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Abstract

In this paper, the post-critical behavior and buckling modes of single-walled carbon nanotubes are analyzed via a
Molecular Mechanics model. The main target is to develop a general formulation for the model, which has been
simplified under small strains assumption, and to implement a versatile tool for the structural analysis of carbon
nanotubes in the framework of geometrical nonlinearity. For this purpose, a mechanical formulation able to reproduce
any load configuration and supporting conditions has been derived by using an energy approach. Then, an incremental-
iterative solution procedure has been implemented in order to trace several nonlinear equilibrium paths and to obtain
the corresponding critical strains of clamped-clamped nanotubes under compressive, flexural and torsional loading
distributions. The model shows a good numerical performance and results in agreement with previous atomistic
works.

Two interatomic potentials have been adopted in order to find out the influencfeskdt constitutive relation-
ships on the final nonlinear response. We have concluded that the choice of the potential function has no significant
effect on the final buckling strains. Our results confirm that the final buckling response is strongly determined by
geometrical imperfections in the nanotube, which can be well reproduced in the proposed model, but are much more
difficult to handle in continuum models.

Key words: Carbon nanotubes, Molecular mechanics, Honeycomb structures, Energy methods, Nonlinear, Buckling
strain

1. Introduction

Carbon nanotub2$CNTs) have represented a remarkable centre of attention into the scientific and research com-
munity over the past two decades, due to their outstanding mechanical and electrical properties (Dresselhaus et al.,
200). Forinstance, CNTs show a singular coupling between mechanical strain and electrical conductivity (Paulson et al.,
1999; Rochefort et a., 1999), becoming ideal candidates for making nano-sensors (Kang et al., 2006) and nano electro-
mechanical systems, with promising applications in robotics and biomechanics. Hence, Liu et al. (2003) studied
the flexural buckling of Multi-walled Carbon Nanotubes (MWCNTSs) under an electrostatic field and Naieni et al.
(20171) dealt with the influence of the transversal deformation of a CNTs cross on the electrical transport. Also, in
Rasekh et al. (20:10) the nonlinear analysis of clamped-clamped electrostatically actuated CNTs is carried out.
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Moreover, CNTs are the #iest (Young's modulus: 1 TPa, see Hernandez e al. (1998)) and strongest materials
(oy = 50 GPa, see Belytschko et &l. (2002)) to date. Thereforépcananotube based composites have shown a
wide range of potential applications, especially whereghhatio strength-to-weight is needed (e.g. in the aircraft
industry). In this field, Ajavan et al. (2000) stated that sftrength of the composite is mainly influenced by the low
strength of the Single-Walled Carbon Nanotube (SWCNT) besdut not by the toughness of the isolated SWCNT.
However, a deep understanding of the mechanical behavi&®WENTSs is a first step necessary to establish the
response of SWCNT bundles. Of course, we should worry abatitoaag nanotube-matrix interface which could
be achieved by chemical functionalization of the CNT end®&Selhaus et al., 2C01). Moreover, Parnes and Chiskis
(2002) examined the buckling of nano-fibres into a polymetrixand stressed that the buckling failure of nano-fibres
could be the prevailing mode of collapse even in reinforaadposites.

Taking all the aforementioned issues into account, in thjgep we try to gain an insight into the geometrically
nonlinear structural behavior of SWCNTs. Our work could égarded as an initial approach towards the nonlinear
behavior of SWCNT bundles involved into a polymer matrix.

To date, many works have been developed to analyze the gecafigtnonlinear or buckling response of CNTs
and they may be classified into twdi#irent categories: atomistic scale and continuum scaleadstiThe atomistic
methods (Molecular Dynamics, ab initio, tight-bindinghcsuccessfully reproduce physical phenomena as buckling
of MWCNTSs (Lietal., 2007, Zhang et al.. 2007) or SWCNTs (¢Smivastava et al.. 1939; Yakobson et al., 1996)
under compression, bending or torsion. Neverthelessethethods have the disadvantage of being limited at a
relatively low number of atoms (about q@ccording to X. Wang et al. (2005)) because of their high astatonal
cost. On the other hand, continuum methods (Arrovo and Betty 2003; Pantano et al.. 2004; Wang and Varadan,
2005) are computationally cheaper and capable of analymgetosystems, but the choice of some parameters (as
the wall thickness, ranging from= 0.066 nm in Yakobson et al. (1996) to 0.34 nm in Meo and Rossi @ 20@r
establishing an equivalence with the atomistic level magdigroversial. Furthermore, continuum methods are not
able to reproduce either the atomistic structure or the &tiyscale defects which can modify a great deal the final
response of CNTSs.

As an intermediate point between atomistic and continuurthaus, Molecular Structural Mechanics (MSM)
models constitute an alternative tool of analysis whichradpce the atomistic structure in detail but afceent
enough in terms of numerical performance. Some authorafd.iGhou, 2003&a; Zaeri et el., 2010) considered SWC-
NTs as a frame system with carbon atoms located at the nodeafgéohbars representing the covalent bonds. Where
MWCNTSs were studiecl (Li and Chou, 2003b; Zaeri et al., 201 diferent layers were connected by several truss
rods between neighboring atoms. Alternatively, Odegard ¢200:2) modeled the graphene sheet as a 2D truss model
with additional rods through the hexagonal unit cell. Hoerethese kind of models are physically unrealistic because
auxiliar elements or stinesses were needed in order to introduce the three-bodgatita.

Aimed to describe mechanically the SWCNTs more faithfule ‘stick-spiral’ model (Chang and Gio. 2003)
reproduces covalent bonds by axial springs and introdimethtee-body interaction directly by three spiral springs
around each node. Later (see Natsuki &t al. (2004); NatsukEado (2004); Xiao et al. (2005)), the same model was
adopted to establish some mechanical parameters of SWQNTaso in Chang et al. (2006) the model was extended
to Chiral nanotubes. All the aforementioned referencegedlto MSM limited their calculations to a small unit cell
involving only a few atoms subjected to a specific loadingdritigtion. Therefore, a new specific set of equations
should be derived for each loading configuration. Otherylideo and Rossi (2006) implemented the ‘stick-spiral’
model in the finite element (FE) commercial code ANSY®@sting a SWCNT as a whole under each load case, but
no formulation of the model was shown. In addition, the iriploss of accuracy associated to the FE modelling was
inherent in their results.

Consequently, our work deals with the ‘stick-spiral’ moHet reformulated in such a way that the equations have
general validity regardless of the external loading coméitian. Moreover, the equations included herein may be
regarded as the geometrically nonlinear extension of cewipus work (Merli et al., 201.2) in which a review of some
mechanical parameters of SWCNTs by means of the same MSMImadeprovided. In addition, our numerical
treatment is rather in the Molecular Mechanics (MM) apptoak:Cao and Chen (2006).

We would like to highlight the main advantages of the pres@mhulation against the Molecular Dynamics (MD)
methods. Despite of the high accuracy yielded by the laétaystem of N particles is described dynamically by a
vector of instantaneous positions and velocities (dim@néN) but in the former only 81 fundamental variables are
involved (nodal displacements), which implies a much highemerical performance of the method. This feature is
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specially important in geometrical nonlinear analysiseventhe computation of the tangentistess matrix and the
resolution of the linear incremental system representghoask. Also, MSM models are basically static and no time-
integration is needed. Finally, in our formulation no heaiduction with the surrounding media is taken into account.
However, the real buckling response of isolated SWCNTsghlkiinfluenced by random thermal fluctuation, which
constitutes a limitation for MM models. Despite of this faitte coupling between thermal vibration and structural
defects makes ficult to analyze the intrinsic buckling of a SWCNT via MD metiso In this sense, MM or MSM
are interesting tools as a first step to understand the baskdibg behavior.

The main contributions of this paper can be outlined as¥ito

1. In this paper, the main objective is to find out the georoatmonlinear behavior of SWCNTs by means of
a new general (nonlinear) formulation of the 'stick-spirabdel, in contrast with purely atomistic methods.
Therefore, compressive, flexural and torsional simulatiware carried out aimed to the plot of nonlinear equi-
librium paths and the obtention of critical strains andsges. For this purpose, analytical expressions have been
derived through an energy approach which can reproducenaydonditions with no need of additional equa-
tions. Even in geometrical nonlinear analysis with MSM medsome authors (Chang et al., 2005) formulate
their equations over a small number of atoms and the cornesipg bonds under specific load configurations.

