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STRONGLY CONTINUOUS SEMIGROUPS ON SOME FRECHET
SPACES

LEONHARD FRERICK, ENRIQUE JORDA, THOMAS KALMES,
AND JOCHEN WENGENROTH

ABSTRACT. We prove that for a strongly continuous semigroup 7' on the
Fréchet space w of all scalar sequences, its generator is a continuous linear
operator A € L(w) and that, for all z € w and t > 0, the series exp(tA)(z) =

X 4k

kz %Ak(:c) converges to T¢(x). This solves a problem posed by Conejero.
=0

Moreover, we improve recent results of Albanese, Bonet, and Ricker about
semigroups on strict projective limits of Banach spaces.

1. INTRODUCTION
In [Con07] Conejero asked whether on w = K" every strongly continuous semi-
(o)
group T is of the form Ty(z) = Y tk—k!Ak(x) for a continuous linear operator A on
k=0

w. This question arose in the context of hypercyclicity: It is shown in [Con07,
Theorem 2.7] that no such semigroup on w can be hypercyclic. Although it has
been proved by Shkarin in [Shk11] that there are not even supercyclic strongly con-
tinuous semigroups on w, the question of Conejero remained open. Only a partial
answer is contained in [ABR10].

The definitions and most basic results for semigroups on locally convex spaces
X are the same as for Banach spaces, we refer to [Kom64, Kom68, Ouc73, Yos65].
A strongly continuous semigroup 7' on X is thus a morphism from the semigroup
([0,00),4) to that of continuous linear operators (L(X),o) such that all orbits
t — Ti(x) are continuous. If the convergence T; — idx for ¢ — 0 is uniorm on
bounded subsets of X, the semigroup is called uniformly continuous.

T is called locally equicontinuous if {T'(s) : 0 < s < t} is equicontinuous for
every t > 0, i.e., for every continuous seminorm p on X there is another continuous
seminorm ¢ on X such that p(Ts(z)) < ¢(z) for all x € X and 0 < s < ¢. On
barrelled spaces, every strongly continuous semigroup is already locally equicontin-
uous [Kom68, Proposition 1.1]. The generator (A, D(A)) of a strongly continuous
semigroup on a locally convex space is defined as in the Banach space setting as
the derivative of the orbit at 0.

Although under rather weak assumptions (sequential completeness to have a
vector valued intergal and barrelledness to apply the uniform boundedness princi-
ple) many results from the Banach space setting carry over to strongly continuous
semigroups of locally convex spaces there are some crucial differences because the
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exponential exp(A)(z) = Z A¥(z)/k! need not converge for continuous linear oper-

ators. Therefore, one does not always have the familar representation T; = exp(tA)
for semigroups with continuous generators:

Example 1. Consider °°(R) with its usual topology and the strongly continuous
semigroup defined by Ty(f)(z) = f(x +t). Then D(A) = €°(R) and Af = f'.
For any f which is flat at the origin but does not vanish on (0,00) the series

exp(tA)(f) = kz %f(k) cannot converge to T;(f) because for ¢ > 0 with f(¢) # 0
=0

we have
() = #Z N

Using E. Borel’s theorem, that a smooth functlon can have any given sequence of
derivatives at 0, one also gets f € €°°(R) such that the exonential series diverges.

Answering Conjero’s question, we will prove that such phenomena do not occur
on the Fréchet space w.

2. SEMIGROUPS ON STRICT PROJECTIVE LIMITS

Let X,, be a sequence of Banach spaces, 7, : X,, — X, norm decreasing
operators for n < m with 7}, o m* = 7} as well as 7, = idx,,, and

—{xnneNGHX " (Tm) = Ty, for all n < m}
neN

its projective limit. Every Fréchet space has such a representation, and X is called
a quojection if there is a representaion with surjective (hence open) 7%. Count-
able products of Banach spaces are of this form, in particular spaces like LY ()
of locally p-integrable functions or €™ (Q2) for open sets 2 C R but there are
quojections which are not isomorphic to a product.

If X has a strict representation as above then, by a simple induction, 7, : X —
Xn, (Tn)nen — T, are also surjective. Applying this observation to the spaces
{2 (X,,) of bounded functions I — X,, one obtains that m,, lifts bounded sets, that
is, there are bounded sets D,, C X such that 7, (D,,) contains the unit ball B,, of
the Banach space X,,. This lifting property was first proved in [DZ84].

The following theorem improves results of Albanese, Bonet, and Ricker [ABR10]
who showed its first part under restrictive additional assumptions.

Theorem 2. Let X be a quojection.

(1) If T is a uniformly continuous semigroup on X then its generator is continuous
and everywhere defined, and for all x € X andt > 0 we have

Ty(w) = exp(td)(@) = 3 =AM ().
(2) A€ L(X) generates a strongly continuous semigroup if and only if

VneNImeNVEeNy: mn(z) =0 = m,(A*(z)) = 0.

Then the generated semigroup is even uniformly continuous.
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Proof. As X is barrelled the semigroup is locally equicontinuous, so that, for every
to > 0 and n € N, there are m > n and ¢ > 0 such that for all € X and ¢ € [0, ¢(]

170 (T2 ()l < el mm (@) [[m-

In particular, we have

(¥) mm(z) =0 = m,(Ty(z)) =0 for all ¢ < .
As in the case of semigroups on Banach spaces it is easily seen that the Cesaro
means

Ci(z) = %/0 Ts(y)ds

belong to D(A), A(Ci(y)) = +(Ti(y) — y), and Ci(y) — y holds uniformly on
bounded sets since T is uniformly continuous. Moreover, C; satisfy the same con-
tinuity estimates as T;. Therefore, the following operators are well-defined and
continuous for ¢ € (0, to]:

Ci: X — Xp i (y) = m(Cr(y)).
Since ,, lifts bounded sets, every z in the unit ball B,, of X,, can be represented
as z = my(y) with y € D,, and as C; — id uniformly on D,, we obtain that C,
converges uniformly on B,, to 7. Since the set of surjective operators is open in
L(X,, X,,) we conclude that C, is surjective for some sufficently small ¢ > 0.

