seams, folds, etc. as can be seen in Fig.  2.  

Image processing technologies have been developed for different industrial areas like 

electronic manufacturing [4], ceramic tiles [5], agriculture [6], paper [7], or in different textile 

processes [8-12]. Related to the object under study in this paper, in [13] the authors analyze 

the use of the AATCC standard for the evaluation of seam pucker [14], analyzing the limitations 

of this type of subjective method, and at the same time demonstrating the need for a wider 

scale of evaluation. In [15] and [16] the authors analyze the objective evaluation of the level of 

puckering in garment seams. The garments are placed on a mannequin and the seams are 

scanned using a 3D laser system. The scanned surface is processed by a 2D filter in order to 

obtain the pucker profile, eliminating the high frequency components caused by the texture of 

the fabric, and the low frequency components caused by the three-dimensional contours of 

the garment.  A photometric stereo method to evaluate fabric wrinkle is developed in [17], but 

is only tested on AATCC standard wrinkle pattern, which has a uniform color.  A method for 

evaluating fabric wrinkles and seam puckers based on fractal geometry over the information 

obtained with a laser probe is presented in [18]. An important fact to consider in this work is 

that the AATCC grades do not have equal intervals (as can be seen in Fig. 1) as these replicas 

(SA: Smoothnest Apperance  [19] or WR: Wrinke Recovery [20]) have been constructed 

subjectively, with no quantitative basis. This fact affects the scales of values provided by the 

methods that employ these AATCC replicas. Another method based on fractals is presented in 

[21]. The proposed method was validated using the fractal surfaces produced from the 

mathematical functions and compared with the box and cube counting methods. The results 

  

 



show that the fractal dimension measured by the wavelet-fractal method as well as the 

surface average mean curvature show the power to clearly discern the grades of wrinkle, 

smoothness appearance as well as seam pucker, and thus can evaluate the fabric surface 

roughness objectively and quantitatively. However in both works the method is only used with 

replicas and the real capacity to measure this parameter in real garments is not evaluated. In 

[22] the evaluation of roughness is carried out using radon transform and texture analysis, 

using white samples of 10x12 cm illuminated at an angle of 30o, which gave rise to a significant 

limitation in the methods proposed here. In spite of the small dimension of the samples, only 

their centers were considered. Another work with similar limitations and in which even more 

elementary measurements were used is [23], where among others, the measurement of 

intensity is used, a characteristic with many limitations when applied in this field, and which is 

not often used due to its limited capacity to discriminate between textures. Recently, in [24] 

the authors presented an interesting 3-D system for fabrics based on stereo vision. However, 

the size is also limited, and there is not a clear definition between the three figures obtained 

and the global wrinkle evaluation, or their correspondence with the visual rating. 

Therefore, due to the needs of industry and the limitations of available methods, the objective 

of this paper is to satisfy the need to develop an automatic system for evaluating wrinkling 

that can: 

• Analyze real garments of considerable size. 

• Analyze real garments of all colors and print pattern types. 

• Analyze the wrinkling on different parts of the garment, and that these have 

different weightings in function of the importance given by the consumer to each 

part of the garment. 

 

 

  

 



 

Through the work carried out in this paper we have developed an automated system to 

measure and evaluate wrinkling. This system overcomes the previous limitations of existing 

systems: range of measurable garments and the subjectivity associated with human 

evaluation, and which also takes into account different parts of the garment having different 

weight or incidence on the final evaluation. In next section we present the theoretical 

framework. In section 3 we give different details of the system developed, including calibration 

of the evaluation method.  In section 4 we present the results obtained, the conclusions and 

future work.  

 
2. Theoretical Framework 

This system is based on the projection of laser lines onto the garment, and then reading these 

lines using the appropriate vision system. In this way, the wrinkles and other similar 

characteristics of the garment will cause a distortion that can be analyzed through the shape of 

the laser line detected. The use of a laser line means that it is necessary to move the garment 

automatically around the capture zone in such a way that, finally, we obtain N straight lines of 

longitude L (see Fig. 3). 

