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A parallel implementation of Davidson methods for large-scale
eigenvalue problems in SLEPc

ELOY ROMERO and JOSE E. ROMAN, Universitat Politècnica de València

In the context of large-scale eigenvalue problems, methods of Davidson type such as Jacobi-Davidson can be
competitive with respect to other types of algorithms, especially in some particularly difficult situations such
as computing interior eigenvalues or when matrix factorization is prohibitive or highly inefficient. However,
these types of methods are not generally available in the form of high-quality parallel implementations,
especially for the case of non-Hermitian eigenproblems. We present our implementation of various Davidson-
type methods in SLEPc, the Scalable Library for Eigenvalue Problem Computations. The solvers incorporate
many algorithmic variants for subspace expansion and extraction, and cover a wide range of eigenproblems
including standard and generalized, Hermitian and non-Hermitian, with either real or complex arithmetic.
We provide performance results on a large battery of test problems.
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1. INTRODUCTION
SLEPc, the Scalable Library for Eigenvalue Problem Computations [Hernandez et al.
2005], is a parallel library that provides state-of-the-art algorithms and tools to solve
large-scale eigenvalue problems, including linear eigenproblems as well as other re-
lated problems like singular value decompositions and quadratic eigenproblems. These
problems appear frequently in different scientific disciplines, like for instance nuclear
engineering, electromagnetics and electronic structure calculations, and demand large
computational effort. In this context, it is necessary to make use of high-end comput-
ing platforms, such as clusters of computers, and, ever more, emerging hybrid archi-
tectures that combine multi-cores and accelerators.

In this paper we focus on the (linear) generalized eigenvalue problem, that is, the
computation of eigenvalue-eigenvector pairs (λi,xi) satisfying the equation Axi =
λiBxi, where A and B are square matrices, either real or complex. The case B = I is
often referred to as the standard eigenvalue problem. We will devote especial attention
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11:2 E. Romero and J. E. Roman

Table I. Summary of parallel libraries providing basic methods (subspace iteration, RQI
and LOBPCG) as well as Davidson-type solvers, with eigenproblem types supported by
each method (HEP: standard Hermitian, GHEP: generalized Hermitian, GNHEP: gener-
alized non-Hermitian).

Libraries
PRIMME Anasazi SLEPc BLOPEX

M
et

ho
ds

Subspace Iteration HEP GNHEP
Rayleigh Quotient Iteration HEP GNHEP

LOBPCG HEP GHEP GHEP
Generalized Davidson HEP GHEP GNHEP

Jacobi-Davidson HEP GHEP? GNHEP
?Anasazi requires the user to implement the Jacobi-Davidson correction equation.

to symmetric (Hermitian) problems, where both A and B are symmetric (Hermitian)
and B is positive (semi-)definite. Singular matrix pairs (A,B), that is, when A and B
have a common null space, are not considered in this work. We are concerned with
applications where A and B are large and sparse, and only a small percentage of the
eigenvalues are required. The methods for this are iterative in nature, and compute
approximate eigenpairs (θi, x̃i) such that the residual ‖Ax̃i − θiBx̃i‖ is bounded by a
given tolerance.

Among the methods available for addressing the above problem we can find: (i) clas-
sical methods such as the power iteration, subspace iteration and Rayleigh quotient
iteration (RQI); (ii) Krylov methods such as Arnoldi, Lanczos and Krylov-Schur, that
are particularly suitable for computing extreme eigenvalues; (iii) preconditioned con-
jugate gradient methods such as LOBPCG [Knyazev 2001], that is efficient and robust
for generalized symmetric eigenproblems; and (iv) Davidson methods such as General-
ized Davidson and Jacobi-Davidson, that prove being very efficient compared with the
rest of the methods when computing eigenvalues located in the interior of the spec-
trum and/or when the problem is generalized (B 6= I). See [Bai et al. 2000; Stewart
2001; van der Vorst 2002] for a more detailed overview of these methods.

Krylov methods are very popular for computing eigenvalues in the periphery of the
spectrum, and are available in the form of parallel implementations such as ARPACK
[Lehoucq et al. 1998]. The main drawback of these methods is that they often require
to implicitly handle a matrix inverse, e.g., when computing interior eigenvalues with
the shift-and-invert technique [Ericsson and Ruhe 1980]. This implies solving linear
systems at each eigensolver iteration, and for this most often direct solvers must be
employed to guarantee robustness. Methods belonging to the Davidson family try to
overcome this limitation by relaxing the precision with which these inverses are ap-
proximated (in some cases with a simple preconditioner). As opposed to Krylov meth-
ods, general-purpose Davidson solvers are still difficult to find in freely available par-
allel software, especially with capabilities for non-symmetric and/or generalized prob-
lems, despite there being numerous publications developing the methods for different
problem types (as §2 summarizes) and even describing parallel implementations tai-
lored for certain applications [Heuveline et al. 1997; Nool and van der Ploeg 2000;
Arbenz et al. 2006; Genseberger 2010; Hwang et al. 2010; Ferronato et al. 2012].

The main parallel libraries that provide eigensolvers similar to ours are summarized
in Table I: PRIMME [Stathopoulos and McCombs 2010], that includes many meth-
ods that fit in the Generalized Davidson scheme, although currently without support
for generalized problems; Anasazi [Baker et al. 2009], that includes a customizable
block Generalized Davidson (that with a little coding can behave like a basic Jacobi-
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Davidson) and LOBPCG; and BLOPEX1 [Knyazev et al. 2007], that provides a refer-
ence implementation of LOBPCG. As Table I shows, none of the mentioned libraries
support non-Hermitian problems.

This paper presents our developments in SLEPc in order to provide state-of-the-art,
robust, high performance Davidson solvers supporting Hermitian and non-Hermitian
eigenproblems, both standard and generalized, with either real or complex arithmetic.

In §2 we briefly summarize the theoretical background of the implemented Davidson
methods and their variants. Section 3 starts with an overview of SLEPc and its foun-
dation PETSc (Portable, Extensible Toolkit for Scientific Computation [Balay et al.
1997]), followed by an outline on the design of the Davidson solvers and a descrip-
tion of their user interfaces. Then in §4 we discuss how to implement some non-trivial
aspects described in previous sections. In §5 we present sequential and parallel perfor-
mance results of our implementation, with a number of test problems as well as a few
real applications. Finally, we end with the conclusions.

2. DAVIDSON-TYPE FRAMEWORK
We present a review of the Davidson methods and related techniques that we have
implemented in SLEPc. For an extensive bibliography about Davidson methods see
[Bai et al. 2000; van der Vorst 2002; 2004; Hochstenbach and Notay 2006]. First we
describe the main steps of this type of methods, and later subsections detail the vari-
ants of each step that are available in the implementation. Unfortunately, often there
is no mathematical proof that indicates the best way of carrying out each step in the
general case, that is, the optimal configuration is problem dependent. For that reason,
it is customary that libraries offering Davidson methods provide several variants for
each step and mechanisms to customize the execution.

2.1. General Description of the Davidson-type Methods
Subspace methods seek the eigenvectors in a low-dimensional search subspace, which
is updated at every iteration. Davidson-type methods are a distinguished subclass of
the subspace methods that expand the search subspace V in the directions of the com-
puted corrections to the most wanted eigenvectors in the search subspace. In fact a
Davidson variant is characterized by how to select the wanted eigenpairs in the search
subspace (extraction) and how to compute the corrections (expansion). The convergence
of the eigenpairs is tracked, for instance monitoring the norm of the residual associ-
ated with the approximate eigenpair, ri, or its correction, di. When an eigenpair is
considered converged it is removed from the search subspace and a deflation tech-
nique is used in order to prevent the convergence of the same pair afterward. When
the dimension of the search subspace V grows up to a certain limit mmax, it is reset
to an mmin-dimensional subspace V ′ ⊂ V keeping as much useful spectral informa-
tion as possible (restart). Algorithm 1 provides a general scheme of a Davidson-type
method. We next discuss some general issues, and postpone the details of each step
until later subsections, where the theoretical background of the different alternatives
is introduced.

