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Abstract

Let A = (a;;) € R™™™ be a nonsingular totally nonpositive matrix. In this
paper we describe some properties of these matrices when a1; = 0 and obtain
a characterization in terms of the quasi-LDU factorization of A, where L is a
block lower triangular matrix, D is a diagonal matrix and U is a unit upper
triangular matrix.
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1. Introduction

A matrix is called totally positive (strictly totally positive) if all its minors
are nonnegative (positive). This class of matrices has a wide variety of appli-
cations in statistics, economics, computer aided geometric design and others
fields, see [10, 16], and is abbreviated as TP (STP). Nevertheless, a new class
of matrices that satisfy the opposite property has recently become of interest
due to its applications in social and economic problems [2, 17, 19]. If all minors
of a matrix are nonpositive (negative) the matrix is called totally nonpositive
(totally negative) and is abbreviated as t.n.p. (t.n.). They are included in the
class of sign regular matrices, which are widely used because of their variation
diminishing property (see [1, 6]).

Several authors have studied square and rectangular TP and STP matrices,
see [1, 5, 7, 8, 10, 11, 12, 13, 14, 16], obtaining properties, the Jordan structure
and characterizations by applying the Gaussian or Neville elimination that allow
one to significantly reduce the number of minors to be checked in order to decide
if a matrix is TP or STP.

For t.n. matrices, a characterization in terms of the parameters computed
from the Neville elimination is obtained in [12] and spectral properties and LDU
factorizations are studied in [9].
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The nonsingular t.n.p. matrices with a negative (1,1) entry have been
characterized in terms of the factors of their LDU factorization in [3]. This
factorization provides a criteria to determine if a matrix is t.n.p. and allows us
to reduce the numbers of minors to be checked to decide the total nonpositivity
of a nonsingular matrix with a negative (1,1) entry. On the other hand, some
properties of nonsingular t.n.p. matrices analogous to those satisfied by nonsin-
gular TP matrices have also been studied [1, 10]. When the (1, 1) entry is equal
to zero but the (n,n) entry is negative we can obtain a UDL factorization of
this nonsingular t.n.p. matrix by permutation similarity.

The rectangular t.n.p. matrices have been studied in [4], obtaining a full
rank LDU factorization in echelon form of this class of matrices and other char-
acterization by means of its thin QR factorization. This QR characterization
is similar to the one obtained in [5] for rectangular TP matrices and it is an
extension of the result for square TP matrices given in [11].

When the nonsingular t.n.p. matrix has the (1, 1) and (n, n) entries equal to
zero a characterization, in terms of the sign of its minors containing contiguous
rows or columns and including the first row or column, respectively, is obtained
in [15].

In this paper we characterize the nonsingular t.n.p. matrices with the (1,1)
entry equal to zero in terms of a quasi-LDU factorization, where L is a lower
block triangular matrix, D is a diagonal matrix and U is a unit upper triangular
TP matrix. This result holds when the (n,n) entry is equal to zero or when
it is negative but we do not use permutation similarity. We study this char-
acterization for n > 3, since the case n = 2 is trivial. Finally, we prove some
properties of this kind of matrices analogous to those satisfied by nonsingular
t.n.p. matrices with negative (1,1) entry described in [3].

We follow the notation given in [1]. For k,n € N, 1 <k <n, Qk,, denotes
the set of all increasing sequences of k£ natural numbers less than or equal to n.
If Ais an nxn matrix and o, 8 € Qp , A[r|3] denotes the k x k submatrix of A
lying in rows a and columns /. The principal submatrix A[a|a] is abbreviated
as Ala]. Note that, an n X n matrix A is a t.n.p. matrix if det A[a|5] < 0,
Va,B € Qpn, k=1,2,...,n.

Throughout the paper an LDU factorization means the corresponding fac-
torization resulting from Gauss or Neville elimination with no pivoting, where
L and U are unit lower- and upper-triangular matrices, respectively, and D is
a diagonal matrix.

2. Characterization of nonsingular t.n.p. matrices with the (1,1) en-
try equal to zero by the quasi-LDU factorization

In this section we derive a characterization of nonsingular t.n.p matrices
with the (1,1) entry equal to zero in terms of their quasi-LDU factorization.

