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Abstract 

Olfactory ensheathing cells (OECs) are of great interest for regenerative purposes since 

they are believed to aid axonal growth. With the view set on strategies to achieve 

reconnection between neuronal structures it is of greatest importance to characterize the 

behaviour of these cells on long thread-like structures that may efficiently guide cell 

spread in a targeted way. Here rat OECs were studied on polycaprolactone long 

monofilaments, on long bars and on discs. Polycaprolactone turns out to be an excellent 

substrate for OECs. The cells cover long distances along the monofilaments, and 

colonize completely these structures. With the help of a one-dimensional analytical 

model a migration coefficient, a net proliferation rate constant, and the fraction of all 

cells which undergo migration were obtained. The separate effect of the three 

phenomena summarized by these parameters on the colonization patterns of the one-

dimensional paths was qualitatively discussed. Other features of interest were also 

determined, such as the speed of the advance front of colonization and the order of the 

kinetics of net cell proliferation. Characterizing migration by means of these quantities 

may be useful for comparing and predicting features of the colonization process (such 

as times, patterns, advance fronts, proportion of motile cells) of different cell-substrate 

combinations. 

 

Keywords: olfactory ensheathing cells, polycaprolactone scaffolds, migration, diffusion, 

colonization. 



 

1. Introduction 

 

Most neurological diseases implying damage of extensive brain structures lack 

nowadays a satisfying clinical treatment (Parkinson’s disease, spinal cord injury, stroke, 

etc.). Some of the experimental therapies pursue the reconnection of axons and neurites, 

for which the guided growth of axons within or along filamentous structures might be 

useful (1-3). Olfactory ensheathing cells (OECs) or Schwann cells (SCs) are thought to 

help this process, by ensheathing and guiding the growing axons (4-9).  

OECs reside in the olfactory neuroepithelium, and are considered permissive cells, may 

help axons to grow and populate both the olfactory nerve and the nerve fiber layer of the 

olfactory bulb (10). These cells are non-myelinating glial cells that ensheath olfactory 

axons (11, 12) and can penetrate the transition zone between the peripheral and central 

nervous systems. Several studies have shown that OECs present a great potential to 

guide axons in spinal cord injury (13-18) and in other neural diseases (19-22). In other 

studies, where peripheral nerves were used as bridges to link injured nerve tracts, the 

use of OECs showed effectiveness in reducing glial scar, modulate microglial reactivity 

and promote axonal growth (23-26). 

The migration ability of OECs is essential for their role in neural regeneration (27), and 

this process is regulated by neurotrophic factors such as GDNF, NGF or BDNF (28-30). 

OECs may act as a pump of these neurotrophic factors, which provide the appropriate 

niche for axon projection and neuronal reconnection (18, 31). To facilitate axonal 

growth and guidance these cells produce extracellular matrix and cell adhesion 

molecules such as laminin (32), N-CAM (33) or L1 (34). 

However, the direct injection of OECs in sites of lesion is limited by the complexity of 

the environmental interactions, including astrocytic reactivity, which may hinder or 

prevent the growth of axons. To facilitate this process of cell growth and guidance many 

researchers have started to develop biohybrids where OECs are seeded previously on 

different biomaterials (35-39). These kinds of structures have been produced from 

natural biomaterials such as alginate (40), collagen (41, 42) and chitosan, synthetic 

polymers such as polyethylene glycol (43) , polylactic acid (44) or poly--caprolactone 

(39, 43), and composite biomaterials (45).  



In this study we used poly-ε-caprolactone (PCL) because it is a biodegradable synthetic 

biomaterial widely tested in neural tissue engineering in vitro studies (45, 46) and in 

studies in vivo of neural damages such as traumatic brain injury (47, 48), spinal cord 

injury (49) and nerve regeneration (50, 51). 

In the present work we cultured OECs on polycaprolactone (PCL) long monofilaments 

and bars, in order to characterize the colonization in time of these material structures by 

OECs seeded in one of the ends. This biohybrid of cells and filaments can be of use in 

trying to reconstruct axonal tracts and maybe other similar structures, since microfibers 

represent a constrained path for the cells to follow, and thus, so one hopes, they may be 

better targetted in their migration. Selected features of the process of cell migration and 

axon growth have been described by different mathematical models (52, 53). Individual 

cell motility is due to complex biochemical and biomechanical mechanisms of 

regulation of actin and myosin and external stimuli (54, 55) originating cell protrusion, 

adhesion and translocation (56, 57). Many mathematical models have been developed as 

discrete models studying biophysical mechanisms of individual cell motility (58-60). 

However, cells move in coordinated collective motion (61) and colonization cannot be 

deduced from individual movement only. Collective motion has been treated in 

macroscopic continuum models. Usually these models lead to a set of partial differential 

equations for the masses or concentrations of cells and chemicals (62-64). Normally the 

mass balance of cells is governed by a non-linear reaction-diffusion equation and the 

mass balance of chemicals by a diffusion equation. In vitro studies evidence that a large 

variety of cells show a travelling wave-like behaviour (65), and so several models are 

based on Fisher’s equation (66), whose solutions determines a front of advance with a 

constant speed depending on the diffusivity and the net proliferation rate. The 

continuous models do not take into account small-scale processes and the random walk 

of cells, aspects which have been taken into account in hybrid models, which can 

combine certain biological aspects with the collective motion of the cells (67-69). 

Here we studied the ability of OECs to migrate in vitro on PCL filaments, and the 

process was characterized analytically with the help of a reaction-diffusion model which 

gives numerical values of quantities such as the diffusion (or migration) coefficient of 

the cells, their advance front speed and their net proliferation rate. These parameters 

may facilitate the comparison of the colonization process of a given cell type on 

different materials for possible therapeutical applications. With such models, the 



equation parameters can be independently varied and thus the influence of the different 

phenomena involved in the colonization process, as described by those parameters 

(migration, proliferation), can be qualitatively assessed.  

 

2. Experimental Section 

 

2.1. PCL bars and discs 

Polycaprolactone, PCL, (Polysciences, Inc., Warringtong, PA; MW 43000-50000 Da) 

was purchased in the form of pellets. 1 mm-thick PCL films were obtained by 

compressing 10 g of pellets under a slight pressure (2 kg between two 10 x 10 cm2 glass 

plates) in an oven for 3 h at 80ºC, then cooled in the oven until 40ºC and afterwards in 

ambient until they reached room temperature and were unmolded. These PCL sheets 

were employed for the fabrication of bars and discs of 10 mm of diameter. The bars 

were cut having 30 mm length and 5 mm width, with a triangular end to facilitate later 

identification of the cell seeded end (see Figure 1A). At both ends of the bars, two 

smaller PCL discs (4 mm of diameter and 1 mm-thick) were glued with a 25% (w/w) 

PCL/dioxane solution and later compressed between two glass plates at 45ºC for 1 h, to 

provide a means to keep the bar raised over the well’s bottom and to impede cell 

migration to the well. The discs and the bar constructs were sterilized with 70%-ethanol 

(Scharlab, S.L. Barcelona, Spain) for 24 h and dried in vacuum before use.  