2. An approximate geometrical nonlinear formulation of agyéc three-dimensional rotational spring is provided
in terms of the nodal displacements involved (see =a. (3h)ppite of the nonlinear formulation of a two-
dimensional torsional spring is tackled in some refereff@ess Felipre (2001), as an example), the 3D nonlinear
formulation of this kind of springs represents a noveltytapur knowledge.

3. It is very simple to introduce any interatomic potentiahdétion into our formulation provided that the bond
lengthening and angular distortion between bonds appeauphed. This is not the case in the most frequently
used potentials in MD simulations, as the Téfd8renner potentia (Brenrer, 1990; Tefi541986), but it could
be readily approached by the Morse potential (uncoupleddfmitudinal strains below 10% (Belytschko et al.,
20022). Aimed to highlight this versatility and further coarp results, two interatomic potentials (see section
4) have been implemented in this work.

4. Several nonlinear equilibrium paths and critical stsaimder each load case are provided as output results of
our implemented codes. Also, some deformed shapes forghigdeation into the nonlinear path are included.
This results are readily compared with those reported inespublished references from MD (or continuum)
simulations in order to validate our model.

The paper is organized as follows: in section 2 a schemasicrifion of our model is provided. In section 3 the
nonlinear formulation of the MSM model is tackled. In seniha brief discussion about the adopted potentials is
drawn. Details of the numerical procedures implementedjaen in section 5. Numerical results and comparisons
with some released references are carried out in sectiord Gimally, some concluding remarks are addressed in
sectior 7.

2. Qualitative description of the model

In this section, a brief description of the 'stick-spiraloatel is provided. As an example, its geometry and main
elements for a ZigZag SWCNT are depicted in figure 1. CovalentC bonds are represented by 'truss’ (or linear
spring) elements which are just axially deformable and lineg-body interaction is represented by rotational sgring
which are exclusively rotational-ftiagainst angular distortion between two neighboring covat®nds on each
atom. The main degrees of freedom (DOFs) of the model arértbarldisplacements at each node, therefore angular
distortions will be written as functions of them. Accordingolely point loads (no moments) will be applied at each
node if necessary, and all the boundary conditions are eghjply means of pinned joints at the edge nodes of the
SWCNTSs. In the present work, the load is applied through afptescribed displacements at the moving nodes on
the atoms of the right end of the SWCNTS, but keeping thetutar cross-section arrangement. On the other hand,
the atoms of the left end are regarded fixed by pinned joirtts zéro displacements.

A clamped-clamped scheme has been adopted for our purpgdse®ver, our model is able to meet any kind of
load and supporting conditionsftérent from the compressive, flexural or torsional adoptedimpaper. Therefore,
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Bar element working
as an axial spring

Spring element working
as a rotational spring

Figure 1: Geometrical description of elements

there is no need to derive particular equations for eachngadistribution, in contrast with Chang and Gao (2003);
Chang et al. (2006); Xiao et al. (2005).

3. Nonlinear formulation of the MSM model

3.1. Barelement

The following approach may be regarded as the geometricdingar extension of the equations developed in our
previous work (Merli et al., 20:.2) by using the same energyapch. The small displacements assumption has been
removed in this case and the necessary nonlinear terms kavdncliuded.

Note that our model is not into FE framework, in contrast witko and Rossi (2006). In fact, no kinematical
interpolation (with the consequent loss of accuracy) ituided into the kinematical equations and no shape functions
are needed. By contrast, the present model is a MM-basectstallmodel involving direct relationships between
each structural member and the interatomic potential.

3.1.1. Kinematic equations
We can define the nonlinear change in length of the bar eleraprgsenting a covalent C-C bond as:

|/2_|2
= —— (1)

Wherel, I’ stand for the initial and final length of the elemént

Definition (1) is inspired by the Green’s nonlinear axiahstradopted in structural mechanics (see Malvern (1969)
as an example), but in our case it has length dimension. $mthy, it allows us to write the axial strain virtual energy
of the element ablsein a straightforward manner, which will be useful in the het development of the equilibrium
equation (7). In addition, the interatomic functions adabin this work (see sectiori 4) are defined in terms of the
change in length of the covalent bond, not in terms of theasponding axial strain.

We establish now the relations between position vectorsleasplacements:

X =X + u? (2a)
X = Xj + U3 (2b)
and also: x;j; = xj — x; = 1222 (2¢)
X =X —x =1"2% (2d)



Figure 2: Forces and displacements at the bar ends (coldredveb)

whereA?, 2’# denote the unit vectors along the bar element in the initidldeformed configuration respectively and
the rest of variables implied in eqs. (2) are described inréidu
By subtracting (2a) from (2'b) and employing (2¢). (2d) weiacé:

ra Ia a ui&}
¢ = |’_a/l + |/_a (3)
At this point, the numerator of definition (1) for the bar ekamha can be evaluated ds
(%)% = (1%)% = x{ %3 — i = 2(xi)) "uf} + (u}) "uf} (4)

So, next expression for the nonlinear axial strain is reedler

e =(?)"ud + 1

j + o Ui (5)

It should be noted that ecl. (5) is the exact expression focthage in length of the bar element with no simplification
or linearization just involving quadratic terms in the displacements.

Grouping by blocks into e (5), we can express the axialrsiraterms of a nonlinear kinematic matrix and the
nodal displacements as follows:

a at] U L1ra ap| /120 —1/13] fud
&=~ (“T]{u?\}*ﬂ“i “i][-(ﬂa |/{a}{u7}=

(6)

1
= CPu? + E(u"")TZé‘ua =

1
Ch+ Ecﬁ(ua)] u? = C3u®u?

where
u? = nodal displacements of the bar element.
| = identity matrix of size 3« 3.
2= initial length of the bar element.
Z8 = auxiliary (constant and symmetric) matrix.
Ch= linear kinematic matrix of the bar element.
C3(u® = nonlinear kinematic matrix of the bar element.

C?%u®) = total kinematic matrix of the bar element.

2Hereinafter, we will denote by ()’ the variables measurethindeformed configuration of the element
3Superscripts (3 have been kept over the nodal displacements by coherenc@ihir variables involved in ecs (2)-(6)
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3.1.2. Equilibrium equation
The equilibrium of the bar element at any point of the nordingath can be established through the Virtual Work
Equation (VWE) for a set of kinematically admissible Lagyem variations of the end displacemesit$, 5uf as:

(fHToud + (1‘;T’1)T6u";1 = Na¢e? (7
Whereff‘,ff1 are the end forces of the bar referred to the undeformed aoafign (see figure 2) and? is the axial

force of the bar element pulled-back to the reference cordtgn.
Moreover, we can evaluate the first variatig#t by using equatiori (6) as:

_Ea_a}aTa}aaT a _

6e""_aua6u _C,+2(u)Z+2(Zu) ou? = @)

= [CF+ (U 2] ou” = [CF + CA(U?] ou® = bA(U) 6u®

Therefore, substituting into (7) and grouping by blocks:
faT faT 6uia _ aba a a

[T D7) ut = ND*() éu (9a)
(f3)T5u-N3b3(ud) su® = 0 (9b)
& = N3(b?(u?)" = N [(CP)" + (CA(u?)] (9c)

3.1.3. Constitutive equation

In general, a completely uncoupled interatomic potentiacfionU is assumed (more details will be given in
sectior 4), where the contribution of each element is ekalisdependent on its corresponding strain. Therefoee, th
following constitutive equation for the bar element is stht

ou
N2 = — = f(e® 10
7z = (@) (10)
where f(€?) is a nonlinear function. We are concerned by the increnmeotastitutive equations from a particular
equilibrium point, namely:

aNe
- = @) = K@)
dN? = K3(e) de? (11)

whereK? is the tangent constitutive fiiniess of the bar element. Furthermore, 2a. (11) can be wiittemmms of the
coherent Lagrangian variations as:
ON? = K?¥(e?) 5e? (12)

3.1.4. Tangent gfness matrix

The total potential energly of an elastic system is defined as th&atience between the internal and the external
work, F = Win — Wex. Following Lanczes (1986), if two (infinitely close) eqlitium configurations are considered,
the indiferent equilibrium condition may be expressed as:

§°F =0
62\Nint = 62Wext (13)

Therefore, work of internal forces can be written as a quatifarm of the displacements, the kernel of which is the
tangent stthess matrix:
Wiy = UK 76U (14)
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Applying definition (14) to the bar element and using (12) whiave:
5 Whnt = 8(6Whnt) = (N3€®) = 5N3se? + N3s2e? = K3(6€?)? + N3s2e? (15)

Substituting (3) and taking into account that second Jiariatof displacement&’u? vanish, matrixk$ is readily
obtained:

Wint = 6(u?)" [K3(b?)Tb? + N2 6u?
K2 = K3(b?)"b? + N2z (16)

3.2. Rotational spring element

3.2.1. Kinematic equations

The interaction between two covalent bonds (so-caltede-bodyinteraction) is represented in our model by
in-plane rotational springs around thefdrential environment of the central atom, as can be seenurefigy. Bar
elements are not involved in this interaction, but theiediions are represented by auxiliary straight lines fostie
of clarity.