If fi is the theoretical straight line and gi the laser line detected on the garment, the evaluation 

of the wrinkling on the garment is a function of the error existing between fi and gi, 

denominated Θ, with the final evaluation of the garment given by the average of errors 

evaluated in the N lines, using a distance between lines of p. However, there are usually 

distortions present in the garment that are not associated with wrinkling which mean that this 

error evaluation cannot be measured in the total length L of the straight, but rather has to be 

done in segments. Thus, if fx1
i,x2 and gx1

i,x2 are the respective functions in the segment [x1,x2], 

we can define this error as: 
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where l  is the established length of the segment. In this way, the error in the area covered by 

the line i will be the average of the errors measured in each segment of length l, that is: 
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Where s is the overlap of the segments used to calculate the error obtained in each of the 

lines. Therefore 
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Fig. 4 shows the process used to measure the error between the laser straight line obtained 

(grey lines) and the theoretical straight line (arrows) between the points x1 and x1+l which 

would be obtained in the case of a totally smooth surface between these two points. The 

errors are marked in the darker areas. In this figure, we show a line with two wrinkles to show 

the effect of the choice of l, always using s=l to allow visualization. In the first case, l=5, was 

used, which allows detection of an error in the first wrinkle but not in the second. Using l=10 

improves detection of the error in the second wrinkle, but reduces the error obtained from the 

first wrinkle. Using a value of l=15, we obtained a good evaluation of the first wrinkle but no 

error was detected from the second wrinkle. Using l=20, this was the value that gave the 

highest error, although evidently, this value of l could be useless in other cases. 

Fig. 5 shows (separated into two samples to allow visualization) the error obtained using l=10 

and s=5. Although in the first case, the error obtained is low for both wrinkles, the overlapped 

segments allow us to improve and obtain the detection of the error more efficiently. 

3. System Developed 
 

3.1.  Acquisition system 

  

 



The system developed can be seen in Fig. 6. The system uses a belt that is capable of moving 

one millimeter at a time, at 100 millimeters per second, so that the garment can be scanned 

with maximum resolution. The belt has a width of 900mm so that the system can work with 

garments in a wide range of sizes, but is also manageable and without excessive costs. With 

these dimensions, a laser source of   690 nm generates a line over the garment under analysis 

(represented in Fig. 6 using a dark line on the shirt), which allows us to obtain information on 

the smoothness of the garment. This information is captured by three black and white area 

cameras (labeled as Laser Cameras 1, 2 and 3 in Fig. 6) with a band-pass filter to collect only 

the laser information from the garment. The number of cameras needed depends on many 

factors, such as the sensor size, focal length, limitations in the maximum distance between the 

cameras and the object, number of pixels considered, the resolution needed, etc. In this case 

we have considered this number of cameras, with 12mm focal length optics, and with a sensor 

of ½”, as the best solution without excessive cost.  The cameras are set at a determined angle 

to collect information from the garment using the laser. Fig. 7a shows on the left the image 

obtained using a laser source of 15 lines over a garment captured with a conventional color 

camera and on Fig. 7b we can see the image obtained with the band-pass filter. In spite of the 

fact that only the central line is in focus, these images allow us to see how this illumination 

technique lets us adequately collect the information on the smoothness of the garment. On 

the other hand, as can be seen in these images, the information collected does not allow 

contrast with the evaluation obtained through experts. In order to be able to do this, we use 

the upper camera (labeled as color camera in Fig. 6) which allows us to obtain the same image 

that would be seen by a human observer with the ISO/TR 16323 standard [25], and in this way 

we can appreciate and evaluate the corrections of the measurements obtained by the system. 

The use of a laser of 690 nm means that the system has certain limitations, given that there 

are fabric colors that absorb this light and which makes it difficult to obtain the straight line. 

The use of other wavelengths would avoid this problem but would make it necessary to satisfy 

  

 



a number of safety requirements that arise when using non-visible laser sources, and this 

would make development of the research difficult. The results obtained are independent of 

wavelength, which only affects some colors meaning that in order to overcome these 

limitations it is only necessary to substitute the laser sources and band-pass filters of the 

camera with others and add the necessary safety requirements depending on the country.  

3.2. Cameras Calibration Method 

The relative position of each of the four cameras to each other is an extremely important 

characteristic for the correct functioning of the system, as it allows us to unify the information 

obtained from the three laser reading cameras and at the same time all this information can 

be projected onto the color camera image to be labeled and processed later.   

For the correct relative calibration of the cameras, we first needed to model each of them, 

using intrinsic parameters and the distortion vector. The intrinsic parameters of the camera 

are made up of 4 values (fx, fy, cx, cy) which define the relationship between the points in reality 

and their projection on to the camera plane. These are the focal points in the axes X and Y (fx, 

fy) as well as the displacements in the axes X and Y (cx, cy).  

The distortion was calculated using a method derived from [26], which appropriately models 

the distortions obtaining a vector composed of 5 elements (k1, k2, k3, p1, p2), which allows us to 

correct the distortions on the image introduced by the camera lens: The radial distortions 

which produces the barrel� effect (an image of a rectangular object is projected as barrel-

shaped) were modeled using the values k1, k2, k3 and the tangential distortions, produced by 

the misalignment of the lens with the CCD of the camera, were modeled using p1 and p2.   

