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Abstract

Let A = (aij) ∈ Rn×n be a nonsingular totally nonpositive matrix. In this
paper we describe some properties of these matrices when a11 = 0 and obtain
a characterization in terms of the quasi-LDU factorization of A, where L is a
block lower triangular matrix, D is a diagonal matrix and U is a unit upper
triangular matrix.
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1. Introduction

A matrix is called totally positive (strictly totally positive) if all its minors
are nonnegative (positive). This class of matrices has a wide variety of appli-
cations in statistics, economics, computer aided geometric design and others
fields, see [10, 16], and is abbreviated as TP (STP). Nevertheless, a new class
of matrices that satisfy the opposite property has recently become of interest
due to its applications in social and economic problems [2, 17, 19]. If all minors
of a matrix are nonpositive (negative) the matrix is called totally nonpositive
(totally negative) and is abbreviated as t.n.p. (t.n.). They are included in the
class of sign regular matrices, which are widely used because of their variation
diminishing property (see [1, 6]).

Several authors have studied square and rectangular TP and STP matrices,
see [1, 5, 7, 8, 10, 11, 12, 13, 14, 16], obtaining properties, the Jordan structure
and characterizations by applying the Gaussian or Neville elimination that allow
one to significantly reduce the number of minors to be checked in order to decide
if a matrix is TP or STP.

For t.n. matrices, a characterization in terms of the parameters computed
from the Neville elimination is obtained in [12] and spectral properties and LDU
factorizations are studied in [9].
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The nonsingular t.n.p. matrices with a negative (1, 1) entry have been
characterized in terms of the factors of their LDU factorization in [3]. This
factorization provides a criteria to determine if a matrix is t.n.p. and allows us
to reduce the numbers of minors to be checked to decide the total nonpositivity
of a nonsingular matrix with a negative (1, 1) entry. On the other hand, some
properties of nonsingular t.n.p. matrices analogous to those satisfied by nonsin-
gular TP matrices have also been studied [1, 10]. When the (1, 1) entry is equal
to zero but the (n, n) entry is negative we can obtain a UDL factorization of
this nonsingular t.n.p. matrix by permutation similarity.

The rectangular t.n.p. matrices have been studied in [4], obtaining a full
rank LDU factorization in echelon form of this class of matrices and other char-
acterization by means of its thin QR factorization. This QR characterization
is similar to the one obtained in [5] for rectangular TP matrices and it is an
extension of the result for square TP matrices given in [11].

When the nonsingular t.n.p. matrix has the (1, 1) and (n, n) entries equal to
zero a characterization, in terms of the sign of its minors containing contiguous
rows or columns and including the first row or column, respectively, is obtained
in [15].

In this paper we characterize the nonsingular t.n.p. matrices with the (1, 1)
entry equal to zero in terms of a quasi-L̃DU factorization, where L̃ is a lower
block triangular matrix, D is a diagonal matrix and U is a unit upper triangular
TP matrix. This result holds when the (n, n) entry is equal to zero or when
it is negative but we do not use permutation similarity. We study this char-
acterization for n ≥ 3, since the case n = 2 is trivial. Finally, we prove some
properties of this kind of matrices analogous to those satisfied by nonsingular
t.n.p. matrices with negative (1, 1) entry described in [3].

We follow the notation given in [1]. For k, n ∈ N, 1 ≤ k ≤ n, Qk,n denotes
the set of all increasing sequences of k natural numbers less than or equal to n.
If A is an n×n matrix and α, β ∈ Qk,n, A[α|β] denotes the k×k submatrix of A
lying in rows α and columns β. The principal submatrix A[α|α] is abbreviated
as A[α]. Note that, an n × n matrix A is a t.n.p. matrix if detA[α|β] ≤ 0,
∀α, β ∈ Qk,n, k = 1, 2, . . . , n.

Throughout the paper an LDU factorization means the corresponding fac-
torization resulting from Gauss or Neville elimination with no pivoting, where
L and U are unit lower- and upper-triangular matrices, respectively, and D is
a diagonal matrix.

2. Characterization of nonsingular t.n.p. matrices with the (1, 1) en-
try equal to zero by the quasi-LDU factorization

In this section we derive a characterization of nonsingular t.n.p matrices
with the (1, 1) entry equal to zero in terms of their quasi-LDU factorization.

