
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.ijsolstr.2014.12.028

http://hdl.handle.net/10251/49118

Elsevier

Merli Gisbert, R.; Lazaro, C.; Monleón Cremades, S.; Domingo Cabo, A. (2015).
Geometrical nonlinear formulation of a Molecular Mechanics model applied to the structural
analysis of single-walled carbon nanotubes. International Journal of Solids and Structures.
58:157-177. doi:10.1016/j.ijsolstr.2014.12.028.



Geometrical nonlinear formulation of a Molecular Mechanics model applied to
the structural analysis of single-walled carbon nanotubes
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Abstract

In this paper, the post-critical behavior and buckling modes of single-walled carbon nanotubes are analyzed via a
Molecular Mechanics model. The main target is to develop a general formulation for the model, which has been
simplified under small strains assumption, and to implement a versatile tool for the structural analysis of carbon
nanotubes in the framework of geometrical nonlinearity. For this purpose, a mechanical formulation able to reproduce
any load configuration and supporting conditions has been derived by using an energy approach. Then, an incremental-
iterative solution procedure has been implemented in order to trace several nonlinear equilibrium paths and to obtain
the corresponding critical strains of clamped-clamped nanotubes under compressive, flexural and torsional loading
distributions. The model shows a good numerical performance and results in agreement with previous atomistic
works.

Two interatomic potentials have been adopted in order to find out the influence of different constitutive relation-
ships on the final nonlinear response. We have concluded that the choice of the potential function has no significant
effect on the final buckling strains. Our results confirm that the final buckling response is strongly determined by
geometrical imperfections in the nanotube, which can be well reproduced in the proposed model, but are much more
difficult to handle in continuum models.

Key words: Carbon nanotubes, Molecular mechanics, Honeycomb structures, Energy methods, Nonlinear, Buckling
strain

1. Introduction

Carbon nanotubes1 (CNTs) have represented a remarkable centre of attention into the scientific and research com-
munity over the past two decades, due to their outstanding mechanical and electrical properties (Dresselhaus et al.,
2001). For instance, CNTs show a singular coupling between mechanical strain and electrical conductivity (Paulson et al.,
1999; Rochefort et al., 1999), becoming ideal candidates for making nano-sensors (Kang et al., 2006) and nano electro-
mechanical systems, with promising applications in robotics and biomechanics. Hence, Liu et al. (2003) studied
the flexural buckling of Multi-walled Carbon Nanotubes (MWCNTs) under an electrostatic field and Naieni et al.
(2011) dealt with the influence of the transversal deformation of a CNTs cross on the electrical transport. Also, in
Rasekh et al. (2010) the nonlinear analysis of clamped-clamped electrostatically actuated CNTs is carried out.
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Moreover, CNTs are the stiffest (Young’s modulus≃ 1 TPa, see Hernandez et al. (1998)) and strongest materials
(σy ≃ 50 GPa, see Belytschko et al. (2002)) to date. Therefore, carbon nanotube based composites have shown a
wide range of potential applications, especially where a high ratio strength-to-weight is needed (e.g. in the aircraft
industry). In this field, Ajayan et al. (2000) stated that thestrength of the composite is mainly influenced by the low
strength of the Single-Walled Carbon Nanotube (SWCNT) bundles but not by the toughness of the isolated SWCNT.
However, a deep understanding of the mechanical behavior ofSWCNTs is a first step necessary to establish the
response of SWCNT bundles. Of course, we should worry about astrong nanotube-matrix interface which could
be achieved by chemical functionalization of the CNT ends (Dresselhaus et al., 2001). Moreover, Parnes and Chiskis
(2002) examined the buckling of nano-fibres into a polymer matrix and stressed that the buckling failure of nano-fibres
could be the prevailing mode of collapse even in reinforced composites.

Taking all the aforementioned issues into account, in this paper we try to gain an insight into the geometrically
nonlinear structural behavior of SWCNTs. Our work could be regarded as an initial approach towards the nonlinear
behavior of SWCNT bundles involved into a polymer matrix.

To date, many works have been developed to analyze the geometrically nonlinear or buckling response of CNTs
and they may be classified into two different categories: atomistic scale and continuum scale methods. The atomistic
methods (Molecular Dynamics, ab initio, tight-binding) can successfully reproduce physical phenomena as buckling
of MWCNTs (Li et al., 2007; Zhang et al., 2007) or SWCNTs (e.g.Srivastava et al., 1999; Yakobson et al., 1996)
under compression, bending or torsion. Nevertheless, these methods have the disadvantage of being limited at a
relatively low number of atoms (about 109 according to X. Wang et al. (2005)) because of their high computational
cost. On the other hand, continuum methods (Arroyo and Belytschko, 2003; Pantano et al., 2004; Wang and Varadan,
2005) are computationally cheaper and capable of analyze longer systems, but the choice of some parameters (as
the wall thickness, ranging fromt = 0.066 nm in Yakobson et al. (1996) to 0.34 nm in Meo and Rossi (2006)) for
establishing an equivalence with the atomistic level may becontroversial. Furthermore, continuum methods are not
able to reproduce either the atomistic structure or the atomistic-scale defects which can modify a great deal the final
response of CNTs.

As an intermediate point between atomistic and continuum methods, Molecular Structural Mechanics (MSM)
models constitute an alternative tool of analysis which reproduce the atomistic structure in detail but are efficient
enough in terms of numerical performance. Some authors (Li and Chou, 2003a; Zaeri et al., 2010) considered SWC-
NTs as a frame system with carbon atoms located at the nodes and rigid bars representing the covalent bonds. Where
MWCNTs were studied (Li and Chou, 2003b; Zaeri et al., 2010),the different layers were connected by several truss
rods between neighboring atoms. Alternatively, Odegard etal. (2002) modeled the graphene sheet as a 2D truss model
with additional rods through the hexagonal unit cell. However, these kind of models are physically unrealistic because
auxiliar elements or stiffnesses were needed in order to introduce the three-body interaction.

Aimed to describe mechanically the SWCNTs more faithfully,the ‘stick-spiral’ model (Chang and Gao, 2003)
reproduces covalent bonds by axial springs and introduces the three-body interaction directly by three spiral springs
around each node. Later (see Natsuki et al. (2004); Natsuki and Endo (2004); Xiao et al. (2005)), the same model was
adopted to establish some mechanical parameters of SWCNTs and also in Chang et al. (2006) the model was extended
to Chiral nanotubes. All the aforementioned references related to MSM limited their calculations to a small unit cell
involving only a few atoms subjected to a specific loading distribution. Therefore, a new specific set of equations
should be derived for each loading configuration. Otherwise, Meo and Rossi (2006) implemented the ‘stick-spiral’
model in the finite element (FE) commercial code ANSYSr testing a SWCNT as a whole under each load case, but
no formulation of the model was shown. In addition, the implicit loss of accuracy associated to the FE modelling was
inherent in their results.

Consequently, our work deals with the ‘stick-spiral’ modelbut reformulated in such a way that the equations have
general validity regardless of the external loading configuration. Moreover, the equations included herein may be
regarded as the geometrically nonlinear extension of our previous work (Merli et al., 2012) in which a review of some
mechanical parameters of SWCNTs by means of the same MSM model was provided. In addition, our numerical
treatment is rather in the Molecular Mechanics (MM) approach of Cao and Chen (2006).

We would like to highlight the main advantages of the presentformulation against the Molecular Dynamics (MD)
methods. Despite of the high accuracy yielded by the latter,a system of N particles is described dynamically by a
vector of instantaneous positions and velocities (dimension 6N) but in the former only 3N fundamental variables are
involved (nodal displacements), which implies a much higher numerical performance of the method. This feature is
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specially important in geometrical nonlinear analysis, where the computation of the tangent stiffness matrix and the
resolution of the linear incremental system represent a tough task. Also, MSM models are basically static and no time-
integration is needed. Finally, in our formulation no heat conduction with the surrounding media is taken into account.
However, the real buckling response of isolated SWCNTs is highly influenced by random thermal fluctuation, which
constitutes a limitation for MM models. Despite of this fact, the coupling between thermal vibration and structural
defects makes difficult to analyze the intrinsic buckling of a SWCNT via MD methods. In this sense, MM or MSM
are interesting tools as a first step to understand the basic buckling behavior.

The main contributions of this paper can be outlined as follows:

1. In this paper, the main objective is to find out the geometrical nonlinear behavior of SWCNTs by means of
a new general (nonlinear) formulation of the ’stick-spiral’ model, in contrast with purely atomistic methods.
Therefore, compressive, flexural and torsional simulations were carried out aimed to the plot of nonlinear equi-
librium paths and the obtention of critical strains and stresses. For this purpose, analytical expressions have been
derived through an energy approach which can reproduce any load conditions with no need of additional equa-
tions. Even in geometrical nonlinear analysis with MSM models, some authors (Chang et al., 2005) formulate
their equations over a small number of atoms and the corresponding bonds under specific load configurations.