From the numerical point of view, working with an orthogonal basis of the search
subspace V is desirable to control numerical error and also to maintain the whole set
of vectors linearly independent after the addition of the correction vectors D. The ex-
traction of approximations is based on a projection on this subspace, and it is also
desirable to take into account any kind of structure (e.g., symmetry) present in the

1LOBPCG is actually not a Davidson-type method, but it has a similar scheme, and GD with restarting
strategy GD(b, 3b)+b is mathematically equivalent to LOBPCG with block size b, see §2.5 and [Stathopoulos
and McCombs 2010].
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11:4 E. Romero and J. E. Roman

ALGORITHM 1: Basic Davidson-type Method
Input: matrices A and B of size n, number of wanted eigenpairs p, block size s, initial

dimension of V m0, maximum dimension of V mmax, restart with mmin vectors
Output: resulting eigenpairs (Θ, X)

1 Choose a starting subspace basis V of m0 vectors
2 Set m← m0, l← 0, Θ← [ ] and X ← [ ]
3 while l < p do
4 Extraction: Compute the Ritz pairs (Θ̃, X̃) from the projected eigenproblem and sort them
5 Test convergence, store the k converged pairs in (Θ, X) and remove them from (Θ̃, X̃);

set m← m− k and l← l + k
6 if m ≥ mmax then Restart V with an mmin-dimensional subspace basis and set m← mmin

7 Expansion: Compute the correction D of the first s pairs (Θ̃, X̃), and add them to V ;
set m← m+ s

8 end

ALGORITHM 2: Generalized Hermitian Davidson-type Method with B-orthogonalization
Input: matrices A and B of size n, preconditioner K, number of wanted eigenpairs p, block size

s, initial dimension of V m0, maximum size of V mmax, restart with mmin vectors
Output: resulting eigenpairs (Θ, X)

1 Choose a starting subspace basis V of m0 vectors, such that V ∗BV = Im0

2 Set m← m0, l← 0, Θ← [ ] and X ← [ ]
3 while l < p do
4 Extraction: Compute the Ritz pairs (Θ̃, X̃) by means of the Rayleigh-Ritz method, that is,

solve V ∗AV U = UΘ̃, where U∗U = Im and X̃ = V U

5 Sort the Ritz pairs (Θ̃, X̃)
6 Obtain the number of converged pairs k
7 if k > 0 then
8 Add eigenvalues θ̃1, . . . , θ̃k to Θ

9 Set X ← [X X̃1:k] and V ← X̃k+1:m

10 Set m← m− k and l← l + k
11 end
12 if m ≥ mmax then
13 Choose an m×mmin-matrix M to reset V , V ← VM , such that M∗M = Immin

14 Update (Θ̃, X̃) and U so that V ∗AV U = UΘ̃, where U∗U = Immin and X̃ = V U
15 Set m← mmin

16 end
17 Expansion: Compute the correction D of the first s pairs (Θ̃, X̃)
18 V ← [V B-orthonormalize([X V ], D)] and set m← m+ s
19 end

original problem in such a way that this structure is preserved in the projected prob-
lem. This has implications on how the Davidson method is realized. Therefore, the
general scheme is specialized depending on the properties of the eigenproblem.

For instance, in a standard Hermitian or generalized Hermitian-definite problem
(with B positive definite) we know that eigenvectors are B-orthogonal, so keeping a
B-orthogonal basis V will result in a standard Hermitian problem coming out from
the projection, if the Rayleigh-Ritz procedure is used. The deflation is performed by B-
orthogonalizing the new vectors D against the previously converged eigenvectors X.
This variant is detailed in Algorithm 2.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 11, Publication date: January 1111.
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ALGORITHM 3: Generalized non-Hermitian Davidson-type Method
Input: matrices A and B of size n, preconditioner K, number of wanted eigenpairs p, block size

s, initial dimension of V m0, maximum size of V mmax, restart with mmin vectors
Output: resulting eigenvalues Θ and Schur vectors X

1 Choose a starting subspace basis V of m0 vectors, such that V ∗V = Im0

2 Compute W corresponding to V , such that W ∗W = Im0

3 Set m← m0, l← 0, Θ← [ ], X ← [ ] and Y ← [ ]
4 while l < p do
5 Extraction: Compute the Schur pairs (Θ̃, X̃), from the Generalized Schur decomposition

W ∗AV = ZSU∗ and W ∗BV = ZTU∗, where X̃ = V U and θ̃i = si,i/ti,i

6 Sort the Schur pairs (Θ̃, X̃)
7 Obtain the number of converged pairs k
8 if k > 0 then
9 Add eigenvalues θ̃1, . . . , θ̃k to Θ

10 Set X ← [X X̃1:k], Y ← [Y WZ1:k]
11 Set V ← V Uk+1:m and W ← [W WZk+1:m]
12 Set m← m− k and l← l + k
13 end
14 if m ≥ mmax then
15 Choose an m×mmin-matrix M to reset V , V ← VM , such that M∗M = Immin

16 Update (Θ̃, X̃), U and Z so that W ∗AV = ZSU∗ and W ∗BV = ZTU∗, where X̃ = V U

and θ̃i = si,i/ti,i
17 Set m← mmin

18 end
19 Expansion: Compute the correction D of the first s pairs (Θ̃, X̃)
20 Set V ← [V orthonormalize([X V ], D)]

21 Compute W 0 corresponding to Vm:m+s and set W ← [W orthonormalize([Y W ],W 0)]
22 Set m← m+ s
23 end

Algorithm 2 returns eigenvectors with unit B-norm. However, if B is numerically
singular, i.e., |x∗Bx| is close to zero for some eigenvector x (that is, an eigenvector cor-
responding to an infinite eigenvalue of the matrix pair (A,B)), enforcing B-normality
may result in breakdown if a Ritz vector converges to x. If α ∈ R can be found such
that A − αB is nonsingular, a straightforward solution would be to run Algorithm 2
on the matrix pair (A − βB,A − αB), that has the same eigenvectors as the original
problem and the eigenvalues

µ̃i =
θ̃i − β
θ̃i − α

. (1)

When the problem is not Hermitian, the implemented Davidson-type method works
completely with generalized Schur decompositions (see Algorithm 3), that for a matrix
pair (Â, B̂) is the decomposition ÂU = ZS and B̂U = ZT , where U and Z are unitary
matrices and S and T are upper triangular matrices.

The eigenvectors of non-Hermitian eigenproblems do not have to form an orthonor-
mal set (nor B-orthonormal), so an algorithm that operates directly with them would
be dangerous from the numerical point of view. In contrast, Schur decompositions are
numerically more stable because of the use of orthonormal bases of invariant sub-
spaces, which also simplifies the task of deflation. Schur forms have the additional
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11:6 E. Romero and J. E. Roman

benefit of using quotients si,i/ti,i for representing the eigenvalues, thus handling infi-
nite eigenvalues more naturally with ti,i = 0.

Moreover, an additional advantage for the case of real non-symmetric eigenproblems
is the use of real Schur forms, which work with real orthogonal bases of the invariant
subspaces associated with the eigenvectors, that may be complex, hence avoiding com-
plex arithmetic completely. In this form S and T are upper quasi-triangular, possibly
with 2× 2 diagonal blocks representing complex conjugate pairs of eigenvalues.

In [Fokkema et al. 1998] a Jacobi-Davidson method using generalized Schur forms is
introduced (called JDQZ), whose main difference with respect to the version presented
in this work is that vectors used for deflation of the search subspace (see §2.4) must
be necessarily included in the projectors in the correction equation (see §2.3). In our
implementation this is optional and, if necessary, deflation is completed when a new
vector is added to the bases V and W .

Consider the partial generalized Schur decomposition AX = Y S and BX = Y T
corresponding to already converged eigenpairs. The method considers that the Schur
tuple (x̃, ỹ, (α, β)), which comes from the Schur form of the projected problem in the
extraction, has converged and must be appended to the decomposition, that is,

A [X x̃] = [Y ỹ]

[
S s
0 σ

]
and B [X x̃] = [Y ỹ]

[
T t
0 τ

]
. (2)

So the only condition that the new tuple should satisfy is X∗x̃ = Y ∗y = 0 or, equiva-
lently, that X∗V = Y ∗W = 0, because x̃ ∈ span{V } and ỹ ∈ span{W}. In the implemen-
tation this condition is enforced by maintaining the bases V and W orthogonal against
X and Y , respectively. This variant is detailed in Algorithm 3.

Both Algorithm 2 and 3 support computing the correction of more than one approxi-
mate eigenpair, by increasing the value of parameter s (block size). However, in terms
of convergence our experience shows that the optimal value for s is 1 (the same com-
ment appears in [Stathopoulos and McCombs 2007, §2.2.2]).

In step 5 of Algorithm 3 the generalized Schur decomposition is sorted so that the
wanted pairs are located at the beginning of the decomposition (see [Kressner 2006]
and references therein). The first s pairs will be corrected at the next steps, and when
restarting, the first mmin pairs determine the part preserved in V and W .

We conclude this subsection with a brief comment about the case of Hermitian-
indefinite problems. When both A and B are Hermitian matrices, but B is indefinite,
then Algorithm 2 cannot be used but it is still possible to exploit symmetry to some
extent. If B−1A is non-defective, the eigenvectors X satisfy XTBX = I±, where I±
is a signature matrix (diagonal with ±1 elements on the diagonal). For this case, we
have implemented a variant of Algorithm 3 where W = V , the orthogonalization is
performed with respect to the B inner product (that is an indefinite inner product or
a pseudo-inner product), and the resulting vectors are normalized so that |xTBx| = 1.
The corresponding projected problem is a generalized symmetric-indefinite eigenprob-
lem and can be solved with a structure-preserving method like the one proposed in
[Brebner and Grad 1982]. However, since this solver is not available as a LAPACK
subroutine, we currently use the Schur decomposition instead.

2.2. Subspace Extractions
The extraction techniques considered in this section return a set of approximate eigen-
pairs (θ̃, x̃) whose vectors belong to the search subspace V spanned by the columns of
V , that is, x̃ = V u. The Rayleigh-Ritz approach is the most basic one and is considered
useful for computing eigenvalues at the periphery of the spectrum (see [Stewart 2001,
§4.4]). This technique imposes the Ritz-Galerkin condition on the residual associated
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with the returned pair,

r := Ax̃− θ̃Bx̃ ⊥ V, (3)

which leads to the low-dimensional projected eigenproblem

V ∗AV u = θ̃V ∗BV u. (4)

From the solutions (θ̃,u) of (4), the returned pairs (θ̃, x̃) = (θ̃, V u) are obtained, which
are called Ritz pairs.