Given an n x n, nonsingular t.n.p. matrix A = (a;;) it is known that a;; <0
whenever (i,7) € {(1,1), (n,n)}, [18, Theorem 2.1 (i)] and det A[1,2,...,k] <0,
for all k =2,3,...,n, [15, Theorem 5].



Since A is a nonsingular t.n.p. matrix with a;; = 0, it is not possible to
obtain a LDU factorization with no pivoting. Therefore, we work with a matrix

B = PA, where P is the permutation matrix P = [2, 1, 3, ..., n], that is
a21 a22 a2n—1 A2n
0 a2 1n—1 Q1n
a3 a32 a3n—1 a3n
B=PA=
Gn—-11 Gp—-12 Gn—1n—1 An—1n
L 9n1 an2 Upn—1 Gnpn |

Let n > 3, as det B[1,2,..., k| det A[1,2,...,k] >0, for all k =2,3,...,n,
we can obtain the factorization B = LpDpUp by applying the Gauss elimina-
tion process with no pivoting, where

1 0 0 0 0
0 1 0 0 0
l31 I32 1 0 0
L = laa lig | lag 0 0|
lh11 ln—12 | lu—13 1 0
lnl ln2 lnS lnn—l 1 i
[ —d; 0 0 0
0 —dy O 0
Dy — | 0 0 d 0|
L0 0 0 dn
(1w Ulp—1  Uin
0 1 Ugp—1 U2
Up = s :
o 0 - 1 Un—1n
(0 0 - 0 1

The matrices Ug, Dp and Lp satisfy the following properties.

Proposition 1. The upper triangular matrix Up is a TP matrix, with positive
entries above the main diagonal.

Proof. Since the entries of the first row of B are negative, we have that u;; > 0,
for j = 1,2,...,n. From Binet-Cauchy [1], we have for all 8 € Qp,, k =



2,3,...,n, that

det B[1,2,...,k|p] = > detLg[l,2,...,kly]det Dp[y] det Us[y|5]
YEQk,n

det Lp[1,2,...,k[1,2,... k] det Dg[1,2,... k| detUg[1,2,. .., k|f]

k
= (Hd¢> detUg[1,2,...,k|B] >0,

i=1

which implies that detUg[1,2,...,k|8] > 0 for all B8 € Qrpn, k =1,2,...,n.
Then, Up is a unit upper triangular TP matrix. As a consequence, for i =
2,3,...,n—1,and j=¢+1,...,n,

det UB[l,Z"L,j] = U1;Uij — ULy >0 — Uij > 0,

that is, Up has positive entries above the main diagonal. O

Proposition 2. The diagonal matrix Dp has all its diagonal entries positive
except for the (1,1) and (2,2) entries, which are negative.

Proof. The (1,1) and (2, 2) entries of Dp are —d; = ag; < 0 and —ds = a12 < 0,
respectively. The remaining diagonal entries are

o det B[1,2,...,1]

" det B[1,2,...,i—1]

>0, 1=3,4,...,n.

Proposition 3. The unit lower triangular matrix Lp satisfies,

1) The entries of the first column I;;, with i = 3,4,...,n, are positive.
2) Foralla € Q. n, k=2,3,...,n,

20 if alzl,a2:2

detLB[a1,2,...,k]:{ <0 if 1or2¢a

Proof.

1) From Binet-Cauchy, for i = 3,4,...,n, we have
det B[’L‘l] = —dy det LBMI] = —d;l;; <0,

then, it follows that the entries in the first column of L are positive except
for 121 =0.
2) Again, from Binet-Cauchy, for all o € Qy ,, kK =2,3,...,n, we have

k
det Blo|1,2,..., k] = (—d1)(—dy) [ [ di det Lp[al1,2, ..., k]
=3
k
> 1 = =
= HdidetLB[aH,Q,...,k]—{—0 it =1,0a;=2

e <0 if lor2¢a



which implies that

> 1 = =
detLB[al,Z,...,k]:{_O ifar=10a=2

<0 if lor2€a
O

From Proposition 3 the following properties of the matrix Lp can be de-
duced.