2. An approximate geometrical nonlinear formulation of a generic three-dimensional rotational spring is provided
in terms of the nodal displacements involved (see eq. (31)).In spite of the nonlinear formulation of a two-
dimensional torsional spring is tackled in some references(see Felippa (2001), as an example), the 3D nonlinear
formulation of this kind of springs represents a novelty, upto our knowledge.

3. It is very simple to introduce any interatomic potential function into our formulation provided that the bond
lengthening and angular distortion between bonds appear uncoupled. This is not the case in the most frequently
used potentials in MD simulations, as the Tersoff-Brenner potential (Brenner, 1990; Tersoff, 1986), but it could
be readily approached by the Morse potential (uncoupled) for longitudinal strains below 10% (Belytschko et al.,
2002). Aimed to highlight this versatility and further compare results, two interatomic potentials (see section
4) have been implemented in this work.

4. Several nonlinear equilibrium paths and critical strains under each load case are provided as output results of
our implemented codes. Also, some deformed shapes for the last iteration into the nonlinear path are included.
This results are readily compared with those reported in some published references from MD (or continuum)
simulations in order to validate our model.

The paper is organized as follows: in section 2 a schematic description of our model is provided. In section 3 the
nonlinear formulation of the MSM model is tackled. In section 4 a brief discussion about the adopted potentials is
drawn. Details of the numerical procedures implemented aregiven in section 5. Numerical results and comparisons
with some released references are carried out in section 6 and finally, some concluding remarks are addressed in
section 7.

2. Qualitative description of the model

In this section, a brief description of the ’stick-spiral’ model is provided. As an example, its geometry and main
elements for a ZigZag SWCNT are depicted in figure 1. CovalentC − C bonds are represented by ’truss’ (or linear
spring) elements which are just axially deformable and the three-body interaction is represented by rotational springs
which are exclusively rotational-stiff against angular distortion between two neighboring covalent bonds on each
atom. The main degrees of freedom (DOFs) of the model are the linear displacements at each node, therefore angular
distortions will be written as functions of them. Accordingly, solely point loads (no moments) will be applied at each
node if necessary, and all the boundary conditions are applied by means of pinned joints at the edge nodes of the
SWCNTs. In the present work, the load is applied through a setof prescribed displacements at the moving nodes on
the atoms of the right end of the SWCNTs, but keeping their circular cross-section arrangement. On the other hand,
the atoms of the left end are regarded fixed by pinned joints with zero displacements.

A clamped-clamped scheme has been adopted for our purposes.However, our model is able to meet any kind of
load and supporting conditions different from the compressive, flexural or torsional adopted inthis paper. Therefore,
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Figure 1: Geometrical description of elements

there is no need to derive particular equations for each loading distribution, in contrast with Chang and Gao (2003);
Chang et al. (2006); Xiao et al. (2005).

3. Nonlinear formulation of the MSM model

3.1. Bar element

The following approach may be regarded as the geometrical nonlinear extension of the equations developed in our
previous work (Merli et al., 2012) by using the same energy approach. The small displacements assumption has been
removed in this case and the necessary nonlinear terms have been included.

Note that our model is not into FE framework, in contrast withMeo and Rossi (2006). In fact, no kinematical
interpolation (with the consequent loss of accuracy) is included into the kinematical equations and no shape functions
are needed. By contrast, the present model is a MM-based structural model involving direct relationships between
each structural member and the interatomic potential.

3.1.1. Kinematic equations
We can define the nonlinear change in length of the bar elementrepresenting a covalent C-C bond as:

e=
l′2 − l2

2l
(1)

Wherel, l′ stand for the initial and final length of the element2.
Definition (1) is inspired by the Green’s nonlinear axial strain adopted in structural mechanics (see Malvern (1969)

as an example), but in our case it has length dimension. In this way, it allows us to write the axial strain virtual energy
of the element asNδe in a straightforward manner, which will be useful in the further development of the equilibrium
equation (7). In addition, the interatomic functions adopted in this work (see section 4) are defined in terms of the
change in length of the covalent bond, not in terms of the corresponding axial strain.

We establish now the relations between position vectors anddisplacements:

x′i = xi + ua
i (2a)

x′j = x j + ua
j (2b)

and also: xi j = x j − xi = laλa (2c)

x′i j = x′j − x′i = l′aλ′a (2d)
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Figure 2: Forces and displacements at the bar ends (color on the Web)

whereλa, λ′a denote the unit vectors along the bar element in the initial and deformed configuration respectively and
the rest of variables implied in eqs. (2) are described in figure 2.

By subtracting (2a) from (2b) and employing (2c), (2d) we achieve:

λ
′a =

la

l′a
λ

a +
ua

i j

l′a
(3)

At this point, the numerator of definition (1) for the bar elementa can be evaluated as3:

(l′a)2 − (la)2 = x′Ti j x′i j − xT
i jxi j = 2(xi j )Tua

i j + (ua
i j )

Tua
i j (4)

So, next expression for the nonlinear axial strain is rendered:

ea = (λa)Tua
i j +

1
2la

(ua
i j )

Tua
i j (5)

It should be noted that eq. (5) is the exact expression for thechange in length of the bar element with no simplification
or linearization, just involving quadratic terms in the displacements.

Grouping by blocks into eq (5), we can express the axial strain in terms of a nonlinear kinematic matrix and the
nodal displacements as follows:

ea =
[
−(λa)T (λa)T

] {ua
i

ua
j

}
+

1
2

[
ua

i ua
j

] [ I/la −I/la

−I/la I/la

] {
ua

i
ua

j

}
=

= Ca
l ua +

1
2

(ua)TZaua =

[
Ca

l +
1
2

Ca
n(ua)

]
ua = Ca(ua)ua

(6)

where:
ua = nodal displacements of the bar element.
I = identity matrix of size 3× 3.
la = initial length of the bar element.
Za = auxiliary (constant and symmetric) matrix.
Ca

l = linear kinematic matrix of the bar element.
Ca

n(ua) = nonlinear kinematic matrix of the bar element.
Ca(ua) = total kinematic matrix of the bar element.

2Hereinafter, we will denote by ( )’ the variables measured inthe deformed configuration of the element
3Superscripts ( )a have been kept over the nodal displacements by coherence with other variables involved in eqs (2)-(6)
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3.1.2. Equilibrium equation
The equilibrium of the bar element at any point of the nonlinear path can be established through the Virtual Work

Equation (VWE) for a set of kinematically admissible Lagrangian variations of the end displacementsδua
i , δu

a
j as:

(f a
i )Tδua

i + (f a
j )

Tδua
j = Naδea (7)

wheref a
i , f

a
j are the end forces of the bar referred to the undeformed configuration (see figure 2) andNa is the axial

force of the bar element pulled-back to the reference configuration.
Moreover, we can evaluate the first variationδea by using equation (6) as:

δea =
∂ea

∂ua
δua =

[
Ca

l +
1
2

(ua)TZa +
1
2

(Zaua)T

]
δua =

=
[
Ca

l + (ua)TZa
]
δua =

[
Ca

l + Ca
n(ua)

]
δua = ba(ua) δua

(8)

Therefore, substituting into (7) and grouping by blocks:

[
(f a

i )T (f a
j )

T
] {δua

i
δua

j

}
= Naba(ua) δua (9a)

(f a)Tδua−Naba(ua) δua = 0 (9b)

f a = Na(ba(ua))T = Na
[
(Ca

l )T + (Ca
n(ua))T

]
(9c)

3.1.3. Constitutive equation
In general, a completely uncoupled interatomic potential functionU is assumed (more details will be given in

section 4), where the contribution of each element is exclusively dependent on its corresponding strain. Therefore, the
following constitutive equation for the bar element is stated:

Na =
∂U
∂ea
= f (ea) (10)

where f (ea) is a nonlinear function. We are concerned by the incremental constitutive equations from a particular
equilibrium point, namely:

dNa

dea
= f ′(ea) = Ka(ea)

dNa = Ka(ea) dea (11)

whereKa is the tangent constitutive stiffness of the bar element. Furthermore, eq. (11) can be writtenin terms of the
coherent Lagrangian variations as:

δNa = Ka(ea) δea (12)

3.1.4. Tangent stiffness matrix
The total potential energyF of an elastic system is defined as the difference between the internal and the external

work, F =Wint −Wext. Following Lanczos (1986), if two (infinitely close) equilibrium configurations are considered,
the indifferent equilibrium condition may be expressed as:

δ2F = 0

δ2Wint = δ
2Wext (13)

Therefore, work of internal forces can be written as a quadratic form of the displacements, the kernel of which is the
tangent stiffness matrix:

δ2Wint = δuTKTδu (14)
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Applying definition (14) to the bar element and using (12) we achieve:

δ2Wint = δ(δWint) = δ(N
aδea) = δNaδea + Naδ2ea = Ka(δea)2 + Naδ2ea (15)

Substituting (8) and taking into account that second variations of displacementsδ2ua vanish, matrixKa
T is readily

obtained:

δ2Wint = δ(ua)T
[
Ka(ba)Tba + NaZa

]
δua

Ka
T = Ka(ba)Tba + NaZa (16)

3.2. Rotational spring element

3.2.1. Kinematic equations
The interaction between two covalent bonds (so-calledthree-bodyinteraction) is represented in our model by

in-plane rotational springs around the differential environment of the central atom, as can be seen in figure 3. Bar
elements are not involved in this interaction, but their directions are represented by auxiliary straight lines for thesake
of clarity.