The projected matrices V ∗AV and V ∗BV preserve the Hermitian structure of the
problem matrices A and B, and in case the search subspace basis V is B-orthogonal,
(4) will be a standard Hermitian eigenproblem, as indicated in line 4 of Algorithm 2.

However, the Rayleigh-Ritz approach generally returns poor approximate eigenvec-
tors for interior eigenvalues (see, for instance, [Stewart 2001, Example 4.2]). A simple
explanation for that is that the Ritz-Galerkin condition (3) does not consider the resid-
ual norm of the resulting eigenpairs (for a more detailed explanation see [Sleijpen et al.
1998, §4]). The harmonic Rayleigh-Ritz method [Morgan 1991; Paige et al. 1995] was
proposed instead as an alternative technique for interior eigenvalues, that imposes the
Petrov-Galerkin condition to the residual of the returned pairs (θ̃, x̃)

Ax̃− θ̃Bx̃ ⊥ W := (A− τB)V, (5)

if eigenvalues close to τ are sought. Similarly to the previous case, this leads to the
projected eigenproblem

V ∗(A− τB)∗(A− τB)V u = ξV ∗(A− τB)∗BV u. (6)

The solution pairs (ξ,u) of (6) with smallest ξ correspond to the harmonic Ritz pairs
(θ̃, x̃) = (τ + ξ, V u) closest to the target τ , which satisfy

‖Ax̃− τBx̃‖ ≤ |ξ|‖Bx̃‖, (7)

resulting from left-multiplying (6) by u∗ and applying the Cauchy-Schwarz inequality.
Hence it is sensible to think (at least for eigenvalues sufficiently close to τ ) that se-
lecting the pairs (θ̃, x̃) with θ̃ closest to τ (i.e., with smallest |ξ|) also correspond to the
pairs with smallest residual norm.

Recently, two new variations of the harmonic extraction have been proposed. One is
the relative harmonic extraction [Hochstenbach 2005b] that finds eigenvalues θ with
minimal

|θ̃ − τ ||θ̃|−1 = |1− τ θ̃−1|, (8)

that is, eigenvalues θ̃ closest to τ considering the weight of θ̃, in contrast to harmonic
extraction. These approximate eigenpairs (θ̃,x) can be obtained by the constraint

Ax̃− τ(1− τ θ̃−1)−1(A− τB)x̃ ⊥ W. (9)

The resulting eigenpairs satisfy

‖Ax̃− τBx̃‖ ≤ |1− τ θ̃−1|‖Ax̃‖. (10)

The other one is specific for extracting the rightmost eigenvalues [Hochstenbach
2005a], particularly when eigenvalues with large imaginary part are present in the
spectrum. These eigenpairs are selected with the Galerkin condition,

(A+ τ̄B)x̃− θ̃ + τ̄

θ̃ − τ
(A− τB)x̃ ⊥ W, (11)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 11, Publication date: January 1111.



11:8 E. Romero and J. E. Roman

Table II. Correspondence between the values of α, β, γ and
δ in the generic Galerkin condition (13) and some extraction
methods.

Extraction α β γ δ
Harmonic Rayleigh-Ritz 1 τ 0 1
Relative harmonic Rayleigh-Ritz 1 τ 1 0
Rightmost eigenvalue 1 τ 1 −τ̄
Largest eigenvalue 0 1 1 0

and they satisfy

‖Ax̃− τBx̃‖ ≤

∣∣∣∣∣ θ̃ − τθ̃ + τ̄

∣∣∣∣∣ ‖(A+ τ̄B)x̃‖. (12)

However our implementation follows the next approach. The Galerkin conditions
associated with the harmonic extraction and their variants can be generalized in the
parametrized Galerkin condition [Hochstenbach 2005b, §5.1]

(αA− βB)x̃− ξ(γA− δB)x̃ ⊥ W ′ := (αA− βB)V, with ξ =
αθ̃ − β
γθ̃ − δ

. (13)

The values of α, β, γ and δ corresponding to the extraction methods are detailed in
Table II. The projected eigenvalue problem associated with (13) is

W ∗(αA− βB)V u = ξW ∗(γA− δB)V u, with (αA− βB)V = WR, (14)

where W has orthonormal columns and R is upper triangular. The error associated
with the approximate eigenpairs is bounded by

‖(αA− βB)x̃‖ ≤ |ξ|‖(γA+ δB)x̃‖. (15)

This approach is concreted in Algorithm 3, by solving a problem equivalent to (14) at
step 5, and computing W as a basis of αA− βB at steps 2 and 21. The implementation
does it by setting

—W ← orthonormalize((αA− βB)V ) in step 2, and
—W 0 ← (αA− βB)Vm:m+s in step 21.

2.3. Subspace Expansions
The first subspace expansion in the context of the Davidson methods was proposed
with classical Davidson [Davidson 1975]. The method tries to compute the smallest
eigenpairs of a standard Hermitian problem expanding the search subspace with d
satisfying,

(diag(A)− θ̃I)d = r := Ax̃− θ̃x̃. (16)

Subsequent developments [Morgan and Scott 1986; Natarajan and Vanderbilt 1989;
Morgan 1990] tried to understand (16) as an iterative linear equation solver step of
the system

(A− θ̃I)d = r. (17)

Then Generalized Davidson was proposed, a more general expansion also useful for
non-Hermitian and generalized problems that introduced the use of fast, approximate
inverses (the preconditioners, K),

d = K−1r, K ≈ A− θ̃B. (18)
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The Olsen variant [Olsen et al. 1990] attempts to avoid the possible stagnation of the
method when the resulting vector from the expansion d and the approximate eigen-
vector x̃ are almost collinear (possibly because the preconditioner cannot improve the
current approximation, see [Stathopoulos et al. 1995] for numerical experiments),

d = −
(
I − K−1Bx̃x̃∗

x̃∗K−1Bx̃

)
K−1r. (19)

In Jacobi-Davidson [Sleijpen and van der Vorst 1996; 2000] the search subspace is
expanded by the approximate solution of the Jacobi orthogonal correction equation,
that obtains a correction d orthogonal to the selected approximate eigenvector x̃. In
[Sleijpen et al. 1996] it is extended to generalized eigenproblems (and polynomial prob-
lems) and adapted to the use of a preconditioner (see [Sleijpen et al. 1996, Theorem
7.3]),

PK−1(A− θB)Pd = −PK−1r, with d ⊥ z where P = I − K−1yz∗

z∗K−1y
. (20)

Also, some theorems have been proposed about the convergence speed depending on
the values of z and y:

— For A and B Hermitian and λ ∈ R, the choice of z = x̃ and any y such that y 6⊥ x̃,
implies quadratic convergence [Sleijpen et al. 1996, Remark 3.4].

— The choice of y = Bx̃ and z such that z 6⊥ x̃ leads to quadratic convergence [Sleijpen
et al. 1996, Theorem 3.2], also y = θ̃Ax̃+Bx̃ leads to quadratic convergence [Sleijpen
et al. 1996, Remark 3.1].

— The choice y = z = x̃ implies superlinear convergence [Sleijpen et al. 1996, Theo-
rem 3.4].

In SLEPc the correction equation is solved with z and y set to the approximate right
eigenvector x̃ and the corresponding vector from the test subspace, respectively. This
solution can be found also in [Sleijpen et al. 1996; Fokkema et al. 1998].

2.4. Deflation
In works dealing with non-Hermitian problems and in early works of Jacobi-Davidson,
the projector P in the correction equation (20) is extended to deflate also against the
converged pairs (see [Sleijpen and van der Vorst 1996; Fokkema et al. 1998])

P = I −K−1Ŷ (Ẑ∗K−1Ŷ )−1Ẑ∗, where Ŷ = [Y Ỹ ], Ẑ = [X X̃]. (21)

The extended projector avoids that the computed correction d converges toward the
previously locked invariant subspace instead of new directions that could enrich the
selected eigenvector. An extreme example is illustrated in [Fokkema et al. 1998, §4.5]
in which the convergence is slowed down and finally stagnated due to the lack of newly
produced directions.

The theoretical justification for this stagnation is presented next following [Fokkema
et al. 1998, §3.4]. Consider the standard eigenvalue problem with matrix A and eigen-
pairs (λ̂i, x̂i) and the approximate eigenpair (θ̃, x̃) converging toward (λ̂1, x̂1). The exact
solution of the correction equation (20) with z = y = x̃ is given by [Sleijpen and van der
Vorst 1996, §4.1]

d = −x̃ + ε(A− θ̃I)−1x̃, ε = (x̃∗(A− θ̃I)−1x̃)−1. (22)
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Considering the projection of x̃ onto x̂i and the constraint d ⊥ x̃ results in

d ≈
∑
i 6=1

x̂∗i x̃

λ̂i − θ̃
x̂i. (23)

Hence the directions x̂i of eigenvalues λ̂i closest to θ̃ become dominant. In that way, the
convergence rate of (θ̃, x̃) increases as θ̃ gets closer to λ̂1. However, suppose that a good
approximation to (λ̂1, x̂1) was obtained and the next closest pair (λ̂2, x̂2) is sought. If
the two pairs are approximately at the same distance to (θ̃, x̃), that is |λ̂1− θ̃| ≈ |λ̂2− θ̃|
and x̂∗1x ≈ x̂∗2x, or even worse, the first pair is the closest one, then we expect that
d has many unwanted components of x̂1. This can justify the implementation of the
deflation in the correction equation.