 

2.2. PCL filaments 

80 μm-diameter PCL fibers were obtained by extrusion and drawing as follows: 200 

micron-diameter filaments were extruded in a Haake Minilab II mixer (Thermo Fisher 

Scientific, Karlsruhe, Germany) starting from the same PCL pellets with a extrusion 

temperature of 80ºC, a torque between 9 and 12 N·cm and a rotation speed between 8 

and 10 rpm. These fibers were then wound in groups of 16 and stretched in a stress-

strain machine (Adamel Lhomargy, Division instruments S.A.) at ambient temperature 

at a rate of 20 mm/min until the 95% of their breaking strength (15 N) to obtain PCL 

monofilaments of approximately 80 μm of diameter. Five such filaments were mounted 



on PCL rings to obtain a manageable construct (Figure 1B) as follows. PCL rings were 

cut from the 1 mm-thick PCL sheets with 10 mm of external and 8 mm of internal 

diameter; 5 stretched and aligned PCL monofilaments were glued on top of one of the 

ring’s faces with a 25% (w/w) PCL/dioxane solution. The resultant structures were 

sterilized with 70%-ethanol for 24 h and dried in vacuum. 

 

2.3. Isolation and purification of cells 

OECs were isolated from the glomerular layer of olfactory bulbs. Briefly, Wistar rats (3 

weeks old) were sacrificed by decapitation, with procedure approved by the institution’s 

Ethical Committee. Olfactory bulbs were aseptically removed and treated with 0.25% 

trypsin, 0.1% collagenase A, and 0.1% DNase-I in 1 ml of Hanks’ balanced salt solution 

(Sigma, St. Louis, MO) with Ca2+ and Mg2+ at 37ºC for 30 min. Then, the enzymes 

were inactivated by addition of Dulbecco’s minimum essential medium F-12 Ham 

(DMEM/F-12, Sigma) with 10% inactivated fetal bovine serum (FBS, Invitrogen) and 

cells were recovered by centrifugation at 300 g for 8 min.  

Recovered cells were then resuspended in a mixture of (1.5:1) MEM 1X (Sigma, 

M0643) and DMEM/F-12 1X (Sigma, D8900) media, supplemented with 10% 

inactivated FBS (Invitrogen, Cat 10108), 50 µl/ml L-glutamine 200 mM (Invitrogen, 

Cat 25030), 50 µl/ml penicillin–streptomycin 100X (Sigma, P0781), 0.5 µl/mL 

gentamycin 50 mg/ml (Invitrogen, Cat 15750), 2 µl/ml MEM non-essential amino acid 

solution 100X (Sigma, M7145), 2 µl/ml MEM vitamin solution 100X (Sigma, M6895), 

and 1 µl/ml Forskolin 5 mg/ml (Sigma, F6886). Cells were then plated in a culture flask 

coated with poly-D-lysine 10 µg/ml (Sigma, P0899) and maintained at 37ºC, 5% CO2. 

The medium was changed every 2 days. 

Cells reached confluence in monolayer after 8-10 days of culture; then, the OECs were 

purified by antibody based purification assay. The magnetic-activated cell separation 

(AutoMACS, Miltenyi Biotec, Germany) procedure was performed according to the 

manufacturer’s protocol. The flask containing the unpurified cells was washed with 

Dulbecco’s phosphate buffered saline (PBS) and incubated with 40 µl/cm2 accutase 

(Invitrogen) for 5 min to detach the cells. Cells were collected in DMEM containing 

10% FBS and were centrifuged at 300 g for 5 min. The pellet was rinsed with PBS 



supplemented with 2 mM EDTA (rinsing solution) and the cells were counted using a 

Neubauer counting chamber. For ensheathing cells selection, the cells were incubated 

with 5 µl of anti-p75 LNGFr monoclonal antibodies (Chemicon, MAB 365) in 95 µl 

Dulbecco’s PBS, 2 mM EDTA, 0.5% BSA (Running Buffer) for 10 min at room 

temperature. After incubation time, 5 ml of rinsing solution was added and the cells 

were newly centrifuged (300 g for 5 min). The obtained pellet was resuspended and the 

cell suspension incubated with rat anti-mouse IgG1 microbeads (1:5; Miltenyi Biotec, 

Germany) in running buffer for 15 min at 4ºC. After two washings with rinsing solution, 

a maximum of 108 cells was resuspended in 500 µl of running buffer and processed with 

the AutoMACs. The p75 LNGFr positive cell fraction was collected. 

Schwann cells from adult rat sciatic nerves were isolated according to a technique 

modified from that of Brockes (70). Animal experimental protocols had been approved 

previously by the institution’s Ethical Committee. Briefly, the sciatic nerves of adult 

Wistar rat were removed and stored in Hanks’ balanced salt solution (Sigma, St. Louis, 

MO) with Ca2+ and Mg2+ at 0°C. The epineurium and connective tissue were stripped 

off with fine forceps, and the nerves were treated with trypsin, collagenase A, and 

DNase-I for 1 h with the same steps as explained before. Cells were routinely 

maintained by plating on poly-L-lysine (100 μg/ml; Sigma, St. Louis, MO)–coated 75 

cm2 flasks and this culture medium was replaced every 2 days and cultured at 37ºC, 5% 

CO2. 

Fibroblast cells were obtained from NIH/3T3 fibroblast cell line, purchased from ATCC 

(Barcelona, Spain, ref CRL-1658). 

 

2.4. Culture and cell quantification of olfactory ensheathing cells on PCL bars 

A 10 µl drop containing 105 OECs was deposited on the upper face of the triangular end 

of the PCL bars. Cells were incubated at 37ºC and 5% CO2 for 30 min to allow adhesion 

on bars, and afterwards culture medium was added and replaced every 2 days. Studies 

were performed for different durations (ti) of 30 min, 2, 4 and 7 days. After culture, bars 

were washed in 0.1 M PBS at pH 7.4 and fixed with 4% paraformaldehyde in 0.1 M 

PBS at room temperature for 20 min. Nuclei were counterstained with 4’,6-diamidino-

2-phenylindole dihydrochloride (DAPI, Sigma, 1:5000). OECs were examined using a 

Leica microscope (DM 6000) and images (10X, from a region with a size of 1.424 mm 

width x 1.064 mm length) were obtained with a digital camera (Leica 480X). Eight 



different distances (xi) along the bars starting from the seeded extreme were evaluated: 

xi = 1, 3, 5, 10, 15, 18, 20 and 25 mm, with a number of replicas of n = 4. For cell 

quantification, DAPI-labeled cell nuclei were counted at the different chosen distances. 

Cell number was determined by the free software cellC (71), but corrected taking an 

average of pixels occupied by a single cell to distinguish clustered cells. In addition, 

OECs photographs after 30 min of cell culture were taken and cell quantification for this 

time was considered as the initial condition of the model calculations. Initial cell line 

density resulted in 75000 cells/cm approximately, obtained from the cell number of the 

drop seeded and the drop’s linear extension (4 mm). For the different distances and 

times (xi, tj) the numbers of cells counted on the photographs was averaged to define the 

experimental cell line density Nexp(xi, tj). 

A similar methodology was employed to determine the maximum distance reached by 

OECs for each analyzed time. The bar was explored completely using the microscope 

Leica (DM 6000) and the maximum reached distance was determined as the farthest 

point on the bar displaying cells. The data of maximum reached distance versus time 

were fitted to a second order polynomial by a least squares routine. The second order 

equation was employed to calculate cell speed at different times (2, 4 and 7 days). 