Figure 3: Forces and displacements acting on the spring element (color on the Web)

The nonlinear angular strain in the spring element is definedas the difference in angle between two adjacent
covalent bonds from the initial to the deformed shape:

e1 = ∆γab = A− α (17)

Assuming that strains are small enough, we canlinearizethe equation (17) as follows:

α = A− e1

cosα = cosAcose1 + sinAsine1 ≃ cosA+ e1 sinA

e1 =
cosα − cosA

sinA
=

[(λa′ )T
λ

b′ ] − [(λa)T
λ

b]
sinA

(18)

The small strains assumption has been accepted even withmoderatedisplacements (not arbitrarily large), since the
geometrical nonlinearity is previous to theconstitutivenonlinearity, as has been experimentally reported by Falvoet al.
(1997) and theoretically predicted through MD techniques (Iijima et al., 1996; Srivastava et al., 1999; Y. Wang et al.,
2005).

We first evaluate cosα in (18) utilizing (3), so:

cosα =
lalb

l′al′b

[
λ

a +
ua

i j

la

]T λb +
ub

ik

lb

 =
1

ρl(ua, ub)

(λa)T
λ

b + (λa)T
ub

ik

lb
+

(ua
i j )

T

la
λ

b +
(ua

i j )
Tub

ik

lalb

 (19)
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where we have definedρl(ua, ub) as a function of the nodal displacements which can be developed as:

ρl(ua, ub) =
l′al′b

lalb
=

(la + ea)(lb + eb)
lalb

= 1+
ea

la
+

eb

lb
+

eaeb

lalb
= 1+ η(ua, ub) (20)

Next, eq.(5) is substituted into the auxiliary functionη(ua, ub) to produce:

η(ua, ub) =
(λa)T

la
ua

i j +
1

2la2
(ua

i j )
Tua

i j +
(λb)T

lb
ub

ik +
1

2lb2
(ub

ik)Tub
ik+

+
1

lalb

{(
(λa)Tua

i j

) (
(λb)Tub

ik

)
+

1
2lb

(
(λa)Tua

i j

) (
(ub

ik)Tub
ik

)
+

1
2la

(
(ua

i j )
Tua

i j

) (
(λb)Tub

ik

)
+

1
4lalb

(
(ua

i j )
Tua

i j

) (
(ub

ik)Tub
ik

)}

(21)

According with the expression (5) for the nonlinear change in length, the nonlinear angular strain is assumed to
be small enough in such a way that third and successive terms of displacements can be neglected in the following
equations. More precisely, we can write:

uαβ = εuαβ αβ = i j, ik, jk (22)

whereuαβ are a set of relative displacements kinematically admissible of bounded norm andε is a scalar value which
provide its order of magnitude. Thus:

‖uαβ‖ ≤ ε αβ = i j, ik, jk (23)

and, of course:

ε3 ≪ ε2 ε4 ≪ ε3 (24)

Applying conditions (23) to eq. (21), the following expression may be stated:

‖η(ua, ub)‖ ≃
ε

la
+
ε

lb
+
ε2

2la2
+
ε2

2lb2
+
ε2

lalb
+ O(εn) n ≥ 3 (25)

and taking (24) into account,η(ua, ub) may be simplified as:

η(ua, ub) ≃
(λa)T

la
ua

i j +
1

2la2
(ua

i j )
Tua

i j +
(λb)T

lb
ub

ik +
1

2lb2
(ub

ik)Tub
ik +

1
lalb

(ua
i j )

T
[
λ

a(λb)T
]
ub

ik (26)

Adopting (26) in eqs. (19) and (20), and substituting into definition (18):

e1 =
1

(1+ η(ua, ub)) sinA

{
(λa)T uik

lb
+ (λb)T ui j

la
+

(uik)Tuik

lalb
− η(ua, ub) cosA

}
(27)

Derived from conditions (24), it is obvious to establish‖η(ua, ub)‖ ≃ O(ε) ≪ 1. Therefore, functionη can be neglected
in the denominator of (27) and operating:

e1 =

[
(λb)T

la sinA
−

(λa)T

la tanA

]
ua

i j +

[
(λa)T

lb sinA
−

(λb)T

lb tanA

]
ub

ik+
(ua

i j )
Tub

ik

lalb sinA
−

(ua
i j )

Tua
i j

2la2 tanA
−

(ub
ik)Tub

ik

2lb2 tanA
−

(ub
i j )

T
[
λ

a(λb)T
]
ub

ik

lalb tanA
(28)

For simplicity, the following definitions are adopted:

Γ
1
j =

[
λ

b

la sinA
−
λ

a

la tanA

]
Γ

1
k =

[
λ

a

lb sinA
−
λ

b

lb tanA

]
Γ

1
i = −Γ

1
j − Γ

1
k (29a)

ωa =
1

la2 tanA
ωb =

1

lb2 tanA
ωab =

1
lalb sinA

(29b)

Λab = I − λa(λb)T cosA (29c)
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In this way, (28) becomes:

e1 = Γ1
j
T
ua

i j + Γ
1
k

T
ub

ik + ωab(ua
i j )

T
Λabub

ik −
ωa

2
(ua

i j )
Tua

i j −
ωb

2
(ub

ik)Tub
ik (30)

Rearranging terms and grouping by blocks, (30) can be transformed into:

e1 =
[
Γ

1
j
T
Γ

1
i

T
Γ

1
k

T
]


u1
j

u1
i

u1
k


+

+
1
2

[
u1

j
T u1

i
T u1

k
T
]


−ωaI ωaI − ωabΛab ωabΛab

ωaI − ωabΛ
T
ab ωab(Λab+ Λ

T
ab) − (ωa + ωb)I ωbI − ωabΛab

ωabΛ
T
ab ωbI − ωabΛ

T
ab −ωbI





u1
j

u1
i

u1
k


=

= C1
l u1 +

1
2

(u1)TZ1u1 =

[
C1

l +
1
2

C1
n(u1)

]
u1 = C1(u1) u1

(31)

where:
u1 = nodal displacements of the rotational spring element.
Λab = auxiliary (constant and non-symmetric) matrix, dimensions 3× 3.
Z1 = auxiliary (constant and symmetric) matrix.
C1

l = linear kinematic matrix of the rotational spring element.
C1

n(u1) = nonlinear kinematic matrix of the rotational spring element.
C1(u1) = total kinematic matrix of the rotational spring element.

As can be checked, expression (31) has the same structure as (6) in terms of the corresponding nodal displace-
ments, although the matrices involved have different dimensions.

3.2.2. Equilibrium equation
Similarly to eq. (7), the VWE of the rotational spring element at any point of the nonlinear equilibrium path can

be written as:
(f 1

j )
Tδu1

j + (f 1
i )Tδu1

i + (f 1
k)Tδu1

k = M1δe1 (32)

wheref 1
j , f

1
i , f

1
k are the fraction of the external forces contributing to the angular distortione1 of the element, referred

to the reference configuration. Of course,M1 is the moment of the rotational spring element pulled-back to the initial
state.

As well, δe1 can be properly evaluated by using eq. (31):

δe1 =
∂e1

∂u1
δu1 =

[
C1

l +
1
2

(u1)TZ1 +
1
2

(Z1u1)T

]
δu1 =

=
[
C1

l + (u1)TZ1
]
δu1 =

[
C1

l + C1
n(u1)

]
δu1 = b1(u1) δu1

(33)

Thereupon, substituting into the VWE (32) and grouping by blocks:

[
(f 1

j )
T (f 1

i )T (f 1
k)T

]


δu1
j

δu1
i

δu1
k


= M1b1(u1) δu1 (34a)

(f 1)Tδu1 − M1b1(u1) δu1 = 0 (34b)

f 1 = M1(b1(u1))T = M1
[
(C1

l )T + (C1
n(u

1))T
]

(34c)

3.2.3. Constitutive equation
Assuming a completely uncoupled potential functionU (see section 4), the constitutive equation for the rotational

spring element may be stated as:

M1 =
∂U
∂e1
= g(e1) (35)
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whereg(e1) is a general nonlinear function of the angular straine1. As we did for the bar element, the corresponding
incremental and variational constitutive equations have the following form:

dM1 = g′(e1)de1 = K1(e1) de1 (36a)

δM1 = K1(e1) δe1 (36b)

whereK1(e1) is the tangent constitutive stiffness of the rotational spring element.