Lemma 1. The entries of the second column l;s, for i = 3,4,...,n, are non-
positive. Moreover, if lsa = 0 then l;s =0 for i =4,5,...,n, whereas if l3o < 0
then lip <0 fori=4,5,...,n.

Proof. Since
det Lp[1,i]1,2] =12 <0, for i =3,4,...,n,

the entries in the second column of L under the main diagonal are nonpositive.
Moreover, since

det Lp[1,3,4]1,2,3] = l3alis — li2 <0, i=4,5,...,n,
if 3o = 0 then l;5 =0 for i = 4,5,...,n. In addition, as
det Lp[3,i]1,2] =l31li2 — lnl3a <0 i=4,5,...,n,
we deduce that if I35 < 0 then l;0 < 0 for i =4,5,...,n. O

Lemma 2. The submatrix S = Lg[1,3,4,...,n] is a TP matriz with all its
entries under the main diagonal positive.

Proof. Since S is a unit lower triangular matrix to assure that it is t.n.p. we
need to prove that

det S[a|1,2,...,k] >0, Va€ Qgn_1, k=1,2,...,n—1.
e For all o = {an, a9,..., a5} € Qk pn—1, with @; = 1, we have
detS’[l,ag,...,ak|1,2,...,k‘]
= detLB[Lag+1,...,ak+1|1,3,...,/€—|—1]
= detLp[l,2,a0+1,..., 6 +1]1,2,3,... .k +1]

Hik;lldidetB[1,2,Oz2+1,...,04k+1|1,2,3,...,k+1] > 0.
e For all & = {an,9,..., a5} € Qk pn—1, with @; > 1, we have
det S[a, g, ..., al1,2,... k]
= detLglas +L,as+1,...,a6 +1]1,3,..., k + 1]
= —detLp[2,0; +1laa+1,...,ar+1]1,2,3,...,k+ 1]

1
- 7WdetB[2,a1+1a2+1,...,o¢k+1|1,2,3,...,k+1] > 0.
=1 "



Therefore S is a TP matrix. Moreover, since the entries of the first column of
S are positive and det S[j,i|1,4] > 0, for ¢ > j, 4,5 = 2,3,...,n — 1, it follows
that all its entries under the main diagonal are positive. O

Taking into account that A = PB = PLgDgUp = LDU and the previous
results, the following theorem gives the quasi-LDU factorization of A.

Theorem 1. Let A be an n x n nonsingular t.n.p. matriz with a;1 = 0. Then,
A has a factorization LDU , where U is a unit upper triangular TP matriz with

positive entries above the main diagonal, D = diag(—dy, —ds, ds, ..., d,) with
d; >0, fori=1,2,...,n, and L is the block lower triangular matriz
. Lu O = 0 1
L= = ~ th Ly, =
|: L21 L22 , Wi 11 1 0 )

where the entries in the first column of Loy are positive, in the second one are
nonpositive, Log is unit lower triangular TP matriz with positive entries under
the main diagonal, and such that

det La|1,2,...,k] <0, Vo€ Qrn, k=2,3,...,n.
Example 1. The nonsingular t.n.p. matrix

o -1 -2 =3
-14 -14 -14 -14
-14 -13 -11 =7 {’
—28 =25 18 0

A=

admits the following factorization,

0 1 00 -14 0 0 0 1 1 11

= 1 0 00 0 -1 0 O 01 2 3
A=LDU = 1 -1 10 0 0 1 0 00 1 4
2 -3 41 0 0 0 3 00 01

Remark 1. Other properties that verifies the matrix Lp are,

1. From Binet-Cauchy, it is easy to see that
e The k x k column initial minors of Lg[3,4,...,n|1,2,3,...,n — 2] are
nonpositive, for k > 2.

e The column initial minors of Lg[3,4,...,n|2,3,...,n — 1] are nonposi-
tive.
2. The matrix Lg = PL admits the following decomposition,

Lys O Iyo O
Lp=T =
B @ [ Toy  Too } [ Q21 Q22 }’



with

1 0 0 0 0
0 1 0 0 0
t31 0 1 0 0
T = ) ;
th—11 0| tn—13 1 0
tn,l 0 tn,?) tn,nfl 1 i
(1 0 0 0 0]
0 1 0 0 0
0 —gs32 1 0 0
Q = 0 0 qa3 0 01,
0 0 |gn-13 - 1 0
L 0 0 dn,3 ot Qnn—1 1 i

where ¢;; > 0, fori =3,4,...,n,and j = 1,3,...,i—1,¢32 > 0, ¢;; > 0 for
i=4,5,...,n,and j = 3,4,...,i— 1, and the submatrices T'[1, 3,4, ...,n]
and Q[3,4,...,n] are TP.