Figure 3: Forces and displacements acting on the springeele(oolor on the Web)

The nonlinear angular strain in the spring element is defaethe diference in angle between two adjacent
covalent bonds from the initial to the deformed shape:

e]‘:A’yab:A—a (17)
Assuming that strains are small enough, we lpa@arizethe equation (17) as follows:
a=A-¢
cosa = cosAcose! + sinAsine! ~ cosA + el sinA

_ cose—cosA _ [(2%)T2"] - [(4%)"A°]
~ sinA sinA

(18)

The small strains assumption has been accepted evermattieratedisplacements (not arbitrarily large), since the
geometrical nonlinearity is previous to tbenstitutivenonlinearity, as has been experimentally reported by Feiivd.
(1997) and theoretically predicted through MD techniquiisna et al., 19935; Srivastava et ¢l.. 1999; Y. Wang et al.,
2005).
We first evaluate casin (18) utilizing (2), so:
|a|b b ( a\T ( a\T, b

a-T b
cosa = [m’u ﬁ} [aMﬂ]:il [(aa)ub+(ﬁ)Tﬂ+ Ll SR L
|b

19
|/a|/b |a |b ,D|(Ua, ub) El |a|b ( )
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where we have defingg(u?, uP) as a function of the nodal displacements which can be dpedlas:

|ra|/b |2 4+ g |b eb e eb eaeb
P, ) = [a]b - & |Z1|(b e 4Gt ap - = 1+ (2, u°) (20)

Next, eq.(5) is substituted into the auxiliary functigu?, u®) to produce:

A7 b\T
n(ua’ ub) ( |a) i' (U (/’ib) uik 4+

T
|b2 (ulk) |k+

s {(eor ra)- z.bwaf ) (RTch) g () (70 + s (D) (o)
(21)

According with the expression (5) for the nonlinear changdength, the nonlinear angular strain is assumed to
be small enough in such a way that third and successive tefgisglacements can be neglected in the following
equations. More precisely, we can write:

Ugg = £lap ap = ij, ik, jk (22)

whereu,; are a set of relative displacements kinematically admissibbounded norm anelis a scalar value which
provide its order of magnitude. Thus:

lluasll < & ap =ij, ik, jk (23)
and, of course:
& < & &< & (24)
Applying conditions (23) to eq. (21), the following expressmay be stated:

2 2 2

& & & & &
lIn(u?, uP)]| ~ BT g o A +0(e" n>3 (25)

and taking (24) into accounj(u?, u®) may be simplified as:

(@7

1 T 1
n(u?, uP) = ESR |2(ua Tud + @)

Ui+ P

)T+ o ()T [T o (26)

Adopting (26) in egs. (19) and (20), and substituting intéirdton (18):

1
(1 +n(ud, ub)) sinA

e oy + B 0,00 cosa 27)

Derived from conditions; (24), it is obvious to establjgiu?, uP)|| ~ O(e) < 1. Therefore, function can be neglected
in the denominator of (2.7) and operating:

@ @ QO @7 | T T )T )[R v 28)
“|lasinA  [2tanA BsinA _ PtanA| K [absinA 2122 tanA 2|b2tanA lalb tanA
For simplicity, the following definitions are adopted:
A 2 2 Pl
1 1 1 1 1
e = | rl=-ri-r 29a
J [IasmA l2tanA k [IbsmA IbtanA ! Ik (292)
1 1 1
= 27 wp = > Wap = bi (29b)
122 tanA b tanA 2P sin A
Aap = | — 22(A°)T cosA (29¢)
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In this way, (283) becomes:
T
e =T} ud +rk uf + wan(Uf}) T Aapuiy - (u ufj - —(ulk)T (30)

Rearranging terms and grouping by blocks, (30) can be tamsfd into:

ut
el = [r].lT ' F&T] {u,i} +

Ui
1 T T T —wal . wal _TwabAab WabAap Ui (31)
+ > [Uj u; Ui ] wal — wB}IPAab wab(Aab + Agp) — ((fl_)a +wp)l - wpl — wabAap u-e =
WabAzp wpl — wabA g, —wpl U&

1 1
=Clut + E(ul)Tzlu1 =|Cl+ ECﬁ(ul)} ut = Clut) ut

where;
ut = nodal displacements of the rotational spring element.
Agp = auxiliary (constant and non-symmetric) matrix, dimensi8x 3.
A auxiliary (constant and symmetric) matrix.
Cl linear kinematic matrix of the rotational spring element.

Cl(ul) = nonlinear kinematic matrix of the rotational spring eleinen
Cl(ul) = total kinematic matrix of the rotational spring element.

As can be checked, expression (31) has the same structuég iastérms of the corresponding nodal displace-
ments, although the matrices involved hav@atent dimensions.

3.2.2. Equilibrium equation
Similarly to eq. (7), the VWE of the rotational spring elerhahany point of the nonlinear equilibrium path can
be written as:

(FHToui + (FHTouf + ()T oug = Mset (32)
wherefll, fll, fl are the fraction of the external forces contributing to thgudar distortiore* of the element, referred
to the reference configuration. Of cours# is the moment of the rotational spring element pulled-badke initial
state.

As well, 6et can be properly evaluated by using eq. (31):

set = @(m =|Ccl+Z (ul)Tzl+ (zl HTls
aut (33)
=|cl+ YTz eu =[Cl + cﬁ(ul)] sut = bl(uh) sut
Thereupon, substituting into the VWE (32) and grouping locks:
sut
[HT €T (f&)T]{auii} = M*b*(u?) ou* (342)
su}
(fHTsu — Mb(ut) sut = (34b)
Mo (uh)" = MH[(C])T + (cn(ul))T] (34¢)

3.2.3. Constitutive equation
Assuming a completely uncoupled potential functidiisee section 4), the constitutive equation for the rotation

spring element may be stated as:

ou

Ml
5¢l =9

(e (35)



whereg(e!) is a general nonlinear function of the angular stettinAs we did for the bar element, the corresponding
incremental and variational constitutive equations haedallowing form:

dM! = g'(eh)de' = Ki(e') det (36a)
sM?t = K1(eh) set (36h)

whereK!(e?) is the tangent constitutive fiiness of the rotational spring element.

3.2.4. Tangent gfness matrix
Definition (14) applied to the rotational spring elementdejpted to obtain its tangent §tiess matrix. As well,
eq. (36h) is employed in the next expression:

8 Whnt = 8(6Whny) = s(Msel) = sMse! + Mis%et = Ki(seh)? + Miset (37)

Substituting (33) and taking into account that second tiana of displacement§?u® vanish, matrix<} is readily
obtained:

62VVint — 5(U1)T [Kl(bl)Tbl + Mlzl] (Sul
K: = K}(H bt + Miz? (38)

3.3. Whole structural system
This section concerns the geometrical nonlinear analyisesgeneral set of bars and spring elements properly
connected. Namely, those group of elements reproducing$Wgzometry (fig 1) are treated. Although it has not
been explicitly derived in this paper, it is easy to show thatstandard boolean assembly of the glob&rstss matrix
from the individual matrices of each element works propay this MSM model. In the same way, the kinematical
and equilibrium equations can be assembled by arrangirguadkly blocks of the corresponding individual elements
into the global matrices.
For the purpose of defining the incrementaffeéss system, the next variables are defined:
ur = displacements of free nodes.
uy = displacements of moving nodes. Hereaip = U are known functions
of prescribed displacements.

fr=  external point loads applied at the free nodes.
fw = reactions at the moving nodes.

A= load factor.

q= vector of incremental load.

€= vector of incremental imperfection-load.

Grouping by blocks the reduced tangenffetss matrix, the corresponding incrementalrstiss system (from an
equilibrium configuration) can be written in the followinga.