Given an n×n, nonsingular t.n.p. matrix A = (aij) it is known that aij < 0
whenever (i, j) ̸∈ {(1, 1), (n, n)}, [18, Theorem 2.1 (i)] and detA[1, 2, . . . , k] < 0,
for all k = 2, 3, . . . , n, [15, Theorem 5].
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Since A is a nonsingular t.n.p. matrix with a11 = 0, it is not possible to
obtain a LDU factorization with no pivoting. Therefore, we work with a matrix
B = PA, where P is the permutation matrix P = [2, 1, 3, . . . , n], that is

B = PA =



a21 a22 · · · a2n−1 a2n
0 a12 · · · a1n−1 a1n
a31 a32 · · · a3n−1 a3n
...

...
...

...
an−11 an−12 · · · an−1n−1 an−1n

an1 an2 · · · ann−1 ann


.

Let n ≥ 3, as detB[1, 2, . . . , k] = −detA[1, 2, . . . , k] > 0, for all k = 2, 3, . . . , n,
we can obtain the factorization B = LBDBUB by applying the Gauss elimina-
tion process with no pivoting, where

LB =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
l31 l32 1 · · · 0 0
l41 l42 l43 · · · 0 0
...

...
...

...
...

ln−11 ln−12 ln−13 · · · 1 0
ln1 ln2 ln3 · · · lnn−1 1


,

DB =


−d1 0 0 · · · 0
0 −d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

...
0 0 0 · · · dn

 ,

UB =


1 u12 · · · u1n−1 u1n

0 1 · · · u2n−1 u2n

...
...

...
...

0 0 · · · 1 un−1n

0 0 · · · 0 1

 .

The matrices UB , DB and LB satisfy the following properties.

Proposition 1. The upper triangular matrix UB is a TP matrix, with positive
entries above the main diagonal.

Proof. Since the entries of the first row of B are negative, we have that u1j > 0,
for j = 1, 2, . . . , n. From Binet-Cauchy [1], we have for all β ∈ Qk,n, k =

3



2, 3, . . . , n, that

detB[1, 2, . . . , k|β] =
∑

γ∈Qk,n

detLB [1, 2, . . . , k|γ] detDB [γ] detUB [γ|β]

= detLB [1, 2, . . . , k|1, 2, . . . , k] detDB [1, 2, . . . , k] detUB [1, 2, . . . , k|β]

=

(
k∏

i=1

di

)
detUB [1, 2, . . . , k|β] ≥ 0,

which implies that detUB [1, 2, . . . , k|β] ≥ 0 for all β ∈ Qk,n, k = 1, 2, . . . , n.
Then, UB is a unit upper triangular TP matrix. As a consequence, for i =
2, 3, . . . , n− 1, and j = i+ 1, . . . , n,

detUB [1, i|i, j] = u1iuij − u1j ≥ 0 −→ uij > 0,

that is, UB has positive entries above the main diagonal. �

Proposition 2. The diagonal matrix DB has all its diagonal entries positive
except for the (1, 1) and (2, 2) entries, which are negative.

Proof. The (1, 1) and (2, 2) entries of DB are −d1 = a21 < 0 and −d2 = a12 < 0,
respectively. The remaining diagonal entries are

di =
detB[1, 2, . . . , i]

detB[1, 2, . . . , i− 1]
> 0, i = 3, 4, . . . , n.

�

Proposition 3. The unit lower triangular matrix LB satisfies,

1) The entries of the first column li1, with i = 3, 4, . . . , n, are positive.

2) For all α ∈ Qk,n, k = 2, 3, . . . , n,

detLB [α|1, 2, . . . , k] =
{

≥ 0 if α1 = 1, α2 = 2
≤ 0 if 1 or 2 ̸∈ α

Proof.

1) From Binet-Cauchy, for i = 3, 4, . . . , n, we have

detB[i|1] = −d1 detLB [i|1] = −dili1 < 0,

then, it follows that the entries in the first column of L are positive except
for l21 = 0.

