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Abstract 
 
Dam safety based on risk analysis methodologies demand quantification of the risk of the 
dam-reservoir system. This means that, for a given initial state of the system, and for the 
several failure modes considered, it is necessary to estimate the probability of the load 
events and the conditional probability of response of the system for a given load event, as 
well as estimating the consequences on the environment for the obtained response of the 
system. The following paper focuses in the second of these probabilities, that is, 
quantifying the conditional probability of response of the system, for a given load event, 
and for the specific case of concrete gravity dams. Dam-reservoir systems have a complex 
behavior which has been tackled traditionally by simplifications in the formulation of the 
models and adoption of safety factors. The purpose of the methodology described in this 
paper is to improve the estimation of the conditional probability of response of the dam-
reservoir system for concrete gravity dams, using complex behavior models based on 
numerical simulation techniques, together with reliability techniques of different levels of 
precision are applied, including Level 3 reliability techniques with Monte Carlo simulation. 
The paper includes an example of application of the proposed methodology to a Spanish 
concrete gravity dam, considering the failure mode of sliding along the rock-concrete 
interface. In the context of risk analysis, the results obtained for conditional probability of 
failure allow several conclusions related to their validity and safety implications that acquire 
a significant relevance due to the innovation of the study performed. 
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1. Introduction 
 
Risk related to dam safety can be defined as follows “Measure of the probability and 
severity of an adverse effect to life, health, property, or environment. In the general case, 
risk is estimated by the combined impact of all triplets of scenario, probability of 
occurrence and the associated consequence” [1]. Therefore, equation (1) describes how risk 
is quantified: 

 
Risk = ∫ P(load events)×P(response│loads)×C(loads, response) (1) 

 
where the symbol “│” represents the conditional probability. Application of Risk Analysis 
to dams requires identification of potential failure modes and quantification of the 
conditional probability of the system’s response for the different given load events. This 
estimation can be done rigorously through the “probability analysis”, using statistical 
techniques to obtain the probability of failure, Pf, computed by equation (2): 
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where x1,x2,…,xn are the random variables in the problem (geometry, materials, loads, etc.), 
g*(x1,x2,…,xn) is the performance function, with the failure condition defined as g*≤0 and 
fX1,X2,…,Xn: is the joint probability density function for the ‘n’ random variables.  
 
Normally, these statistical techniques or structural reliability measurements are classified in 
three levels. Level 1 Method (Partial Safety Factors) does not provide the probability of 
failure and the uncertainty is tackled through safety factors for different loading conditions. 
Level 2 Methods approximate the joint probability density function fX1,X2,...,Xn(x1,x2,...,xn) 
through its first two moments (mean and standard deviation). In some situations, an 
approximation is also used for the performance function g*(x1,x2,...,xn). Level 3 Methods 
provide the probability of failure using the joint probability density function together with 
specific methods of integration. 
 
As long as the probability of failure is always associated with a given “failure mode”, the 
correct formulation of the latter is a key issue to ensure the soundness of the solutions 
obtained with the methodology. Table 1 includes a summary of a series of phenomena that 
need to be considered in the characterization of dam behavior (and consequently in the 
potential failure modes) for concrete dams [2]. Once the characterization of the behavior 
that can lead to the ultimate failure of the structure is done, the analysis methods have a 
high level of complexity, allowing the use of advanced non linear constitutive models, 
fracture mechanics models, and dynamic analysis techniques in the non linear time domain, 
as it has been shown in several benchmarks over the years [3-6]. These models require the 
knowledge of a high number of parameters whose exact values cannot be immediately 
determined and frequently they are based upon scarce data, coming from similar published 
cases. 
 
Reliability techniques have been applied frequently to other kind of problems in the 
geotechnical field, such as slope stability, where probabilistic analysis has received 
considerable attention [7-14]. 
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Table 1 
Phenomena related with the evaluation of the safety of concrete dams [2] 

 

TYPE PHENOMENON MODELED 
ELEMENTS INDICATOR 

STRUCTURAL 

Sliding and overturning Dam Rigid body equilibrium 

Slope or blocks instability Foundation  
Reservoir Rigid body equilibrium 

Stress-strain condition Dam  
Foundation 

Displacement - Strain - Stresses - 
Movement of joints 

Global and local stability 
related with cracks 

Dam  
Foundation 

Opening - Length 
Propagation potential - Depth 

DEGRADATION 

Ageing, 
alkali-aggregate reactions Dam Variation of mechanical properties 

Dissolution by filtration Foundation Variation of mechanical properties 

HYDRAULIC 

Sedimentation Dam 
Outlet Transport of solids 

Filtration Foundation 
Reservoir Pressures - Velocities - Flow 

Erosion at the toe of the 
dam 

Dam  
Foundation 

Flows 
Kinetic energy 

Erosion at the spillway Spillway Pressures 

Erosion Outlet Velocities - Contents of solid material 

Cavitation Outlet Pressure 

 
 
2. Description of the space of analysis 
 
The methodology for estimating probabilities of failure proposed in this paper requires a 
preliminary clarification of the term “analysis space”, i.e., the current state of knowledge in 
the two following fields: on the one hand, the (deterministic) methods of structural analysis 
for dams and, on the other hand, the mathematical models of structural reliability analysis. 
 
After a review of the state of the art on deterministic methods for structural analysis for 
dams [2, 15-17] a qualitative classification has been developed in which, for every group of 
models identified according to their complexity in an increasing order from A to H, a 
differentiation is made according to the type of constitutive model used for the dam and 
foundation. Three groups are considered: 0 (rigid body, corresponding to a limit 
equilibrium analysis), 1 (deformable solid, linear and elastic), 2 (deformable solid, with non 
elastic models). Table 2 shows the full classification. A space of analysis can be defined for 
concrete dams based on two vectors: structural analysis methods (X-axis) and reliability 
methods (Y-axis), as it is shown of Fig. 1. The horizontal and vertical arrows in the 
previous figure present the development trends followed by the knowledge in each of their 
corresponding fields individually, and a diagonal arrow indicates the direction followed in 
this research, combining advanced analysis methods for the behavior of concrete dams 
with structural reliability methods, in order to obtain better estimates of the probability of 
failure in the risk analysis context. 

 3 



 

 
Table 2 
Levels of deterministic analysis for the study of the structural response of dams. 