3.2.4. Tangent stiffness matrix
Definition (14) applied to the rotational spring element is adopted to obtain its tangent stiffness matrix. As well,

eq. (36b) is employed in the next expression:

δ2Wint = δ(δWint) = δ(M
1δe1) = δM1δe1 + M1δ2e1 = K1(δe1)2 + M1δ2e1 (37)

Substituting (33) and taking into account that second variations of displacementsδ2u1 vanish, matrixK1
T is readily

obtained:

δ2Wint = δ(u1)T
[
K1(b1)Tb1 + M1Z1

]
δu1

K1
T = K1(b1)Tb1 + M1Z1 (38)

3.3. Whole structural system
This section concerns the geometrical nonlinear analysis of a general set of bars and spring elements properly

connected. Namely, those group of elements reproducing SWCNT geometry (fig 1) are treated. Although it has not
been explicitly derived in this paper, it is easy to show thatthe standard boolean assembly of the global stiffness matrix
from the individual matrices of each element works properlyinto this MSM model. In the same way, the kinematical
and equilibrium equations can be assembled by arranging adequately blocks of the corresponding individual elements
into the global matrices.

For the purpose of defining the incremental stiffness system, the next variables are defined:
uR = displacements of free nodes.
uM = displacements of moving nodes. HereinuM = u are known functions

of prescribed displacements.
fR = external point loads applied at the free nodes.
fM = reactions at the moving nodes.
λ = load factor.
q = vector of incremental load.
ǫ = vector of incremental imperfection-load.

Grouping by blocks the reduced tangent stiffness matrix, the corresponding incremental stiffness system (from an
equilibrium configuration) can be written in the following way:

{
∆fR

∆fM

}
=

[
KR KRM

K MR K M

] {
∆uR

∆uM

}
(39)

Developing the first matricial equation of (39) and introducing a known set of prescribed displacements∆uM = ∆u,
we achieve:

∆fR − KRM∆u = KR∆uR (40)

Taking into account that external loads and imposed displacements grow proportionally to a load factorλ, eq. (40)
may be rewritten as:

∆fR − KRM∆u = ∆λǫ + ∆λq = KR∆uR

∆λq = ∆λ(ǫ + q) = K∆u (41)

where the vector of incremental loadq is formed by a first termǫ representing a set of small imperfection-loads at the
start of the loading process and a second termq referred to as the vector of incremental load equivalent to the imposed
displacements. In normal conditions, the imperfectionsǫ are not present and only the second term is included. For
simplicity, the subscripts of the right-hand side in (41) have been omitted.
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4. Interatomic potentials

In this section, a brief overwiew of the most usual interatomic potential functions adopted to reproduce the me-
chanical behavior of SWCNTs is given. This functions can be classified into two main categories:

1. Harmonic-like potentials.- In many references related to the ’stick-spiral’ model (Chang and Gao, 2003; Lau et al.,
2004; Natsuki et al., 2004; Wang, 2004), the harmonic function is limited to the addition of two fundamental terms,
namely:

U =
∑ 1

2
kr (∆r)2 +

∑ 1
2

kθ(∆θ)2 (42)

wherekr , kθ are the force constants related to bond lengthening∆r the angular distortion∆θ respectively. The first
sum is extended over all covalent bonds and the second over all angles between bonds.
In this paper, constants of the Assisted Model Building withEnergy Refinement (AMBER) force field are adopted
in eq. (42). Regarding eqs.(10), (11) and (36) and followingLi and Chou (2003a); Natsuki et al. (2004); Zaeri et al.
(2010), the following tangent constitutive stiffnesses are adopted:

Kα = kr = 652 nN·nm−1 α = a, b, c, . . . (43a)

Kβ = kθ = 0.876 nN·nm·rad−1 β = 1, 2, 3, . . . (43b)

Therefore when the AMBER potential has been taken into account, linear constitutive relationships force-strain
and moment-distortion have been implemented.

2. Multi-body potentials.- The so-called Reactive Empirical Bond Order potentials include the effect of the rest of
atoms in the two-body terms of the potential function. Therefore, the effect of bond stretching and angular distor-
tion are coupled into the potential function. The most widely used (e.g. Arroyo and Belytschko, 2003; Iijima et al.,
1996; Li et al., 2007; Robertson et al., 1992; Yakobson et al., 1996) potential function (mainly in MD simulations)
is the Tersoff-Brenner potential (Brenner, 1990; Tersoff, 1986). However, it can be readily approached by the
Morse potential (Belytschko et al., 2002; Natsuki and Endo,2004) for longitudinal strains below 10%, which is a
fully uncoupled function given by:

E =
∑

Er +
∑

Eθ (44a)

Er = De{[1 − e−β(∆r)]2 − 1} (44b)

Eθ =
1
2

kθ(∆θ)
2[1 + ks(∆θ)

4] (44c)

where the parameters involved take the following values (Belytschko et al., 2002):

De =0.2895 nN·nm β = 38.43 nm−1

kθ =0.8998 nN·nm ks = 0.754 rad−4 (45)

∆r is the change in length of covalent bonds from their initial distance of equilibrium in the nanotube, which is
around 0.142 nm, and∆θ is the change in angle from the initial one in the SWCNT, whichis about 2π/3.
Taking into account eqs.(10), (11) and (36), the tangent constitutive stiffnesses are the second derivatives of the
Morse function with respect to the corresponding strain:

Kα =2β2Dee
−β(∆rα)[2e−β(∆rα) − 1] α = a, b, c, . . . (46a)

Kβ =kθ[1 + 15ks(∆θβ)4] β = 1, 2, 3, . . . (46b)

Of course, this potential function renders nonlinear constitutive relationships besides the geometrical nonlinearity
into the numerical procedure.

Falvo et al. (1997) experimentally reported that MWCNTs areable to experiment bending and buckling up to large
displacements, but in the linear range of strains. Hence, the geometrical instability appears before the constitutive
nonlinearity. As well, Srivastava et al. (1999), Iijima et al. (1996) and Y. Wang et al. (2005) stated the same conclusion
by means of MD calculations. Since one of the main goals of this work is to check numerically this issue for SWCNTs
and to find out how much the geometrical nonlinearity is influenced by the constitutive nonlinearity, calculations with
both potentials were carried out and their results finally compared.
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5. Numerical implementation

In order to find out the critical strains and forces of SWCNTs under several load cases, the tracing of nonlinear
equilibrium paths through the so-calledcontinuationmethods has been numerically implemented. In fact, nonlinear
incremental-iterative procedures have been developed, which try to find out a new equilibrium configuration starting
from a known equilibrium situation repeatedly.

5.1. Approach of the numerical problem

Following the notation used by Felippa (2001), let us assumethat all the variables of the equilibrium state (loads,
displacements, strains, forces and so on) grow in proportion to a parameterλ (so-called load factor). Moreover,n
incremental steps of the equilibrium analysis have been performed and the last accepted solution isun, λn. At this
point, the target is to find out the next equilibrium solution

un+1 = un + ∆un

λn+1 = λn + ∆λn

that satisfies the nonlinear algebraic system:

r (un+1, λn+1) = 0 (47a)

c(∆un,∆λn) = 0 (47b)

wherer is the residual of the nonlinear problem andc is the constraint equation of the control strategy. Hereinafter,
subscriptn is referred to the current incremental step.

The general form of the nonlinear residual equation is:

r (u, λ) = K (u) u − λq (48)

On the other hand, an arc-length control strategy has been adopted because it is able to go through the limit points
which will appear on the equilibrium path, in contrast with the force control strategy. If a small enough increment
step is considered, constraint (47b) takes the form:

c(∆un,∆λn) = vn
T∆un + ∆λn − ∆sn fn = 0 (49)

where:
∆sn = l0 constant value adopted for the arc-length over the nonlinear equilibrium path.
vn = K−1(un) qn incremental velocity vector.
fn =

√
1+ vT

n vn scaling factor.

The conventional Newton-like methods are based on the truncated Taylor expansion (neglecting second and higher
order terms) of the system (47) arounduk

n, λ
k
n, where superscriptk is related to the iteration step. So that, by using eqs.

(48) and (49) and introducingdk
n = ∆uk

n, η
k
n = ∆λ

k
n theaugmented stiffnesssystem is given by:

[
K (uk

n) −qk
n

vk
n

T
1

] {
dk

n
ηk

n

}
= −

{
r k

n
ck

n

}
(50)

where the variables involved has been defined in 3.3. Note that (50) is the governing system for thecorrectivephase.

5.2. Description of the incremental-iterative procedure

Implementation of the governing equations has been carriedout in C++ programming language. As well, the ge-
ometry generation of SWCNTs has been developed in VisualLISP code. Aimed to describe graphically the calculation
kernel, the general flow diagram has been depicted in figure 4 and more detailed explanations for the predictive and
corrective stages into a generic increment have been included in figures 5(a) and 5(b) respectively.