Example 2. If Ly = PL, where L is given in the Example 1, then Lp admits
the following factorization,

1 0 0 O
~ 0 1 0 0
L = PL= 1 -1 1 0 =T where
2 -3 4 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 O
A 01 0 0 01 00 0100} _|[01O0O
o 00 1 0 1 01 0 0010 |1 010
|0 0 2 1 0 0 0 1 0 0 1 1 2 0 3 1
[ 1 0 0 O 1 0 0 0 1 0 0 O
0 — 0 1 0 0 01 00| |O 1 00
o 0 -1 1 0 0010 |0 =110
| 0 0 0 1 0 0 1 1 0 01 1

The converse of Theorem 1 is not true in general, as the next example shows.



Example 3. The matriz

0 1 0 0 —15 0 0 O 1 1 1 1
~ 1 0 0 0 0 -2 0 O 01 2 3
A=LDU = 1 -1 1 0 0 01 0 00 1 4
| 2 -3 4 1 0 0 0 2 00 0 1

L D U

0o -2 -4 -6
-15 —-15 —-15 -15
-15 -13 -10 =5 |’
=30 -24 -14 6

is not t.n.p. although the matrices L, D and U satisfy the conditions of Theo-
rem 1.

The following theorem gives a necessary condition for a product LDU to be
a t.n.p. matrix with the (1,1) entry equal to zero.

Theorem 2. Let A = LDU be an n X n matriz where an, < 0, U is a
unit upper triangular TP matriz with positive entries above the diagonal, D =
diag(—dy, —da,ds,...,d,) withd; >0, i=1,2,...,n, and L is the block lower
triangular matrix

- [Ly O o= [o1
L= |: le _Z,22 :|, with L11 = |: 1 0 :|

where the entries in the first column of Loy are positive, in the second one are
nonpositive, Lao is unit lower triangular TP matrix with positive entries under
the main diagonal, and such that

det L[a|1,2,...,k] <0, Ya € Qn, k=2,3,...,n.
Then, A is a nonsingular t.n.p. matriz.

Proof. From the structure of the matrices L, D and U, and the product LDU,
we obtain easily that a;; =0, a1, < 0 and a,; < 0. Then, by [15, Theorem 5]
we know that A is a nonsingular t.n.p. matrix if the following inequalities hold,

det Ala|1,2,....k] < 0, Va€ Qkn, k=1,2,...,n
det A[1,2,...,k|8] < 0, VBE€Qkn, k=12,....n
det A[1,2,...,k] < 0, k=2,3,...,n.
In order to verify that A satisfies these inequalities we consider the matrix

B = PA and its factorization B = LgDgUpg, where Lg = Pf/, Dp = D and
Up=U.



The principal minors are negative for all k = 2,3,... n, that is,

det A[1,2,... k]

—det B[1,2, ..., k]
— > detLp[L,2,...,k|y]det(DpUs)[y[1,2,. .., k]

YEQk,n

—(—dl)(—dg)dg .oodp < 0.

The row initial minors are nonpositive for all 5 € O, k=1,2,...,n.
det A[1,2,...,k|8] = —detB[l,2,...,k|5]
= — Y detLp[l1,2,....kly]det(DpUg)[|B]
YEQk,n

= —(—dl)(—dg)dg . dk det UB[L 2, ey ]{3‘6]

= —(—dl)(—dg)dg...dkdetU[l,Q,...7k‘B] SO
The column initial minors are nonpositive for all & = {a,as,..., a5} €
Qkmn, k=1,2,...,n. We distinguish the following cases,

(cl) oy =1, ap =2 and a3 > 3,

det A[1,2, a3, ..

-(
i

k

11«

i=1
k

1«

i=1

(CQ) a1 = 1a Qg > 37

det A[l,og, ..