On the other hand, in [Stathopoulos and McCombs 2007] the authors discuss the
correction equation without the presence of the converged vectors in the context of a
method for standard Hermitian problems (called JDQMR-000), showing some exam-
ples where it outperforms the deflation discussed above. Notice that the cost of apply-
ing the projector with converged vectors can become expensive when many pairs are
sought: a cost of O(kn) per application for the simplest projectors and up to O(kn+ k3)
for oblique projectors, when k vectors are locked.

Our proposal is slightly more flexible and robust, allowing the user to limit the max-
imum number of converged vectors in the projector (a parameter called pwindow in
§3.4). This approach can be useful in problems with presence of close eigenvalues, if a
bound of the size of these clusters is available a priori.

2.5. Restarting
The maximum dimension of the subspace bases V and W is restricted with the pa-
rameter mmax, limiting the cost of maintaining them orthogonal, that in general is one
of the most expensive parts of the method, along with the matrix-vector product and
the computation of the expansion. Too low values ofmmax may prevent the convergence
and too high values may affect the global performance negatively, and its optimal value
depends on the application and the expansion employed.

From the methods that have been proposed to minimize the negative impact of
restarting on convergence, we have incorporated in SLEPc (i) the thick restart tech-
nique [Stathopoulos et al. 1998], also called GD(mmin,mmax), that restarts V with a
subspace basis that contains the best mmin current approximate eigenvectors; and (ii)
its combination with a generalized CG-based restart [Stathopoulos and Saad 1998],
resulting in GD(mmin,mmax)+k, that enriches the thick restart basis with the best k
vectors from the previous iteration. For seeking extreme eigenpairs in standard Her-
mitian problems, the latter technique has theoretical [Stathopoulos and Saad 1998,
§4] and practical [Stathopoulos and Saad 1998; Stathopoulos 2007] justifications.

2.6. Initializing the Search Subspace
An interesting advantage of the unconstrained Davidson’s search subspace (in oppo-
sition to structured subspaces, like in the case of Krylov methods) is the possibility
of starting with an available rough approximation of the sought eigenvectors, for in-
stance in applications where the solution of a previous similar eigenproblem can be
used or an analytic solution of a simpler problem is provided.

However, in practice initializing the search subspace with initial solutions X0 is not
enough to improve the convergence unless it is sufficiently close to the exact solutions.
Alternatively, better results may be obtained by initializing the search subspace with
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a Krylov subspace generated by the operator K−1(A− τB) and X0. An example of use
and performance is given in the applications of §5.3 and §5.4.

2.7. Stability

The common approach to the analysis of the quality of an obtained eigenpair (θ̃, x̃)

is in terms of the forward error (the difference between (θ̃, x̃) and the exact solution
(λ̂1, x̂1)) approximated by the product of the backward error (the difference between
the original problem (A,B) and the closest problem (Ã, B̃) that has (θ̃, x̃) as exact so-
lution, i.e., Ãx̃ = θ̃B̃x̃) and the conditioning (how sensitive is (λ̂1, x̂1) to changes in the
original problem (A,B)). It turns out that using a 2-norm metric the backward error of
individual eigenvalues and eigenvectors can be bounded by their associated residual
norms.

For Hermitian problems there are easy and practical expressions to bound the con-
ditioning of eigenvalues and eigenvectors, and hence also for bounding the forward
errors like the following ones for positive definite B [Bai et al. 2000, §5.7.1],

|θ̃ − λ̂1| ≤
‖r‖2B−1

δ‖x̃‖2B
≤ ‖B−1‖22

‖r‖22
δ

, (24)

sin 6 (x̂1, x̃) ≤ ‖B−1‖2
√

2κ(B)
‖r‖2
δ

, (25)

where r = Ax̃ − θ̃Bx̃ with ‖x̃‖2 = 1, δ is the minimum distance between λ̂1 and any
other eigenvalue λ̂i, and κ(B) = ‖B‖2‖B−1‖2 is the condition number of B. In Algo-
rithm 2, ‖B−1‖ and κ(B) can be estimated by making use of the largest and smallest
B-inner product values from the B-orthogonalization, and δ can be approximated from
the distance between θ̃ and the rest of computed Ritz values. This leads to a cheap
(although rough) approximation of the above error bounds.

In the presence of eigenvalue clusters (i.e., several eigenpairs with eigenvalues close
to each other, that in the extreme case may be the same), the eigenvalue accuracy is
still bounded by its residual (there is a similar expression to (24) without the δ term),
but the eigenvectors accuracy is not because in a cluster they are sensitive to perturba-
tions. Nevertheless the eigenspace associated with the cluster (the subspace spanned
by the eigenvectors pertaining to eigenvalues in the cluster) can be computed. In the
above algorithms, this can be done by setting the block size s to the maximum target
cluster size and using a convergence criterion based on the residual norm associated
with the eigenspace, ‖R1:s‖2 = ‖AX̃1:s −BX̃1:sΘ̃1:s‖2.

However for non-Hermitian problems an accurate bound of the error requires the
full (generalized) Schur decomposition of the pair [Bai et al. 2000, §8.8], although the
residual can still bound the backward error. In fact, the residual plays an important
role in measuring the convergence of the iterative methods for solving eigenvalue prob-
lems, both theoretically (e.g., [Morgan 1991; Fokkema et al. 1998; Hochstenbach and
Notay 2006; Freitag and Spence 2007]) and practically (almost all solvers in software
such as ARPACK, PRIMME, BLOPEX and Anasazi have a convergence criterion based
on the residual).

We remark that in the case of degenerate eigenvalues (with algebraic multiplicity
larger than one) our solvers do not have special difficulties. In the Hermitian case, if
the block size is smaller than the actual multiplicity then a few multiple eigenvalues
converge and the deflation mechanism allows the remaining copies to arise in the next
restart. In non-Hermitian problems we have a similar behaviour, with the peculiarity
that for defective eigenvalues at most a multiplicity equal to the geometric multiplicity
will be obtained.
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3. SLEPc EIGENSOLVER DESIGN
The two following subsections depict SLEPc, the library in which the previously out-
lined variants of the Davidson methods are implemented, and PETSc, the framework
on which SLEPc relies. Then related software efforts for solving large-scale problems
with Davidson solvers are presented. And the section ends with a detailed description
of the user interface of the Davidson solvers in SLEPc.

3.1. PETSc Description
PETSc provides implementations of basic linear algebra operations with vectors and
matrices, as well as tools for the solution of linear and non-linear systems of equa-
tions, all this enhanced with the support for distributed memory parallel computing
platforms as well as an incipient support for emerging architectures such as shared
memory clusters and GPUs. The interface is object-oriented, there are sets of functions
in C (the class methods) accepting the same data type (representing a class), which en-
capsulates a pointer to a data structure of the class (that stores the object). The main
advantage of this simple approach, over using a language with object-oriented support
like C++, is the simplicity to invoke C functions from other languages. In fact PETSc
can be used from C, C++, Fortran, Python and Matlab.

In general, the algorithm or the variant that will be used is determined by the type,
that is set after the creation of the object. For instance, some of the available types for
the KSP class, aimed at solving linear systems, are CG, GMRES and BiCGStab(`).

The Vec and Mat classes gather different data structures for vectors and matrices.
All vector objects are dense, but the Mat class offers a wide variety of matrix types like
dense and sparse matrices, block diagonal matrices, FFT and user-defined implicit
matrices, among others. Some types of vectors and matrices support high performance
hardware, such as VecMPI, that distribute the vector and operations among MPI pro-
cesses, and VecPThread and VecCUSP, that perform the operations by its distribution
among POSIX threads and by launching GPU kernels, respectively. Types with similar
capabilities can also be found in Mat.

Hence the parallelism and other high performance mechanisms are mostly trans-
parent for other objects built on top of these, and also for the application programmer.
The rest of classes such as linear, non-linear and time-stepping solvers, implement
their methods without taking care of the underlying data-structures in matrices and
vectors. The exception is the preconditioners class (PC), in which many of the types
correspond to complete or partial factorizations (e.g., LU, ILU, Cholesky and ICC) that
are stored in ad-hoc Mat implementations.

For more information about the internal structure and the provided interfaces see
[Balay et al. 1997; Balay et al. 2011].

3.2. Internal Structure of SLEPc
SLEPc provides a collection of state-of-the-art eigensolvers, SVD solvers and quadratic
eigensolvers. Besides the Davidson-type solver addressed in this work, the class EPS
provides an implementation of the Arnoldi, Lanczos and Krylov-Schur methods as
well as wrappers to other libraries such as ARPACK, PRIMME and BLOPEX. Spec-
tral transformations such as the shift-and-invert technique are encapsulated in the
class ST, and are needed by Krylov methods to compute interior eigenvalues or to
deal with matrix inversion in generalized eigenproblems. Class SVD provides algo-
rithms for computing a partial singular value decomposition, for instance by solving
an equivalent eigenvalue problem via EPS or by implementing native methods such as
restarted Lanczos bidiagonalization. In the same way QEP objects can solve quadratic
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Fig. 1. Main classes in PETSc and SLEPc.

eigenproblems by using EPS to solve an eigenvalue problem resulting from lineariza-
tion or directly with the Q-Arnoldi method.