AfR _ KR KRM AuR
{AfM} - [K MR KM } {AUM} (39)
Developing the first matricial equation of (39) and introithgca known set of prescribed displacemefity, = AU,

we achieve:
AfR — KrvAU = KRrAUR (40)

Taking into account that external loads and imposed dispt@nts grow proportionally to a load factoreq. (40)
may be rewritten as:

AfR — KrvAU = Ale + A/la = KrAUR
AAq = Ad(e +T) = KAu (41)

where the vector of incremental logds formed by a first terne representing a set of small imperfection-loads at the
start of the loading process and a second fgmeferred to as the vector of incremental load equivalertiédrnposed
displacements. In normal conditions, the imperfectiermse not present and only the second term is included. For
simplicity, the subscripts of the right-hand side in (41ydaeen omitted.
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4. Interatomic potentials

In this section, a brief overwiew of the most usual interatopotential functions adopted to reproduce the me-
chanical behavior of SWCNTs is given. This functions canlbedified into two main categories:

1. Harmonic-like potentials In many references related to the 'stick-spiral’ modéié6a and Geo, 2003; Lau et al.,
2004; Natsuki et al., 2004; Ward. 2004), the harmonic fmas limited to the addition of two fundamental terms,
namely:

1 2 1 2
u=> Ski(an? + D Ske(A6) (42)
wherek;, kg are the force constants related to bond lengthenimtpe angular distortiond respectively. The first
sum is extended over all covalent bonds and the second dwaTgiés between bonds.
In this paper, constants of the Assisted Model Building vidtrergy Refinement (AMBER) force field are adopted
in eq. (42). Regarding egs.(10), (11) and (36) and follo\tinand Chou (200%a); Natsuki et gl. (2004); Zaeri et al.
(2010), the following tangent constitutivefstiesses are adopted:

K* =k = 652 nNnm* a=ab,c,... (43a)
KA =k, = 0.876 nNnmrad™ B=123,... (43b)

Therefore when the AMBER potential has been taken into atcdimear constitutive relationships force-strain
and moment-distortion have been implemented.

2. Multi-body potentials The so-called Reactive Empirical Bond Order potentiatdude the &ect of the rest of
atoms in the two-body terms of the potential function. Thane the &ect of bond stretching and angular distor-
tion are coupled into the potential function. The most wydeded (e.c. Arrovo and Belvtschko, 2003; liiima et al.,
1996; Li et al., 2007; Robertson et al., 1992; Yakobson ¢18B6) potential function (mainly in MD simulations)
is the Ters&-Brenner potential (Brenrer, 19S0; Tefi3d1986). However, it can be readily approached by the
Morse potential (Belvtschko et al., 2002; Natsuki and E1#0i9)4) for longitudinal strains below 10%, which is a

fully uncoupled function given by:
E=>E+) E (44a)

Er = Def[1 - 7472 - 1) (44b)
1
Eo = E|<9(A<9)2[1 + ks(A6)] (44c)
where the parameters involved take the following valueduiBehko et al., 2002):
De =0.2895 nNnm B =3843nmt
ks =0.8998 nNnm ks = 0.754 rad* (45)

Ar is the change in length of covalent bonds from their initist@hce of equilibrium in the nanotube, which is
around 0.142 nm, ant¥d is the change in angle from the initial one in the SWCNT, whgchbout Z/3.

Taking into account eqs.(10), (11) and (36), the tangenstitotive stithesses are the second derivatives of the
Morse function with respect to the corresponding strain:

K® 22'82Dee_,3(Af”)[2e_ﬁ(Ar”) _ 1] a=a, b’ cC... (46a)
KP =kg[1 + 15ks(A6°)*] B=1,23,... (46b)

Of course, this potential function renders nonlinear dturtste relationships besides the geometrical nonlirigari
into the numerical procedure.

Falvo et al. (1987) experimentally reported that MWCNTSs atoke to experiment bending and buckling up to large
displacements, but in the linear range of strains. Heneeg#dometrical instability appears before the constitutive
nonlinearity. As well, Srivastava et €l. (1999), liiima €t(A996) and Y. Wanag et al. (2005) stated the same conclusion
by means of MD calculations. Since one of the main goals sfithurk is to check numerically this issue for SWCNTs
and to find out how much the geometrical nonlinearity is infleed by the constitutive nonlinearity, calculations with
both potentials were carried out and their results finalippared.
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5. Numerical implementation

In order to find out the critical strains and forces of SWCNTsler several load cases, the tracing of nonlinear
equilibrium paths through the so-calledntinuationmethods has been numerically implemented. In fact, noatine
incremental-iterative procedures have been developeidhvity to find out a new equilibrium configuration starting
from a known equilibrium situation repeatedly.

5.1. Approach of the numerical problem

Following the notation used by Felinpa (2001), let us asstivaeall the variables of the equilibrium state (loads,
displacements, strains, forces and so on) grow in propottica parametet (so-called load factor). Moreoven,
incremental steps of the equilibrium analysis have beefopaed and the last accepted solutiorujsA,. At this
point, the target is to find out the next equilibrium solution

Uns1 = Up + Alp

Ant1 = An + Adp

that satisfies the nonlinear algebraic system:

0 (47a)
0 (47b)

r(Un+1, /ln+1)
c(Aun, Adn)

wherer is the residual of the nonlinear problem ami$ the constraint equation of the control strategy. Hefééna
subscripn is referred to the current incremental step.
The general form of the nonlinear residual equation is:

r(u,1) = K(u) u-Aq (48)

On the other hand, an arc-length control strategy has bempted because it is able to go through the limit points
which will appear on the equilibrium path, in contrast witietforce control strategy. If a small enough increment
step is considered, constraint (47b) takes the form:

c(AUn, Adp) = VT AUp + Adp — A, fy = 0 (49)

where:
As, =g constant value adopted for the arc-length over the nonliegailibrium path.

vn = K™1(u,) gn  incremental velocity vector.
fo= v1+Vvlv, scaling factor.

The conventional Newton-like methods are based on theatadcTaylor expansion (neglecting second and higher
order terms) of the systern (47) arounfj AX, where superscrifitis related to the iteration step. So that, by using egs.
(48) and (49) and introducingf = Auk, 7% = AAX theaugmented sfinesssystem is given by:

k _ak k k
T 2

where the variables involved has been defined in 3.3. Noté36is the governing system for tleerrectivephase.

5.2. Description of the incremental-iterative procedure

Implementation of the governing equations has been caprieth C++ programming language. As well, the ge-
ometry generation of SWCNTSs has been developed in Visu8ck®le. Aimed to describe graphically the calculation
kernel, the general flow diagram has been depicted in f gured4reore detailed explanations for the predictive and
corrective stages into a generic increment have been iedlirdfigures 5(a) and 5(b) respectively.

In order to improve the clarity of the figures 4 ard 5, severaiarks should be noted:
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Geometry generation
and input datatg, NI

!
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for u9, 29, p9

| Predictive phase, fig 5(41)

., NI

n=12,..

ITERATIVE PROCEDURE

New accepted
solutionuk, A%, pk

| Output and drawing result

Figure 4: Diagram flow of the incremental-iterative nhumakierocedure

. The input daté means the arc-length increment size &tidhe number of increments to plot over the nonlinear
equilibrium path. These values have been tested out intlo gawlation in order to reproduce a long branch in
the post-critical behavior before the divergence of the artical process took place (see sectiori 6.4) . As output
results, we will get the corresponding equilibrium path #melfinal forces, reactions and deformed shape in the
last increment.

. Although a convergence condition over the residual cbeldhosen, the condition indicated in fig 4 regarding the
norm of the displacements, taking= 107%, has been preferred for the iterative procedure. Thus, ttrelard
maximum norm criterion has been adopted.

. The vectop = [n m]' contains the internal forces of the whole structural systeheren are the bar axial forces
andm are the rotational spring moments. Corresponding%/,[e" eG]T corresponds to the nonlinear strain vector,
wheree” are the changes in length agtiare the changes in angle.

. In general, the initial configuration for the first incrembas been assumedus= 0,19 = 0,p% = 0.