 

2.5. Immunocytochemistry and scanning electron microscopy 

OECs seeded on the PCL samples were identified by the commonly used p-75, vimentin 

and S-100 antibodies. Samples were washed with 0.1 M PBS, fixed for 20 min in 4% 

paraformaldehyde, and permeabilized with 0.1% (v/v) triton X-100 in 0.1 M PBS for 30 

min and to block unspecific binding of the antibodies, samples were incubated with 

10% (v/v) fetal bovine serum in PBS blocking solution for two hours at room 

temperature. Afterwards, samples were incubated with monoclonal anti-vimentin 

(Sigma, 1:40), rabbit anti-S100 antibody (Incstar, Stillwater, MN, ready to use) or 

mouse anti-low affinity nerve growth factor receptor p-75 (Chemicon, 1:100) and 

caspase-3 (Abcam, ab32351) overnight at 4ºC in a humidified chamber; samples were 

washed again three times in PBS and then incubated with the respective secondary 

fluorochrome-conjugated antibody (1:200) (goat anti-rabbit Alexa 647 or goat anti-

mouse Alexa 488, Invitrogen) for two hours at room temperature in dark. Finally, 

samples were washed three times with PBS before mounting the coverslip with a drop 



of vectashield (Vector Laboratories) containing DAPI to counterstain cell nuclei (blue). 

A Leica TCS SP2 AOBS (Leica Microsystems Heidelberg GmbH, Mannheim, 

Germany) confocal laser scanning microscope (CLSM) was used. 

The morphology of OECs on PCL discs and monofilaments was studied using scanning 

electron microscopy (SEM). After 4 days in culture, the materials cultured with the 

OECs were washed in 0.1 M PBS, pH 7.4, and fixed in a 3% glutaraldehyde solution. 

Samples were postfixed with 1% osmium tetroxide, dehydrated in graded ethanol, and 

coated with gold to be analyzed by SEM (Leica DC300, Bensheim, Germany) at 15 kV 

and a working distance of 15 mm. 

 

2.6. Cell viability analysis 

Cell viability was assessed by the MTS assay (CellTiter 96 Aqueous One Solution, 

Promega) which quantifies mitochondrial activity by measuring the formation of a 

soluble formazan product which is directly proportional to the number of living cells. 

After 3, 7 and 10 days of culture for bars and 30 min, 2, 4 and 6 days for discs, the 

materials with the seeded OECs were transferred into a 48-well plate and washed twice 

with sterile PBS. Culture medium without FBS and phenol red was mixed with MTS in 

a 5:1 volume ratio, added to the wells, until totally covering the samples, and incubated 

for 3 h at 37ºC in a 5% CO2 humidified atmosphere in the dark. After the incubation 

period, 100 μl of MTS and medium mixture were transferred into each well of a 96-well 

plate and absorbance was read in a microplate reader (Victor 3, PerkinElmer) (n=5) at 

490 nm. 

A MTS assay was performed to compare the cell viability on PCL discs of OECs with 

those of Schwann cells and fibroblasts. Cells were plated at a density of 2.5 × 104 

cells/well in a 48-well culture plate and all three groups (OECs, Schwann cells and 

fibroblasts) were incubated for 5 h, 2, 4, 6 and 8 days (n=3). Then the cell medium was 

removed and replaced by fresh medium without phenol red containing MTS. Cells were 

then incubated in the dark at 37ºC for 4 h. 100 μl of each sample solution were 

transferred to a 96-well plate and absorbance was read in a microplate reader (Victor 3, 

PerkinElmer) at 490 nm. 

 



2.7. OECs net proliferation kinetics 

The cell viability time evolution of the seeded cells was determined and compared in 

both types of experimental situations, on the discs and bars (from the MTS assay data 

and the number of cells determined optically by photographing), and modeled as a first 

order process. The OECs viability on the PCL discs was determined at 4 times (30 min, 

2, 4, and 8 days) and on the PCL bars at three times (3, 7 and 10 days), using the 

colorimetric MTS assay absorbance data. The 30 min and 3 days, on discs and on bars 

respectively, were considered as initial time. 

From the number of cells determined optically the viable cells on the PCL bars was 

calculated as follows: the discrete experimental data Nexp(xi,tj) for each fixed time (tj  = 

2, 4 and 7 days) were transformed to a continuous function N(x,tj) giving the cell line 

density along the bar by interpolating the averaged experimental data at each distance 

(see below, 2.8.1) with a cubic spline function, using the software Mathcad 2000 

(MathSoft, Inc., Cambrige, MA). The interpolated function N(x,tj) obtained was then 

integrated between the limits of the region of interest (0 to 25 mm). Thus, the number of 

cells υ on the bar at each time tj was obtained as 

   L

j j0
t N x,t dx            (Eq. 1) 

where L = 25 mm. First order kinetics was assumed for OECs net proliferation in both 

analyses; in each case, the equations employed were 
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      (Eq. 2) 

the first equation corresponds to the MTS assay (on discs and on bars) and the second 

one to the number of cells on the PCL bars calculated by the integration of the 

experimental data (equation (1)). In equation (2), A is the absorbance at time t, A0 is the 

absorbance at the initial time, υν is the total number of viable cells on the structure at 

experimental time t, υ0 is the total number of viable cells on the structure at the initial 

experimental time t0. Data were least-squares fitted for both equations (2) to obtain the 

net proliferation rates kA and k. 

 



2.8. Modeling of the colonization patterns 

2.8.1. Obtaining the experimental line density N(x,t) of cells along the bars 

The colonization by OECs of the bars was modeled as a one-dimensional process, 

which required to pass from the actual number of cells per unit area obtained 

experimentally to a consistently defined linear cell density, expressed as number of cells 

per unit length, N(x,t). Thus, a partial differential equation for N(x,t) along the bar 

(number of cells per unit bar length at distance x, at time t) governs the process (see 

below 2.8.2). The experimental data for the linear cell density Nexp(xi,tj) were obtained 

from the photographs (see above 2.4) as follows: for each distance xi and time tj the 

number of cells counted on the four images corresponding to (xi, tj) was averaged; then, 

this average was multiplied by the width of the bar (0.5 cm) and divided by the image 

area (0.142 cm x 0.106 cm). 

2.8.2. Diffusion-net proliferation equation 

Cell behavior on the PCL bars was supposed to obey a one-dimensional reaction-

diffusion equation with a first order kinetics of cellular net proliferation-and-death term, 

2

2

N N
D kN

t x

 
 

 
         (Eq. 3) 

where N is the line density of cells [number of cells/cm], D is the diffusion coefficient 

[cm2/min] and k is the rate constant for cell net proliferation-and-death [min-1]. 

A modification of the above model was also investigated to account for the hypothesis 

that the populations of cells undergoing proliferation-or-death and migration are 

disjoint. Consequently, if Nm is the line density of migrating cells and Ng is the line net 

density of proliferating cells, one replaces in equation (3) the diffusive term by 

D·∂2Nm/∂x2 and the source term by k·Ng. If, further, α = Ng/N, a population partition 

coefficient, is assumed to be independent of (x,t), then one has 
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        (Eq. 4) 



2.8.3. Initial and boundary conditions 

Initial and boundary conditions must be supplied to integrate the partial differential 

equations (3) and (4). Instead of solving a problem corresponding to the actual bar 

seeded at one end, model calculations were performed for an infinite bar, -∞ < x < ∞, 

seeded at its middle point, x = 0, and, because of the symmetry of the problem, the 

results obtained from the model were multiplied by two in order to make them 

correspond to the real situation for x ≥ 0. In this way the boundary conditions are 

simplified. The initial condition was taken as 

  0N r x r
N x,0

0 x r,x r

  
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N0 was the initial cell line density (obtained from the photograph 30 min after cell 

seeding and dividing by the diameter of the seeding drop), and r was the radius of the 

seeded drop. The boundary conditions at both ends of the infinite bar were set to 

 
 

N ,t 0
t

N ,t 0

  
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2.8.4. Numerical integration 

Equations (3) and (4) with the previously defined initial and boundary conditions, were 

discretized and solved for fixed values of the model constants, (D, k) or (D, k, α), 

respectively, by numerical methods using the software Mathcad 2000. The model 

characteristics, satisfying the stability condition, were: 200 partitions of the length, each 

0.1 cm long, and 480 time partitions, with intervals of 30 min. 