Like other high-level classes, these SLEPc classes are built on the foundational
classes Vec and Mat, and also KSP for the spectral transformations (matrix inversion
is implemented via linear solves). As explained in §4.1, KSP will also be used in the
solution of the correction equation in Jacobi-Davidson, and the preconditioner in the
Generalized Davidson expansion. Orthogonalization and B-orthogonalization methods
(like classical and modified Gram-Schmidt, optionally with selective reorthogonaliza-
tion) are encapsulated in the class IP. For a complete description of SLEPc classes and
usage, the reader is referred to [Campos et al. 2011].

PETSc and SLEPc delegate many dense operations to BLAS and LAPACK com-
patible libraries, such as the netlib reference implementation2 or the ATLAS, MKL
and ACML libraries. The delegated operations include frequent computations that ac-
count for most of the floating-point operations, like the addition and product of vectors
during orthogonalization. Other delegated operations are performed on the projected
problems, usually of rather small size, and they are important in terms of robustness
of the algorithms, such as the computation of Schur decompositions in the extraction
step of the algorithms in §2.

Furthermore SLEPc provides an interface for specifying operations with multivec-
tors (a set of vectors that represent the columns of a thin tall matrix), giving the possi-
bility to accelerate a sequence of level-2 BLAS operations by rewriting them as level-3
operations. The mechanism behind this consists in some functions to create PETSc
Vec objects whose entries are stored contiguously in memory and to implement oper-
ations between such multivectors or multivectors with dense matrices. For instance,
these functions are employed in the Davidson solvers in the creation of the projected
matrices and the orthogonalization of the subspaces. As discussed below, interfaces to
multivector operations are common in other libraries with Davidson methods.

2http://netlib.org/blas/ and http://netlib.org/lapack/.
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3.3. Comparison with the Design of other Parallel Davidson Software
Part of the design principles of Davidson methods in SLEPc can also be found in other
libraries that implement related methods and share similar high performance aims, in
particular Anasazi [Baker et al. 2009], BLOPEX [Knyazev et al. 2007] and PRIMME
[Stathopoulos and McCombs 2010].

Anasazi is part of Trilinos, a parallel object-oriented software framework for large-
scale multi-physics scientific applications. It was designed for being independent of
the particular implementation of the underlying linear algebra primitives, in order
to facilitate its incorporation into larger libraries and application codes. The Anasazi
package contains a collection of eigensolvers that includes block Generalized Davidson
and LOBPCG, among other solvers not related with Davidson. The eigensolvers pro-
vide an interface to establish the concrete implementations that will be used for vector
and matrix operations, for the orthogonalization and for the stopping criterion.

BLOPEX is a stand-alone library that includes only a LOBPCG solver. The library
is also distributed as part of the HYPRE3 library for parallel preconditioning, and can
optionally be used as a external solver in SLEPc. BLOPEX is designed with indepen-
dence and interoperability goals similar to Anasazi, but without the possibility for
customizing the orthogonalization method and the stopping criterion.

PRIMME implements a parametrized Davidson-type method, general enough to in-
clude algorithms ranging from Subspace Iteration to Jacobi-Davidson with several op-
tions about the correction equation. It uses its own distributed vectors with the solely
support of BLAS and LAPACK, and a user-provided sum reduction operation. Cur-
rently, PRIMME only supports standard eigenproblems, although the interface is pre-
pared for a matrix B. SLEPc also provides a wrapper to PRIMME as a external solver.

Table III summarizes the differences among these three libraries and our approach.
SLEPc’s design goals lie between Anasazi/BLOPEX and PRIMME. On one hand,

SLEPc eigensolvers use vectors, matrices and linear algebra primitives from PETSc.
However, this PETSc-dependence does not reduce the software interoperability be-
cause PETSc classes allow for user-defined implementations. Anasazi and BLOPEX
have an interface for multivector operations, and as mentioned before, SLEPc pro-
vides a simple interface for multivector operations such as inner-product W ∗V and the
update V U , where V and W are multivectors and U is a dense matrix.

The orthogonalization is also encapsulated in a SLEPc class and decoupled from the
eigensolvers. Another simple mechanism to make the implementation independent of
a given operation is to use callback functions. This is the way the convergence test and
the sort routine can be replaced by user-defined code.

On the other hand, the code of Davidson-type methods in SLEPc is organized as a
parametric multi-method, following PRIMME’s approach. Hence, in practice, there is
only one abstract object that contains all the Davidson code. By changing values in
a C structure, the implementation behaves like either Algorithm 2 or 3. In the same
way, the structure has variables to select the extraction and the expansion methods, to
configure the restarting and to build the initial subspace.

3.4. Davidson-type Eigensolvers Interface
SLEPc offers two EPS solvers that implement Davidson-type methods, the Generalized
Davidson (GD) and the Jacobi-Davidson (JD). As mentioned above, these objects are
simply intermediate objects that access another abstract EPS object (abstract, in the
sense that the end user cannot directly use it) that contains the implementation of the
methods and techniques described in §2.

3http://www.llnl.gov/casc/hypre.
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Table III. Summary of differences among BLOPEX, Anasazi, PRIMME, and SLEPc’s Davidson, con-
sidering the implementation of the linear algebra operations (Vectors and Matrices), the possibility
to change the orthogonalization routine (Orth.), the convergence test (Conv.) and the sort function
(Sort), and how the Davidson solvers are organized.
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The JD and GD solvers share the following interface with the rest of EPS objects:

— the problem matrices, with EPSSetOperators;
— the problem type like Hermitian, non-Hermitian, standard or generalized, with

EPSSetProblemType, that selects between Algorithms 2 and 3;
— the subspace expansion method, determined by the object type with EPSSetType, that

is (19) for GD and (20) for JD;
— the subspace extraction method, with EPSSetExtraction, that selects between the

extraction techniques presented in §2.2;
— the sorting criterion for the eigenpairs computed by the extraction method, with

EPSSetWhichEigenpairs, which can be relative to a target value, or with respect to
the magnitude, the real or the imaginary part of the eigenvalue;

— the target value τ if interior eigenvalues are wanted, with EPSSetTarget, parameter
that is also used in the extraction;

— the maximum size of the search and testing subspaces, mmax (see §2.5), and the num-
ber of wanted eigenpairs, p, with EPSSetDimensions, called mpd and nev, respectively;

— the convergence criterion, with EPSSetConvergenceTest (see §4.5);
— the tolerance for the convergence criterion and the maximum number of (outer) iter-

ations, with EPSSetTolerances (see §4.5);
— the initial guess of the wanted invariant subspace, with EPSSetInitialSpace (see
§2.6); and

— the subspace in which the eigenvectors are not wanted, with EPSSetDeflationSpace
(see §2.4).

The specific options shared by the Davidson solvers are (the * has to be substituted
by GD or JD, because there are different function names for GD and JD, for instance
EPS*SetBlockSize is EPSGDSetBlockSize for GD and EPSJDSetBlockSize for JD):

— whether to enrich the initial subspace as explained in §2.6, with EPS*SetKrylovStart,
activated by default;

— the block size s, with EPS*SetBlockSize, being 1 as default;
— the size of the subspace after restarting (mmin) and the number of vectors saved from

the previous iteration (in GD+k), with EPS*SetRestart, being the default values 6
and 0, respectively (see §2.5);

— the size of the initial search subspace, with EPS*SetInitialSize, being 5 as default
(if the number of initial vectors provided by the user is smaller than this number, the
initial subspace is filled with random vectors); and
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— the maximum number of converged vectors to be included in the projectors (parame-
ter pwindow, see §2.4), with EPS*SetWindowSizes, being 1 as default.

Moreover, the JD solver has two advanced options more that affect the convergence
and performance of the solution of the correction equation, EPSJDSetFix (set to 0.01
by default) and EPSJDSetConstantCorrectionTolerance (deactivated by default), dis-
cussed in §4.1.

All preconditioned eigensolvers in SLEPc (JD and GD, but also the BLOPEX and
PRIMME wrappers) are used in combination with the special ST object Precond. As
other ST’s (including shift-and-invert), it handles a linear solver (KSP) internally. The
PC object in Precond’s KSP corresponds to the preconditioner used in the Generalized
Davidson expansion or to the acceleration of the KSP that solves the Jacobi-Davidson
correction equation. If the user does not provide a matrix as a basis for the precondi-
tioner, with STPrecondSetMatForPC, the default preconditioner is built from A − τB if
interior eigenvalues are wanted, and B if largest magnitude eigenvalues are wanted.
In case the user does not select a preconditioning method Jacobi is used, if the diag-
onal is available. The method and the options for solving the correction equation are
set in the KSP object. The default iterative solver for the JD correction equation is
BiCGStab(2).

After the call to EPSSolve, the user can get individual converged eigenpairs with
EPSGetEigenpair, or an orthogonal basis of the invariant subspace associated with
them with EPSGetInvariantSubspace. Moreover, a basis of the test subspace associated
with the converged pairs is accessible by the function EPSGetInvariantSubspaceLeft.
Although not guaranteed, the test subspace may be a rough approximation to the left
invariant subspace (if future versions of SLEPc include two-sided Jacobi-Davidson,
more accurate approximations of the left invariant subspace will be obtained). Note
that SLEPc does not currently make any provision to guarantee that no eigenvalue has
been missed (except when computing all eigenvalues in an interval with Krylov meth-
ods). For Davidson methods, this could be achieved with iterative validation [McCombs
and Stathopoulos 2006] in the case of Hermitian problems, but this is not implemented
in SLEPc yet.