(

k
1«

i=1
k

=1

Sopll,2,. .0 k] = —det B[1,2,a3, ..., ax|1,2, ..., K]

— Y detLp[l,2,as,...,ax]y]det(DpUp)[y]1,2, ..., k]
YEQk,n

>detLB[ozg,...,ak|3,...,k;]

>deti[a3,...,ak|3,...,k] SO

Sopll,2, 00 k] =det B[1, g, ..., 1,2, .. K]

> detLp[l, aa,...,arly]ldet(DpUs)[Y[1,2,. .., k]
’Yer,n

> det Lglag, ..., arl2,..., k]

Hdi> det L]ovg, ..., 0|2, ... K]



(¢3) a3 =2 and oy > 3,

det A2, v, ..., a5]1,2,... k] = det B[2, g, ..., 0x]1,2,..., K]
= > detLp[2,0s,...,axy]det(DpUs)[y|1,2, ..., K]

YEQk,n

= det LB[2,042, .. .,ak|1,27 .. .,k](—dl)(—dg)dg .. dk

k
= - (HC&) detLB[OLQ,Oég,...,Oék|].,3,...,k]

i=1

k
= - (Hdl> det Lag, s, . .., ag|1,3, ..., k]

i=1
k ~
= (Hdi> det L[1, v, s, . . ., a|1,2,3, ..., k] <0.
i=1
(cd) aq > 3,
det Alag, g, ..., axl|1,2,... k] =det Blag, as, ..., ax|1,2, ..., k]

= Z det Lglo, ag, ..., aily] det(DgUp)[v|1,2, ..., K]
YEQk,n

k
(Hdl> det Lplay, ag,...,ar1,2,... k]

i=1

k
= (Hdl> deti[a17a2,...,ak|172,...7k] <0,

i=1
which concludes the prove. O

Combining Theorems 1 and 2 we obtain the following result.

Theorem 3. Let A be an n X n nonsingular matriz with a1 = 0, an, < 0.
Then, A is t.n.p. if and only if A has a factorization LDU, where U is a
unit upper triangular TP matriz with positive entries above the main diagonal,
D = diag(—dy, —dy, ds, ..., dy) with d; > 0, fori =1,2,...,n, and L is the
block lower triangular matriz

. L, O = 0 1
L == ~ ~ L =
[ Ly Lo ] , with Lo [ L0 ]

where the entries in the first column of Loy are positive, in the second one are
nonpositive, Lao is unit lower triangular TP matrix with positive entries under
the main diagonal, and such that

det La|1,2,...,k] <0, Vo€ Qrn, k=2,3,...,n.

10



Remark 2. The quasi-LDU factorization obtained in Theorem 3 provides a
criteria to determine if a matrix with a zero (1,1) entry is t.n.p. The number
of minors to be computed to decide the total nonpositivity is equal to the ones
to be checked in [15] but their computation is easier because the matrices are
triangular, block triangular and diagonal.

Otherwise, this factorization allows us to directly obtain nonsingular t.n.p.
matrices of any size.

Remark 3. (1) Let C be an n X n matrix with ¢,, # 0 and let A be the

matrix
A=C— CnnEnn — C=A + CnnEnna

where F,,, is the n X n matrix whose only nonzero element is 1 in position
(n,n). We know that

det Cla|f] = detAa|f], Yo, € Qppny, k=1,...,n, nganp
det Cla,n|B,n] = det Ala, n|B,n] + cnn det ClalS].

If C is a nonsingular t.n.p. matrix, then the nonsingular matrix A with
Gnn = 0is t.n.p. Moreover, if C = I~/DU, where D = diag(—d;, —da, ds, . . .,
dy) with d; > 0, for i = 1,2,...,n, then A = LDU, where D = diag(—dj,
—ds, d3,...,dp—Cpp) withd; >0, fori=1,2,...,n—1, and d,, — ¢y, > 0.
Let A be an n x n nonsingular t.n.p. matrix with a1; = a,, = 0. Then,
there exists an & > 0 such that the matrix A, = A — xFE,,, is also a
nonsingular t.n.p. matrix.