In the model implementation cells were assumed to be seeded in the centre of a 20 cm-

long one-dimensional line, a much longer line than the actual geometry (3 cm) in order 

to guarantee that the imposed boundary conditions did not influence the solutions 

obtained in the region of interest (the actual 3 cm length).  

The first implemented model (equation 3) was solved for D and k values and these were 

optimized by minimizing the mean quadratic error between experimental and model 

results,  
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where N(xi,tj) is the cell line density determined from the model [number of cells/cm] 

for a pair (D, k), Nexp(xi,tj) is the cell line density from experimental data; i is the index 

labeling points along the model line, and j is the index labeling instants of time. 

Equation (4) was discretized and implemented by numerical methods in a similar way. 

In order to study the separate effect of each phenomenon, each parameter was 

independently varied keeping the rest fixed, and plotting the obtained solution. The 

more convenient parameters of model 2 were chosen from this study. 

 

2.9. Cell aspect ratio and cell alignment analysis 

In order to characterize the elongated shape acquired by cells cultured on the PCL 

filaments the aspect ratio (length divided by width) of the cells and the angle formed by 

the axis of their longest dimension with the PCL filament axis were measured as 

follows. On two confocal images (40 times magnification) of PCL filaments with cells 

cultured for 4 days ten cells were selected on each filament, and with the help of the 

ImageJ software (Java-based image processing program developed at the National 

Institutes of Health, USA) were measured the length and width of the cell shapes; 

“length” was taken as the value of the cell’s largest linear dimension, “width” was then 

taken as the value of the largest linear measure perpendicular to “length”. For the same 

cell shapes the angle between the “length” dimension and the filament axis was also 

determined with the same software. 

 

2.10. Statistics 

All the experimental data were presented as means ± standard deviation. Statistical 

assessment of significant variance was performed using a one-way ANOVA with a 

Tukey multiple range test by the software Statgraphics plus (Statistical graphics corp. v. 

5.1 Princeton, NJ). Statistical tests were performed at a 95% significance level (p-

value<0.05). 



 

3. Results  

 

3.1. OECs viability and morphology on PCL substrata 

The olfactory ensheathing cells were viable on PCL materials and their number 

increased steadily with culture time, as revealed by the MTS assay. OECs proliferate on 

PCL at a rate qualitatively similar to that of Schwann cells, and, expectedly, 

significantly slower than fibroblasts (which were taken as comparison control cells), 

Figure 2.  

The results of immunocytochemistry showed an excellent colonization by OECs of the 

PCL flat surface (Figure 3). After 4 days, primary OECs expressed the markers S100 

and vimentin (Figure 3A and 3D). The OECs covered the totality of substrate surface, 

indicating that PCL favors cell adhesion and proliferation. The proportion of positive 

cells was high, showing that the purified cells maintained their phenotype in culture on 

PCL. The presence of active caspase-3 positive cells undergoing apoptosis process was 

rarely observed (Figure 3C). These results support other evidence (72, 73) on PCL as a 

suitable substrate promoting cell attachment and proliferation for glial cells. 

Figure 4A shows the electron micrograph of a (non-seeded) PCL monofilament and 

Figures 4C and D show the OECs on the 80 micron diameter PCL monofilaments after 

4 days of culture. The drawing stage in the process of manufacture of the PCL 

monofilaments produced a pattern of microgrooves on the surface of the fiber, clearly 

observable in Figure 4A. PCL is a semicrystalline polymer, in which amorphous regions 

constituted by disordered chains alternate with the regularly packed chains of the 

polymer crystallites. Upon stretching, microcrystallite orientation, interstitial chain 

alignment and cold crystallization take place, giving rise to an observable microgrooved 

surface pattern.  

OECs colonized and completely covered the length of the filaments, with the cell 

cytoplasm adapting to the surface’s curvature, and with the cytoplasm of adjacent cells 

touching each other through processes. OECs formed an interconnected network of 

almost parallel linear cells arrays with a preferential alignment along the filament axis 



and some circumferential spacing, the cells adopting an elongated fusiform and bipolar 

morphology. The patterned surface microtopography of the monofilaments may be 

influential on this shape: the fiber surface is constituted by oriented alternating 

amorphous and crystalline domains, each with different rigidities, giving rise to a 

preferentially oriented microgrooved topography to which the cell transmembrane’s 

proteins involved in migration may be sensitive.  Measurements of the aspect ratio 

(length/width) of the cells gave a figure of 9.8 ± 4.3 µm; that is, in the mean, cells were 

almost 10 times longer than wide on the filament. The mean length and width of the 

cells were 73.8 ± 18.2 µm and 7.5 ± 2.4 µm, respectively. They were also polarized 

along it: measurements of the angle between the cells’ axis and the filament’s axis gave 

a value of 4.2 ± 3.5 degrees, showing their high degree of alignment (Figure 4B). 

The morphology of OECs on the different substrata was also assessed with scanning 

electron microscopy. The micrographs (Figure 5A, B) show that OECs adhered to the 

substrata exhibited different morphologies on PCL filaments and discs: spindle-shaped 

cells were observed extending processes along the filaments (Figure 5A), with a bipolar 

morphology typical of a cell in migration, whereas more flattened multipolar cells were 

spread on the discs (Figure 5B). 

 

3.2. OECs colonization of PCL bars 

OECs, once seeded initially on one of the bar’s ends, were subsequently able to migrate 

along and colonize the whole length of the bar in 7 days (Figure 6). After 2 days, at 1 

mm distance from the seeded end the cell density had decreased considerably with 

respect to the initial time as a consequence of the cell migration. Generally, at 

subsequent times the cell density grew for each distance and the maximal reached 

distance increased.  

The advance front of OECs on the bars (maximal distance reached by any cell) for each 

time was determined by optical inspection of the photographs, and is given on Figure 7. 

The advance front thus defined does not have a constant speed, but seems to be slower 

with time (a second order polynomial describes satisfactorily the maximum distance 

versus time curve).  

 



3.3. One-dimensional modeling of the colonization pattern of OECs on PCL bars  

For each pair (D, k) equation (3) can be numerically solved and the colonization 

patterns N(x,t), 0 ≤ x ≤ L, can be compared, for each t, with the experimentally found 

data, once these are converted to a line density profile of cells. Least-squares 

minimization of the discrepancy gives a pair of parameter values, which in our case 

were D = 1.95·10-5 cm2/min [3.25·10-5 mm2/s] and k = 7.97·10-5 min-1 [1.33·10-6 

mm2/s]. The behavior predicted by the model equations with these parameter values 

yielded the approximation to the experimental data shown in Figure 8.  

The model was able to reproduce qualitatively two patterns exhibited by the 

experimental data: the time oscillations of the cell density at fixed distances (see Figure 

6), and the increasing spread of cells along the x-axis as time increased (see Figure 7). 

Quantitatively, the model predictions with the least-squares optimized parameters were 

better at the shorter distances, and were much poorer for the longer distances, the more 

so the longer the time. 