Figure 2 illustrates a simple example in C that computes the largest eigenvalue of
a non-Hermitian matrix A, omitting the creation of the matrix, as well as the error
checking and the functions to initialize and finalize the SLEPc environment. Notice
that if PETSc is built in real arithmetic (that is, PetscScalar is not a complex type),
SLEPc returns the real and imaginary part of eigenvalues (kr and ki) and eigenvec-
tors (xr and xi) separately. The example uses GD, but JD could be selected simply by
changing the call to EPSSetType in line 22.

Most of the above options are accessible via the command line. For instance, the
code in Figure 2 can employ the GD solver to compute 10 eigenvalues with a relative
tolerance of 10−8 by the execution of

$ ./exe -eps_type gd -eps_nev 10 -eps_tol 1e-8

or can employ JD for seeking the eigenvalues closest to 1 solving the correction equa-
tion with TFQMR (Transpose Free Quasi Minimal Residual) and accelerated with an
ILU preconditioner:

$ ./exe -eps_type jd -eps_nev 10 -eps_target 1 -st_ksp_type tfqmr \
-st_pc_type ilu

Another illustrative example is the parallel computation of the rightmost eigenval-
ues with 16 MPI processes, in which the rightmost harmonic extraction may accelerate
the convergence:
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1 #include "slepceps.h"
2 EPS eps; /* eigensolver context */
3 Mat A; /* matrix of Ax=kx */
4 Vec xr, xi; /* eigenvector , x */
5 PetscScalar kr, ki; /* eigenvalue , k */
6 PetscInt j, nconv;
7

8 /* Create the eigensolver context */
9 EPSCreate( PETSC_COMM_WORLD , &eps );

10 /* Set the problem matrices , B=I in this case */
11 EPSSetOperators( eps , A, PETSC_NULL );
12 /* Set the problem type: standard non -Hermitian */
13 EPSSetProblemType( eps , EPS_NHEP );
14 /* Specify the wanted eigenvalues */
15 EPSSetWhichEigenpairs( eps , EPS_LARGEST_MAGNITUDE );
16 /* Set number of eigenvalues to compute , 1, and default values for
17 the maximum sizes of the search subspace and the projected problem */
18 EPSSetDimensions( eps , 1, PETSC_DECIDE , PETSC_DECIDE );
19 /* Set the convergence tolerance and the limit of iterations */
20 EPSSetTolerances( eps , 1e-10, 10000 );
21 /* Set the solver , Generalized Davidson */
22 EPSSetType( eps , EPSGD );
23 /* Apply other options indicated from the command line */
24 EPSSetFromOptions( eps );
25 /* Execute the solver */
26 EPSSolve( eps );
27 /* Get the number of converged pairs */
28 EPSGetConverged( eps , &nconv );
29 for (j=0;j<nconv;j++) {
30 /* Get the j-th pair */
31 EPSGetEigenpair( eps , j, &kr, &ki , xr, xi );
32 }
33 /* Destroy the eigensolver context */
34 EPSDestroy( eps );

Fig. 2. A short SLEPc example code that compute the eigenvalues of a non-Hermitian matrix.

$ mpirun -np 16 ./exe -eps_type gd -eps_nev 10 -eps_largest_real \
-eps_harmonic_right -st_pc_type bjacobi

As we remark in §2, the optimal value of many parameters that have an important
impact on the general performance depends on the application. As an example, the
numbers referred to the search subspace like mmin, mmax and its size after restarting
can affect the global convergence and the performance of the orthogonalization step.
Nevertheless most of the above options have default values that produce good perfor-
mance in many cases, as the test battery results show (see §5.1). For instance, if the
solver is configured to find eigenvalues close to a target τ (e.g, with the command line
option -eps target) in a non-Hermitian problem, the harmonic Rayleigh-Ritz extrac-
tion is activated and the pencil A − τB is used for the preconditioner, of course if the
user does not indicate other values. This feature facilitates the process of manually
tuning a code to find optimal configurations.

4. IMPLEMENTATION DETAILS
In this section we include some discussions about the way we have implemented cer-
tain variants or aspects of the Davidson methods, such as the solution of the Jacobi-
Davidson correction equation by an iterative Krylov solver (a KSP object), the treat-
ment of complex numbers in real problems, how the data structures are distributed
across processors and some considerations about the memory management.
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4.1. Solution of the Correction Equation
Linear system (20) is solved when the Jacobi-Davidson expansion is selected. For that,
a PETSc Krylov linear solver is employed (a KSP object), accelerated with precondi-
tioners (PC object). Practical aspects of how to modify the correction equation and the
projectors in order to use a preconditioner are summarized below (details can be found
in [Sleijpen et al. 1998, §3.2]).

Most KSP solvers available in PETSc support left preconditioning (many of them
exclusively), that is, they solve the linear system M−1Âx = M−1b̂. In that case, (20) is
equivalent to a linear system with coefficient matrix Â = PK−1(A−θB) and right hand
side b̂ = −PK−1r. If the initial guess is a zero vector, then the obtained approximate
solution d will satisfy the constraint d ⊥ z.

The most frequently used KSP solver supporting right preconditioning (ÂM−1Mx =

b̂) is FGMRES [Saad 1993], that is employed when the preconditioner can change
during the iteration, for instance, when it performs a nested linear solve iteration as
in pARMS [Li et al. 2003]. In the right preconditioning case, (20) is equivalent to a
linear system with coefficient matrix Â = Q(A− τB) where Q can be P or I − zz∗, the
preconditioner M−1 = PK−1 and right hand side b̂ = −r.

In both cases, the operator Â and the preconditioner M−1 are implemented implic-
itly (that is, only the matrix-vector product is defined) using a MatShell and a PCShell,
respectively (these shell constructs are simply a way to encapsulate user-defined oper-
ations as a PETSc object).

In terms of computational cost, the weight of the solution of the correction equation
can be heavy if too accurate solutions are requested. The trade-off between perfor-
mance and global convergence is controlled in the stopping criterion, that the user
can configure by setting the maximum number of iterations besides the relative and
the absolute tolerances. In addition, unless EPSJDSetConstantCorrectionTolerance is
invoked, the KSP stops when the residual of the linear system at iteration j, ‖r̂(j)‖2,
satisfies at outer iteration i (counting from the beginning or from the last eigenpair
converged)

‖r̂(j)‖2 ≤ 2−i‖r̂(0)‖2. (26)

Notice that in PETSc the stopping criterion uses the preconditioned residual by de-
fault. This dynamic criterion comes from the Newton methods and the use in Jacobi-
Davidson is suggested in [Fokkema et al. 1998], and tested in [Genseberger 2010;
Romero and Roman 2011].

It is well-know that in the first iterations of the Davidson-type methods the extrac-
tion method usually produces poor eigenpair approximations and the target τ may
be a relatively closer approximation to an exact eigenvalue [Morgan and Scott 1986].
Therefore, until the residual norm associated with the selected eigenpair reaches a
threshold value, so called fix (that can be set by EPSJDSetFix), the correction equation
is solved with θ = τ [Fokkema et al. 1998].

4.2. Real Arithmetic
In real non-symmetric problems the eigenvalues and the corresponding eigenvectors
may be complex, or even in the convergence of a real eigenpair the approximate eigen-
pairs may be complex. Considering that PETSc does not support operations mixing
real and complex matrices or vectors, a simple workaround would be to perform all
the computations in complex arithmetic. However, this is wasteful not only in terms
of memory requirements but also in computational efficiency since the effective opera-
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tion throughput may be reduced up to 50% for sufficiently large problems in which the
bottleneck is the bandwidth between the main memory and the processor.

Another possibility to avoid complex arithmetic is the use of real Schur decomposi-
tions, where all matrices involved are real and 2 × 2 blocks on the diagonal of quasi-
triangular matrices are used to represent complex conjugate eigenvalues. Besides re-
quiring half the storage of a complex Schur decomposition, another advantage of the
real Schur form is that complex conjugate eigenvalues always appear together.

Thus SLEPc’s Jacobi-Davidson has an implementation based on RJDQZ [van Noor-
den and Rommes 2007], that adapts the extraction process and the correction equation
(20) to work with the real Schur form. Considering the preconditioning, the resulting
correction equation for the selected complex conjugate eigenvalues θ̃r ± θ̃ii and the
associated Schur vectors x̃1 and x̃2 is[

PB 0
0 PB

] [
K−1(A− θ̃rB) θ̃iK−1B

−θ̃iK−1B K−1(A− θ̃rB)

] [
PB 0
0 PB

] [
d1

d2

]
= −

[
PBK−1r1
PBK−1r2

]
, (27)

where PB is the block version of the projector P in (20),

PB = I −K−1Y (Z∗K−1Y )−1Z∗, (28)

and the residual is computed as[
r1
r2

]
=

[
A− θ̃rB θ̃iB

−θ̃iB A− θ̃rB

] [
x̃1

x̃2

]
. (29)

This version of the correction equation admits the same stopping criterion as (20),
because if d1 and d2 are obtained from the approximate solution of the correction
equation (27) with a linear system residual norm ε, then also d = d1 + d2i satisfies
the correction equation (20) with the same residual norm tolerance. Moreover we do
not expect a significant difference in the convergence of the iterative resolution of both
equations because the condition number corresponding to the coefficient matrices are
the same [van Noorden and Rommes 2007, Proposition 1].

If Jacobi-Davidson is activated, the KSP in ST is responsible for solving the correc-
tion equation, that can be

— the linear system (20), if either the problem and the selected eigenpair are both real
or the problem is complex, or

— the double-sized linear system (27), if the problem is real, but the selected eigenpair
is complex.