(From matrix B = PA we construct for all £ > 0 the matrix

B, =B —xFE,,.
Using the factorization B = LgDgUp we have

Bz = B- .%‘Enn = LBDBUB — LUEnn

_ | Ly 0| D1 O U wp | ][00
“ln o 0 d, 0 1 1o 1
Ly 0 Dy 0 Ur w
i 1 0 d,—=x 0 1
= LBD%;UB =Lp,Dp,Up,.
It is not difficult to prove that b, = b,n—2, soif b, = 0, B, has negative
(n,n) entry. Since Lp, = Lp and Up, = Ug, if we take 0 < z < d,, Dp,
is a positive diagonal matrix except for the two first negative entries.

Therefore, by Theorem 2 the matrix A, = PDB, is a nonsingular t.n.p.
matrix with the (1,1) entry equal to zero and the remainder negative.

11



3. Some properties of nonsingular t.n.p. matrices
All nonsingular t.n.p. matrices verify the following two properties.

Proposition 4. Let A be an n x n nonsingular t.n.p. matrix. Then, for k =
2, 3,...,n, one of the following conditions holds,

(i) det A[l,an, a3,...,0k]1,2,..., k] <0,

(ii) If det A[1, cua, ..., a1, 2, ..., k] = O then det Afag, a3, ..., 0p2,... . k] =

0.

Proof. If det A[1, g, a3, ..., ax|1,2,..., k] < 0 the result holds. Now, suppose
that det A[1, a9, as,...,0k]1,2,...,k] = 0 and det Alas, ..., arl2,...,k] < 0.
Since A is nonsingular there exists ¢, k <t < n, such that

det AL, a0, a3, ..., axl2,...,k,t] <O0.
Since

det A[1, a0, ..., ax|2,...,k,1]

a2 a3 - Qg ant
aOézZ aa23 e a‘Ozzk aagt
= det Anz2  Qagz3 Aaszk  Qast
aakQ aakS e aakk aakt
0 0 e 0 ait
aa22 a0é23 T a’OLQk a’agt
— det aa32 aOég?) e aagk} a‘agt
aakZ aOékB e aakk aakt

= (=1)"*(ay,) det Alag, a3, ..., ax]2,3,..., k] <0,

we obtain that (—1)**(ay,) > 0.
Again, since A is nonsingular there exists [, such that a; <1 < a1, =1,
2,...,k, with a; =1, agy1 = n, so that

detA[ag,...,ai,l,ai_H,...,ozk|1,2,...,k:] < 0.
From
detA[ag,...,ai,l,a¢+1,...,ak|1,2,.. ,]C}

aa21 aa22 e ao&gk*l aa2k
A1 A2 tet Ao k—1 Aok
= an a2 T Alk—1 ait
aai+11 aai+12 e a'ai+1k71 aai+1k
aakl a()zk2 T aakk—l a()tkt

12



0 aa22
0 Qo2
= ary a2
0 aai“ 2
L 0 Aoy 2

aOLQk—l

Ao k—1
Ak—1
a’a,;.*_lk*l

aakk—l

Qo

a‘a2k

aaik
are

it1k

aakt

= (=) (ay) det Aag, s, . .., 12,3, ..., k] <0,

we have that (—1)""!(a;1) > 0. Therefore

det A[l, ag, ..., a5, L agn, ..oy k1,2, .0 kL ]
= (=)' (ay,) det Alag, ..., o Lo, .. onl1,2, .. K]
(=) (@g,) (=1) 1 (@gy) det Ao, as, . .., a2, . . ., K]
= (=D (ay) (~1) (ay) det Alag, az, ..., axl2,..., k] p >0,
>0 >0 <0
which is absurdum because A is t.n.p. O

Proposition 5. Let A be an n X n nonsingular t.n.p. matrix. Then, for k =
2,3,...,n, one of the following conditions holds,
(1) detA[la 27 LR k|1aﬁ27637 cee aﬁk] < 07

(ii) If det A[1,2, ..., k|1, B2, Bs, ..., Bx] = 0 then A[2,... k|2, Bs, ..., Bk] = 0.

Proof. The proof is similar to that of Proposition 4. U

From Propositions 4 and 5 we obtain the relationship between the nonsingu-
lar t.n.p. matrices with the (1,1) entry equal to zero and the nonsingular t.n.p.
matrices with negative (1,1) entry.