 

3.4. OECs net proliferation kinetics 

As explained above, a first order relationship was assumed to describe the net 

proliferation kinetics of the OECs on the PCL bars. The consistency of this assumption 

with the independent MTS data obtained on PCL discs and bars can be ascertained on 

Figure 9, where the three sets of data, the MTS absorbance data on bars, on discs, and 

the integrated experimental total cell number data, υ, from the raw information 

stemming from photograph counting (see section 2.7, equation (1)), have been 

represented in a logarithm versus time plot.  

The linearity of each of the dependences is satisfactory enough. Linear fits gave for the 

net proliferation rate k values of 8.04·10-5 min-1 on the PCL discs (MTS assay, R-

squared 0.921), 1.93·10-4 min-1 on the PCL bars (MTS assay, R-squared 0.858), and 

1.27·10-4 min-1 (R-squared 0.951) from the integration of the experimental data. Even 

though they stem from such different experiments, the three are of comparable order of 

magnitude. 

 



3.5. Assessment of the separate qualitative influence on colonization patterns of 

diffusivity and net proliferation-and-death 

Figure 10 shows the results of solving equation (4) changing the value of one parameter 

while the others were kept fixed with the values obtained from the fitting of equation 

(3). The diffusion coefficient D was studied for 4 different values, 4·10-7, 4·10-6, 4·10-5 

and 4·10-4 cm2/min, while keeping the net proliferation rate and the partition coefficient 

fixed at k = 7.97·10-5 min-1 and α = 0.6, respectively. Larger values of D result in a 

faster colonization of the bar, and in a correspondingly lower number of cells at shorter 

distances from the seeding point as time progresses. Lower diffusivities lead to a steeper 

gradient of cell concentration along the bar, and to a cumulative increase of cells near 

the seeded end as time progresses. Thus, a crossover effect occurs at short distances as a 

function of cell diffusivity. 

Any such nonlinearity is absent from the influence of the net proliferation rate k. Values 

of k = 1·10-5, 5·10-5, 1·10-4 and 2·10-4 min-1 were studied keeping D and α fixed at 

1.95·10-5 cm2/min and 0.6, respectively. An increase in the proliferation rate has always 

the effect of augmenting the number of cells proportionally to cell density for all 

distances and times, with differences increasing throughout time. 

Finally, the partition coefficient α was varied as 0.2, 0.4, 0.6 and 0.8 for constant values 

of the diffusion coefficient and net proliferation rate of 1.95·10-5 cm2/min and 7.97·10-5 

min-1, respectively. As expected, the value of α combines the qualitative patterns of 

colonization ascribable to D and k separately: the lower α, the more the qualitative 

trends of colonization are governed by migrational features; the larger α, the more they 

are determined by proliferative behavior. 

 

4. Discussion 

 

The ultimate goal of a targeted induced growth of axons across long distances puts a 

need on the development of synthetic structures to help this process. Thread-like 

materials covered with specialized cells such as OECs may represent such a guidance 

bed for neuronal axons. We have shown here that OECs can colonize the PCL surfaces 



keeping their distinctive phenotypic features, both on flat discs and on structures having 

long aspect ratio (microfilaments and bars). On PCL microgrooved filaments OECs 

adopt a clearly bipolar shape and interact forming chains, whereas on flat substrata with 

the same composition they exhibit a variety of shapes, from bipolar (now without any 

directional preference) to tripolar and rounded with lamellipodia. 

In the mammalian olfactory nervous system OECs show a variety of morphologies,, 

which have been related to their different functionalities (74,75). OEC is a malleable 

type of cell which can exhibit different cytoskeletal organizations: on one hand, OECs 

possessing a long fusiform bipolar morphology, which have been called Schwann-like 

OECs, and on the other hand cells with flat sheet-like morphology with more or less 

centered nuclei, called astrocyte-like OECs. These subpopulations transform into each 

other in response to a variety of environmental stimuli (such as extracellular factors or 

interactions with a variety of cells) with mechanisms to date largely unknown. This 

difference in cytoskeleton organization correlates with different migratory properties 

from the nasal epithelium to the olfactory nerve, and different functionalities and 

expression of growth-promoting molecules. Schwann-like olfactory ensheathing cells 

contact each other and extend processes ahead of the growing axons, whose bundles 

they compartmentalise and ensheath from their emergence in the nasal epithelium. In 

the axonal path towards the olfactory bulb, cells acquire a more flattened shape, 

astrocyte-like, more loosely associated to the others, leading to defasciculation and 

sorting of axons in those expressing the same odorant receptors (74,75). 

We hypothesize that the parallely microgrooved patterned structure of the filaments’ 

surface induces the fusiform cytoskeletal organization here observed on filaments, 

which contrasts with the cell morphology on the flat, isotropous PCL disk surfaces. The 

cell transmembrane proteins responsible for the cytoskeleton development and 

organization are sensitive to the regularly alternating pattern at the nanometer scale. A 

similar effect was reported in (35), where the authors found a dependence of cell shape 

and alignment on the dimensions of electrospun silk fibroin fibres. 

OECs are known to express molecules such as BDNF, GDNF or NGF that regulate their 

migration and stimulate axonal regeneration (75,76). This fact, along with the ability of 

polymeric microfilaments to induce the OEC migratory phenotype, makes one hope that 



this material-cell combination serve as a suitable substrate to enhance axonal growth 

along them.  

The colonization pattern (the number of cells at each position and for each time 

subsequent to cell seeding at one extreme) can be characterized by a cell line density 

function N(x,t) and its changes with x and with t.  To the number of cells seen at a given 

time and a at given position contribute both the rate at which cells fixed at that position 

are proliferating and dying, and the cells which are migrating to that position from other 

neighbouring points, and thus the colonization patterns are due to both the migration 

and the proliferation-and-death of the cells. The images, however, cannot discriminate 

the contributions from both phenomena to the overall pattern, and in order to have a 

qualitative picture of the complex phenomenon the modelling of the process was 

undertaken. 

The colonization of the bars was assimilated to a spatially one-dimensional process, 

with the bar modelled as a line, 0 ≤ x ≤ L, and with a cell line density N(x,t) (number of 

cells per unit length) varying at each point x along the line with time as a consequence 

of migration and of proliferation-and-death; only a net source term (proliferation minus 

death) was considered. If the first is assumed to be a Fickian process (unbiased drift in 

opposite directions, independent of position) and the latter is assumed to be proportional 

to N, then a mass balance delivers equation (3). The diffusivity D and rate parameter k 

obtained by a least-squares fit of the model describe qualitatively the experimental 

behaviour (Figure 8), though discrepancies between the model prediction and the 

experimental colonization patterns are noticeable. Possible sources for the model’s 

mismatches can be roughly classified into two groups. On the one hand, there is the 

uncertainty of the experimental results, which is addressed below. On the other hand, 

one may question and modify the basic hypotheses on which equation (3) relies. The 

constancy assumed for both the diffusivity D and the proliferation-and-death rate k 

represents an important simplification, which delivers a linear model equation and thus 

simplifies its numerical solution; this is why these assumptions are almost universally 

adopted in the literature. A more realistic consideration of the problem would probably 

need to contemplate a dependence of D and/or of k on factors of their local 

environment: for example, clustering of cells might alter nutrient access or metabolite 

diffusion or biochemical interactions apart from those with the material that may affect 

their motility, and thus alter their migrating/proliferating relative probability. This 



would entail a dependence of the diffusivity and the net rate of proliferation-and-death 

on the position coordinate, D = D(x), k = k(x). This alternative wasn’t considered here 

because it would have complicated the model unnecessarily. Another hypothesis of 

equation (3) is the assumed first-order net proliferation-and-death kinetics. Higher order 

kinetics, or more involved relationships, could have been employed instead; however, 

the experimental findings could in our case be consistently accounted for by a first-

order kinetics (see section 3.5). 