In order to improve the clarity of the figures 4 and 5, several remarks should be noted:
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Figure 4: Diagram flow of the incremental-iterative numerical procedure

a. The input datal0 means the arc-length increment size andNI the number of increments to plot over the nonlinear
equilibrium path. These values have been tested out into each simulation in order to reproduce a long branch in
the post-critical behavior before the divergence of the numerical process took place (see section 6.4) . As output
results, we will get the corresponding equilibrium path andthe final forces, reactions and deformed shape in the
last increment.

b. Although a convergence condition over the residual couldbe chosen, the condition indicated in fig 4 regarding the
norm of the displacements, takingε = 10−6, has been preferred for the iterative procedure. Thus, the standard
maximum norm criterion has been adopted.

c. The vectorp = [n m]T contains the internal forces of the whole structural system, wheren are the bar axial forces

andm are the rotational spring moments. Correspondingly,e=
[
eα eβ

]T
corresponds to the nonlinear strain vector,

whereeα are the changes in length andeβ are the changes in angle.
d. In general, the initial configuration for the first increment has been assumed asu0

1 = 0, λ0
1 = 0, p0

1 = 0.
e. Regarding the vector of incremental loadq = ǫ + q, the fist term stands for the initial imperfections and are intro-

duced exclusively in the first increment in order to convert the bifurcation points that will appear at the equilibrium
path (critical buckling modes) into limit points, which areeasier to cross over without divergence of the algorithm.
In the following increments, only the second term associated with the prescribed displacements is kept, which can
be calculated as (see eq. (41)):

∆u = ∆λd̃ (51a)

∆λq = −∆λKRMd̃ (51b)

q = −KRMd̃ = −K̃ d̃ (51c)

wherẽd are referred to as the incremental prescribed displacements at the moving nodes. Since the first term of the
13
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Figure 5: Partition of a generic increment

residual just includes the actual external loads and not thepseudo-loadsq, it vanishes from the second increment.
f. The matrixbR(u) is constructed from the correct assembling of theb matrices related to the individual structural

elements (see eqs. (8) and (33)) and the corresponding incremental kinematical equation including the prescribed
displacements may be written:

∆e= bR(u)∆u + bRM(u)∆λd̃ (52)

g. In the incremental constitutive equations, similar to eqs. (11) and (36a), the constitutive tangent stiffnesses given by
(43) or (46) are utilized. Namely, a specific code has been developed with AMBER potential and another one with
Morse potential in order to check numerically whether the geometrical nonlinearity is previous to theconstitutive
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nonlinearity, as has been theoretically expected (Iijima et al., 1996; Srivastava et al., 1999; Y. Wang et al., 2005),
and experimentally reported (Falvo et al., 1997).

h. It may be remarked that the increments∆un,∆λn in the constraint (49) should be taken from the start of each
incremental step, but no between two consecutive iterations.

6. Numerical results and discussion

In this section, nonlinear geometrical behavior of SWCNTs is studied through compressive, flexural and torsional
simulations. Our main objective is to obtain the critical load factor for each loading scheme and to compare the final
results with some atomistic simulations.

6.1. Compressive behavior

The nanotubes indicated in table 1 have been chosen under compression.

Chirality d(nm) L(nm) L/d
Armchair(3,3) 0.407 4.919 12.09
Armchair(4,4) 0.542 6.641 12.24
ZigZag(5,0) 0.391 4.757 12.15
ZigZag(7,0) 0.548 6.674 12.18
Chiral(4,2) 0.414 5.072 12.24
Chiral(5,3) 0.548 6.859 12.52

Table 1: Geometrical parameters of SWCNTs under compression

Similar diameters and aspect ratios have been chosen in order to further comparison of the obtained results.
Supporting conditions and imposed displacements under compressive loads are displayed in figure 6. Hence, the
known function adopted for the prescribed displacements ateach pinned joint at the right end of the SWCNT has
been:

∆un = ∆λn



−1
0
0


(53)

Since the x-axis is oriented parallel to the cylinder axis (fig. 6), ∆λn corresponds directly with the incremental
shortening of the nanotube. Therefore, equation (53) describes a rigid body translation of the right end cross section
towards the left end.

Figure 6: Supporting conditions under compressive loads

As has been mentioned before, two calculations have been performed for each nanotube of table 1 (with one
different potential each). Since two-dimensional plots are easier to understand for the nonlinear equilibrium paths, the
transversal displacementuρ of a representative node around the midpoint of the SWCNT hasbeen represented against
the load parameterλ. Some of the equilibrium paths and final deformed shapes as examples of the obtained global
buckling behavior are given in figures 7 and 8 respectively.
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Figure 7: Nonlinear equilibrium paths under compression (color on the Web)

Initial imperfections in all simulations under compression have been adopted as a set of point transversal loads on
the nodes located at the cross-section around the midpoint of the nanotube, the values of which have been tested out
trying to achieve the longest curve after buckling without divergence of the numerical algorithm. In fact, some values
of these imperfections produce the divergence of the process before buckling took place (see section 6.4).

For each critical load factor obtained from the equilibriumpaths, the equivalent axial strain has been evaluated as:

εcr =
λcr

L
(54)

where L is the initial length of the SWCNT. Therefore, we can outline the compressive critical strains in table 2.
Agreeing Cao and Chen (2006), some scattering has been observed in the final critical strains depending of the

increment sizel0 and the number of incrementsNI. Despite no explicit statistic analysis of this influence has been
performed in this work, input data for compressive simulations are added in table 3 as guidance about their order of
magnitude.
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(b) Armchair(4,4) Morse
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(d) Chiral(4,2) Morse

Figure 8: Deformed shapes under compression (last increment)

AMBER MORSE
L(nm) λcr(nm) εcr(%) λcr(nm) εcr(%)

Armchair(3,3) 4.919 0.146 2.958 0.147 2.978
Armchair(4,4) 6.641 0.253 3.807 0.193 2.902
ZigZag(5,0) 4.757 0.306 6.426 0.132 2.783
ZigZag(7,0) 6.674 0.313 4.688 0.190 2.844
Chiral(4,2) 5.072 0.239 4.706 0.141 2.782
Chiral(5,3) 6.859 0.258 3.756 0.188 2.737

Table 2: Critical strains under compression

AMBER MORSE
l0 NI l0 NI

Armchair(3,3) 0.05 65 0.05 65
Armchair(4,4) 0.1 30 0.1 39
ZigZag(5,0) 0.05 60 0.05 60
ZigZag(7,0) 0.1 40 0.1 40
Chiral(4,2) 0.05 75 0.05 75
Chiral(5,3) 0.02 200 0.05 74

Table 3: Input data in compressive simulations
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Comparing values from table 2 can be seen that the comparisonof values from table 2 shows that the adoption of
different potential functions produces somewhat different values ofλcr, although the order of magnitude of the final
critical strains with both functions is similar. Thereby, we can conclude that the critical buckling is triggered before
the constitutive nonlinearity takes place, according to Falvo et al. (1997); Iijima et al. (1996); Srivastava et al. (1999)
and Y. Wang et al. (2005).

As can be seen, our results agree qualitatively well with other atomistic studies, mainly with MD simulations. For
instance, Yakobson et al. (1996) obtained for a SWCNT ofd =1 nm a critical compressive strain of 5%, Srivastava et al.
(1999) obtainedεcr = 8% and Ru (2000) estimatedεcr = 7.5% for the same diameter. Likewise, Zhang et al. (2007,
table 4) and Cornwell and Wille (1997) predicted for Armchair nanotubes the critical strains outlined in table 4, which
agree reasonably with our values from table 2.

Zhang et al. (2007) Cornwell and Wille (1997)
d(nm) εcr(%) d(nm) εcr(%)

Armchair(4,4) 0.542 6.570 Armchair(9,9) 1.250 5.200
Armchair(5,5) 0.678 7.764 Armchair(12,12) 1.664 4.400
Armchair(6,6) 0.814 7.068 Armchair(19,19) 2.632 3.200
Armchair(7,7) 0.949 6.271

Table 4: Critical strains estimated by other MD methods

As well, Y. Wang et al. (2005, fig. 2) obtained almost the same values as Cornwell and Wille (1997) for the
same diameter range. Regarding Molecular Mechanics framework, Cao and Chen (2006) estimated by using the
commercial software Materials Studio an average critical strain εcr = 6.6% for a ZigZag(9,0) SWCNT of 5.3 nm
in length andεcr = 7.6% for an Armchair(5,5) SWCNT of 4.7 nm in length. Also Chang et al. (2005) yielded
εcr = 10.7% for an Armchair(7,7) andεcr = 6.9% for an Armchair(10,10) nanotube, by a MM-based techniquewhich
minimizes the total potential energy. All of these values are in the range of our results in table 2 from the MSM model.

A controversial issue, extensively treated in several references (Cao and Chen, 2006; Chang et al., 2005; Odegard et al.,
2002; Yakobson et al., 1996) is the applicability of the continuum models to predict the critical strains of compressed
SWCNTs. According to Cao and Chen (2006), the presence of geometrical imperfections in the atomic structure (not
explicitly represented in continuum models) affects the critical buckling strain of SWCNTs. Then, continuum models
are not recommendable to tackle the geometrical nonlinear analysis of these nanostructures. Even if beam or shell-like
models are supported with atomistic techniques (Chang et al., 2005) for validation, it is necessary to be cautious about
the definition of some mechanical parameters.

Anyway, taking into account the aspect ratios from table 1 ofour simulated SWCNTs under compression and the
obtained deformed shapes in figure 8, a global buckling mode is yielded. Therefore, we could compare qualitatively
our obtained critical strains with those obtained from Yakobson et al. (1996, eq. (2)) for global buckling failure mode
(see table 5). Thus, a maximum relative shift of 20% is rendered.