Proposition 6. Let A be an n X n nonsingular t.n.p. matrix with a;; = 0.
Then, there exists €y > 0 such that Ve < ¢p the matrix A. = —eFE1; + A, where
Ej; is the n x n matrix whose only nonzero entry is 1 in position (1,1), is a
nonsingular t.n.p. matrix.

Proof. The matrix A, verifies
det A Ja|f] = det A[a|f] <0, if 1&ang,

therefore for all & € QO ,,, with ay > 2, and for all 8 € Qy,,, with 31 > 2, we
have

det AcJar, ag, ..., ak|1,2,... k]
detAE[1727"'7k|ﬁ17/62a"'aﬁk] =

det Alag, g, ..., ap|l,2,... K]

<0,
detA[1,2,...,k|ﬁl,ﬂ2,...,6k] S 0.
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Ifleanpg, for k=2,3,...,n, we have

det A [1,2,...,k] = —edetA2,... k] +det A[1,2,... k]
= —edet A[2,..., k] +det A[1,2,... kK],
det A[1,2,...,k
since det A[1,2,...,k] <0 and det A[2,...,k] <0, ifek:(W,for
all positive € < min{ey, €a, ..., €, } we have that det A[1,2,...,k] <O0.

Moreover

det A1, a,...,ax|1,2,... k]
= —edet Afasg,...,ak|2,... k] +det A[1, ag, ..., ar|1,2,... k]
= —edet Alag,...,ag|2,..., k] +det A[l, aq,...,ak]1,2,... k]

If det A[1, @, ..., x|1,2,...,k] =0, then det Alaa,...,arl2,...,k] = 0 apply-
ing Proposition 4. Then, det A.[1, s, ..., ak|1,2,...,k] =0 for all e > 0.

If det A[1, g, ..., a]1,2,...,k] <0 and det Alas,...,ax|2,...,k] <0, pro-
vided that
det A[1, 0, ..., a]1,2,... K]

det Alas, ..., agl2,..., k]
we have det A.[1,ag,...,ax|1,2,...,k] <O0.

Therefore, for all ¢ < min{eq,, o C {2,3,...,n}, k = 2,3,...,n} it is
satisfied that

€ < €qk =

det Ac[l, aa,...,ak|1,2,...,k] <O0.
Similarly, we have for all € < min{eg, 8 C {2,3,...,n}, k=2,3,...,n}
det A[1,2, ... k|1, Bay. .., Bi] < 0.

If ¢ < min{er,€2,...,€n €0k, €8k« C {2,3,...,n},8 C {2,3,...,n}, k =
2,3,...,n} we have for all € < ¢g that A, is a nonsingular t.n.p. matrix. O

Proposition 7. Let C be an n X n nonsingular t.n.p. matrix with ¢;; < 0.
Then, A = C' —c¢11 F11, is a nonsingular t.n.p. matrix with the (1,1) entry equal
to zero.

Proof. Since C' is a nonsingular t.n.p. matrix, for k = 1,2,...,n, the following
inequalities hold

det Cla|1,2,...,k] <0, Va € Qpn
det C[1,2,...,k|8] <0, VB € Qrn
det C[1,2, ... k] < 0.

Matrix A is also a nonsingular t.n.p. matrix because it verifies,

e det A=detC—cy1detC[2,3,...,n] <0 = detA <O,
——

<0 <0
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e if 1 ¢ N we have that det Aa|8] = det Clr| 3] <0,
e ifleanp, detA[l,aq,...,ak|l, B2, ..., Bk] =
detC[].,OQ,...,Ozk|].,,82,...,ﬂk]7011det0[052,...,0zk|52,...,Bk] <0.

O

As a consequence of Propositions 6 and 7 we deduced the following results.

The analogous ones for nonsingular t.n.p. matrices with a;; < 0 can be found
in [3].

Proposition 8. If A is an n X n nonsingular t.n.p. matrix with a;; = 0, then
det A[1,a] < 0 for all & C {2,3,...,n}.

Proposition 9. Let A be an n X n nonsingular t.n.p. matrix with a;; = 0.
Then, det Aja] < 0, forall @ € Qp ,, k=1,2,...,n,except for k=1 and a =1
or @ =n.