 

Type of 
model 

Dominion 
models 

Dam-foundation 

Interconnection 
with Hydro-

mechanic 
phenomena 

Flow dominion 

Constitutive 
model in the 

dam-foundation 
domain 

Level 

2D/3D 

Continuous models 
with previously 

defined interfaces  

Not 
interconnected 

Flow only along the 
discontinuities 

Rigid solid A0 
Elastic A1 
Plastic A2 

Flow in the whole 
domain 

Rigid solid B0 
Elastic B1 
Plastic B2 

Interconnected 

Flow only along the 
discontinuities 

Rigid solid C0 
Elastic C1 
Plastic C2 

Flow in the whole 
domain 

Pore-elastic D1 
Pore-elastic D2 

Fracture mechanics 
models 

Not 
interconnected 

Flow only along the 
discontinuities 

LEFM E1 
NLFM E2 

Flow in the whole 
domain 

LEFM F1 
NLFM F2 

Interconnected 

Flow only along the 
discontinuities 

LEFM G1 
NLFM G2 

Flow in the whole 
domain 

LEFM H1 
NLFM H2 

LEFM: Linear Elastic Fracture Models; NLFM: Non Linear Fracture Models 
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Fig. 1. Space of structural and reliability analysis for dams 
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3. Proposed methodology 
 
The methodology described herein is applied to a concrete gravity dam for a single failure 
mode defined as “sliding along the dam-foundation contact”. It is consider that its 
application to any other type of dam and for any other failure mode, particularly for those 
of essentially “structural” nature, can be carried out rather straightforwardly due to its 
generic formulation. The methodology is divided in five phases that are described below 
and reflected in Fig. 2. 
 
3.1. Defining the Base Model and the Advanced Model 
 
The starting point, Step 0, should always be the existence of a General Risk Model fully 
defined and complete for the concrete dam, including the definition of the loading 
scenarios and the identification of all possible failure modes. Step 1 is the definition of the 
Base and Advanced Models for the analysis of the failure mode under consideration. The 
Base Model should be a mathematical model such that failure can be expressed in terms of 
a mathematical performance function. The Advanced Model can be a numerical model 
implemented in a simulation code, and it does not necessarily have to express the failure in 
terms of an explicit mathematical performance function. 
 
3.2. Analysis of variables 
 
Step 2 is the analysis of variables (loads and parameters) that appear in the problem. The 
variables are classified whether as determined variables, whose values are known with very 
little uncertainty, or as random variables, whose values are not known with precision and 
their knowledge is, therefore, reliant on uncertainty. For the variables considered as 
random, it is necessary to find out which are their probability distribution functions. In 
order to assess the probability distributions of the variables, results of research, tests and all 
the information available from the assessment of the dam should be taken into account. 
 
3.3.  Reliability analysis on the Base Model 
 
In Step 3 a Level 1 reliability analysis is carried out on the Base Model. Before running any 
probabilistic analysis it is convenient to obtain the safety factors for the Base Model, 
allowing a first verification of the model and establishing a first frame of reference in which 
to lay out the results obtained in the successive phases.  
 
In Step 4 a Level 2 reliability analysis is carried out on the Base Model. In this step the 
probabilistic calculations as such are initiated. Application on the Base Model of three 
Level 2 methods is done in a sequential manner: First Order Second Moment (FOSM) 
Taylor’s Method, Point Estimate Method and the Advance Second Moment (ASM) 
Hasofer-Lind Method. FOSM Taylor’s Method [18] is applied in order to obtain an initial 
estimation of the conditional probabilities of failure, and to determine the contribution of 
each variable to the variance of the performance function. Point Estimate Method [19] is 
applied to capture the influence of the skewness of the probability distributions on the 
estimate of the probability of failure. It should be noted that this method is not good when 
the number of random variables is large [20]. An Advanced Second Moment method [21] is 
used to determine the feasible ranges in which the achievement of probabilities makes 
mathematical sense, which encloses the field of application of Level 3 methods needed 
later and that are more exact but demand for higher calculation effort.  
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Fig. 2. Flow chart for estimation of probability of failure of concrete dams in Risk Analysis 
 
In Step 5 a Level 3 reliability analysis is carried out on the Base Model. Once the random 
variables with a higher contribution to the variance of the performance function have been 
identified, and considering all the other variables as fixed variables with given values, a 
Level 3 reliability analysis is run on the Base Model to provide a more exact estimate of the 
probability of failure. Of all possible Level 3 techniques the methodology proposes the 
Monte Carlo method, for its ease of application in problems formulated in terms of a 
performance function [22]. The probability of failure, Pf, is estimated according to (3). 
 

 (3) 

 

where is the estimation of the probability of failure; Nf is the number of simulations 
where failure occurred and N is the total number of simulations. The number of Monte 
Carlo simulations performed should be large enough to capture the searched probability. 
The probability to capture one or more failures, PN, with N trials if the searched probability 
is Pf ,assuming a Poisson distribution is given by (4). 

 

 (4) 
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The number of trials, N, needed to achieve a probability, P, that the absolute error, ε, 
defined as the absolute value of the difference between the estimated probability of failure 

and the true probability of failure has a value of P[
^

fP −Pf<ε]=1−δ is given 
approximately by (5), as can be seen in [23]. 
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3.4. Reliability analysis on the Advanced Model 
 
As it has been done with the Base Model, before trying to run a purely probabilistic 
analysis, first the classical safety factors are obtained for the Advanced Model in Step 6. 
This allows for a preliminary verification and comparison between both models, which is 
very useful for the evaluation of possible needs for improvement or refinement of the 
models, or even to completely rule out its use. In Step 7, if the Advanced Model allows the 
formulation or evaluation of a performance function, Level 2 methods are applied the same 
way as it was described in Step 4. Next, in Step 8, an estimate on the conditional 
probability of failure is done applying the Level 3 reliability techniques on the Advanced 
Model. If the Advanced Model includes random variables that the Base Model does not 
consider, and if it is not possible to apply FOSM Taylor’s method to check the 
contribution of each variable to the variance of the problem, then a sensitivity analysis 
should be performed to identify the variables that should be consider as random. The 
proposed Level 3 technique is the Monte Carlo Method [24]. 
 