. Regarding the vector of incremental lagé € + G, the fist term stands for the initial imperfections and atsoi
duced exclusively in the first increment in order to conveethifurcation points that will appear at the equilibrium
path (critical buckling modes) into limit points, which arasier to cross over without divergence of the algorithm.
In the following increments, only the second term assodiatith the prescribed displacements is kept, which can
be calculated as (see eq. (41)):

AU = AAd (51a)
AAG = —AAK gyd (51b)
g =-Krvd = -Kd (51c)

whered are referred to as the incremental prescribed displacamétite moving nodes. Since the first term of the
13
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T T
ry = - [4%af - b3 pi] it = — [ k- bl pk?
(a) Predictive (incremental) phase (b) Corrective (iterative) phase

Figure 5: Partition of a generic increment

residual just includes the actual external loads and ngt¢kedo-loads, it vanishes from the second increment.
f. The matrixbr(u) is constructed from the correct assembling of bh@atrices related to the individual structural
elements (see egs. (8) and (33)) and the correspondingneatal kinematical equation including the prescribed
displacements may be written: _
Ae = br(u)Au + bru(u)Aad (52)

g. Inthe incremental constitutive equations, similar te.€@1) and (3€a), the constitutive tangents#@sses given by
(43) or '46) are utilized. Namely, a specific code has beerldped with AMBER potential and another one with
Morse potential in order to check numerically whether thergetrical nonlinearity is previous to tle®nstitutive
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nonlinearity, as has been theoretically expected (liiitna ¢ 1995; Srivastava et al., 1999: Y. Wang et al., 2005),
and experimentally reported (Falvo et al., 1997).

h. It may be remarked that the incremenis,, A1, in the constraint (49) should be taken from the start of each
incremental step, but no between two consecutive itersition

6. Numerical results and discussion

In this section, nonlinear geometrical behavior of SWCNTstudied through compressive, flexural and torsional
simulations. Our main objective is to obtain the criticaddidfactor for each loading scheme and to compare the final
results with some atomistic simulations.

6.1. Compressive behavior
The nanotubes indicated in table 1 have been chosen undgression.

Chirality d(nm) L(nm) L/d

Armchair(3,3) 0.407 4919 12.09
Armchair(4,4) 0542 6.641 12.24
ZigZag(5,0) 0.391 4.757 12.15
ZigZag(7,0) 0.548 6.674 12.18
Chiral(4,2) 0.414 5072 1224
Chiral(5,3) 0.548 6.859 1252

Table 1: Geometrical parameters of SWCNTs under compiressio

Similar diameters and aspect ratios have been chosen im rdarther comparison of the obtained results.
Supporting conditions and imposed displacements undepsaive loads are displayed in figure 6. Hence, the
known function adopted for the prescribed displacementaah pinned joint at the right end of the SWCNT has

been:
-1
AUn = A2,4 0 (53)

0

Since the x-axis is oriented parallel to the cylinder axig.(1€), A1, corresponds directly with the incremental
shortening of the nanotube. Therefore, equation (53) de=xca rigid body translation of the right end cross section
towards the left end.

Prescribed
displacement nodes

Fixed nodes

{2l N

Figure 6: Supporting conditions under compressive loads

As has been mentioned before, two calculations have bedarped for each nanotube of table 1 (with one
different potential each). Since two-dimensional plots areeasunderstand for the nonlinear equilibrium paths, the
transversal displacemeuy of a representative node around the midpoint of the SWCNbbkaa represented against
the load parametet. Some of the equilibrium paths and final deformed shapes @asgbes of the obtained global
buckling behavior are given in figures 7 ard 8 respectively.
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Figure 7: Nonlinear equilibrium paths under compressiahofcon the Web)
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Initial imperfections in all simulations under compressiave been adopted as a set of point transversal loads on
the nodes located at the cross-section around the midplaiiné manotube, the values of which have been tested out
trying to achieve the longest curve after buckling withoedyence of the numerical algorithm. In fact, some values
of these imperfections produce the divergence of the psdoefore buckling took place (see section 6.4).

For each critical load factor obtained from the equilibripaths, the equivalent axial strain has been evaluated as:

Ac

r

Ecr = 7

L

(54)

where L is the initial length of the SWCNT. Therefore, we camlioe the compressive critical strains in table 2.
Agreeing Cao and Chen (2006), some scattering has beenvetisarthe final critical strains depending of the

increment sizdy and the number of incremenitsl. Despite no explicit statistic analysis of this influences baen

performed in this work, input data for compressive simolasiare added in table 3 as guidance about their order of

magnitude.
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Figure 8: Deformed shapes under compression (last incr@men

AMBER MORSE
L(nm) Ag(nm)  &c (%)  Aer(NM) £ (%)
Armchair(3,3) 4.919 0.146 2958 0.147 2.978
Armchair(4,4) 6.641 0.253 3.807 0.193 2.902
ZigZag(5,0) 4757 0.306 6.426 0.132  2.783
ZigZag(7,0) 6.674 0.313 4.688 0.190 2.844
Chiral(4,2) 5.072 0.239 4706 0.141 2.782
Chiral(5,3) 6.859 0.258 3.756 0.188 2.737

Table 2: Critical strains under compression

AMBER MORSE

lo NI lo NI
Armchair(3,3) 0.05 65 0.05 65
Armchair(4,4) 01 30 0.1 39
ZigZag(5,0) 0.05 60 0.05 60
ZigZag(7,0) 01 40 0.1 40
Chiral(4,2) 005 75 0.05 75
Chiral(5,3) 0.02 200 0.05 74

Table 3: Input data in compressive simulations
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Comparing values from table: 2 can be seen that the compasfs@iues from table 2 shows that the adoption of
different potential functions produces somewh#éedent values ofl.;, although the order of magnitude of the final
critical strains with both functions is similar. Therebygwan conclude that the critical buckling is triggered befor
the constitutive nonlinearity takes place, according ttvé-at al. {1997); liiima et el. (1996); Srivastava et al. 999
and Y. Wang et al. (2005).

As can be seen, our results agree qualitatively well witkeogttomistic studies, mainly with MD simulations. For
instance. Yakobson et al. (1996) obtained for a SWCNJ 1 nm a critical compressive strain of 5%. Srivastava et al.
(1999) obtained,, = 8% anc Ru (2000) estimatey, = 7.5% for the same diameter. Likewise, Zhang et al. (2007,
table 4) and Cornwell and Wille (1997) predicted for Armeheinotubes the critical strains outlined in tekle 4, which
agree reasonably with our values from tekile 2.

Zhang et al. (2007) Cornwell and Wille (1997)
d(nm)  ecr(%) d(nm)  ecr(%)
Armchair(4,4) 0.542 6.570 Armchair(9,9) 1.250 5.200
Armchair(5,5) 0.678 7.764 Armchair(12,12) 1.664 4.400
Armchair(6,6) 0.814 7.068 Armchair(19,19) 2.632 3.200
Armchair(7,7) 0.949 6.271

Table 4: Critical strains estimated by other MD methods

As well, Y. Wang et al. (2005, fig. 2) obtained almost the samakies as Cornwell and Wille (1997) for the
same diameter range. Regarding Molecular Mechanics frame/ao and Cheri (2006) estimated by using the
commercial software Materials Studio an average critit@iss,; = 6.6% for a ZigZag(9,0) SWCNT of 5.3 nm
in length ande,, = 7.6% for an Armchair(5,5) SWCNT of 4.7 nm in length. Also Chanalk (2005) yielded
ger = 10.7% for an Armchair(7,7) anége; = 6.9% for an Armchair(10,10) nanotube, by a MM-based technigieh
minimizes the total potential energy. All of these valuesiarthe range of our results in tahble 2 from the MSM model.

A controversial issue, extensively treated in severategfees (Cao and Chen, 2006; Chang =t al., Z005; Odegard et al.
2002; Yakobson et al., 1996) is the applicability of the @mmim models to predict the critical strains of compressed
SWCNTs. According to Cao and Chen (2006), the presence ohgeiral imperfections in the atomic structure (not
explicitly represented in continuum model#jezts the critical buckling strain of SWCNTSs. Then, continumodels
are notrecommendable to tackle the geometrical nonlimesysis of these nanostructures. Even if beam or shell-like
models are supported with atomistic technigques (Chanc,£@05) for validation, it is necessary to be cautious about
the definition of some mechanical parameters.