If now ng € N is given we take n > ng with m,(z) = 0 = m,,(T3(2)) = 0 and
then m > n again with (x) for tg = 1, say. Given z € X we choose y € X with
T (x) = Ce(mm(y)) = mn(Ce(y)) so that m, (Th(x)) = 7p, (Th(Ct(y))) for small h.
Therefore,

oo (§(00) = ) = 7 () - ) )

converges to T, (+(T3(y) — y)).

This shows that the difference quotients satisfy the Cauchy condition so that the
completeness of X implies that A(z) is defined for every z € X. Moreover, A is
continuous either because of the closed graph theorem or because of m,,(A(x)) =
Tno (1(T¢(y) — y)) together with the fact that y can be chosen with [y, (y)| <
&7y (x)]|,, using that C; is open.

Since A¥(z) is the kth derivative of the orbit ¢ — Tj(x) at 0 we obtain from ()
that A satisfies the condition in the second part of the theorem (this argument uses
only local equicontinuity and is thus true for strongly continuous semigroups).

We will now show that under the condition of (2) the exponential series

o

exp(tA) (@) = 3 = Ak (a)

converges absolutely and uniformly on bounded sets. Since then exp(tA) is a uni-
formly continuous semigroup with generator A we have proved both parts of the
theorem because a locally equicontinuous semigroup is uniquely determined by its
generator.

We define linear maps Ay = 77, and

Ay X — X, T () > T (A% (2))

so that Ay o7, = m, o A* andﬁkﬂowm:flkowmo/l.
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As above we take a bounded set D,,, C X with B,, C m,,,(D,,). The continuity
of A then implies 7, o A(D,,) C AB,, for some A > 0. We now claim that

||AkHL(Xm,Xn) < AF

for all k € Ny. For k = 0 this holds because Ay = 7y, is norm decreasing. If
the claim is true for some k € Ny and y € B,, is given we choose z € D,, with
mm(z) = y and obtain

A1)l = [1Aks1 © T (@)l = [ Ar (T (A@))) 0 < A (A()) [l < NH
Finally, we obtain |7, (A% (x))|ln = [|Ax(Tm @) |ln < No||7m ()| which clearly

implies the absolute convergence of the exponential series. (I

The very strong form of the convergence of the exponential series shown at the
end of the proof need not hold in arbitrary Fréchet spaces. The shift T;(f)(z) =
f(z +t) on the space of entire functions is generated by A(f) = f’ and is of the
form exp(tA) because of the Taylor representation of entire functions. However,
one cannot estimate || A*(f)|ln < A f]lm-

Let us remark that part of the implication in (2), namely that a strongly contiu-
ous semigroup whose generator is everywhere defined is uniformly continuous, holds
for all barrelled spaces. This follows easily from the Banach-Steinhaus theorem for
{(Ty, —id)/h : h € [0,1]}. Moreover, the equicontinuity of this family characterizes
semigroups with a continuous generator.

The countability of the projective spectrum was only used to obtain barrelledness
and that m,, : X — X,, lifts bounded sets. The theorem is thus true for non-
countable strict projective limits of Banach spaces which are barrelled and satisfy
this lifting property. In particular, it holds for arbitrary products of Banach spaces.
Moreover, as in [ABR10, proposition 3.4] it is easy to extend the results to so-called
prequojections X where only the bidual X has a strict representation.

Since strongly continuous, locally equicontinuous semigroups on Montel spaces
are easily seen to be uniformly continuous we immediately obtain the answer to
Conejero’s question:

Corollary 3. Every strongly continuous semigroup on K! has a continuous gener-
ator A and is of the form exp(tA).

Example 4. Counsider the backward shift A : w — w,  + (z2,x3,...). Theorem
2 implies that A does not generate a strongly continuous semigroup on w. On the
other hand, the operator B(z) = (72,0, 24,0, 76,0, ...) satisfies B> = 0 as well as
(A — B)? = 0 so that both operators do generate strongly continuous semigroups
on w, given by T'(t) = id+¢B and S(t) = id + t(A — B), respectively. It is thus not
only the “shape” of the matrix determined by the operator which decides whether
it generates a semigroup.

Let us finally remark that the second part of theorem 2 implies that, if a con-
tinuous operator A on a quojection generates a uniformly continuous semigroup,
then the same is true for A%2. This does not hold for the Fréchet space € (R):
A(f) = f' generates the shift semigroup but B(f) = A%(f) = f" does not generate
a strongly continuous semigroup on ¥*°(R) :

The Gauf-Weierstra§ semigroup 7" on .%(R) given by the convolution with the
GauB kernel k(t,x) = (mt)~'/? exp(—2?/t) is uniformly continuous (which one can
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check by Fourier transformation) and has the generator B=3B | ). If B would
generate a semigroup T on €°°(R) we obtain for fixed f € (R) and ¢ > 0 that
©(s) = Ty o Ty_s(f) has vanishing derivative so that T;(f) = ¢(t) = ¢(0) = Ti(f).
But this means that the convolution with the Gaufl kernel can be continuously
extended from . (R) to €°°(R) which is not true.
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