Running the great number of simulations required by this technique can make its practical 
application unfeasible, bearing in mind the calculation times associated with the use of 
complex tools in numerical simulation. The concept of limit state surface is proposed to 
avoid this problem [24, 25]. The limit state or response surface (a.k.a. limit hyper-surface in 
an n-dimensional situation, ‘n’ being the number of random variables considered) sets the 
boundary between the safe and failure domains corresponding to the Advanced Model. 
This limit state surface is defined using the numerical model in order to obtain a number of 
points on it. Then, a statistical adjustment is performed to get the best estimate of the 
surface position and shape from the given points. Once the Limit Surface is obtained as 
described previously, it is no longer necessary the use of the numerical simulation tool to 
calculate the probability of failure since it is enough to generate samples from the 
probability distributions of the random variables with the Monte Carlo techniques, 
verifying how many of them lay in the failure domain. This way, a value for the conditional 
probability of failure of the dam is estimated, based on a more realistic model than the Base 
Model. 
 
3.5. Interpretation of the results 
 
The last step of the methodology, Step 9, focuses on critical interpretation of the results 
obtained for the probability searched, bearing in mind the nature and the treatment given 
to the different uncertainties involved in the analysis [23, 26]. 
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4.- Application to a case study. 
 
4.1. Description of the dam 
 
Next, the methodology is applied to a case study corresponding to a Spanish concrete 
gravity dam for the hydrologic scenario. The failure mode considered is sliding along the 
contact for the spillway section. The cross section where the spillway is located presents a 
triangular profile, with slopes of 0.05/0.75 (U/D). The height of the cross section is 73 m 
above the foundation (the crest of the spillway is at an elevation of 313 m, the foundation 
level is at an elevation of 240 m). The length of the crest of the dam is 198 meters, having 
an elevation of 322.50 m. The water levels considered in the reservoir and their annual 
exceedance probabilities are shown in Table 3 and Fig. 3, according to Membrillera [27]. 
 
Table 3 
Water levels considered and annual exceedance probabilities 

 

Water level (m.a.s.l.) Height over 
foundation (m) 

Annual 
Exceedance 
Probability 

268.00 28.00 1.0 

300.00 60.00 8.01×10-1 

313.00 (spillway crest) 73.00 5.56×10-1 

320.00 (Normal Pool Level) 80.00 3.57×10-1 

322.50 (top of the dam) 82.50 3.23×10-4 

326.00 86.00 1.20×10-6 

331.70 91.70 4.00×10-9 

 
 
4.2. Base Model and the Advanced Model of the dam (Step 1) 
 
The models used, in accordance with the classification described in the previous sections, 
are all of type A (2D analysis, with predefined discontinuities, non interconnected hydro-
mechanic analysis and flow domain restricted to the discontinuities). The model A0 (Limit 
Equilibrium) is two-dimensional, with the geometry shown in the Fig. 3, with a single 
interface in the contact between the dam and the foundation. This interface can mobilize 
tensile strength up to some extent. The sliding resistance can be defined through a Mohr-
Coulomb model, as a function of the friction angle and cohesion. 
 
The A1 model comprises a deformable body model, where both dam and foundation are 
deformable elastic solids. The two-dimensional code on finite differences FLAC 2D (Itasca 
Consulting Group, Inc., 1994) has been used, allowing the simulation of the behavior of 
the continuous mechanics, including the interaction phenomena. The code uses a 
lagrangian procedure with an explicit resolution of the movement equations, with 
references to the deformed mesh. The resolution assumes a two-dimensional state of plane 
strain. Each element of the model is subjected to its own stress-strain relation, previously 
defined. The model is completed with the applied forces and the corresponding boundary 
conditions. Two regions are defined in the model: dam and foundation, together with the 
interface between them, as it is shown in Fig. 4. 
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Fig. 3. Simplified spillway section of the dam and water levels considered 
 
 

    FLAC (Version 3.40)

LEGEND
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  step      2161
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Fig. 4. Geometric model. Calculation grid of the spillway section. 
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The foundation is stretched out upstream and downstream a horizontal distance of 120 m 
from the bottom of the dam and is 80 m deep under the base plane of the dam. A grid has 
been created trying to reach a compromise between the necessity of avoiding unrealistic 
stress concentrations and ensuring a minimum density in the mesh, especially along the 
dam-foundation contact, aiming to reproduce a possible crack opening and propagation. 
The model allows for crack opening and propagation along the interface with uplift 
updating. The selected grid is shown in the figure below. A similar model was tested and 
validated using the case study for a gravity dam proposed in 1999 ICOLD Benchmark 
Workshop [3]. The model was able to reproduce the stress filed at the contact between 
dam and foundation and the results obtained matched quite accurately the results given 
with other simulation tools [28]. 

 
 

4.3. Analysis of variables (Step 2) 
 
The 10 random variables chosen are shown in Table 4. These variables were all initially 
assumed to be uncorrelated [29]. It should be noted that some of the variables have large 
uncertainties due to the lack of data. This is the case of the drain ineffectiveness (K), the 
coefficient of uplift increase above Normal Pool Level (α), the specific weight of the 
sediments (γsed), the height of the sediments (Hsed) and the sediments pressure coefficient 
(Ksed). These uncertainties justify the use of probability distributions such as the uniform or 
the triangular with large coefficients of variation [20]. For the other five random variables, 
some information is available from the dam site, so more common probability distributions 
in geomechanical practice such as the Normal or the lognormal have been used. In 
particular, for shear strength parameters of the Mohr-Coulomb model, the Normal 
distribution is used for the friction angle and the lognormal distribution is used for the 
cohesion, as these are the distributions that fit best the available data. This result is similar 
to others found in literature [12, 14, 17, 30]. The detailed justification of the process of 
selection of the probability distributions and parameters for each random variable can be 
found in Altarejos [28]. 

 
Regarding the assumption of uncorrelation between random variables, it should be noticed 
that cohesion and friction angle variables present potential negative correlation due to the 
linear approximation of the curved failure envelope to Mohr circles. This negative 
correlation can be assessed by means of laboratory tests with normal stresses varying on a 
relatively wide range. However, the normal stress acting on the concrete-rock interface of a 
dam varies on a much narrower range, depending on the geometry of the dam, so this 
potential correlation is less evident [31]. It should be also considered that rock of different 
quality may be present along the contact, thus adding variability to friction angle and 
cohesion correlation.  
 