Anyway, taking into account the aspect ratios from table @éwfsimulated SWCNTs under compression and the
obtained deformed shapes in figure 8, a global buckling megélded. Therefore, we could compare qualitatively
our obtained critical strains with those obtained from ¥agan et al. (1996, eq. (2)) for global buckling failure mode
(see table 5). Thus, a maximum relative shift of 20% is reeder

AMBER MORSE Yakobson et al. (1996)

&cr(%0) &cr(%0) £cr(%0)
Armchair(3,3) 2.958 2.978 3.375
Armchair(4,4) 2.876 2.902 3.292
ZigZag(5,0) 2.796 2.783 3.341
ZigZag(7,0) 2.836 2.844 3.327
Chiral(4,2) 2.780 2.782 3.293
Chiral(5,3) 2.727 2.737 3.150

Table 5: Comparison with Yakobson et al. (1996, eq. (2)) uedenpression
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6.2. Flexural behavior
The nanotubes referenced in table 6 have been simulated iexding loads.

Chirality d(nm) L(hm) Ld

Armchair(3,3) 0.407 1.230 3.02
Armchair(4,4) 0.542 1.722 3.17
ZigZag(5,0) 0.391 1.349 345
ZigZag(7,0) 0.548 1.775 3.24
Chiral(4,2) 0.414 1.240 2.99
Chiral(5,3) 0.548 1.789 3.26

Table 6: SWCNTSs under bending

In this section, shorter nanotubes than those under cosipedsads have been chosen, because we are focused
on the analysis of the local buckling mode rather than théajlene. A schematic description of the supporting
conditions and prescribed displacements for the flexuabier is displayed in figure 9.

Prescribed
Fixed nodes displacement nodes
y % g@
4
x 1<
z ~co
Ilstant

Figure 9: Supporting conditions under flexural loads

With regard to the possibilities of definition for the prabed displacementau at the right end of the SWCNT,
we can classify them into two main groups:

1. The right end of the reference axis describes a known dkfine/e in the plane.
2. The right end traces a path such that the consecutiveereferaxis in the loading procedure constitute a family of
known curves verifying a defined property.

In our case option 2 has been chosen, where the referenca axistermediate equilibrium position is supposed to be
an arc of constant length. Moreover, the initial tangentaafrearc is the neutral axis of the undeformed shape and the
moving nodes at the right end verify a rigid body motion whigeps the cross-section orthogonal to the deformed
reference axis along the loading process. In this way, tkere&ation is verified for each equilibrium configuration:

pd =L (55)

Assuming the same coordinate system defined in section 6. hdwopting the load factor for bending response as
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A = 6, the displacements of the right end centre may be expressé#ukffirst increment as:

inA
AT = —(L - psinAdy) = L (1 _sn Al) (56a)
A1
AV = —p(1 - COSAL) = —ﬁ (1 - cosAl,) (56b)
1
AW =0 (56¢)
Taking a generic node (node A) at the right end of the nangthleémposed displacements are written:
AT = AT? + yaSinAl; = —L(l - S'Zfﬂl) T+ yASINAL (57a)
1
A\_/? = A\_lzl + YA COSAA; = — (ﬁ + y/.\) (1 - COSA/I]_) (57b)
1
AW, = AW? (57¢)
then, regarding\1,, is small enough, eqs. (57) can be simplified as:
AU? Ya
AW b= A {-L/2
AW, 0
AT} = AT (58)

For the following increments, the prescribed displacemanthe right end can be determined by using eas. (56) at
the beginning and the end of the increment. Therefore, aafirig the resultant expressions we can reach:

AR =T, -T®=L [—S'M”” - —S'M”] (59a)
/ln+l /ln
1- 1-
AR =R V= —L[ COSAni1 cosﬁn} (59b)
/ln+l /ln
AV = Wy~ = 0 (59c)
In the same way, we can add the incremental displacemertig ofoide A to equation (59) achieving:
AT, = AT + ya(SinAns1 — SinAdy) (60a)
AV = AVZ + yA(COSAns1 — COSAp) (60b)
AW, = AW2 (60c)

After a few manipulations and assuming,, is small enough, the next simplified expressions for the sepddis-
placements at the node A are obtained:

AT £ (cosiy — 242) + yx cosdy
ALY = Ad, + (1‘3—"5” - sin/ln) — yasind,
AW,
ATL = A TR (61)

The prescribed displacements are updated only in the predlghase, leading toradistribution of internal forcem
the corrective one, up to reach the next equilibrium conéigan. Hence, superscript k disappears from =a. (56) to
eq. (62).
Some obtained nonlinear equilibrium paths under bendirdythair deformed shapes at the last iteration (of
the last increment) are provided in figures 10 and 11 resmdgtias an example of the buckling behavior. The
20
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Figure 10: Nonlinear equilibrium paths under bending (colothe Web)

transversal displacement of a representative npdeound the midpoint at the compressed side of the nanotutbe ha
been represented against the load fagtor

Initial imperfections in bending simulations have beengdd as a point load in the y-axis direction at a node
near the midpoint of the compressed (bottom) side of the SW@¢ting out their values trying to reproduce a clear
post-critical behavior without divergence of the numdrpracess (see section 5.4).

For each critical load factor (right end rotation), the Hirgi curvature can be obtained from (55) as:

(62)

Note that equatiori (62) is an approximation to the real bngkturvature because the right-end rotatibe: 6 is
not necessarily the same as the rotation of the cross-semtivesponding to the buckling point. Although the ideal
reference axis is an arc of circumference with constatiteredistributionof the corrective phase into each increment
introduces an accumulative deviation from this curve.
The critical buckling curvatures (in nth) in table 7 have been obtained extractihg from each equilibrium
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Figure 11: Deformed shapes under bending (last iteration)

path. In some cases (fig. 10(a), AMBER potential and fig. J)Q{tls difficult to find out the buckling step which
determinesl,;. In this case, the first abrupt shift into each curve has baleentas the corresponding critical strain,
interpreting the rest of deviations as numerical singtitesi This choice may be open to misinterpretation and a
previous contrast of results withfterent input data for each simulation has been found usedalgection 6.4).

In addition, we can see an abrupt change of direction irugtgisplacement (figure 10(a)) for AMBER potential
compared with Morse function. In order to clarify the origifthis phenomenon, the final deformed shape and some
equilibrium paths of additional nodes for ZigZag(7,0) WKMBER potential were studied (figure 12). Particularly,
the node 74 was monitored in figLre 10(a) and equilibrium pafithe nodes located at the same cross-section of
the nanotube are plotted in figure 12(b). Taking into accolmtsymmetry of the SWNT with respect to a vertical
plane containing the reference axis, each couple of nodesteiin figure 12(a) rendered the same equilibrium path.
As can be seen, the gap into the equilibrium path of node 74dsa singularity that does not appear in the rest of
nodes. Therefore, it can be associated with a lsoalp-throughphenomenon, which is dispersed before reaching
neighboring nodes. A similar situation occurs in the corapeel side near the left end of the nanotube (see figure
12(a)).

The control node should be chosen carefully because nodatethbfar from the instability generate curves with
small kinks or without them. Therefore, some tests of thees&8WCNT monitoring dferent nodes were necessary
into each simulation in order to choose the most suitablérabnode. However, provided a set of nodes that yield
curves where the buckling gap is present, the valug,of independent of the choice of the node.

As we did in compression, input data for flexural simulatiansincluded in table 8 as guidance about their order
of magnitude.

As can be seen from figure 10 and comparing values from tatdach interatomic potential producesfeient
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Figure 12: ZigZag(7,0) with AMBER potential revisited
AMBER MORSE

L(nm) Ag(rad) wke(nm™) A (rad)  ker(nmd)
Armchair(3,3) 1.230 0.552 0.449 0.510 0.414
Armchair(4,4) 1.722 0.308 0.179 0.284 0.165
ZigZag(5,0)  1.349 1.148  0.851  0.636  0.472
Zigzag(7,0)  1.775  0.462 0.260 0.400 0.225
Chiral(4,2) 1.240 0.577 0.466 0.504 0.407
Chiral(5,3) 1.789 0.304 0.170 0.293 0.164

Table 7: Critical buckling curvatures under bending

AMBER MORSE

lo NI lo NI
Armchair(3,3) 0.1 22 0.1 35
Armchair(4,4) 0.04 90 0.02 180
ZigZag(5,0) 01 34 01 19
ZigZag(7,0) 0.01 250 0.01 250
Chiral(4,2) 0.01 240 0.01 327
Chiral(5,3) 0.05 80 0.02 100

Table 8: Input data in flexural simulations

critical buckling curvature. Nevertheless, no clear gystic trend in terms of dfiness is observed. In fact, the
constitutive dfferences due to the interatomic potential function are axliplith various fects as the scattering
from the input data or the bordeffects (short simulated nanotubes).