AMBER MORSE Yakobson et al. (1996)
εcr(%) εcr(%) εcr(%)

Armchair(3,3) 2.958 2.978 3.375
Armchair(4,4) 2.876 2.902 3.292
ZigZag(5,0) 2.796 2.783 3.341
ZigZag(7,0) 2.836 2.844 3.327
Chiral(4,2) 2.780 2.782 3.293
Chiral(5,3) 2.727 2.737 3.150

Table 5: Comparison with Yakobson et al. (1996, eq. (2)) under compression

18



6.2. Flexural behavior

The nanotubes referenced in table 6 have been simulated under bending loads.

Chirality d(nm) L(nm) L/d
Armchair(3,3) 0.407 1.230 3.02
Armchair(4,4) 0.542 1.722 3.17
ZigZag(5,0) 0.391 1.349 3.45
ZigZag(7,0) 0.548 1.775 3.24
Chiral(4,2) 0.414 1.240 2.99
Chiral(5,3) 0.548 1.789 3.26

Table 6: SWCNTs under bending

In this section, shorter nanotubes than those under compressive loads have been chosen, because we are focused
on the analysis of the local buckling mode rather than the global one. A schematic description of the supporting
conditions and prescribed displacements for the flexural behavior is displayed in figure 9.

Figure 9: Supporting conditions under flexural loads

With regard to the possibilities of definition for the prescribed displacements∆u at the right end of the SWCNT,
we can classify them into two main groups:

1. The right end of the reference axis describes a known defined curve in the plane.
2. The right end traces a path such that the consecutive reference axis in the loading procedure constitute a family of

known curves verifying a defined property.

In our case option 2 has been chosen, where the reference axisat a intermediate equilibrium position is supposed to be
an arc of constant length. Moreover, the initial tangent of each arc is the neutral axis of the undeformed shape and the
moving nodes at the right end verify a rigid body motion whichkeeps the cross-section orthogonal to the deformed
reference axis along the loading process. In this way, the next relation is verified for each equilibrium configuration:

ρθ = L (55)

Assuming the same coordinate system defined in section 6.1 and adopting the load factor for bending response as
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λ = θ, the displacements of the right end centre may be expressed for the first increment as:

∆u2
1 = −(L − ρ sin∆λ1) = −L

(
1−

sin∆λ1

∆λ1

)
(56a)

∆v2
1 = −ρ(1− cos∆λ1) = −

L
∆λ1

(1− cos∆λ1) (56b)

∆w2
1 = 0 (56c)

Taking a generic node (node A) at the right end of the nanotube, the imposed displacements are written:

∆uA
1 = ∆u2

1 + yA sin∆λ1 = −L

(
1−

sin∆λ1

∆λ1

)
+ yA sin∆λ1 (57a)

∆vA
1 = ∆v2

1 + yA cos∆λ1 = −

(
L
∆λ1
+ yA

)
(1− cos∆λ1) (57b)

∆wA
1 = ∆w2

1 (57c)

then, regarding∆λn is small enough, eqs. (57) can be simplified as:


∆uA
1

∆vA
1

∆wA
1


= ∆λ1



yA

−L/2
0



∆uA
1 = ∆λ1ũA

1 (58)

For the following increments, the prescribed displacements at the right end can be determined by using eqs. (56) at
the beginning and the end of the increment. Therefore, subtracting the resultant expressions we can reach:

∆u2
n = u2

n+1 − u2
n = L

[
sinλn+1

λn+1
−

sinλn

λn

]
(59a)

∆v2
n = v2

n+1 − v2
n = −L

[
1− cosλn+1

λn+1
−

1− cosλn

λn

]
(59b)

∆w2
n = w2

n+1 − w2
n = 0 (59c)

In the same way, we can add the incremental displacements of the node A to equation (59) achieving:

∆uA
n = ∆u2

n + yA(sinλn+1 − sinλn) (60a)

∆vA
n = ∆v2

n + yA(cosλn+1 − cosλn) (60b)

∆wA
n = ∆w2

n (60c)

After a few manipulations and assuming∆λn is small enough, the next simplified expressions for the imposed dis-
placements at the node A are obtained:



∆uA
n

∆vA
n

∆wA
n


= ∆λn



L
λn

(
cosλn −

sinλn
λn

)
+ yA cosλn

L
λn

(
1−cosλn
λn
− sinλn

)
− yA sinλn

0



∆uA
n = ∆λnũA

n (61)

The prescribed displacements are updated only in the predictive phase, leading to aredistribution of internal forcesin
the corrective one, up to reach the next equilibrium configuration. Hence, superscript k disappears from eq. (56) to
eq. (61).

Some obtained nonlinear equilibrium paths under bending and their deformed shapes at the last iteration (of
the last increment) are provided in figures 10 and 11 respectively, as an example of the buckling behavior. The
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(d) Chiral(4,2)

Figure 10: Nonlinear equilibrium paths under bending (color on the Web)

transversal displacement of a representative nodeuρ around the midpoint at the compressed side of the nanotube has
been represented against the load factorλ.

Initial imperfections in bending simulations have been adopted as a point load in the y-axis direction at a node
near the midpoint of the compressed (bottom) side of the SWCNT, testing out their values trying to reproduce a clear
post-critical behavior without divergence of the numerical process (see section 6.4).

For each critical load factor (right end rotation), the buckling curvature can be obtained from (55) as:

κcr =
λcr

L
(62)

Note that equation (62) is an approximation to the real buckling curvature because the right-end rotationλ = θ is
not necessarily the same as the rotation of the cross-section corresponding to the buckling point. Although the ideal
reference axis is an arc of circumference with constantθ, theredistributionof the corrective phase into each increment
introduces an accumulative deviation from this curve.

The critical buckling curvatures (in nm−1) in table 7 have been obtained extractingλcr from each equilibrium
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(a) ZigZag(7,0) Morse (b) Armchair(4,4) AMBER

(c) Chiral(4,2) AMBER (d) Chiral(4,2) Morse

Figure 11: Deformed shapes under bending (last iteration)

path. In some cases (fig. 10(a), AMBER potential and fig. 10(d)), it is difficult to find out the buckling step which
determinesλcr. In this case, the first abrupt shift into each curve has been taken as the corresponding critical strain,
interpreting the rest of deviations as numerical singularities. This choice may be open to misinterpretation and a
previous contrast of results with different input data for each simulation has been found useful (see section 6.4).

In addition, we can see an abrupt change of direction in theuρ displacement (figure 10(a)) for AMBER potential
compared with Morse function. In order to clarify the originof this phenomenon, the final deformed shape and some
equilibrium paths of additional nodes for ZigZag(7,0) withAMBER potential were studied (figure 12). Particularly,
the node 74 was monitored in figure 10(a) and equilibrium paths of the nodes located at the same cross-section of
the nanotube are plotted in figure 12(b). Taking into accountthe symmetry of the SWNT with respect to a vertical
plane containing the reference axis, each couple of nodes denoted in figure 12(a) rendered the same equilibrium path.
As can be seen, the gap into the equilibrium path of node 74 is alocal singularity that does not appear in the rest of
nodes. Therefore, it can be associated with a localsnap-throughphenomenon, which is dispersed before reaching
neighboring nodes. A similar situation occurs in the compressed side near the left end of the nanotube (see figure
12(a)).

The control node should be chosen carefully because nodes located far from the instability generate curves with
small kinks or without them. Therefore, some tests of the same SWCNT monitoring different nodes were necessary
into each simulation in order to choose the most suitable control node. However, provided a set of nodes that yield
curves where the buckling gap is present, the value ofλcr is independent of the choice of the node.

As we did in compression, input data for flexural simulationsare included in table 8 as guidance about their order
of magnitude.

As can be seen from figure 10 and comparing values from table 7,each interatomic potential produces different
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Figure 12: ZigZag(7,0) with AMBER potential revisited

AMBER MORSE
L(nm) λcr(rad) κcr(nm−1) λcr(rad) κcr(nm−1)

Armchair(3,3) 1.230 0.552 0.449 0.510 0.414
Armchair(4,4) 1.722 0.308 0.179 0.284 0.165
ZigZag(5,0) 1.349 1.148 0.851 0.636 0.472
ZigZag(7,0) 1.775 0.462 0.260 0.400 0.225
Chiral(4,2) 1.240 0.577 0.466 0.504 0.407
Chiral(5,3) 1.789 0.304 0.170 0.293 0.164

Table 7: Critical buckling curvatures under bending

AMBER MORSE
l0 NI l0 NI

Armchair(3,3) 0.1 22 0.1 35
Armchair(4,4) 0.04 90 0.02 180
ZigZag(5,0) 0.1 34 0.1 19
ZigZag(7,0) 0.01 250 0.01 250
Chiral(4,2) 0.01 240 0.01 327
Chiral(5,3) 0.05 80 0.02 100

Table 8: Input data in flexural simulations

critical buckling curvature. Nevertheless, no clear systematic trend in terms of stiffness is observed. In fact, the
constitutive differences due to the interatomic potential function are coupled with various effects as the scattering
from the input data or the border effects (short simulated nanotubes).