The impact of correlation on probability of failure has been studied elsewhere [28] and the 
results show that negative correlation decreases the probability of failure, as sampling of 
low values of one parameter is accompanied by an increased probability of sampling high 
values of the other, which somehow compensates for the strength reduction. The 
probability of sampling at the same time two low values for both variables is less if they are 
negatively correlated than if they are assumed to be uncorrelated. From this point of view, 
assuming that cohesion and friction angle are not correlated is somehow a conservative 
approach. 
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Table 4 
Selected random variables. 

 

Variable Unit Probability 
function Mean Standard 

deviation 
Min 
value 

Max 
value 

Concrete density (ρc) Kg/m3 Normal 2350 49.67 2150 2550 

Drain ineffectiveness 
coefficient (K) 

 
- Triangular 0.37 0.22 0.00 1.00 

Coefficient of uplift increase 
above Normal Pool Level (α) 

 
- Uniform 0.50 0.29 0.00 1.00 

Specific weight of the 
sediments (γsed) 

 
N/m3 Triangular 873.3g 98.7g 650g 1130g 

Height of the sediments (Hsed) 
 M Uniform 7.75 4.47 0.00 15.50 

Sediments pressure coefficient 
(Ksed) 

 
- Triangular 0.415 0.035 0.333 0.500 

Compression strength of the 
rock mass (σcm) 

 
MPa Lognormal 9.06 0.60 0 +∞ 

Friction angle in the dam-
foundation contact (ϕ) 

 
º Normal 50 8.79 30 70 

Cohesion in the dam-
foundation contact (c) 

 
MPa Lognormal 0.418 0.298 0.00 2.00 

Tensile strength in the dam-
foundation contact (σi,t) 

MPa Normal 0.90 0.22 0.00 1.80 

 
 
 
4.4.  Reliability analysis on the Base Model (Steps 3-5) 
 
In order to run the Level 1 analysis the mean values of the variables were taken. The safety 
factors obtained for each of the levels of reservoir are shown in Fig. 5. Through the use of 
FOSM Taylor’s Method with the ten random variables described in Step 2 and for the pool 
levels considered, the order of magnitude of the conditional probability of failure as well as 
the weight of the different random variables in this estimate has been obtained, as it is 
shown in Table 5 and in Figs. 6-7. 
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Fig. 5. Base Model. Safety factors as a function of the level of the reservoir. 
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Fig. 6. Base Model with FOSM Taylor’s Method. Contribution of the random variables to the 
variance of the performance function 
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Table 5 
Base Model with FOSM Taylor’s Method. Probabilities of failure considering 10 random variables. 
 
Upstream 

level 
(m.a.s.l.) 

Downstream 
level 

(m.a.s.l.) 

Mean value 
of g* 

Standard 
deviation of 

g* 

Reliability 
index 

Conditional probability 
of failure 

n1  n2  E[g*] σg* β Pf 
300.00 266.00 4.00 1.66 2.41 8.08×10-3 
313.00 266.00 2.11 1.05 2.01 2.20×10-2 
320.00 266.00 1.52 0.86 1.77 3.83×10-2 
322.50 266.00 1.32 0.79 1.67 4.70×10-2 
326.00 266.00 1.07 0.69 1.55 6.03×10-2 
331.70 266.00 0.78 0.58 1.33 9.10×10-2 

 
 
Table 6 
Base Model with FOSM Taylor’s Method. Conditional probability of failure for 2 random variables. 
 
Upstream 

level 
(m.a.s.l.) 

Downstream 
level 

(m.a.s.l.) 

Mean 
value of g* 

Standard 
deviation of 

g* 
Reliability index Conditional 

probability of failure 

n1 n2 E[g*] σg* β Pf 
268.00 266.00 73.79 24.16 3.05 1.13×10-3 
300.00 266.00 4.00 1.65 2.42 7.73×10-3 
313.00 266.00 2.11 1.04 2.03 2.10×10-2 
320.00 266.00 1.52 0.85 1.80 3.58×10-2 
322.50 266.00 1.32 0.77 1.72 4.26×10-2 
326.00 266.00 1.07 0.67 1.60 5.52×10-2 
331.70 266.00 0.78 0.57 1.38 8.45×10-2 
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Fig. 7. Base Model with FOSM. Conditional probability of failure with 10 and 2 random variables. 
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The variables with a higher contribution to the variance of the performance function are 
the friction angle and the cohesion along the dam-foundation contact. If the probability of 
failure is now calculated considering as random variables only these two, making the values 
of the rest constant and equal to their mean values, the probabilities obtained are very 
similar to those calculated with 10 random variables, as it is shown in Table 6 and in Fig. 7. 
Therefore, based on this result, the methodology will proceed considering the friction 
angle and the cohesion along the dam-foundation contact as the only random variables.  
 
Using the Point Estimate Method, the magnitude of the influence of the skewness of the 
distributions on the estimation of the probability obtained in the previous step has been 
found. A second estimate of the probability of failure has been calculated as it is shown in 
Table 7 and in Fig. 8 and can be comparison between FOSM and PEM can be made. As it 
shown in Fig. 8, results are very similar in both cases. 
 
Table 7 
Base Model with Point Estimate Method. Probabilities of failure for 2 random variables. 

 
Upstream 

level 
(m.a.s.l.) 

Downstream 
level (m.a.s.l.) 

Mean 
value of g* 

Standard 
deviation of g* 

Reliability index Conditional probability 
of failure 

n1 n2 E[g*] σg* β Pf 
268.00 266.00 76.76 24.16 3.18 7.44×10-4 
300.00 266.00 4.19 1.65 2.54 5.58×10-3 
313.00 266.00 2.22 1.04 2.15 1.59×10-2 
320.00 266.00 1.62 0.85 1.91 2.79×10-2 
322.50 266.00 1.41 0.77 1.84 3.31×10-2 
326.00 266.00 1.15 0.67 1.72 4.29×10-2 
331.70 266.00 0.85 0.57 1.50 6.64×10-2 
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Fig. 8. Base Model with PEM and FOSM. Conditional probability of failure. 2 random variables. 
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The application of the ASM Hasofer-Lind method has allowed the determination of a third 
estimate of the probability of failure, as it is shown in Table 8 and Fig. 9. Note that ASM 
allows identification of the feasible range of variation of water levels where estimation of 
probability makes mathematical sense. Both FOSM and Point Estimate Method are not 
able to capture this feature by themselves, as they do calculate values of probability even 
for low water levels, where the exact value of the probability is zero. As low water levels 
correspond to loading states with large probabilities of occurrence, large, false probabilities 
of failure are added to the overall risk model, leading to overestimation of the probability 
of failure. 
 