2) Again, from Binet-Cauchy, for all α ∈ Qk,n, k = 2, 3, . . . , n, we have

detB[α|1, 2, . . . , k] = (−d1)(−d2)
k∏

i=3

di detLB [α|1, 2, . . . , k]

=

k∏
i=1

di detLB [α|1, 2, . . . , k] =
{

≥ 0 if α1 = 1, α2 = 2
≤ 0 if 1 or 2 ̸∈ α
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which implies that

detLB [α|1, 2, . . . , k] =
{

≥ 0 if α1 = 1, α2 = 2
≤ 0 if 1 or 2 ̸∈ α

�
¿From Proposition 3 the following properties of the matrix LB can be de-

duced.

Lemma 1. The entries of the second column li2, for i = 3, 4, . . . , n, are non-
positive. Moreover, if l32 = 0 then li2 = 0 for i = 4, 5, . . . , n, whereas if l32 < 0
then li2 < 0 for i = 4, 5, . . . , n.

Proof. Since
detLB [1, i|1, 2] = li2 ≤ 0, for i = 3, 4, . . . , n,

the entries in the second column of LB under the main diagonal are nonpositive.
Moreover, since

detLB [1, 3, i|1, 2, 3] = l32li3 − li2 ≤ 0, i = 4, 5, . . . , n,

if l32 = 0 then li2 = 0 for i = 4, 5, . . . , n. In addition, as

detLB [3, i|1, 2] = l31li2 − li1l32 ≤ 0 i = 4, 5, . . . , n,

we deduce that if l32 < 0 then li2 < 0 for i = 4, 5, . . . , n. �

Lemma 2. The submatrix S = LB [1, 3, 4, . . . , n] is a TP matrix with all its
entries under the main diagonal positive.

Proof. Since S is a unit lower triangular matrix to assure that it is t.n.p. we
need to prove that

detS[α|1, 2, . . . , k] ≥ 0, ∀α ∈ Qk,n−1, k = 1, 2, . . . , n− 1.

• For all α = {α1, α2, . . . , αk} ∈ Qk,n−1, with α1 = 1, we have

detS[1, α2, . . . , αk|1, 2, . . . , k]
= detLB [1, α2 + 1, . . . , αk + 1|1, 3, . . . , k + 1]

= detLB [1, 2, α2 + 1, . . . , αk + 1|1, 2, 3, . . . , k + 1]

=
1∏k+1

i=1 di
detB[1, 2, α2 + 1, . . . , αk + 1|1, 2, 3, . . . , k + 1] ≥ 0.

• For all α = {α1, α2, . . . , αk} ∈ Qk,n−1, with α1 > 1, we have

detS[α1, α2, . . . , αk|1, 2, . . . , k]
= detLB [α1 + 1, α2 + 1, . . . , αk + 1|1, 3, . . . , k + 1]

= −detLB [2, α1 + 1α2 + 1, . . . , αk + 1|1, 2, 3, . . . , k + 1]

= − 1∏k+1
i=1 di

detB[2, α1 + 1α2 + 1, . . . , αk + 1|1, 2, 3, . . . , k + 1] ≥ 0.
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Therefore S is a TP matrix. Moreover, since the entries of the first column of
S are positive and detS[j, i|1, j] ≥ 0, for i > j, i, j = 2, 3, . . . , n − 1, it follows
that all its entries under the main diagonal are positive. �

Taking into account that A = PB = PLBDBUD = L̃DU and the previous
results, the following theorem gives the quasi-LDU factorization of A.

Theorem 1. Let A be an n× n nonsingular t.n.p. matrix with a11 = 0. Then,
A has a factorization L̃DU , where U is a unit upper triangular TP matrix with
positive entries above the main diagonal, D = diag(−d1, −d2, d3, . . . , dn) with
di > 0, for i = 1, 2, . . . , n, and L̃ is the block lower triangular matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,

where the entries in the first column of L̃21 are positive, in the second one are
nonpositive, L̃22 is unit lower triangular TP matrix with positive entries under
the main diagonal, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Example 1. The nonsingular t.n.p. matrix

A =


0 −1 −2 −3

−14 −14 −14 −14
−14 −13 −11 −7
−28 −25 −18 0

 ,

admits the following factorization,

A = L̃DU =


0 1 0 0
1 0 0 0
1 −1 1 0
2 −3 4 1




−14 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 3




1 1 1 1
0 1 2 3
0 0 1 4
0 0 0 1

 .