4. Another quasi-LDU factorization of nonsingular t.n.p. matrices
with the (1,1) entry equal to zero using the transpose

In Section 2, given the nonsingular t.n.p. matrix A = (a;;) € R"*" with
a1 = 0, from the factorization LgDgUp of B = PA, where P is the permuta-
tion matrix P = [2, 1, 3, ..., n], we have obtained the factorization A = LDU,
where U is a unit upper triangular TP matrix with positive entries above the
main diagonal, D = diag(—dy, —ds, ds, ..., d,) with d; > 0, for i = 1,2,...,n,
and L is the block lower triangular matrix

~ Ell O . = 0 1
L= = ~ h Ly =
[ Lo1 Lo } Wi H { L0 }

where the entries in the first column of Loy are positive, in the second one are
nonpositive, Loy is unit lower triangular TP matrix with positive entries under
the main diagonal, and such that

det L[a|1,2,...,k] <0, VYa€ Qun, k=2,3,...,n.

Now, consider the matrix C' = PAT. Since AT is nonsingular t.n.p. matrix
with AT(1,1) = 0, by applying Theorem 1 to AT we obtain a factorization A7 =
LgrDsrUyr, where Uyr is a unit upper triangular TP matrix with positive

entries above the main diagonal, D r = diag(—dAlT, —dar, daz, o, dr) with
dyr >0, fori=1,2,...,n, and L 4 is the block lower triangular matrix
~ LAT = O 1
Lyr=| 271t - ith Lyr =
ool 2 i e e[V ]

where the entries in the first column of L A7, are positive, in the second one are

nonpositive, L A7, is unit lower triangular TP matrix with positive entries under
the main diagonal, and such that

det Lyr[a|1,2,...,k] <0, Va € Qpn, k=2,3,...,n.
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From this factorization we obtain that
- T - _ o~
A= (LATDATUAT) = v, Dt %, = LDU,

where L = U,ZT’ U= f&T and D = DzT (note that D = PDP). Then, we can
give the following result.

Theorem 4. Let A be an nxn nonsingular t.n.p. matric wit@ a;; =0, ap, <0.
Then, A is t.n.p. if and only if A has a factorization LDU, where L is a
unit lower triangular TP matriz with positive entries under the main diagonal,

D = diag(—dy, —da, d3, ..., d,) with d; > 0, fori=1,2,...,n, and U is the
block upper triangular matriz

= [ Un Un oo 001
U—|:O UQQ:|,U)Zth U11—|:10:|

where the entries in the first row of Uio are positive, in the second one are
nonpositive, Uss is unit upper triangular TP matriz with positive entries above
the main diagonal, and such that

detU[1,2,...,k|3] <0, VB€E Qpn, k=2,3,...,n.

Example 4. The nonsingular t.n.p. matriz

0 -1 -2 -3
A_ | -18 15 15 15
Tl -1 —14 —12 -8 |

-30 -27 -20 -3

admits the following factorizations.

[0 1 0 0 -5 0 0 0 11 1 1

- 1 00 0 0 -1 0 0 01 2 3
A_LDU_1—110 0 010 00 1 4|
|2 -3 41 0 0 0 2 00 0 1

1 0 0 0 -1 0 00 01 2 3

_ 15 1 0 0 0 —-15 0 0 1 0 -1 -2
A_LDU_14110 0 010 00 1 4
|27 2 4 1 0 0 0 2 00 0 1

5. Conclusions

Nonsingular t.n.p. matrices with a negative (1, 1) entry have been characteri-
zed in terms of the factors of their LDU factorization. This factorization pro-
vides a criteria to determine if a matrix is t.n.p. and moreover, it is a useful
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tool to easily obtain nonsingular t.n.p. matrices of any size. Nevertheless, when
the (1,1) entry is equal to zero the LDU factorization resulting from Gauss or
Neville elimination with no pivoting does not exist. In this case, we have ob-
tained a quasi-LDU factorization which allows us to determine if a given matrix
with the (1,1) entry equal to zero is t.n.p. and to construct this kind of matrices
of any size.

Consequently, with this factorization we have completely characterized the
nonsingular t.n.p. matrices.
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