 
Table 8 
Base Model with ASM Hasofer-Lind Method. Probabilities of failure with 2 random variables. 
 
Upstream level 

(m.a.s.l.) 
Downstream 

level (m.a.s.l.) 
Reliability 

index 
Conditional 

probability of failure Design point 

n1  n2  β Pf ϕ c 
268.00 (*) 266.00 - 0.00 - - 
300.00 (*) 266.00 - 0.00 - - 

313.00 266.00 2.55 5.40×10-3 31.29 0.00 
320.00 266.00 2.04 2.08×10-2 37.01 0.00 
322.50 266.00 1.90 2.89×10-2 38.78 0.00 
326.00 266.00 1.73 4.20×10-2 41.13 0.00 
331.70 266.00 1.49 6.78×10-2 42.48 5.38×104 

(*) For these levels, g*≤0 is never reached for any point in the feasible region of values, therefore, the 
mathematical probability of failure is null 
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Fig. 9. Base Model with ASM Hasofer-Lind Method and other Level 2 methods. 

Conditional probability of failure for 2 random variables. 
 
In the next step, a reliability analysis is done with the Monte Carlo simulation method, 
providing a more precise estimate of the probability of failure. Results are shown in Table 9 
and in Fig. 10. 
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It can be seen that identification of significant water levels with ASM helps reducing the 
number of cases to be analyzed with Monte Carlo simulation. Note also that when 
probabilities are low, a large number of simulations are needed to capture failure situations. 
 
 
Table 9 
Base Model with Level 3 Monte Carlo Method. Probabilities of failure for 2 random variables. 

 

Upstream level 
(m.a.s.l.) 

Downstream 
level (m.a.s.l.) 

Number of 
samples 

Number of 
failures 

Conditional 
probability of 

failure 

Standard 
deviation of 

Pf 

n1 n2 N Nfailures 
N

N
P failures

f =  ∧

fP
σ  

313.00 266.00 10,000,000 0 <1.00×10-7 - 
320.00 266.00 100,000 56 5.60×10-4 7.48×10-5 
322.50 266.00 10,000 16 1.60×10-3 4.00×10-4 
326.00 266.00 10,000 63 6.30×10-3 7.91×10-4 
331.70 266.00 10,000 320 3.20×10-2 1.76×10-3 

(*) For the 268 y 300 m levels, g*≤0 is never reached for any point in the feasible region of values, 
therefore, the mathematical probability of failure is null 
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Fig. 10. Base Model with Level 3 Monte Carlo Method and Level 2 methods. 
Conditional probability of failure for 2 random variables. 

 
 
4.5. Reliability analysis on the Advanced Model (Steps 6-8) 
 
The stress-strain properties of the dam and foundation, the properties of the interface 
between dam and foundation and the main loads considered for the Advanced Model are 
summarized in Tables 10-11. 
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Table 10 
Variables considered in the elastic deformable solid model. Level 1. 
 

Region Variable Value Comments 

Dam 

Density of concrete 2350 kg/m3 Mean value 

Elastic modulus 15 GPa Value from tests 

Poisson’s ratio 0.24 Value from tests 

Foundation 

Density of concrete 2350 kg/m3 Mean value 

Elastic modulus 5.45 GPa Mean value 

Poisson’s ratio 0.26 Mean from tests 

Dam-foundation 
contact 

Friction angle 50º Mean peak value 

Cohesion 4.18×105 Pa. Mean peak value 

Tensile strength 9.00×105 Pa Mean value 

 
 
Table 11 
Level 1 loads considered in the elastic deformable solid. 
 

Variable Comments 

Hydraulic pressure 
7 reservoir levels corresponding to the hydrological scenario: 268, 300, 313, 
320 (Normal Pool Level), 322.50, 326, 331.70 m.a.s.l. 

Uplift pressure 

With drainage wall, drains effective (K=0.37) and uplift under the heel with 
the same value as the reservoir level if n1<Normal Pool Level, and with an 
intermediate value between the reservoir level and the Normal Pool Level 
for higher values of n1 . 

Sediments pressure With a specific weight of 8567 N/m3, height of 7.75 m (257.25 m.a.s.l.) and 
a pressure coefficient of KE = 0.415 

 
In the numerical model environment an alternative definition of the factor of safety is 
needed. Factor of safety can be defined as the relation between the expected value of the 
variable and that yielding to failure [32], as it is shown in equation (5).  
 

failfail c
cFS ==

ϕ
ϕ  (5) 

 
To allow consistent comparison, safety factors defined in this fashion have been calculated 
for the Base Model (limit equilibrium model) as well. Fig. 11 summarizes the results 
obtained in terms of factor of safety with both models and Table 12 includes factors of 
safety and corresponding crack lengths computed for each water level considered. 
 
For the case study, a Level 2 reliability analysis has not been run with the Advanced Model 
(elastic solid). In this situation, the definition of the performance functions corresponding 
to the elastic solid model and the limit equilibrium model are essentially different in nature, 
and therefore, the comparison between the probability values that may be obtained with 
both models using the Level 2 methods is not meaningful.  
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Table 12 
Base Model and Advanced Model. Comparison of the factors of safety 

 

Upstream  
level  

(m.a.s.l.) 

 
Factor of Safety, FS 

 
A0 - Base Model 

(rigid body) 
A1 - Advanced Model  

(elastic solid) 

n1 FS = g* + 1 
FS = 

= φ/φfail  
= c/cfail 

Crack  
length  

(m) 

FS = 
= φ/φfail  
= c/cfail 

Crack  
length  

(m) 
268.00 > 10 > 10 0.00 > 10 0.00 
300.00 5.00 4.18 0.00 4.13 0.00 
313.00 3.11 2.64 0.00 2.61 0.00 
320.00 2.52 2.17 0.00 1.97 5.33 
322.50 2.32 2.00 0.00 1.24 26.67 
326.00 2.07 1.79 0.00 < 1.0 - 
331.70 1.78 1.56 0.00 < 1.0 - 
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Fig. 11. Base Model and Advanced Model. Comparison of the factors of safety. 
 