The calculation of these parameters is carried out using capture of points with a known 

geometry, in this case a chess board, which allows us to observe us to observe known points 

from the real world projected onto the camera plane. It is necessary to obtain a sufficiently 

high number of images of the chess board in different positions in order to calculate the 

  

 



parameters of the camera model. Although with only two images it would be enough 

mathematically, in order to obtain good results from the algorithm due to the error in 

obtaining the corners and the numerical stability of the algorithms, it is necessary to obtain a 

greater number of images and also that the position of the chess board is significantly different 

to collect a good set of points. This process is known as camera calibration, and once it has 

been carried out no more calculations are necessary unless a camera or optic is changed.  

Once the intrinsic and distortion parameters have been obtained, we can coordinate the 

cameras so that they correspond with each other. This process (see Fig. 8) is similar to the 

calibration: through the capture of a known object (chessboard) by each pair of cameras, we 

can obtain a transformation matrix of coordinates M (3x3) which characterize the T movement 

and R rotation of one of the cameras. In this way, we know how every pixel from one image 

has its corresponding pixel in the other image. That is to say, if pc1 is the projection of one 

point of the real world over the plane at camera 1 at homogeneous coordinates, and knowing 

M, we can obtain pc2 (where the point will be located as it is seen by camera 2) as pc2=pc1M. 

With this, for each garment we will obtain a work set of an upper image of the garment in 

color plus a collection of straight lines and points from the scanning carried out by the laser 

cameras. Through calibration, we know which point of the upper image the points from the 

laser correspond to, to be able to look at them adequately according to the user labeling.   

3.3. Laser detection 
 

Once the correspondence matrices between the cameras of the system are known, along with 

the location of the laser camera with respect to the upper camera, it is possible to define the 

search zones for the laser for each camera. The detection process of the laser line is done 

using the images captured by the laser cameras. The lens of these cameras carries out an IR 

filter before image capture thus obtaining a greater contrast of the laser line for processing 

and differentiating the background of the image. The search algorithm carries out vertical 

  

 



scans of the image from the laser cameras starting from an initial point of the laser line 

configured in the set up system. The search zone will be bordered within the limit zones of the 

adjacent cameras. The laser search is made difficult by (see Fig. 9, which is shown inverted for 

better visualization):   

• The color of the textile, with dark colors, especially blues absorbing more of the light 

emitted. However, as commented in the previous section, this problem can be 

overcome by changing the wavelength of the lasers; 

• Abrupt wrinkles formed due to the type of garment cause losses in certain parts of the 

line;  

• The appearance of noise.  

Due to these factors, the search algorithm should be based on the thickness of the line in order 

to minimize errors. The pixel that is used to calculate the lines is in the centre in each Y axis of 

the pixels grouped which belong to the laser. In the case of very pronounced wrinkles, the 

continuity of the laser line may be lost at some points of the axis X, and so the algorithm must 

be robust with these cuts, in such a way that the line can be found in all the area covered by 

the laser cameras. 

3.4. Error Calibration 

Before being able to carry out a qualitative analysis of smoothness based on the system 

described in section 3.1 it is necessary to evaluate the errors obtained from known patterns 

and the error produced by these patterns with the method presented here so that we can 

carry out a calibration f: R→N, Θ→ SA.  

To obtain information relative to the SA and model the error Θ, these have been extracted on 

the replicas that are used to model their textures (see Fig. 1) of the different types of SA with 

the aim of characterizing Θ and the laser lines obtained from each SA replica.  

  

 



The size of the segment will depend on the resolution of the cameras, on the camera/laser 

angle, as well as the minimum size wrinkle to be detected. In the case of the SA replicas, it 

should be possible to evaluate the error along  all its length, that is, using l=L. However, due to 

imperfections in the replicas and the high resolution used, deformations are detected which 

introduce variations in the final evaluation of the laser line. Fig. 10 shows the variations in the 

value of Θ for different values of l. As can be seen, although the error should be practically 

constant and independent of l, significant variations are generated which make it important to 

make the correct selection of l.  Analyzing the AATCC replicas, we have empirically shown that 

values of l higher of 66 would mean that Θ collects erroneous information on deformations 

that are not related to the smoothness of the garment. Finally, the values used for the 

evaluation were the average l={15,30,60} with s=15. To characterize Θ and SA it is necessary to 

consider that we are evaluating a texture that is not uniform. Therefore, in the replicas type 

SAi zones of type SAi+1 can be given. Thus, once the value of Θ for SA5 is calculated, to calculate 

the value of Θ for SA4, all the segments that can be characterized as type SA5 have been 

extracted from the replica to obtain the correct average of Θ for SA4, and so on successively. 