Still another hypothesis of equation (3) which can be modified is the independence it 

presupposes for the two cell-fate events of migration and proliferation; this is certainly 

not true, since cells which are migrating do not proliferate-or-die. In order to take this 

fact into account, in equation (4) the total cell density N was split into those cells which 

proliferate-or-die, α·N, and those which migrate, (1-α)·N; for simplicity, the partition 

coefficient of both populations, α, was assumed to be independent of (x,t). Equation (4) 

is a finer treatment of the problem than is equation (3) in that it involves the correlation 

of these cell events; however, from the analytical point of view both equations are the 

same, equation (4) being equivalent to equation (3) with different effective parameters, 

D’ = (1-α)·D and k’ = α·k. Because of this, instead of least-squares optimizing the set of 

the three free parameters (D, k, α) of equation (4) to compare the predicted curves with 

the experimental data, it was decided to study their independent influence on the 

colonization patterns by keeping two of them fixed and changing the third, and doing 

this for each one of the three parameters; values of D and k were changed around their 

optimized values in equation (3). Figure 10 shows the results of the trials. This 

qualitative analysis of the parameters influence can suggest forms of distance 

dependences for D, k and α which would improve the model’s reproduction of the 

experimental behavior; in the absence of more concrete theoretical reasons for those x-

dependences, however, their incorporation into the model would be gratuitous and an 

unnecessary complication.  Still, the above parameter analysis guides a choice of 

constant values for (D, k, α) capable to smooth out some of the more salient 

discrepancies between the experimental data and the model’s prediction. Thus, if high 

values for the net proliferation-and-death rate (k = 1.7·10-4 min-1), partition coefficient 

(α = 0.8) and diffusivity (D = 2.53·10-4 cm2/min) are adopted, the pattern predicted by 

equation (4) shows an improvement over equation (3), in that now the mismatches at the 

shorter and the longer distances have been greatly reduced (see Figure 8). 



Experimentally determined diffusion coefficients for various cell types in a range of 

1.6·10-6 to 1.2·10-5 mm2/s have been reported in the literature (53). In a purely diffusive 

Brownian process the mean squared distance ‹x2› travelled by a particle after a time t is 

related to the diffusion coefficient D by ‹x2› = 2·d·D·t, with d the dimensionality of 

space (77). Putting here d = 1, D = 2.53·10-4 cm2/min and t = 7 days one obtains √‹x2› = 

22.6 mm, startlingly close to the experimentally found approximate value of 24.5 mm 

reached by the cells on the bars at that time (Figure 7). In Fisher’s model (66, 78) the 

front of advance has a constant speed of 2·√(D·k); for the above values of D and k this 

expression gives 6.913·10-5 mm/s, whereas our experimental mean speed of advance 

(from the data of Fig. 7) varies between 6.15·10-5 and 3.09·10-5 mm/s. From Figure 5E 

of reference (35), a value of 1.25·10-5 mm/s can be estimated for OECs migration speed 

on silk fibroin fibres. 

The values of D and k are the summaries in this highly simplified model of the 

phenomena of proliferation-and-death and migration, which determine the colonization 

pattern of our system. A change in the chemistry of the material substrate or in the type 

of material guidance might easily alter the weight of both factors, and thus lead to 

different colonization patterns. It is in considering such possible different combinations 

that the modeling parameters may be of help for characterizing, and then predicting, the 

behaviour of OECs on alternative types of constructs. 

Notwithstanding the semiquantitative insights provided by this analysis, some 

discrepancies between the prediction and the experimental data still persist, maybe due 

to the unavoidable variability of biological behaviour of each sample, and to the nature 

of the one-dimensional approximation of the phenomenon, which  necessitates the 

definition of averaged cell line densities from the photographs, as described in 2.8.1, 

with the unavoidable counting uncertainties, and, moreover, it disregards the fraction of 

cells which has migrated at places out of reach of the microscope’s camera. 

 

5. Conclusions 

Olfactory ensheathing cells are able to migrate on and colonize long filaments and bars 

of polycaprolactone maintaining the phenotype. The cells migrate over the cylindrical 

surface of the filaments giving rise to highly aligned arrays of cells. In order to 



quantitatively assess this process, an experimental set-up forcing cells to spread along 

narrow long PCL bars was implemented, and the most salient features of the pattern of 

invasion could be characterized with the three parameters of a simple reaction-diffusion 

differential model: a coefficient of diffusion (or migration), a rate of net proliferation-

and-death, and a partition of the cell population into a fraction migrating and a fraction 

not migrating. The values obtained from parameter fitting are in the correct orders of 

magnitude, and allow for an analytical insight into the colonization process which 

distinguishes between proliferation-or-death events and migration events. The speed of 

the invasion front could also be experimentally measured and compared with the one 

predicted by the model. For this type of cell, in this one-dimensional guiding 

environment and on this kind of material substrate, one must conclude that the net 

proliferative kinetics slightly overweighs the migrational propensity in determining the 

pattern of invasion.  

 

Acknowledgments. Support of the Spanish Science & Innovation Ministery through 

project MAT2008-06434 is acknowledged. MMP and CMR acknowledge partial 

funding through the “Convenio de Colaboración para la Investigación Básica y 

Traslacional en Medicina Regenerativa” between the Instituto Nacional de Salud Carlos 

III, the Conselleria de Sanidad of the Generalitat Valenciana, and the Foundation Centro 

de Investigación Principe Felipe. JLEI acknowledges the support of the Spanish Science 

& Innovation Ministry through the "Campus de Excelencia Internacional" program with 

the Universitat Politècnica de València. 



References 

1. Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J, Tuszynski MH. Templated 

agarose scaffolds support linear axonal regeneration. Tissue Eng. 2006;12(10):2777-87. 

2. Wei YT, Tian WM, Yu X, Cui FZ, Hou SP, Xu QY, et al. Hyaluronic acid 

hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured 

rat brain. Biomed Mater. 2007;2(3):142-6. 

3. Yao L, Wang S, Cui W, Sherlock R, O'Connell C, Damodaran G, et al. Effect of 

functionalized micropatterned PLGA on guided neurite growth. Acta Biomater. 

2009;5(2):580-8. 

4. Chehrehasa F, Windus LCE, Ekberg JAK, Scott SE, Amaya D, Mackay-Sim A, 

et al. Olfactory glia enhance neonatal axon regeneration. Molecular and Cellular 

Neuroscience. 2010;45(3):277-88. 

5. Chen BK, Knight AM, de Ruiter GC, Spinner RJ, Yaszemski MJ, Currier BL, et 

al. Axon regeneration through scaffold into distal spinal cord after transection. J 

Neurotrauma. 2009;26(10):1759-71. 

6. Goto E, Mukozawa M, Mori H, Hara M. A rolled sheet of collagen gel with 

cultured Schwann cells: model of nerve conduit to enhance neurite growth. J Biosci 

Bioeng. 2010;109(5):512-8. 

7. Lietz M, Dreesmann L, Hoss M, Oberhoffner S, Schlosshauer B. Neuro tissue 

engineering of glial nerve guides and the impact of different cell types. Biomaterials. 

2006;27(8):1425-36. 

8. Radtke C, Sasaki M, Lankford KL, Vogt PM, Kocsis JD. Potential of olfactory 

ensheathing cells for cell-based therapy in spinal cord injury. J Rehabil Res Dev. 