In the case of real problems, the KSP object would have to solve linear systems
of different sizes, which implies reallocating the memory every time the system size
changes. This problem can be neglected if the block size is one and the eigenpairs
last many iterations before their convergence, because in general we do not expect an
excessive number of jumps of a single approximate eigenvalue from real to complex
(and vice versa). For applications that require many eigenvalues and they converge
quickly, we have designed a special vector type VecComp with virtually the length of
the double-sized system, which is employed by the KSP object. VecComp vectors are
formed by two sub-vectors whose length is equal to the problem size, and only one is
used when the approximate eigenvalue is real. Working with these vectors also sim-
plifies the implementation of the double-sized coefficient matrix-vector product (which
is implemented using the MatShell PETSc class, because the double-sized matrix is
never built explicitly), that can be arranged as a 2-by-2 block product. This product
also includes the projection and the preconditioner application. For that, the PC as-
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Fig. 3. Collaboration diagram for the SLEPc’s Davidson solver when the Jacobi-Davidson expansion is
selected.

sociated with the KSP object is detached and replaced by a dummy PC (PCNone).
Figure 3 depicts the component diagram in this case.

4.3. Parallelization and Memory Management Details
The problem matrices A and B and the vectors of the same size, such as the search
and test subspaces V and W , and the converged invariant subspace X̃, are distributed
by blocks of rows among the processes, in the case of using MPI objects for vectors and
matrices. The rest of the matrices and vectors with smaller size (bounded by mmax)
are implemented as sequential (non-MPI) objects, but are replicated in all nodes. For
instance, this is the case of the projected matrices and the associated decompositions
Θ, U , Z, S and T .

The operations involving distributed operands are parallelized, such as the A and B
matrix-vector product, the subspaces updating, the computation of the projected prob-
lem matrices and the orthogonalization of the subspaces. In addition, these operations
can also be accelerated by the GPU or parallelized for taking advantage of multi-cores,
if the appropriate types are set for matrices and vectors. Currently these features are
experimental in PETSc, but in the near future they are expected to be fully functional.

In terms of memory management, nearly all memory required by the eigensolver
(the bases of the search and test subspaces, auxiliary vectors and work spaces) is al-
located in a contiguous array, in order to reduce the memory management overhead.
Each piece in which the allocated memory is divided is aligned properly.

PETSc does not support block application of matrices and preconditioners nor multi-
vector operations, unlike other packages such as BLOPEX or Anasazi. However SLEPc
offers some support for vector-vector operations in blocks, that the Davidson-type
solvers employ except in the orthogonalization.

4.4. Subspace Orthogonalization
The orthogonalization of vectors can become an expensive step in variants with cheap
expansion, e.g., Generalized Davidson, so it is important to use a procedure that is ef-
ficient both sequentially and in parallel. The SLEPc class IP provides Classical and
Modified Gram-Schmidt to carry out that process. The default configuration (used in
§5) employs iterative CGS (which yields better parallel scaling and higher floating
point operations throughput than MGS), with a DGKS-like re-orthogonalization crite-
rion. See [Hernandez et al. 2007] for details.

This configuration is also used for maintainingB-orthogonal bases, although it is not
clear that the re-orthogonalization criterion can be useful when usingB-inner products
with ill-conditioned B [Kopal et al. 2012] (to avoid problems, it is possible in SLEPc
to deactivate selective re-orthogonalization and use double orthogonalization instead).
In any case, we present in Algorithm 4 a variant of iterative CGS that avoids the extra
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ALGORITHM 4: Optimized Iterative Classical Gram-Schmidt with B-inner product.

Input: matrix B of size n, B-orthonormal basis V , V B = BV , vector v0

Output: B-orthonormal basis [V v] of span{[V v0]} and vB = Bv
1 v← v0 and vB ← Bv0

2 for i = 1, 2, 3 do
3 h← V ∗vB

4 v← v − V h

5 vB ← vB − V Bh
6 Test criterion
7 end
8 v = v/‖v‖B

matrix-vector products when the search subspace is B-orthogonalized, at the cost of
additional storage for vectors BV . This variant is not activated by default, because it
can only present an improvement when B has bad matrix-vector performance.

4.5. Convergence Criterion for the Eigensolver
SLEPc monitors the residual norm associated with the approximate eigenpairs in or-
der to detect the converged ones with respect to some criterion, e.g., the default one is
‖r‖2/|θ̃| ≤ ε for a given tolerance ε, or other criteria that can be defined by the user (in
a function that the eigensolver will execute after every approximate pair is computed).
When the problem is non-Hermitian, the solver works with approximate Schur vectors
instead of eigenvectors, so the residual norms associated with the eigenpairs are not
readily available. Our implementation first checks the convergence criterion with the
residual associated with the Schur vector, and if it is passed, the criterion is checked
again with the corresponding eigenvector residual. In this way, we avoid the costly
computation of the eigenvector in each iteration unless it is close to convergence.

5. RESULTS
In this section, we present performance results of the SLEPc Davidson solvers. First
sequential results in the context of a collection of small eigenproblems are shown com-
paring our implementations of GD and JD, as well as with other implementations
such as Anasazi GD and PRIMME JD, besides with other methods such as LOBPCG
in BLOPEX and inexact Krylov-Schur (where an iterative linear solver is used for the
implicit inverse of the shift-and-invert operator). Then we show parallel results in the
context of three large-scale scientific applications.

5.1. Test Battery
We compare the Davidson solvers in terms of execution time and number of precondi-
tioner applications required by each one in the solution of a collection of problems.

The collection consists of standard and generalized problems whose matrices come
from the University of Florida Sparse Matrix Collection [Davis and Hu 2011]. For each
problem, the sequential performance of the solvers, in terms of number of matrix-
vector products and time spent, is obtained computing 1 and 10 pairs with an absolute
tolerance of 10−10(‖A‖2+|τ |‖B‖2) (with τ being the geometrical mean of the finite, non-
zero eigenvalues of the problem) using either no preconditioner or one of the PETSc
preconditioners Jacobi, ILU (or ICC for Hermitian problems), HYPRE and pARMS.
The rest of the solver’s parameters keep the default values: 5 random vectors as initial
subspace, restart the search subspace with 6 vectors after the dimension reaches 17 or
26, respectively for seeking 1 or 10 pairs. The default linear solver for the JD correction

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 11, Publication date: January 1111.



11:22 E. Romero and J. E. Roman

Table IV. Number of converged cases in each experiment.

Solver Total None Jacobi ILU/ICC HYPRE pARMS
Experiment I: generalized non-Hermitian, largest magnitude eigenvalues

GD 388 45 73 100 89 81
JD BiCGStab(2) 300 40 33 91 71 65

Inexact Krylov-Schur 31 0 0 12 1 18

Experiment II: standard and generalized non-Hermitian, eigenvalues closest to target
GD 599 108 112 211 120 165

JD GMRES 280 21 42 94 43 80
JD BiCGStab(2) 490 64 111 216 115 159

Inexact Krylov-Schur 248 0 30 87 53 78

Experiment III: generalized Hermitian, smallest real eigenvalues
GD 273 63 101 109

GD Anasazi 124 20 56 48
JD BiCGStab(2) 263 66 97 100

BLOPEX 228 32 104 92
Inexact Krylov-Schur 37 0 18 19

Experiment IV: standard Hermitian, eigenvalues closest to target
GD 873 339 298 236

GD Anasazi 726 363 357 6
PRIMME JDQMR Etol 1005 405 219 309

JD BiCGStab(2) 768 224 310 234
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Fig. 4. Comparison of number of matrix-vector products (left) and execution time in seconds (right) between
SLEPc GD and JD computing the largest magnitude eigenvalues of generalized non-Hermitian problems. A
mark above the line corresponds to an experiment with GD performing better than JD.

equation is BiCGStab(2). Each of these configurations is executed twice with three
different initial random vectors, discarding the slower one.

Table IV summarizes the number of cases in which the solvers obtained all the re-
quested eigenpairs with less than 5050 and 10100 matrix-vector products for standard
and generalized problems, respectively. We use matrix-vector products because it is
unfair to compare GD and JD in terms of the number of outer iterations. Instead, it
is more natural to roughly compare the number of iterations used by GD with the
accumulated number of inner iterations employed by JD.
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Fig. 5. Comparison of number of matrix-vector products (left) and execution time in seconds (right) between
SLEPc GD and JD computing the eigenvalues closest to a target in non-Hermitian problems. A mark above
the line corresponds to an experiment with GD performing better than JD.

Experiment I takes results of the SLEPc solvers GD and JD computing the largest
magnitude eigenpairs of a group of 25 generalized non-Hermitian problems. JD solves
slightly more problems than GD, and many of them faster (see Figure 4, right). How-
ever, in terms of matrix-vector products, JD generally requires more products than GD
(see Figure 4, left).

Experiment II collects the performance of the solvers with a group of 52 standard
and generalized non-Hermitian problems while computing the eigenvalues closest to
a target in the interior of the spectrum. In absolute terms, GD successfully converges
in more cases than JD (599 vs 490). In part, this is due to the few converged problems
obtained by JD using sophisticated preconditioners (ILU, HYPRE and pARMS), com-
pared with the JD results when no preconditioning is used, and with the GD results for
those preconditioners. Apparently, the use of GMRES for solving the correction equa-
tion does not improve the results. Nevertheless, GD needs less matrix-vector products,
but JD is generally faster, as in the previous experiment (see Figure 5).