Regarding the snapshots of deformed shapes in fig. 11, a kind of flattening of the cross-section of the nanotube
can be qualitatively seen, as has been reported (Iijima et al., 1996; Wang et al., 2008; Yakobson et al., 1996). This
resembles the so-called Brazier effect (Brazier, 1927) in continuum mechanics. Despite this effect appears mainly in
cylindrical shells, in our atomistic MSM model it is also reproduced. However, in some cases (see fig. 11(d)) the final
deformed shape is distorted by the border effects, which amplifies the instability near the SWCNT left enddue to some
strongly compressed bonds. The effect of the snap to secondary critical steps detected by the numerical procedure (fig.
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10(d)) is present in these unusual deformed shapes. In fact,these special deformed shapes occur only after buckling.
For instance, the Chiral(4,2) with Morse potential (fig. 11(d)) reaches aλcr = 0.504 rad in the incrementn = 133 and
running our code which uses Morse potential up to that increment, the deformed shape (figure 13) shows the expected
smoothness in the compressed side.

Figure 13: Chiral(4,2), Morse deformed shape,n = 133

Our results agree reasonably with other published references. For instance, Pantano et al. (2004) proposes a critical
buckling rotation ofθcr = 1.1 rad for a ZigZag(13,0) nanotube of 2 nm in diameter and 8 nm inlength through FE
modeling validated with MD techniques. These values translate into a critical curvature ofκcr = 0.1375 nm−1, slightly
lower than our results for a higher diameter. Otherwise, Iijima et al. (1996) used MD calculations for a SWCNT of
1.2 nm in diameter obtaining a critical rotation ofθcr = 30o = 0.5236 rad, closer to our obtained values in terms of
magnitude order. Also in Iijima et al. (1996, eq. (2)) is introduced a numerical fitting to their own MD results for
bending. However, it is limited to the diameter range of [1, 1.5] nm and it is meaningless to be used herein.

Despite of using a cylindrical shell model (not recommendable) valuated with MD techniques, Yakobson et al.
(1996, eq. (4)) estimate the critical curvatures in table 9 for our diameter range.

d(nm) L(nm) κcr(nm−1)
Armchair(3,3) 0.407 1.230 0.937
Armchair(4,4) 0.542 1.722 0.527
ZigZag(5,0) 0.391 1.349 1.012
ZigZag(7,0) 0.548 1.775 0.516
Chiral(4,2) 0.414 1.240 0.903
Chiral(5,3) 0.548 1.789 0.516

Table 9: Estimated critical buckling curvatures under bending (Yakobson et al., 1996, eq. (4))

These values are reasonably close to those presented in thiswork (see table 7).

6.3. Torsional behavior

The dimensions and chiralities of the SWCNTs simulated under torsion are outlined in table 10.
A schematic description of the supporting conditions and the system of imposed displacements is depicted in

figure 14. In this loading case, the right end nodes verify a rigid body rotationθ = λ in the positivex direction.
In order to simplify the development of the expressions which provide the prescribed displacements of a generic

right end node A in terms of the load factor, we assume initially that the increments∆λn, n = 1, 2, . . . ,NI are small
enough. Therefore,∆λn ≪ λn and∆λn ≪ θ0 (see figs 14(b) and 14(c)). For the first increment, we have:

|∆uA
1 | ≃ R∆λ1 (63)
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Chirality d(nm) L(nm) L/d
Armchair(3,3) 0.407 1.476 3.63
Armchair(4,4) 0.542 1.968 3.63
ZigZag(5,0) 0.391 1.562 3.99
ZigZag(7,0) 0.548 1.988 3.63
Chiral(4,2) 0.414 1.465 3.54
Chiral(5,3) 0.548 2.028 3.70

Table 10: SWCNTs under torsion

(a) Supporting conditions under torsion

(b) Rotation first increment (c) Rotation generic increment

Figure 14: Supporting conditions and imposed displacements schemes (color on the Web)

projecting onto the coordinate axes:

∆uA
1 = 0 (64a)

∆vA
1 = ∆λ1Rcosβ (64b)

∆wA
1 = ∆λ1Rsinβ (64c)
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Sinceβ ≃ θ0, equation (64) becomes:


∆uA
1

∆vA
1

∆wA
1


= ∆λ1



0
−zA

yA



∆uA
1 = ∆λ1ũA

1 (65)

For the subsequent increments (fig 14(c)), expressions (64)adopt the form:

∆uA
n = 0 (66a)

∆vA
n = ∆λnRcosβ (66b)

∆wA
n = ∆λnRsinβ (66c)

Sinceβ ≃ θ0 + λn, eqs. (66) can be rewritten:


∆uA
n

∆vA
n

∆wA
n


= ∆λn



0
−zA cosλn − yA sinλn

yA cosλn − zA sinλn



∆uA
n = ∆λnũA

n (67)

As we did in sections 6.1 and 6.2, the imposed displacements are updated only in the predictive phase.
Several nonlinear equilibrium paths under torsion and their final deformed shapes are displayed in figures 15

and 16 respectively, as examples of the local buckling undertorsional loads. The transversal displacementuρ of a
representative node around the midpoint of the nanotube hasbeen plotted against the load factorλ.

Initial imperfections in torsional simulations have been introduced through two point loads in the y-axis direction
and opposite senses, either stretching or flattening the cross-section of the tube. Their values have been tested out
trying to reproduce reasonably the post-buckling behaviorwithout divergence of the numerical process (see section
6.4).

Values in table 11 are obtained extracting the critical rotation of the right end (equivalent toλcr) from each equilib-
rium path, in the same way it has been done in bending. As has been aforementioned, this choice may be controversial.
In torsion, the first abrupt shift into each curve has been taken as the corresponding critical strain, assigning the rest
of deviations to numerical singularities.

As we did in compression, input data for flexural simulationsare included in table 8 as guidance about their order
of magnitude.

As we did in compression and bending, input data of torsionalsimulations are included in table 12 to give an idea
of their order of magnitude.

AMBER MORSE Yakobson et al. (1996, eq. (6))
λcr(rad) λcr(rad) λcr(rad)

Armchair(3,3) 0.865 0.971 0.180
Armchair(4,4) 0.694 0.653 0.117
ZigZag(5,0) 0.958 1.162 0.210
ZigZag(7,0) 0.706 0.831 0.115
Chiral(4,2) 1.000 0.718 0.171
Chiral(5,3) 0.783 0.766 0.118

Table 11: Critical buckling rotations under torsion

Comparing values from table 11 and equilibrium paths from figure 15 can be stated that there is not a clear
tendency inλcr by taking AMBER or Morse potential into account. Therefore,we can conclude that the interatomic
potential does not produce any difference related to the critical buckling strains.
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(b) ZigZag(7,0)

−0.05 0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

uρ(nm)

λ(
ra

ds
)

 

 

AMBER
Morse

(c) Armchair(4,4)
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(d) Chiral(5,3)

Figure 15: Nonlinear equilibrium paths under torsion (color on the Web)

AMBER MORSE
l0 NI l0 NI

Armchair(3,3) 0.01 164 0.01 185
Armchair(4,4) 0.02 100 0.02 80
ZigZag(5,0) 0.01 160 0.01 175
ZigZag(7,0) 0.02 100 0.02 80
Chiral(4,2) 0.01 180 0.01 160
Chiral(5,3) 0.02 120 0.02 92

Table 12: Input data in torsional simulations

The failure mechanism under torsion leads to a flattening of the cross section in a helix-like deformed shape (see
fig 16), as has been previously reported by Rochefort et al. (1999, fig. 6), Yakobson et al. (1996, fig. 4) and Wang et al.
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(a) ZigZag(7,0) AMBER (b) Armchair(4,4) Morse

(c) Chiral(5,3) AMBER (d) Chiral(4,2) Morse

Figure 16: Final deformed shapes under torsion

(2004, fig. 4).
Regarding the critical buckling rotations, Yakobson et al.(1996) reportedλcr =2.7 rad for a ZigZag(13,0) SWCNT

of 1 nm in diameter and 23 nm in length, which is comparable with our obtained results in table 11. Furthermore, in
the same work a validation of their own MD calculations by means of continuum models has been established under
torsional loads. Namely, ifL ≤ 136 d5/2 (short cylinders) which can be easily verified in our case, eq. (6) from
Yakobson et al. (1996) provide the results shown in the last column of table 11. Of course their values are quite lower
than ours because the tubes simulated in this work under torsion are rather short and the circumferential constraints
produced by the pinned joints at both ends tend to keep the circular cross-section and stabilize the whole structure
against torsional buckling.

6.4. Estimation of error and reliability of the method

In order to give an idea about the influence of the input data (l0,NI, ǫ), a set of results under different values
of these parameters is provided in this section. Despite no analytical or numerical optimization procedure has been
carried out, the reliability of the numerical method against the variation of the input data is shown here. Note that all
provided tests have been worked out with AMBER potential, because of the limited stability of the results obtained
with the Morse function due to its nonlinear nature (see eqs.(44)). In fact, with the latter potential, only a few
combinations (mainly in bending and torsion) of initial imperfections and increment size produce reasonable results
once the critical load factor is reached; some of them were included in figs. 10 and 15.