2008;45(1):141-51. 

9. Wei Y, Miao X, Xian M, Zhang C, Liu X, Zhao H, et al. Effects of transplanting 

olfactory ensheathing cells on recovery of olfactory epithelium after olfactory nerve 

transection in rats. Med Sci Monit. 2008;14(10):198-204. 

10. Tennent R, Chuah MI. Ultrastructural study of ensheathing cells in early 

development of olfactory axons. Brain Res Dev Brain Res. 1996;95(1):135-9. 

11. Doucette R. Glial influences on axonal growth in the primary olfactory system. 

Glia. 1990;3(6):433-49. 

12. Field P, Li Y, Raisman G. Ensheathment of the olfactory nerves in the adult rat. 

J Neurocytol. 2003 Mar;32(3):317-24. 



13. Boyd JG, Doucette R, Kawaja MD. Defining the role of olfactory ensheathing 

cells in facilitating axon remyelination following damage to the spinal cord. Faseb J. 

2005;19(7):694-703. 

14. Franklin RJ, Gilson JM, Franceschini IA, Barnett SC. Schwann cell-like 

myelination following transplantation of an olfactory bulb-ensheathing cell line into 

areas of demyelination in the adult CNS. Glia. 1996;17(3):217-24. 

15. Imaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD. Transplanted 

olfactory ensheathing cells remyelinate and enhance axonal conduction in the 

demyelinated dorsal columns of the rat spinal cord. J Neurosci. 1998;18(16):6176-85. 

16. Raisman G. Olfactory ensheathing cells - another miracle cure for spinal cord 

injury? Nat Rev Neurosci. 2001;2(5):369-75. 

17. Ramón-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of 

paraplegic rats and motor axon regeneration in their spinal cords by olfactory 

ensheathing glia. Neuron. 2000;25(2):425-35. 

18. Chuah MI, Choi-Lundberg D, Weston S, Vincent AJ, Chung RS, Vickers JC, et 

al. Olfactory ensheathing cells promote collateral axonal branching in the injured adult 

rat spinal cord. Exp Neurol. 2004;185(1):15-25. 

19. Bellamkonda RV. Peripheral nerve regeneration: an opinion on channels, 

scaffolds and anisotropy. Biomaterials. 2006;27(19):3515-8. 

20. Liu Y, Gong Z, Liu L, Sun H. Combined effect of olfactory ensheathing cell 

transplantation and glial cell line-derived neurotrophic factor (GDNF) intravitreal 

injection on optic nerve injury in rats. Molecular Vision. 2010;16:2903-10. 

21. Zhu Y, Cao L, Su Z, Mu L, Yuan Y, Gao L, et al. Olfactory ensheathing cells: 

attractant of neural progenitor migration to olfactory bulb. Glia. 2010;58(6):716-29. 

22. Basiri M, Doucette R. Sensorimotor cortex aspiration: a model for studying 

Wallerian degeneration-induced glial reactivity along the entire length of a single CNS 

axonal pathway. Brain Res Bull. 2010;81(1):43-52. 

23. Li Y, Carlstedt T, Berthold C-H, Raisman G. Interaction of transplanted 

olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to 

regenerate across the dorsal root entry zone. Experimental Neurology. 2004;188(2):300-

8. 

24. Li Y, Yamamoto M, Raisman G, Choi D, Carlstedt T. An experimental model of 

ventral root repair showing the beneficial effect of transplanting Olfactory Ensheathing 

Cells. Neurosurgery. 2007;60(4):734-41. 



25. Ramón-Cueto A, Plant GW, Avila J, Bunge MB. Long-distance axonal 

regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing 

glia transplants. J Neurosci. 1998;18(10):3803-15. 

26. Gómez-Pinedo U, Vidueira S, Sancho FJ, García-Verdugo JM, Matías-Guiu 

J,Barcia JA. Olfactory ensheathing glia enhances reentry of axons into the brain from 

peripheral nerve grafts bridging the substantia nigra with the striatum. Neurosci Lett. 

2011;494(2):104-8. 

27. Graziadei PP, Levine RR, Graziadei GA. Regeneration of olfactory axons and 

synapse formation in the forebrain after bulbectomy in neonatal mice. Proc Natl Acad 

Sci USA. 1978;75(10):5230-4. 

28. Cao L, Liu L, Chen ZY, Wang LM, Ye JL, Qiu HY, et al. Olfactory ensheathing 

cells genetically modified to secrete GDNF to promote spinal cord repair. Brain. 

2004;127(3):535-49. 

29. Cao L, Su Z, Zhou Q, Lv B, Liu X, Jiao L, et al. Glial cell line-derived 

neurotrophic factor promotes olfactory ensheathing cells migration. Glia. 

2006;54(6):536-44. 

30. Woodhall E, West AK, Chuah MI. Cultured olfactory ensheathing cells express 

nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived 

neurotrophic factor and their receptors. Brain Res Mol Brain Res. 2001;88(1-2):203-13. 

31. Cao L, Zhu YL, Su Z, Lv B, Huang Z, Mu L, et al. Olfactory ensheathing cells 

promote migration of Schwann cells by secreted nerve growth factor. Glia. 

2007;55(9):897-904. 

32. Doucette R. Immunohistochemical localization of laminin, fibronectin and 

collagen type IV in the nerve fiber layer of the olfactory bulb. Int J Dev Neurosci. 

1996;14(7-8):945-59. 

33. Franceschini IA, Barnett SC. Low-affinity NGF-receptor and E-N-CAM 

expression define two types of olfactory nerve ensheathing cells that share a common 

lineage. Dev Biol. 1996;173(1):327-43. 

34. Runyan SA, Phelps PE. Mouse olfactory ensheathing glia enhance axon 

outgrowth on a myelin substrate in vitro. Exp Neurol. 2009;216(1):95-104. 

35. Shen Y, Qian Y, Zhang H, Zuo B, Lu Z, Fan Z, et al. Guidance of olfactory 

ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell 

Transplant. 2010;19(2):147-57. 



36. Li B-C, Jiao S-S, Xu C, You H, Chen J-M. PLGA conduit seeded with olfactory 

ensheathing cells for bridging sciatic nerve defect of rats. J Biomed Mater Res-A. 

2010;94(3):769-80. 

37. Clements IP, Kim Y-t, English AW, Lu X, Chung A, Bellamkonda RV. Thin-

film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials. 

2009;30(23-24):3834-46. 

38. Martín-López E, Nieto-Díaz M, Nieto-Sampedro M. Differential adhesiveness 

and neurite-promoting activity for neural cells of chitosan, gelatin, and poly-L-lysine 

films. J Biomater Appl. 2012;26(7):791-809. 

39. Cai J, Peng X, Nelson KD, Eberhart R, Smith GM. Permeable guidance channels 

containing microfilament scaffolds enhance axon growth and maturation. J Biomed 

Mater Res A. 2005;75(2):374-86. 

40. Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN. 

Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J 

Biomed Mater Res-A. 2006;77(2):242-52. 

41. Tang ZP, Liu N, Li ZW, Xie XW, Chen Y, Shi YH, et al. In vitro evaluation of 

the compatibility of a novel collagen-heparan sulfate biological scaffold with olfactory 

ensheathing cells. Chin Med J (Engl). 2010;123(10):1299-304. 

42. Wang B, Zhao Y, Lin H, Chen B, Zhang J, Zhang J, et al. Phenotypical analysis 

of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neurosci Lett. 