In Experiment III, the eigenvalues with smallest real part are computed in 30 gen-
eralized Hermitian problems. We observe that both SLEPc solvers perform almost as
well as LOBPCG in BLOPEX, a specific method for this case.

Experiment IV compares SLEPc GD and JD solvers with PRIMME’s JDQMR Etol,
in which the JD correction equation is solved by QMR with an ad-hoc stopping criterion
[Stathopoulos 2007, §3.3]. In this case, the eigenvalues closest to an interior target are
computed in a group of 99 standard Hermitian problems. We observe the same trend
concerning the number of converged pairs by GD and JD as in experiment II. PRIMME
JD obtains better figures than SLEPc solvers, possibly due to the effectiveness of the
PRIMME stopping criterion, that reduces significantly the number of matrix-vectors
products (see Figure 6, left). However this PRIMME advantage is less important con-
sidering the total time spent by the solvers (see Figure 6, right).

In the experiment involving Hermitian problems we tested the GD implementation
in Anasazi, configured similarly to the employed GD in SLEPc. We observed that the
Anasazi solver obtains significantly worse performance when preconditioners are used,

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 11, Publication date: January 1111.



11:24 E. Romero and J. E. Roman

101

102

103

104

101 102 103 104

M
at

ri
x-

ve
ct

or
pr

od
.

GD Matrix-vector prod.

10−2

10−1

100

101

10−2 10−1 100 101

T
im

e

GD Time

Fig. 6. Comparison of number of matrix-vector products (left) and execution time in seconds (right) be-
tween SLEPc JD (∗) and PRIMME JD (�), taking the results of SLEPc GD as a basis, when computing the
eigenvalues closest to a target in standard Hermitian problems. A mark above the line corresponds to an
experiment with GD performing better than JD.

that may be due to the fact that Anasazi implements the basic Generalized Davidson
(18), instead of the Olsen variant (19) (see §2.3), penalizing the convergence.

Finally, we also included a comparison with inexact Krylov-Schur available in
SLEPc, which shows in general worse performance than the Davidson methods. How-
ever we used a simple stopping criterion in the resolution of the linear system asso-
ciated with the shift-and-invert transformation (GMRES with default options except
that relative tolerance is set to 10−12), and maybe better results could be obtained
using a more sophisticated one.

5.2. Application 1: Incompressible Flow Analysis
The next problem comes from modelling a 2D incompressible fluid flow over a step. We
use navier testproblem from package IFISS (Incompressible Flow Iterative Solution
Software, [Elman et al. 2007]) to generate the problem matrices corresponding to a
Navier-Stokes problem of a fluid with viscosity 1/50 flowing in a rectangular domain
of [−1, 5] × [−1, 1] discretized with biquadratic/bilinear (Q2 − Q1) finite elements with
element width of 1/16 (setting the grid parameter to 6). That results in a generalized
non-Hermitian eigenvalue problem of size 13,682, with this structure[

A11 A12

A21 0

] [
x1

x2

]
= λ

[
B11 0
0 0

] [
x1

x2

]
.

Its resolution is numerically challenging because many eigenvalues are infinite (an
11% in this case), due to rank deficiency of B, and the eigenvalues nearest to zero
are very close together (see Figure 7, left). The target eigenvalues are those closest
to the imaginary axis. Since all the eigenvalues have positive real part, the approach
employed was to configure the solver to obtain the eigenvalues closest to -5. JD and
GD were tested to find 4 eigenvalues with an absolute tolerance of 10−8|θ̃| using the
default options, except for mmin = 30, mmax = 50 and the pARMS preconditioner. In
this case, GD computed the eigenpairs significantly faster than JD (GD required 2,720
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Fig. 7. Finite eigenvalues of a smaller problem (left) and convergence history employing the SLEPc GD
solver (right) for the application described in §5.2.

matrix-vector products while JD needed as many as 664,144). Figure 7 (right) shows
the convergence of GD.

5.3. Application 2: Unstable Modes of Turbulent Plasma
The plasma physics application GENE [Dannert and Jenko 2005] computes micro-
instabilities in fusion plasma, solving the gyrokinetic equations, a set of nonlinear
partial integro-differential equations in five-dimensional phase space by means of the
method of lines. In certain analyses, a few rightmost eigenvalues of a large complex
non-Hermitian linear operator (available through matrix-vector products) must be
computed, which is computationally hard because eigenvalues with large imaginary
part dominate the spectrum. The required rightmost eigenvectors correspond to the
unstable modes of the linearized gyrokinetic equation,

∂g

∂t
= L[g], (30)

that describes the time evolution of the distribution of the particles in the plasma.
A study of the sequential and the parallel performance of SLEPc’s Jacobi-Davidson

is presented in [Romero and Roman 2011], computing two rightmost eigenvalues using
the harmonic extraction and solving the correction equation with BiCGStab(2) without
preconditioner. The results reveal that the dynamic stopping criterion in the iterative
solution of the JD correction equation (see §4.1) effectively improves the parallel perfor-
mance (by reducing the overall number of reductions), and that the global performance
has a strong dependence on the matrix-vector product performance.

An explicit sparse representation of the operator is not computationally feasible be-
cause of the high density of the resulting matrix. Instead, we opted for building a
preconditioner based on a sparse part of the operator that still retains most of the in-
formation of the system. The results in [Merz et al. 2012] corresponding to this precon-
ditioning illustrate an acceleration of more than 10 times faster using ASM (restricted
Additive Schwarz Method) and more than 3 times using pARMS, both preconditioners
scaling well (see Figure 8, left). Moreover the work presents a parameter scan test
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JD and GD solvers, respectively. The right plot also shows results with the BLOPEX library. Speedups are
computed relative to the fastest method.

case in which similar problems are solved, and the total time is reduced around 23%
if the eigensolver’s initial subspaces are taken from the previously obtained solutions
enriched as described in §2.6.

5.4. Application 3: Electronic Configuration of Atoms
The Density Functional Theory (DFT) is one of the most popular methods that can be
used to compute the electronic structure (principally the ground state) of atoms and
molecules. The method requires the solution of the Schrödinger equation and the Pois-
son equation, that are coupled to each other. The computational approach consists in
applying a self-consistent scheme, that is, the solution of the Schrödinger equation de-
termines the next Poisson equation. The alternate solution of both equations is stopped
when their results do not differ from the previous iterations under certain threshold.

After the discretization by the finite element method, the Poisson and Schrödinger
equations result in a linear system and a generalized eigensystem, respectively, with
large, sparse Hermitian matrices. Both problems are solved approximately, and in the
case of the eigenvalue problem, the number of computed solutions depends on how
many orbitals are sought.

The work [Young et al. 2013] presents a comparison of different refinement strate-
gies for the meshes generated during the discretization, with a homemade code based
on deal.II and SLEPc. The computation of the smallest eigenvalues (corresponding to
the lowest energy orbitals) of the generalized Hermitian problems was done using GD
with harmonic extraction and block Jacobi as the preconditioner for the expansion.
Results for sequential and parallel performance are given in that paper, together with
the acceleration produced by the subspace recycling within the self-consistent loop,
resulting in a speedup of 4 with respect to no recycling.

With that code, we present a parallel performance comparison between GD (with
Ritz extraction and optimized B-orthogonalization) and the LOBPCG method in
BLOPEX, solving the electronic configuration of Beryllium, an atom with 4 protons
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and 4 electrons. The number of computed eigenvalues is equal to the number of elec-
trons. In this case, GD is slightly better than LOBPCG, as shown in Figure 8 (right).

6. CONCLUSIONS
This paper has introduced the implementation of Davidson methods in the context of
the SLEPc library for the solution of Hermitian and non-Hermitian eigenvalue prob-
lems, both standard and generalized. The proposed solvers incorporate state-of-the-
art expansion methods (such as Generalized Davidson and some variants of Jacobi-
Davidson), extraction techniques (such as standard Rayleigh-Ritz and harmonic vari-
ants) and restart techniques (GD+k), exposing a number of parameters that allow for
the adaptation of the solver to the characteristics of the problems. The solvers are
robust and efficient by trying to maintain the structural properties of the original
problem in the projected problem, and performing the operations in real arithmetic
whenever possible.

The implementations are fully integrated in the PETSc framework, as the rest of
SLEPc solvers, inheriting its benefits such as ease of solver customization via the com-
mand line (generally the optimal configuration is not straightforward), availability of
a large variety of iterative linear solvers and preconditioners even from external pack-
ages, and high-performance computing capabilities, mostly MPI but also increasing
support for novel architectures like multi-cores and GPUs.

In terms of practical use, the SLEPc Davidson solvers are competitive with respect
to other free parallel libraries, and even provide new features like the support for
non-Hermitian problems and harmonic extraction methods. We have addressed three
relevant scientific computing applications, the analysis of incompressible fluid flow,
the computation of unstable modes of plasma and electronic configurations of atoms,
in which obtaining the corresponding eigenpairs is challenging for iterative solvers.

Near future works include the implementation of two-sided Jacobi-Davidson (for ap-
proximating the left eigenvectors besides the right ones at cubic convergence rate),
and of robust, native Davidson methods for SVD and quadratic eigenproblems, al-
though the current solvers can be used to solve those problems by means of solving the
equivalent eigenproblem.
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