Remark 1. Other properties that verifies the matrix LB are,

1. From Binet-Cauchy, it is easy to see that
• The k × k column initial minors of LB [3, 4, . . . , n|1, 2, 3, . . . , n − 2] are
nonpositive, for k ≥ 2.

• The column initial minors of LB [3, 4, . . . , n|2, 3, . . . , n− 1] are nonposi-
tive.

2. The matrix LB = PL̃ admits the following decomposition,

LB = TQ =

[
I2×2 O
T21 T22

] [
I2×2 O
Q21 Q22

]
,
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with

T =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
t31 0 1 · · · 0 0
...

...
...

...
...

tn−1,1 0 tn−1,3 · · · 1 0
tn,1 0 tn,3 · · · tn,n−1 1


,

Q =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 −q32 1 · · · 0 0
0 0 q43 · · · 0 0
...

...
...

...
...

0 0 qn−1,3 · · · 1 0
0 0 qn,3 · · · qn,n−1 1


,

where tij > 0, for i = 3, 4, . . . , n, and j = 1, 3, . . . , i−1, q32 ≥ 0, qij > 0 for
i = 4, 5, . . . , n, and j = 3, 4, . . . , i− 1, and the submatrices T [1, 3, 4, . . . , n]
and Q[3, 4, . . . , n] are TP.

Example 2. If LB = PL̃, where L̃ is given in the Example 1, then LB admits
the following factorization,

LB = PL̃ =


1 0 0 0
0 1 0 0
1 −1 1 0
2 −3 4 1

 = TQ where

T =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 =


1 0 0 0
0 1 0 0
1 0 1 0
2 0 3 1

 ,

Q =


1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 0 1 1

 .

The converse of Theorem 1 is not true in general, as the next example shows.
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Example 3. The matrix

A = L̃DU =


0 1 0 0
1 0 0 0
1 −1 1 0
2 −3 4 1


︸ ︷︷ ︸

L̃


−15 0 0 0

0 −2 0 0
0 0 1 0
0 0 0 2


︸ ︷︷ ︸

D


1 1 1 1
0 1 2 3
0 0 1 4
0 0 0 1


︸ ︷︷ ︸

U

=


0 −2 −4 −6

−15 −15 −15 −15
−15 −13 −10 −5
−30 −24 −14 6

 ,

is not t.n.p. although the matrices L̃, D and U satisfy the conditions of Theo-
rem 1.

The following theorem gives a necessary condition for a product L̃DU to be
a t.n.p. matrix with the (1, 1) entry equal to zero.

Theorem 2. Let A = L̃DU be an n × n matrix where ann ≤ 0, U is a
unit upper triangular TP matrix with positive entries above the diagonal, D =
diag(−d1,−d2, d3, . . . , dn) with di > 0, i = 1, 2, . . . , n, and L̃ is the block lower
triangular matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
where the entries in the first column of L̃21 are positive, in the second one are
nonpositive, L̃22 is unit lower triangular TP matrix with positive entries under
the main diagonal, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Then, A is a nonsingular t.n.p. matrix.

Proof. From the structure of the matrices L̃, D and U , and the product L̃DU ,
we obtain easily that a11 = 0, a1n < 0 and an1 < 0. Then, by [15, Theorem 5]
we know that A is a nonsingular t.n.p. matrix if the following inequalities hold,

detA[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 1, 2, . . . , n

detA[1, 2, . . . , k|β] ≤ 0, ∀β ∈ Qk,n, k = 1, 2, . . . , n

detA[1, 2, . . . , k] < 0, k = 2, 3, . . . , n.

In order to verify that A satisfies these inequalities we consider the matrix
B = PA and its factorization B = LBDBUB , where LB = PL̃, DB = D and
UB = U .
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(a) The principal minors are negative for all k = 2, 3, . . . , n, that is,

detA[1, 2, . . . , k] = −detB[1, 2, . . . , k]

= −
∑

γ∈Qk,n

detLB [1, 2, . . . , k|γ] det(DBUB)[γ|1, 2, . . . , k]

= −(−d1)(−d2)d3 . . . dk < 0.