The limit curve for the limit equilibrium model with random variables (tgϕ,c) is a straight 
line. If pairs of values (tgϕ,c) obtained with the elastic solid model follow a straight line as 
well, the problem is reduced to a linear regression. Points on the limit surface are estimated 
by a radial sweep with joint degradation paths with initial points in the boundaries of the 
feasible region and final point the origin of coordinates. For each water level considered, 
points are obtained on the limit surface and a line is fitted to them (Fig. 12). The feasible 
region is defined by (6). 
 

MPa c 20
º70º30

≤≤
≤≤ϕ  (6) 
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Fig. 12. Adjustment of the limit curve tgφ-c with the elastic solid model. Elevation 320.00 m.a.s.l. 
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Fig. 13. Monte Carlo method for two random variables without correlation. Limit curve plotted 
with 90% confidence intervals. Reservoir elevation of 320.00 m.a.s.l. 
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An example of a Monte Carlo simulation is illustrated in Fig. 13. The results obtained using 
Monte Carlo simulations with the limit curves calculated are shown in Table 13 and in Fig. 
14. Note that the Advanced Model, for water level 320 m.a.s.l. (Normal Pool Level), yields 
a probability of failure of 1.19×10-3, which is below the all the rest (and similar to the one 
estimated with the Base Model and Monte Carlo), while for water level 322.50 m.a.s.l. 
(Crest Level), the probability of failure calculated is 2.25×10-1, thus showing a strong 
variation in conditional probability for a small increase in water level. 
 
 
Table 13 
Advanced Model with Level 3 Monte Carlo Method. Probabilities of failure for 2 random variables. 

 
Upstream 

level 
(m.a.s.l.) 

Downstream 
level 

(m.a.s.l.) 

Number of 
samples 

Number of 
failures 

Conditional 
probability of 

failure 

Standard 
deviation of 

Pf 

n1 n2 N Nfails 
N

N
P fails

f =  ∧

fP
σ  

268.00 266.00 - - 0.00 - 
300.00 266.00 - - 0.00 - 
313.00 266.00 10,000,000 0 <1.00×10-7 - 
320.00 266.00 100,000 119 1.19×10-3 1.09×10-4 
322.50 266.00 100,000 22,504 2.25×10-1 1.32×10-3 
326.00 266.00 - - 1.00 - 
331.70 266.00 - - 1.00 - 
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Fig. 14. Probability of failure vs. reservoir elevation. Comparison of values obtained 
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4.6. Interpretation of the results (Step 9) 
 
From a qualitative point of view, considering the results obtained with the Base Model 
(limit equilibrium), Level 2 reliability methods provide higher values of the conditional 
probability of failure than Level 3. Also, it can be seen that the simpler the reliability 
methods used, the higher the values of the conditional probability of failure obtained. In 
particular, for the lower reservoir levels, with the exception of ASM, Level 2 methods 
provide unrealistic values of the probability of failure. ASM Hasofer-Lind provides the best 
results of all Level 2 methods considered, as they are similar to those from Monte Carlo 
simulation, which is a more precise method. Level 2 methods seem to systematically 
overestimate the probability of failure. Refinement of the results is achieved incorporating 
the Advanced Model in combination with the Monte Carlo techniques. Results show that 
for the higher water levels (top of the dam and above), the Advanced Model gives the 
highest probability of failure, while for the lower water levels (below spillway crest), it gives 
the lowest probability of failure. The reason for this is that the tensile strength in the limit 
equilibrium model is preventing a crack to develop due to the linear stress distribution 
hypothesized at the contact plane whereas in the FLAC model the stress concentration at 
the tip of the crack allows for its propagation. This fact is particularly relevant since it 
shows that the most simple behavior models may underestimate the probability of failure 
for high reservoir levels. Factors such as the tensile strength in the interface between dam 
and foundation and the influence of the “scale effect” on it seem to play a key role [6]. 
 
The fact that the simpler reliability techniques seem to overestimate the probability of 
failure in relation with the more precise Level 3 techniques is very promising in the risk 
analysis context as its generalization may simplify the task of risk analysts, in the sense that 
if a gravity dam matches safety criteria in a risk analysis after an evaluation with Level 2 
methods, then it would be justified not to conduct further, costly and time-demanding 
analysis with Level 3 methods. 
 
From a quantitative point of view, the conditional probability obtained does not provide 
much information on dam safety as it has to be multiplied by the probability of the 
loadings. To help interpretation of results, a plot of factor of safety against the conditional 
probability of failure is given on Fig. 15. The results show that even for large factors of 
safety, the conditional probabilities obtained with the limit equilibrium model in 
combination with the Level 2 reliability methods are in the order of 0.01. Even the 
Advanced Model together with Monte Carlo method shows a probability as high as 0.1 for 
a factor of safety of 1.5. These rather high values of the conditional probability show that 
large uncertainties are controlling the results, no matter what model or reliability method is 
being used. To check the impact of these uncertainties, calculations of conditional 
probability of failure have been repeated lowering the standard deviation values of friction 
angle and cohesion, according to Table 14, and thus reducing the coefficients of the 
variation (COV) of the random variables (COV is the ratio between standard deviation and 
mean). For the friction angle the value of the coefficient of variation is lowered from 0.18 
to 0.10 and for the cohesion it is lowered from 0.71 to 0.45, which are typical values found 
when more than a few data are available from the dam site [33]. As it is shown in Fig. 16 
the reduction of uncertainties in the parameters has a strong impact on the estimated 
probabilities of failure. A reduction of the standard deviation of the 40% diminishes de 
probability of failure in at least one order of magnitude. For the Base Model the lower 
factor of safety obtained is > 1.5 so the curves can not be plotted below this value. 
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Table 14 
Two random variables considered. Values with lower coefficients of variation 
 

Variable Unit Prob. Fun Mean St. Dev Min Max 

Friction angle (ϕ) º Normal 50 5.00 30 70 

Cohesion (c) MPa Lognormal 0.418 0.188 0.00 2.00 
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Fig. 15. Factor of safety vs. probability of failure 
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Fig. 16. Factor of safety vs. probability of failure with lower COV’s 
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Due to the large scatter in the results obtained it would be interesting to evaluate the effect 
of this variability on the global results in terms of risk and what impact it may have on the 
decisions related with the dam safety. With this purpose, the UPV research group is 
developing a new specific software [34] for risk calculations considering the complete risk 
model of the dam. A summary of all the results obtained is given in Tables 15 and 16. 
 
Table 15 
Conditional probability of failure with COV = 0.18 for friction angle and COV = 0.71 for cohesion 

 

Upstream 
level 

(m.a.s.l.) 