Regarding the snapshots of deformed shapes in tig. 11, a kiftattening of the cross-section of the nanotube
can be qualitatively seen, as has been reported (liiima,ct@6; Wana et al.. 2003; Yakobson et al., 1996). This
resembles the so-called Brazidfezt (Brazier, 1927) in continuum mechanics. Despite thisceappears mainly in
cylindrical shells, in our atomistic MSM model it is also reduced. However, in some cases (see fig. 11(d)) the final
deformed shape is distorted by the bord&eets, which amplifies the instability near the SWCNT left dné to some
strongly compressed bonds. THeeet of the snap to secondary critical steps detected by timercal procedure (fig.
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10(d)) is present in these unusual deformed shapes. Infiése special deformed shapes occur only after buckling.
For instance, the Chiral(4,2) with Morse potential (fig. d))feaches a., = 0.504 rad in the incrememt= 133 and
running our code which uses Morse potential up to that inergnthe deformed shape (figure: 13) shows the expected
smoothness in the compressed side.

Figure 13: Chiral(4,2), Morse deformed shape; 133

Our results agree reasonably with other published refererior instance, Pantano et al. (2004) proposes a critical
buckling rotation ofg,; = 1.1 rad for a ZigZag(13,0) nanotube of 2 nm in diameter and 8 nfarigth through FE
modeling validated with MD techniques. These values tetashto a critical curvature af, = 0.1375 nn1?, slightly
lower than our results for a higher diameter. Otherwis@méijet al. (1996) used MD calculations for a SWCNT of
1.2 nm in diameter obtaining a critical rotation@f = 30° = 0.5236 rad, closer to our obtained values in terms of
magnitude order. Also in liiima et al. (1996, eq. (2)) is oduced a numerical fitting to their own MD results for
bending. However, it is limited to the diameter range gfl[5] nm and it is meaningless to be used herein.

Despite of using a cylindrical shell model (not recommenepbaluated with MD techniques. Yakobson et al.
(1996, eq. (4)) estimate the critical curvatures in tabler®ir diameter range.

d(nm) L(hm) ke (nmT)
Armchair(3,3) 0.407 1.230 0.937
Armchair(4,4) 0.542 1.722 0.527
ZigZag(5,0)  0.391 1.349  1.012
ZigZag(7,0)  0.548 1.775  0.516
Chiral(4,2) 0.414 1.240  0.903
Chiral(5,3) 0.548 1.789 0.516

Table 9: Estimated critical buckling curvatures under liegndlYakobson et al.. 1936, eq. (4))
These values are reasonably close to those presented indtkigsee table 7).

6.3. Torsional behavior

The dimensions and chiralities of the SWCNTSs simulated utatsion are outlined in table 10.

A schematic description of the supporting conditions ared giistem of imposed displacements is depicted in
figure 14. In this loading case, the right end nodes verifgal thody rotatiord = A in the positivex direction.

In order to simplify the development of the expressions Wigmvide the prescribed displacements of a generic
right end node A in terms of the load factor, we assume ifjtidlat the incrementad,, n=1,2,...,NI are small
enough. Thereforé\i, < A, andAl, < 6 (see figs 14(b) and 14(c)). For the first increment, we have:

AT =~ RAA, (63)
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Chirality d(nm) L(nm) Ld

Armchair(3,3) 0.407 1.476 3.63
Armchair(4,4) 0.542 1.968 3.63
ZigZag(5,0) 0.391 1.562 3.99
ZigZag(7,0) 0.548 1.988 3.63
Chiral(4,2) 0.414 1.465 3.54
Chiral(5,3) 0.548 2.028 3.70

Fixed nodes

Table 10: SWCNTSs under torsion

Prescribed
displacement nodes
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Figure 14: Supporting conditions and imposed displacesnsectiemes (color on the Web)

projecting onto the coordinate axes:

AW =0
AV, = Al3RcosB
AW, = A3Rsing
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SinceB = 6y, equation (64) becomes:

A 0
AV} = Adg{~2Za
AWlA YA
AT} = AT (65)

For the subsequent increments (fig 14(c)), expressions(tzpt the form:

AT, =0 (66a)
AV} = AlzRcosB (66b)
AW, = AA,Rsing (66c)

SinceB = Gy + A, €Qs. (65) can be rewritten:

ATY 0
AV, b = A1y {—2a COSA, — yaSind,
AW, YA COSAn — Za SiNA,

AUL = AATA (67)

As we did in sections 6.1 and 6.2, the imposed displacemeatspalated only in the predictive phase.

Several nonlinear equilibrium paths under torsion andrtfieal deformed shapes are displayed in figures 15
and 16 respectively, as examples of the local buckling utmtsional loads. The transversal displacemgnof a
representative node around the midpoint of the nanotubbédws plotted against the load facior

Initial imperfections in torsional simulations have beptraduced through two point loads in the y-axis direction
and opposite senses, either stretching or flattening thes<ection of the tube. Their values have been tested out
trying to reproduce reasonably the post-buckling behawititout divergence of the numerical process (see section
6.4).

Values in table 11 are obtained extracting the criticaltioteof the right end (equivalent t,) from each equilib-
rium path, in the same way it has been done in bending. As teasdferementioned, this choice may be controversial.
In torsion, the first abrupt shift into each curve has beearas the corresponding critical strain, assigning the rest
of deviations to numerical singularities.

As we did in compression, input data for flexural simulatiansincluded in table 8 as guidance about their order
of magnitude.

As we did in compression and bending, input data of torsisimlillations are included in table 12 to give an idea
of their order of magnitude.

AMBER MORSE Yakobson et al. (1996, eq. (6))

Ag(rad) A (rad) Aer(rad)
Armchair(3,3) 0.865 0.971 0.180
Armchair(4,4) 0.694 0.653 0.117
ZigZag(5,0) 0.958 1.162 0.210
ZigZag(7,0) 0.706 0.831 0.115
Chiral(4,2) 1.000 0.718 0.171
Chiral(5,3) 0.783 0.766 0.118

Table 11: Critical buckling rotations under torsion

Comparing values from tab'e 11 and equilibrium paths fromirggl% can be stated that there is not a clear
tendency iM by taking AMBER or Morse potential into account. Therefose, can conclude that the interatomic
potential does not produce anyfigrence related to the critical buckling strains.
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Figure 15: Nonlinear equilibrium paths under torsion (can the Web)

AMBER _ MORSE

b NI 1o NI
Armchair(3,3) 0.01 164 0.01 185
Armchair(4,4) 0.02 100 0.02 80
ZigZag(5,0) 0.01 160 0.01 175
ZigZag(7,0) 0.02 100 0.02 80
Chiral(4,2) 0.01 180 0.01 160
Chiral(5,3) 0.02 120 0.02 92

Table 12: Input data in torsional simulations

The failure mechanism under torsion leads to a flattening®ttoss section in a helix-like deformed shape (see
fig 16), as has been previously reported by Rochefort et @0¢[1fig. 6). Yakobson et al. (1996, fig. 4) and Wang et al.
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(c) Chiral(5,3) AMBER (d) Chiral(4,2) Morse

Figure 16: Final deformed shapes under torsion

(2004, fig. 4).

Regarding the critical buckling rotations, Yakobson e{H96) reported., =2.7 rad for a ZigZag(13,0) SWCNT
of 1 nm in diameter and 23 nm in length, which is comparablé witr obtained results in takle 11. Furthermore, in
the same work a validation of their own MD calculations by meaf continuum models has been established under
torsional loads. Namely, £ < 136 d*? (short cylinders) which can be easily verified in our case, ) from
Yakobson et el. (1996) provide the results shown in the lalsinan of table: 11. Of course their values are quite lower
than ours because the tubes simulated in this work undeomoase rather short and the circumferential constraints
produced by the pinned joints at both ends tend to keep tkalaircross-section and stabilize the whole structure
against torsional buckling.

6.4. Estimation of error and reliability of the method

In order to give an idea about the influence of the input digtaN(, €), a set of results under fiierent values
of these parameters is provided in this section. Despitenatytical or numerical optimization procedure has been
carried out, the reliability of the numerical method agathe variation of the input data is shown here. Note that all
provided tests have been worked out with AMBER potentiataose of the limited stability of the results obtained
with the Morse function due to its nonlinear nature (see g44)). In fact, with the latter potential, only a few
combinations (mainly in bending and torsion) of initial ierfections and increment size produce reasonable results
once the critical load factor is reached; some of them werleidted in figs. 10 and 5.