Fig. 11 shows the evaluation on the WR scale, using the following color codes: SA1-red, SA2-

orange, SA3- yellow, SA4- green, SA5- blue. In this way, we extract the relationship between Θ 

and the SAs values that can be see in Fig. 12. 

3.5. Evaluation method 
 

The method developed allows us to carry out an SA classification of the smoothness of the 

garments. As we are dealing with garments and not sections of fabric, these are formed of 

different parts which can have differing influences on the perception of the user. The program 

allows us to label the garments once they have been scanned over the image captured by the 

color camera, so that the zones excluded from the analysis can be indicated (seams, buttons, 

pleats, etc.) together with the zones that were analyzed in the group to which they belong. 

  

 



Thus, having the labeling of the color camera available to us, as well as the correspondence 

matrices between the color and laser cameras, the wrinkle information provided by laser 

cameras can be ignored or weighted according to the labeling of its position in the color 

camera.  

Thus, if wj is the weighting of the zone j, the equation for the final evaluation of the garment is: 
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Fig. 13 shows an example of a report of a garment. On the left, we can see the image as it was 

captured by the color camera. On the right, we see how some areas of the garment were 

selected for analysis, while others were not analyzed (due to seams and buttons in this case).  

The image on the right shows the SA evaluation carried out using the same color codes. In the 

lower part of the image, two indices are given in the scale [0-16],  index one takes into account 

only the errors measured, and the weighted index takes into account the weighting of the 

evaluations according to zone. The information used to reach these values can be seen in the 

lower tables of the report.  

3.6.  Results obtained 

In order to evaluate the system, we carried out tests on the following types of garment: 

woman’s slip, underpants, towels, mini-skirt, swimsuit, child’s swimsuit, printed blouse, striped 

blouse, slip, striped slip, slip with straps, skirt, tracksuit bottoms, trousers, red trousers, 

pyjama bottoms, baby-romper, bib, sheet, child’s jumper, striped jumper, sweatshirt and 

bedspread. The items were submitted to different types of washing and drying, which gave 

different results in terms of the final smoothness of the garment. These operations were 

performed using the norm ISO 6330:2000 [27], using a washing machine type A (front-loading 

machine) and detergent ECE-A (non phosphate).  The drying process using the same norm 

were type A (line dry), C (flat dry) and E (tumble dry). The final results after each wash and dry 

  

 



were evaluated by experts from the Textile Technology Institute (AITEX), scaling exponentially 

the SA1-SA5 in a new 1-15 scale. After one operation, the same garments were submitted to 

the same operation but with a different form of drying. The measurements by the experts 

were averaged to get the final SA index of the garment. This set was compared with the set of 

the indexes obtained by the automatic system. In Fig. 14 we can see the Pearson Correlation of 

these two sets, before the exponential scaling, which was around 90%. These values are 

considered acceptable, and their improvement is limited by the fact that in the system 

developed the zones outside of the analysis can be marked, while with the human evaluation 

system, it is difficult to ensure that these areas are outside of the evaluation. However, there is 

still room for improvement through better analysis of the different zones.  

4. Conclusions and future work 

The use of methods based on analysis of textures from conventional images imposes 

significant limitations in the capacity of the system, especially when using real garments. The 

use of structured light allows us to overcome these limitations of prints and size, making the 

system viable for evaluation of all types of garments. The next step is change the upper color 

camera for a stereo vision system, and to perform a wider analysis of human wrinkle 

perception. The stereo vision system could complement this solution as we would then have in 

the same machine all the wrinkle information that can be obtained today. With an extended 

statistical human wrinkle perception, it is possible to characterize adequately how the wrinkles 

affect human opinion, in terms of wrinkle density and wrinkle depth, so we can map 

adequately the characteristics captured by the system with human perception. 
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Fig. 1 AATCC Smoothness Appearance Rating 

 
 

 

Fig. 2 Real garments 
 

 



  

 

 

Fig. 3 Laser Lines over a garment 
 

 

Fig. 4 Example of Error Evaluation for different l values 



  

 

 

Fig. 5 Example of Error Evaluation with s<l/2 
  



  

 

 

Fig. 6 Wrinkle evaluation acquisition system 
 

 

Fig. 7 An example of structured light on a garment 
 

 

 

Fig. 8 Calibration Process 
  



  

 

 

Fig. 9 Laser Search 

 

Fig. 10 Θ for different l values 
 

 

Fig. 11 Evaluation 



  

 

 

Fig. 12 Relation SA/ Θ 

  



  

 

 

Fig. 13 Pearson Correlation  

 

 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0,0 1,0 2,0 3,0 4,0 5,0

SA
 c

o
m

p
u

te
r 

vi
si

o
n

SA mean expert 

Correlation
SA Expert/

SA computer vision



  

 

 

Fig. 14 Example of a Smoothness report 