AEP 
(1/yr) Base Model Advanced Model 

n1 
 FS FOSM PEM ASM Monte 

Carlo FS Monte 
Carlo 

268.00 1.0 > 10 1.13×10-3 7.44×10-4 0.00 0.00 > 10 0.00 
300.00 8.01×10-1 4.18 7.73×10-3 5.58×10-3 0.00 0.00 4.13 0.00 
313.00 5.56×10-1 2.64 2.10×10-2 1.59×10-2 5.40×10-3 1.00×10-7 2.61 1.00×10-7 
320.00 3.57×10-1 2.17 3.58×10-2 2.79×10-2 2.08×10-2 5.60×10-4 1.97 1.19×10-3 
322.50 3.23×10-4 2.00 4.26×10-2 3.31×10-2 2.89×10-2 1.60×10-3 1.24 2.25×10-1 
326.00 1.20×10-6 1.79 5.52×10-2 4.29×10-2 4.20×10-2 6.30×10-3 < 1.0 1.00 
331.70 4.00×10-9 1.56 8.45×10-2 6.64×10-2 6.78×10-2 3.20×10-2 < 1.0 1.00 

 
Table 16 
Conditional probability of failure with COV = 0.10 for friction angle and COV = 0.45 for cohesion 

 

Upstream 
level 

(m.a.s.l.) 
AEP Base Model Advanced Model 

n1 
 FS FOSM PEM ASM Monte 

Carlo FS Monte 
Carlo 

268.00 1.0 > 10 1.59×10-7 1.13×10-7 0.00 0.00 > 10 0.00 
300.00 8.01×10-1 4.18 2.80×10-5 2.16×10-5 0.00 0.00 4.13 0.00 
313.00 5.56×10-1 2.64 3.69×10-4 2.98×10-4 6.72×10-6 < 10-7 2.61 < 10-7 
320.00 3.57×10-1 2.17 1.41×10-3 1.17×10-3 3.13×10-4 < 10-7 1.97 1.00×10-7 
322.50 3.23×10-4 2.00 2.10×10-3 1.73×10-3 7.90×10-4 1.00×10-7 1.24 7.63×10-2 
326.00 1.20×10-6 1.79 3.80×10-3 3.14×10-3 2.22×10-3 9.00×10-6 < 1.0 1.00 
331.70 4.00×10-9 1.56 1.04×10-2 8.65×10-3 7.28×10-3 4.14×10-4 < 1.0 1.00 

 
 
To make a meaningful comparison of the results with several guidelines published [35-37] 
it would be necessary to calculate the total annualized probability of failure, which is the 
sum, for all the failure modes and for the different water levels, of the products of the 
probability of the loading by the conditional probability of failure. According to these 
guidelines, the individual risk, obtained as the product of the total annualized probability of 
failure by 1 fatality should be less than 10-4 (yr-1).  
 
Considering the results obtained for the dam of the study case, it would be recommended 
to increase the amount of information about the condition and strength of the contact 
plane between dam and foundation before carrying any remedial actions. It would be also 
recommended to try to keep the water level below the Normal Pool Level until this new 
information is available to feed the risk model. 
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The results of conditional probability obtained should also be put into context bearing in 
mind the different types of existing uncertainties in the process: (a) the uncertainty 
associated with the randomness or natural variability, in space and time, of the variables; 
(b) the epistemic uncertainty on the parameters of the materials derived from the scarce 
number of available data from the tests; and (c) the epistemic uncertainty associated with 
the limitations of the models for the accurate representation of reality. While natural 
variability cannot be reduced, epistemic uncertainty can be reduced increasing the amount 
of information. The epistemic uncertainty derived from the parameters of the materials is 
treated formally as if it was related with natural variability, which allows a much easier 
treatment through statistical tools. A formal, separate treatment of natural variability and 
epistemic uncertainty can be rather cumbersome [23]. In terms of the epistemic uncertainty 
derived from the models, it is considered that the numerical model constitutes a better 
approximation to the observed reality rather than the limit equilibrium model, although the 
reduction of the associated uncertainty is very difficult to quantify. Also, increasing the 
number of parameters of the model makes it necessary to provide more information in 
order to be able to reduce the epistemic uncertainty of the parameters. If the deformable 
solid model is used with Level 3 reliability methods, it is necessary to add to the previous 
uncertainties the corresponding to the estimate of the position of the limit curve, whose 
precision depends on the number of points used in its determination. 
 
It is useful to categorize the uncertainties within a model as aleatory or epistemic to have a 
clear distinction between the uncertainties that have the potential of being reduced and 
those which do not [38]. Regarding the model used in the paper, uncertainty in variables 
such as cohesion and friction angle can be characterized as part epistemic and part aleatory. 
Epistemic uncertainty is present as long as future testing of specimens retrieved of the 
dam-foundation contact will bring new data of these variables, and the uncertainty on the 
form of the statistical models used maybe reduced. In addition, uncertainty on the 
estimated parameters of the statistical distributions of the variables, such as mean and 
variance, will be also reduced. Part of the uncertainty will remain on the aleatory side, as 
long as testing procedures involve errors of measurement. 
 
It should be also kept in mind that future scenarios where the dam may withstand extreme 
loading conditions, such as a water level higher than the maximum historically registered, 
would be useful to truncate the lower tail of the distributions of strength variables. This 
approach is directly linked to the so-called performance-based engineering [39]. 
 
 
4.7. Sensitivity of the results to variations in distributions 
 
To show the impact of the selected domain of variation of the parameters, the probability 
of failure has been calculated shortening the range of variation of the friction angle. Two 
cases have been analyzed: truncation of the normal distribution of ϕ at 32º and truncation 
of the normal distribution of ϕ at 35º. The analysis has been carried out only with Monte 
Carlo, as Level 2 methods cannot capture correctly the consequences derived from this 
truncation. To keep the distribution symmetrical the maximum values of the distributions 
have been truncated to values of 68º and 65º, respectively. 
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Table 17 
Conditional probability of failure with different truncations of the normal distribution of friction 
angle 

 

Upstream 
level 

(m.a.s.l.) 