Firstly, the influence of the increment siggein the equilibrium paths under compression, bending ansidor
has been investigated. One of the previously simulatedtnbre has been used as a reference for each loading
distribution. The values df are bounded into an interval depending of the particuladitaoms of the algorithm (see
Felippa (2001, Sec.18.2)). For instance, vtk 0.2 all tests diverged before observing any kink in the comwesiing
curve. Therefore, a set of three representative valuesaftit SWCNT were tested to study its final response, but
keeping the initial imperfections as constant values. Tind fialues ofl.; (extracted from the first abrupt change of
direction in the corresponding nonlinear path) are oudiimetable 13, and the equilibrium paths in figure 17.

The procedure is quite reliable in compression and bendigarding the increment size, presenting relative errors
in A¢r (with respect to the minimum values) of2% and 6% respectively. However, a relative error of nea®$o3
is observed due to th&, = 0.8992 rad forlg = 0.1. Nevertheless, from figure 17(c) substantial instabgittan be
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Armchair(3,3) compression Armchair(4,4) bending ZigZ&agj torsion
d=0407nm,L =4919nm d=0542nm,L =1722nm d=0.548nm,L =1.988nm

lo NI Aer(nm) lo NI Acr(rad) lo NI Acr(rad)
0.1 30 0.1456 01 20 0.2904 01 20 0.8992
0.05 65 0.1455 0.04 90 0.3083 0.02 100 0.7055

0.01 300 0.1458 0.02 127 0.3034 0.01 200 0.6948

Table 13:1¢; against increment sidg
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Figure 17: Equilibrium paths with fferent increment sizk (color on the Web)

seen in the corresponding curve arould = 0.7, which is the load factor detected in the other two curvess |
also remarkable that in some of the tested nanotube confignsacertain values df introduce a dierent direction
of the displacement after the buckling point. Namely, tgkinvalue ofl, = 0.01 in compression (figure 17(a)) a
completely reverse direction of the displacement has bemaared, which can be attributed to a glofrzp-through
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phenomenon. Likewise, in figuras 17(b) and 17(c), the chamg@ection of certain curves can be interpreted as a
local snap-througtphenomenon limited to a few nodes.

Next, the influence of initial imperfections is studied byg@ng the increment size as a constant value and giving
three representative values to these perturbations. Taleviitues ofl., are outlined in tablz 14, and the equilibrium
paths in figure 18.

Armchair(3,3) compr. Armchair(4,4) bend. ZigZag(7,0)stor

d =0.407 nm d =0.542 nm d = 0.548 nm
L=4919nm L=1722nm L =1988nm
e (NN/nm) A (nm) € (NN) A (rad) € (NN) A (rad)
6x0.01 0.1457 1x1 0.3180 2x0.05 0.6974
6x0.1 0.1455 1x10 0.3083 2x0.5 0.7055
6x1 0.1455 1x100 0.3954 2x5 0.6413

Table 14:A.; against initial imperfections

Regarding the distribution of initial imperfections, inmpression six point loads have been applied on the nodes
located at the midsection of the nanotube, in bending a po&at has been applied on the node located around the
midsection of the SWCNT at the compressed (bottom) side mnarsion two opposite loads have been applied at
the midsection of the nanotube which tend to flatten the csestion. Although a previous understanding of the
load configuration is needed to choose a reasonable distrihgome additional tests locating the set of loads which
introduces initial perturbations atL/4 from the right end were performed. For instance, applyingsperfections
of 0.1 nNnm under compression, an imperfection of 10 nN under beratinigwo opposite imperfections of 0.5 nN
under torsion, respective valuesf = 0.1457 nm A, = 0.3901 rad and.; = 0.7061 rad were obtained. Comparing
these critical load factors with the corresponding valuetable 14, can be seen that no importafiiedences have
been yielded by changing the distribution of initial impeations. Nonetheless, placing initial imperfections:dt/4
from the right end causes an earlier divergent behaviorehtimerical algorithm than placing imperfections at the
midsection.

As we can see in table 14, the critical load factor is reaslyrathble related to the variation of the values of the
perturbatiore, presenting relative errors (with respect to the minimunawied value) of 5% in compression, 30%
in bending and 10% in torsion. Figure 1&€(b) shows that th@hamperfection of 100 nN renders a meaningless
equilibrium path, the load factor of which increases thatre¢ error in bending.

To sum up, the input datdy( N1 ande) adopted to obtain the equilibrium paths presented frorticge6.1. to 6.3
were selected in order to discard numerical instabilitiesnaling to criteria of smoothness of the curve, clarityhia t
main abrupt kink (interpreted alg;) and longest curve after buckling.

7. Concluding remarks

In this paper, a geometrical nonlinear extension of the gériermulation for the ‘stick-spiral’ model has been
presented. Calculations with both AMBER and Morse potéfuiiactions have been carried out, focused on checking
wether the buckling failure is triggered in the linear raingstrains. The versatility of our formulation is highligtut
by its ability of considering general load conditions witth@dditional equations even in geometrical nonlineananal
sis, against other published works (Chang e al., 2005) xameles of this issue, compressive, flexural and torsional
load configurations were adopted. Moreover, a set of clargtsdped like tubes have been loaded in each case
through imposed displacements at the moving nodes of tlgtit end. Likewise, two incremental-iterative proce-
dures (regarding AMBER or Morse potentials) involving a geh arc-length control strategy have been developed
and numerically implemented. Hence, nonlinear equilitorpaths, critical buckling strains and final deformed shapes
have been presented as output results and compared withpothleshed works.

To sum up, the main conclusions of this study are detailett nex

1. Related to the critical strains values under compregsiea table 2), utilizing either Morse or AMBER potential
in the calculations does not produce a clefliedence. Likewise, despite of somehowfelient values are obtained
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under bending or torsion (tables 7 and 11), no clear trendhbes observed. Therefore, we can conclude that the
constitutive nonlinearity introduced by the Morse potahtioes not have a significant influence on the buckling
response regarding the order of magnitude of the obtaingcatistrains. In this way, the geometrical instability
of SWCNTSs is triggered previously to their constitutive tinearity, agreeing with Falvo et al. (1€97); liiima et al.
(1996); Srivastava et a . (1899) and Y. Wang et al. (2005).
. The atomistic calculations developed in this paper emsighahat continuum models are not recommendable for
the geometrically nonlinear analysis of SWCNTs. Besidesdbntroversial choice of some parameters as the
Young modulus, the equivalent wall thickness gmdhe shear deformation (in beam models), continuum models
cannot reproduce the atomistic structure of nanotubesadt bur atomistic MSM model allows to introduce
directly geometrical imperfections (highly determinimgthe buckling behavior), constituting a great advantage
in contrast with continuum models. In the latter case, thegeerfections are included indirectly by means of
contrived methods, which translates into a great loss afracy and unrealistic results.

31



3. Ashas been shown, our results are reasonable in comp&oigwse from previous atomistic works (e.q. liima et al.,
1996; Srivastava et al., 1€99; Wang et al.. 2004; Zhang £2@0.7). On the other hand, despite the application of
continuum models to atomistic systems is not advisablegsammhors (Yakobson et el., 1996) have used them by
taking the proper values for some mechanical parameteiittate their atomistic MD calculations. Thereby, we
have used some of their continuum equations to compare withesults, rendering a reasonable agreement in
compression (maximum relative error about 20%). Neveetgljust a qualitative agreement in terms of order of
maghnitude under bending and torsion is obtained.

4. As output of our developed codes, nonlinear equilibriwathp are rendered. Deformed shapes, bond axial forces,
angular moments and joint reactions at the last iteratioth@iast increment have been obtained. Regarding the
values of buckling strains and the final deformed shapegliffexences with respect to other researches are mainly
due to:

i. The relatively small size of our simulated results
ii. The border &ects caused by the circumferential constraints at both ends
ii. The implicit scattering produced by the input data of thcremental-iterative procedure into the critical buck-
ling strains (Cao and Chen, 2006).
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Black and white version of color figures

The figure captions including (color on the web) are interfdedolor reproduction on the web and in black-and-
white in print. For this purpose, black and white versiontheise figures are supplied next.
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Figure 19: Forces and displacements at the bar ends (cakiomefig )

Figure 20: Forces and displacements acting on the springeelie(color version, fia 3)
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