2006;401(1-2):65-70. 

43. Guarnieri D, De Capua A, Ventre M, Borzacchiello A, Pedone C, Marasco D, et 

al. Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell 

migration parameters. Acta Biomater. 2010;6(7):2532-9. 

44. Ngo TT, Waggoner PJ, Romero AA, Nelson KD, Eberhart RC, Smith GM. 

Poly(L-Lactide) microfilaments enhance peripheral nerve regeneration across extended 

nerve lesions. J Neurosci Res. 2003;72(2):227-38. 

45. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, et al. 

Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-

caprolactone and a collagen/poly-e-caprolactone blend. Biomaterials. 

2007;28(19):3012-25. 

46. Lim SH, Liu XY, Song H, Yarema KJ, Mao HQ. The effect of nanofiber-guided 

cell alignment on the preferential differentiation of neural stem cells. Biomaterials. 

2010;31(34):9031-9. 



47. Wong DY, Hollister SJ, Krebsbach PH, Nosrat C. Poly(epsilon-caprolactone) 

and poly (L-lactic-co-glycolic acid) degradable polymer sponges attenuate astrocyte 

response and lesion growth in acute traumatic brain injury. Tissue Eng. 

2007;13(10):2515-23. 

48. Wong DY, Krebsbach PH, Hollister SJ. Brain cortex regeneration affected by 

scaffold architectures. J Neurosurg. 2008;109(4):715-22. 

49. Wong DY, Leveque JC, Brumblay H, Krebsbach PH, Hollister SJ, Lamarca F. 

Macro-architectures in spinal cord scaffold implants influence regeneration. J 

Neurotrauma. 2008;25(8):1027-37. 

50. Pierucci A, de Duek EA, de Oliveira AL. Peripheral nerve regeneration through 

biodegradable conduits prepared using solvent evaporation. Tissue Eng Part A. 

2008;14(5):595-606. 

51. Vleggeert-Lankamp CL, de Ruiter GC, Wolfs JF, Pego AP, van den Berg RJ, 

Feirabend HK, et al. Pores in synthetic nerve conduits are beneficial to regeneration. J 

Biomed Mater Res-A. 2007;80(4):965-82. 

52. Cai AQ, Landman KA, Hughes BD. Multi-scale modeling of a wound-healing 

cell migration assay. J Theor Biol. 2007;245(3):576-94. 

53. Maini PK, McElwain DL, Leavesley DI. Traveling wave model to interpret a 

wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng. 

2004;10(3-4):475-82. 

54. Dokukina IV, Gracheva ME. A Model of Fibroblast Motility on Substrates with 

Different Rigidities. Biophys J. 2010;98(12):2794-803. 

55. Schneider IC, Haugh JM. Spatial Analysis of 3´ Phosphoinositide Signaling in 

Living Fibroblasts: II. Parameter Estimates for Individual Cells from Experiments. 

Biophys J. 2004;86(1):599-608. 

56. Marcy Y, Prost J, Carlier M-F, Sykes Cc. Forces generated during actin-based 

propulsion: A direct measurement by micromanipulation. PNAS. 2004;101(16):5992-7. 

57. Mogilner A, Oster G. Polymer motors: pushing out the front and pulling up the 

back. Curr Biol. 2003;13(18):R721-33. 

58. Cheng G, Youssef BB, Markenscoff P, Zygourakis K. Cell population dynamics 

modulate the rates of tissue growth processes. Biophys J. 2006;90(3):713-24. 

59. Galbusera F, Cioffi M, Raimondi MT, Pietrabissa R. Computational modeling of 

combined cell population dynamics and oxygen transport in engineered tissue subject to 

interstitial perfusion. Comput Methods Biomech Biomed Engin. 2007;10(4):279-87. 



60. Hatzikirou H, Deutsch A. Cellular automata as microscopic models of cell 

migration in heterogeneous environments. Curr Top Dev Biol. 2008;81:401-34. 

61. Reffay M, Petitjean L, Coscoy S, Grasland-Mongrain E, Amblard F, Buguin A, 

et al. Orientation and polarity in collectively migrating cell structures: statics and 

dynamics. Biophys J. 2011;100(11):2566-75. 

62. Chung CA, Yang CW, Chen CW. Analysis of cell growth and diffusion in a 

scaffold for cartilage tissue engineering. Biotechnol Bioeng. 2006;94(6):1138-46. 

63. Dunn JC, Chan WY, Cristini V, Kim JS, Lowengrub J, Singh S, et al. Analysis 

of cell growth in three-dimensional scaffolds. Tissue Eng. 2006;12(4):705-16. 

64. Harms BD, Bassi GM, Horwitz AR, Lauffenburger DA. Directional persistence 

of EGF-induced cell migration is associated with stabilization of lamellipodial 

protrusions. Biophys J. 2005;88(2):1479-88. 

65. Lemon G, King J. Travelling-wave behaviour in a multiphase model of a 

population of cells in an artificial scaffold. J Math Biol. 2007;55(4):449-80. 

66. Fisher R. The wave of advance of advantageous genes. Ann Eugenics. 

1937;7:355-69. 

67. Graner Fo, Glazier JA. Simulation of biological cell sorting using a two-

dimensional extended Potts model. Phys Rev Lett. 1992;69(13):2013-6. 

68. Ouaknin GY, Bar-Yoseph PZ. Stochastic Collective Movement of cells and 

fingering morphology: no maverick cells. Biophys J. 2009;97(7):1811-21. 

69. Savill NJ, Hogeweg P. Modelling morphogenesis: from single cells to crawling 

slugs. J Theor Biol. 1997;184(3):229-35. 

70. Brockes JP, Fields KL, Raff MC. Studies on cultured rat Schwann cells. I. 

Establishment of purified populations from cultures of peripheral nerve. Brain Res 

1979;165:105–118. 

71. Selinummi J, Seppala J, Yli-Harja O, Puhakka JA. Software for quantification of 

labeled bacteria from digital microscope images by automated image analysis. 

Biotechniques. 2005;39(6):859-63. 

72. Gupta D, Venugopal J, Prabhakaran MP, Dev VR, Low S, Choon AT, et al. 

Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for 

neural tissue engineering. Acta Biomater. 2009;5(7):2560-9. 

73. Nisbet DR, Yu LM, Zahir T, Forsythe JS, Shoichet MS. Characterization of 

neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: 



evaluating their potential in neural tissue engineering. J Biomater Sci Polym Ed. 

2008;19(5):623-34. 

74. Huang ZH, Wang Y, Cao L, Su ZD, Zhu YL, Chen YZ, Yuan XB, He C. Migratory 

properties of cultured olfactory ensheathing cells by single-cell migration assay. Cell 

Res 2008;18:479-490. 

75. Ekberg JAK, Amaya D, Mackay-Sim A, St. John JA. The migratory of olfactory 

ensheathing cells during development and regeneration. Neurosignals published ahead 

of print March 27, 2012, doi: 10.1159/000330895. 

76. Ruitenberg MJ, Vukovic J, Sarich J, Busfield SJ, Plant GW. Olfactory ensheathing 

cells: characteristics, genetic engineering, and therapeutic potential. J Neurotrauma 

2006;23:468-78  

77. Chaikin PM, Lubensky TC. Principles of condensed matter physics. Cambridge 

University Press, Cambridge, UK, 1995. Page 371 

78. Simpon ML, KA; Hughes, BD. Cell invasion with proliferation mechanisms 

motivated by time-lapse data. Physica A. 2010;389:3779-90. 

 

 