Base Model  
with 

Monte Carlo 

Advanced Model 
With 

Monte Carlo 

n1 FS [30º;70º] [32º;68º] [35º;65º] FS [30º;70º] [32º;68º] [35º;65º] 
268.00 > 10 0.00 0.00 0.00 > 10 0.00 0.00 0.00 
300.00 4.18 0.00 0.00 0.00 4.13 0.00 0.00 0.00 
313.00 2.64 1.00×10-7 0.00 0.00 2.61 1.00×10-7 0.00 0.00 
320.00 2.17 5.60×10-4 2.00×10-7 1.00×10-8 1.97 1.19×10-3 8.00×10-7 1.00×10-7 
322.50 2.00 1.60×10-3 9.40×10-6 2.00×10-7 1.24 2.25×10-1 1.53×10-1 1.37×10-1 
326.00 1.79 6.30×10-3 2.88×10-4 2.14×10-5 < 1.0 1.00 1.00 1.00 
331.70 1.56 3.20×10-2 5.99×10-3 2.20×10-3 < 1.0 1.00 1.00 1.00 

 
 
As it is shown, the conditional probabilities of failure are reduced even by several orders of 
magnitude when the friction angle distribution is truncated, and thus not allowing sampling 
in the region where are the lower values that predict dam instability. It is concluded that it 
is extremely important to select adequately the feasible range of variation of the parameters 
as the impact on calculated probabilities is very strong. 
 
To check the impact of the selection of the type of the distributions, the probability of 
failure has been calculated changing the distributions of the parameters. Two cases have 
been analyzed. In the first one both friction angle and cohesion are normally distributed 
(N-N). In the second, both friction angle and cohesion are lognormally distributed (LN-
LN). The mean and standard deviation of the distributions have been kept at their original 
values. The results are compared with those previously obtained assuming normal 
distribution for friction angle and lognormal distribution for the cohesion (N-LN). 
 
Table 18 
Conditional probability of failure with different distributions of friction angle and cohesion 

 

Upstream 
level 

(m.a.s.l.) 

Base Model  
with 

Monte Carlo 

Advanced Model 
With 

Monte Carlo 

n1 FS N-LN N-N LN-LN FS N-LN N-N LN-LN 
268.00 > 10 0.00 0.00 0.00 > 10 0.00 0.00 0.00 
300.00 4.18 0.00 0.00 0.00 4.13 0.00 0.00 0.00 
313.00 2.64 1.00×10-7 1.40×10-5 1.00×10-8 2.61 1.00×10-7 1.40×10-5 1.00×10-8 
320.00 2.17 5.60×10-4 7.68×10-4 2.00×10-6 1.97 1.19×10-3 1.14×10-3 1.60×10-5 
322.50 2.00 1.60×10-3 1.74×10-3 3.90×10-5 1.24 2.25×10-1 1.55×10-1 1.77×10-1 
326.00 1.79 6.30×10-3 4.62×10-3 5.47×10-4 < 1.0 1.00 1.00 1.00 
331.70 1.56 3.20×10-2 1.61×10-2 7.80×10-3 < 1.0 1.00 1.00 1.00 

 
As it can be seen, when the distribution of the cohesion is changed to normal keeping the 
friction angle as normal, the results obtained are very similar. On the other hand, when 
cohesion is kept lognormal and the friction angle is changed to lognormal, the probability 
of failure obtained lowers significantly. This confirms the fact that friction angle controls 
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the stability of the dam and also shows how sensitive is the probability of failure to small 
changes in the shape of the probability distribution in the vicinity of the limit surface. 
 
 
5. Summary and conclusions 
 
A systematization of the space related with the safety of concrete gravity dams has been 
proposed, representing in the X-axis the behavior models of the dam as a function of their 
increasing complexity and in the Y-axis the probabilistic analysis models according to their 
increasing precision (Level 1, Level 2 and Level 3). A methodology has been developed for 
the estimation of the conditional probability of failure in the context of risk analysis. The 
methodology combines different available methods of deterministic and probabilistic 
analysis. The main advantages are: 
 

a. The safety coefficient is always obtained (Level 1), in order to compare the 
results with all the other probabilistic Level 2 and 3 methods. 

b. The methodology includes the justified discrimination of the random and 
non random variables that are part of the problem. The probability 
distribution functions are allocated in a systematic, reasonable and 
documented way to the variables selected as random, also including in the 
natural variability, part of the epistemic uncertainty. 

c. An analysis is run to determine the contribution of each random variable to 
the variance of the performance function, through Level 2 FOSM Taylor’s 
Method. 

d. The skewness of the distributions is added to the preliminary results when 
the Level 2 Point Estimate method is included. 

e. The feasible region where the probability of failure is not zero is 
determined in an efficient way, through the Level 2 ASM Hasofer-Lind 
Method. 

f. All the information associated with the probability distribution functions of 
the random variables is incorporated, through the use of the adequate 
statistical tools, to the calculation of the probability of failure using the 
Monte Carlo simulation method (Level 3). 

The methodology proposed has been fully applied to a concrete gravity dam and for the 
sliding along in the dam-foundation contact plane failure mode. All the steps that the 
methodology comprises have been developed exhaustively, achieving different estimates of 
the target conditional probability of failure. These innovative results have a significant 
relevance and should aid in accomplishing, in the future, a generalization of some of the 
evident conclusions reached in the case analyzed: 
 

• Once the variables with stronger impact on the problem have been identified, 
sound and expert engineering judgement is essential to assess the uncertainties 
related with them, in order to set their probability distributions and their variability. 

• Also it is necessary to check carefully for possible correlations between variables. 
Again, expert engineering judgment plays a key role in this issue.  

• The type of dam model selected to run the analysis has also a strong influence on 
the probabilities of failure. 
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• The probabilities should be carefully examined. In particular, the relation between 
factor of safety and probability of failure can be of help to interpret them correctly. 

• It seems that Level 2 methods overestimate systematically the probabilities of 
failure. The generalization of this finding could benefit the practice of risk analysis 
by simplifying the analysis. More research is needed on this matter, as it seem that 
Level 2 methods cannot accurately estimate low probabilities in non linear 
problems. 

• The authors’ view on the results of the case study is that the large uncertainties of 
the parameters would represent a kind of envelope of maximum probabilities of 
failure for this type of dams. Acquisition of further information would reduce 
dramatically the estimated probability of failure. 

• It also the authors’ conclusion that the limit equilibrium model is conservative 
itself, at least for normal pool levels, and that some research is needed to explore 
what can be the true meaning of the factor of safety in dam engineering if 
variability of the parameters is not taken into account in its definition. 
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