(b) The row initial minors are nonpositive for all β ∈ Qk,n, k = 1, 2, . . . , n.

detA[1, 2, . . . , k|β] = −detB[1, 2, . . . , k|β]
= −

∑
γ∈Qk,n

detLB [1, 2, . . . , k|γ] det(DBUB)[γ|β]

= −(−d1)(−d2)d3 . . . dk detUB [1, 2, . . . , k|β]
= −(−d1)(−d2)d3 . . . dk detU [1, 2, . . . , k|β] ≤ 0.

(c) The column initial minors are nonpositive for all α = {α1, α2, . . . , αk} ∈
Qk,n, k = 1, 2, . . . , n. We distinguish the following cases,

(c1) α1 = 1, α2 = 2 and α3 ≥ 3,

detA[1, 2, α3, . . . , αk|1, 2, . . . , k] = −detB[1, 2, α3, . . . , αk|1, 2, . . . , k]
= −

∑
γ∈Qk,n

detLB [1, 2, α3, . . . , αk|γ] det(DBUB)[γ|1, 2, . . . , k]

= −

(
k∏

i=1

di

)
detLB [α3, . . . , αk|3, . . . , k]

= −

(
k∏

i=1

di

)
det L̃[α3, . . . , αk|3, . . . , k] ≤ 0.

(c2) α1 = 1, α2 ≥ 3,

detA[1, α2, . . . , αk|1, 2, . . . , k] = detB[1, α2, . . . , αk|1, 2, . . . , k]
=

∑
γ∈Qk,n

detLB [1, α2, . . . , αk|γ] det(DBUB)[γ|1, 2, . . . , k]

=

(
k∏

i=1

di

)
detLB [α2, . . . , αk|2, . . . , k]

=

(
k∏

i=1

di

)
det L̃[α2, . . . , αk|2, . . . , k]

=

(
k∏

i=1

di

)
det L̃[2, α2, . . . , αk|1, 2, . . . , k] ≤ 0.
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(c3) α1 = 2 and α2 ≥ 3,

detA[2, α2, . . . , αk|1, 2, . . . , k] = detB[2, α2, . . . , αk|1, 2, . . . , k]
=

∑
γ∈Qk,n

detLB [2, α2, . . . , αk|γ] det(DBUB)[γ|1, 2, . . . , k]

= detLB [2, α2, . . . , αk|1, 2, . . . , k](−d1)(−d2)d3 . . . dk

= −

(
k∏

i=1

di

)
detLB [α2, α3, . . . , αk|1, 3, . . . , k]

= −

(
k∏

i=1

di

)
det L̃[α2, α3, . . . , αk|1, 3, . . . , k]

=

(
k∏

i=1

di

)
det L̃[1, α2, α3, . . . , αk|1, 2, 3, . . . , k] ≤ 0.

(c4) α1 ≥ 3,

detA[α1, α2, . . . , αk|1, 2, . . . , k] = detB[α1, α2, . . . , αk|1, 2, . . . , k]
=

∑
γ∈Qk,n

detLB [α1, α2, . . . , αk|γ] det(DBUB)[γ|1, 2, . . . , k]

=

(
k∏

i=1

di

)
detLB [α1, α2, . . . , αk|1, 2, . . . , k]

=

(
k∏

i=1

di

)
det L̃[α1, α2, . . . , αk|1, 2, . . . , k] ≤ 0,

which concludes the prove. �

Combining Theorems 1 and 2 we obtain the following result.

Theorem 3. Let A be an n × n nonsingular matrix with a11 = 0, ann ≤ 0.
Then, A is t.n.p. if and only if A has a factorization L̃DU , where U is a
unit upper triangular TP matrix with positive entries above the main diagonal,
D = diag(−d1, −d2, d3, . . . , dn) with di > 0, for i = 1, 2, . . . , n, and L̃ is the
block lower triangular matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
where the entries in the first column of L̃21 are positive, in the second one are
nonpositive, L̃22 is unit lower triangular TP matrix with positive entries under
the main diagonal, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.
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Remark 2. The quasi-LDU factorization obtained in Theorem 3 provides a
criteria to determine if a matrix with a zero (1, 1) entry is t.n.p. The number
of minors to be computed to decide the total nonpositivity is equal to the ones
to be checked in [15] but their computation is easier because the matrices are
triangular, block triangular and diagonal.

Otherwise, this factorization allows us to directly obtain nonsingular t.n.p.
matrices of any size.