Firstly, the influence of the increment sizel0 in the equilibrium paths under compression, bending and torsion
has been investigated. One of the previously simulated nanotubes has been used as a reference for each loading
distribution. The values ofl0 are bounded into an interval depending of the particular conditions of the algorithm (see
Felippa (2001, Sec.18.2)). For instance, withl0 = 0.2 all tests diverged before observing any kink in the corresponding
curve. Therefore, a set of three representative values for each SWCNT were tested to study its final response, but
keeping the initial imperfections as constant values. The final values ofλcr (extracted from the first abrupt change of
direction in the corresponding nonlinear path) are outlined in table 13, and the equilibrium paths in figure 17.

The procedure is quite reliable in compression and bending regarding the increment size, presenting relative errors
in λcr (with respect to the minimum values) of 0.2% and 6% respectively. However, a relative error of nearly 30%
is observed due to theλcr = 0.8992 rad forl0 = 0.1. Nevertheless, from figure 17(c) substantial instabilities can be
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Armchair(3,3) compression Armchair(4,4) bending ZigZag(7,0) torsion
d = 0.407 nm,L = 4.919 nm d = 0.542 nm,L = 1.722 nm d = 0.548 nm,L = 1.988 nm
l0 NI λcr(nm) l0 NI λcr(rad) l0 NI λcr(rad)
0.1 30 0.1456 0.1 20 0.2904 0.1 20 0.8992
0.05 65 0.1455 0.04 90 0.3083 0.02 100 0.7055
0.01 300 0.1458 0.02 127 0.3034 0.01 200 0.6948

Table 13:λcr against increment sizel0
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Figure 17: Equilibrium paths with different increment sizel0 (color on the Web)

seen in the corresponding curve aroundλcr = 0.7, which is the load factor detected in the other two curves. It is
also remarkable that in some of the tested nanotube configurations, certain values ofl0 introduce a different direction
of the displacement after the buckling point. Namely, taking a value ofl0 = 0.01 in compression (figure 17(a)) a
completely reverse direction of the displacement has been rendered, which can be attributed to a globalsnap-through
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phenomenon. Likewise, in figures 17(b) and 17(c), the changein direction of certain curves can be interpreted as a
localsnap-throughphenomenon limited to a few nodes.

Next, the influence of initial imperfections is studied by keeping the increment size as a constant value and giving
three representative values to these perturbations. The final values ofλcr are outlined in table 14, and the equilibrium
paths in figure 18.

Armchair(3,3) compr. Armchair(4,4) bend. ZigZag(7,0) tors.
d = 0.407 nm d = 0.542 nm d = 0.548 nm
L = 4.919 nm L = 1.722 nm L = 1.988 nm

ǫ (nN/nm) λcr (nm) ǫ (nN) λcr (rad) ǫ (nN) λcr (rad)
6x0.01 0.1457 1x1 0.3180 2x0.05 0.6974
6x0.1 0.1455 1x10 0.3083 2x0.5 0.7055
6x1 0.1455 1x100 0.3954 2x5 0.6413

Table 14:λcr against initial imperfectionsǫ

Regarding the distribution of initial imperfections, in compression six point loads have been applied on the nodes
located at the midsection of the nanotube, in bending a pointload has been applied on the node located around the
midsection of the SWCNT at the compressed (bottom) side and in torsion two opposite loads have been applied at
the midsection of the nanotube which tend to flatten the crosssection. Although a previous understanding of the
load configuration is needed to choose a reasonable distribution, some additional tests locating the set of loads which
introduces initial perturbations at≃ L/4 from the right end were performed. For instance, applying six imperfections
of 0.1 nN/nm under compression, an imperfection of 10 nN under bendingand two opposite imperfections of 0.5 nN
under torsion, respective values ofλcr = 0.1457 nm,λcr = 0.3901 rad andλcr = 0.7061 rad were obtained. Comparing
these critical load factors with the corresponding values in table 14, can be seen that no important differences have
been yielded by changing the distribution of initial imperfections. Nonetheless, placing initial imperfections at≃ L/4
from the right end causes an earlier divergent behavior of the numerical algorithm than placing imperfections at the
midsection.

As we can see in table 14, the critical load factor is reasonably stable related to the variation of the values of the
perturbationǫ, presenting relative errors (with respect to the minimum obtained value) of 0.15% in compression, 30%
in bending and 10% in torsion. Figure 18(b) shows that the rough imperfection of 100 nN renders a meaningless
equilibrium path, the load factor of which increases the relative error in bending.

To sum up, the input data (l0, NI andǫ) adopted to obtain the equilibrium paths presented from section 6.1 to 6.3
were selected in order to discard numerical instabilities attending to criteria of smoothness of the curve, clarity in the
main abrupt kink (interpreted asλcr) and longest curve after buckling.

7. Concluding remarks

In this paper, a geometrical nonlinear extension of the general formulation for the ‘stick-spiral’ model has been
presented. Calculations with both AMBER and Morse potential functions have been carried out, focused on checking
wether the buckling failure is triggered in the linear rangeof strains. The versatility of our formulation is highlighted
by its ability of considering general load conditions without additional equations even in geometrical nonlinear analy-
sis, against other published works (Chang et al., 2005). As examples of this issue, compressive, flexural and torsional
load configurations were adopted. Moreover, a set of clamped-clamped like tubes have been loaded in each case
through imposed displacements at the moving nodes of their right end. Likewise, two incremental-iterative proce-
dures (regarding AMBER or Morse potentials) involving a general arc-length control strategy have been developed
and numerically implemented. Hence, nonlinear equilibrium paths, critical buckling strains and final deformed shapes
have been presented as output results and compared with other published works.

To sum up, the main conclusions of this study are detailed next:

1. Related to the critical strains values under compression(see table 2), utilizing either Morse or AMBER potential
in the calculations does not produce a clear difference. Likewise, despite of somehow different values are obtained
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Figure 18: Equilibrium paths with different imperfectionsǫ (color on the Web)

under bending or torsion (tables 7 and 11), no clear trend hasbeen observed. Therefore, we can conclude that the
constitutive nonlinearity introduced by the Morse potential does not have a significant influence on the buckling
response regarding the order of magnitude of the obtained critical strains. In this way, the geometrical instability
of SWCNTs is triggered previously to their constitutive nonlinearity, agreeing with Falvo et al. (1997); Iijima et al.
(1996); Srivastava et al. (1999) and Y. Wang et al. (2005).

2. The atomistic calculations developed in this paper emphasize that continuum models are not recommendable for
the geometrically nonlinear analysis of SWCNTs. Besides the controversial choice of some parameters as the
Young modulus, the equivalent wall thickness and/or the shear deformation (in beam models), continuum models
cannot reproduce the atomistic structure of nanotubes. In fact, our atomistic MSM model allows to introduce
directly geometrical imperfections (highly determining in the buckling behavior), constituting a great advantage
in contrast with continuum models. In the latter case, theseimperfections are included indirectly by means of
contrived methods, which translates into a great loss of accuracy and unrealistic results.

31



3. As has been shown, our results are reasonable in comparison to those from previous atomistic works (e.g. Iijima et al.,
1996; Srivastava et al., 1999; Wang et al., 2004; Zhang et al., 2007). On the other hand, despite the application of
continuum models to atomistic systems is not advisable, some authors (Yakobson et al., 1996) have used them by
taking the proper values for some mechanical parameters to validate their atomistic MD calculations. Thereby, we
have used some of their continuum equations to compare with our results, rendering a reasonable agreement in
compression (maximum relative error about 20%). Nevertheless, just a qualitative agreement in terms of order of
magnitude under bending and torsion is obtained.

4. As output of our developed codes, nonlinear equilibrium paths are rendered. Deformed shapes, bond axial forces,
angular moments and joint reactions at the last iteration ofthe last increment have been obtained. Regarding the
values of buckling strains and the final deformed shapes, thedifferences with respect to other researches are mainly
due to:

i. The relatively small size of our simulated results
ii. The border effects caused by the circumferential constraints at both ends
iii. The implicit scattering produced by the input data of the incremental-iterative procedure into the critical buck-

ling strains (Cao and Chen, 2006).
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Black and white version of color figures

The figure captions including (color on the web) are intendedfor color reproduction on the web and in black-and-
white in print. For this purpose, black and white versions ofthese figures are supplied next.

Figure 19: Forces and displacements at the bar ends (color version, fig 2)

Figure 20: Forces and displacements acting on the spring element (color version, fig 3)
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Figure 21: Nonlinear equilibrium paths under compression (color version, fig 7)
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Figure 22: Nonlinear equilibrium paths under bending (color version, fig 10)
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Figure 23: Equilibrium paths (color version, fig 12(b))

(a) Supporting conditions under torsion

(b) Rotation first increment (c) Rotation generic increment

Figure 24: Supporting conditions and imposed displacements schemes (color version, fig 14)
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Figure 25: Nonlinear equilibrium paths under torsion (color version, fig 15)
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Figure 26: Equilibrium paths with different increment sizel0 (color version, fig 17)
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Figure 27: Equilibrium paths with different imperfectionsǫ (color version, fig 18)
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