Remark 3. (1) Let C be an n × n matrix with cnn ̸= 0 and let A be the
matrix

A = C − cnnEnn −→ C = A+ cnnEnn,

where Enn is the n×n matrix whose only nonzero element is 1 in position
(n, n). We know that

detC[α|β] = detA[α|β], ∀α, β ∈ Qk,n, k = 1, . . . , n, n ̸∈ α ∩ β

detC[α, n|β, n] = detA[α, n|β, n] + cnn detC[α|β].

If C is a nonsingular t.n.p. matrix, then the nonsingular matrix A with
ann = 0 is t.n.p. Moreover, if C = L̃DU , whereD = diag(−d1,−d2, d3, . . . ,
dn) with di > 0, for i = 1, 2, . . . , n, then A = L̃D̄U , where D̄ = diag(−d1,
−d2, d3, . . . , dn−cnn) with di > 0, for i = 1, 2, . . . , n−1, and dn−cnn > 0.

(2) Let A be an n × n nonsingular t.n.p. matrix with a11 = ann = 0. Then,
there exists an x > 0 such that the matrix Ax = A − xEnn is also a
nonsingular t.n.p. matrix.
¿From matrix B = PA we construct for all x > 0 the matrix

Bx = B − xEnn.

Using the factorization B = LBDBUB we have

Bx = B − xEnn = LBDBUB − xEnn

=

[
L1 0
l1 1

] [
D1 0
0 dn

] [
U1 u1

0 1

]
− x

[
0 0
0 1

]

=

[
L1 0
l1 1

] [
D1 0
0 dn − x

] [
U1 u1

0 1

]
= LBD

′
BUB = LBxDBxUBx .

It is not difficult to prove that bxnn
= bnn−x, so if bnn = 0, Bx has negative

(n, n) entry. Since LBx = LB and UBx = UB , if we take 0 < x < dn, DBx

is a positive diagonal matrix except for the two first negative entries.
Therefore, by Theorem 2 the matrix Ax = PBx is a nonsingular t.n.p.
matrix with the (1, 1) entry equal to zero and the remainder negative.
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3. Some properties of nonsingular t.n.p. matrices

All nonsingular t.n.p. matrices verify the following two properties.

Proposition 4. Let A be an n × n nonsingular t.n.p. matrix. Then, for k =
2, 3, . . . , n, one of the following conditions holds,

(i) detA[1, α2, α3, . . . , αk|1, 2, . . . , k] < 0,
(ii) If detA[1, α2, . . . , αk|1, 2, . . . , k] = 0 then detA[α2, α3, . . . , αk|2, . . . , k] =

0.

Proof. If detA[1, α2, α3, . . . , αk|1, 2, . . . , k] < 0 the result holds. Now, suppose
that detA[1, α2, α3, . . . , αk|1, 2, . . . , k] = 0 and detA[α2, . . . , αk|2, . . . , k] < 0.
Since A is nonsingular there exists t, k < t ≤ n, such that

detA[1, α2, α3, . . . , αk|2, . . . , k, t] < 0.

Since

detA[1, α2, . . . , αk|2, . . . , k, t]

= det


a12 a13 · · · a1k a1t
aα22 aα23 · · · aα2k aα2t

aα32 aα33 · · · aα3k aα3t

...
...

...
...

aαk2 aαk3 · · · aαkk aαkt



= det


0 0 · · · 0 ã1t

aα22 aα23 · · · aα2k aα2t

aα32 aα33 · · · aα3k aα3t

...
...

...
...

aαk2 aαk3 · · · aαkk aαkt


= (−1)1+k(ã1t) detA[α2, α3, . . . , αk|2, 3, . . . , k] < 0,

we obtain that (−1)1+k(ã1t) > 0.
Again, since A is nonsingular there exists l, such that αi < l < αi+1, i = 1,

2, . . . , k, with α1 = 1, αk+1 = n, so that

detA[α2, . . . , αi, l, αi+1, . . . , αk|1, 2, . . . , k] < 0.

From

detA[α2, . . . , αi, l, αi+1, . . . , αk|1, 2, . . . , k]

=



aα21 aα22 · · · aα2k−1 aα2k

...
...

...
...

aαi1 aαi2 · · · aαik−1 aαik

al1 al2 · · · alk−1 alt
aαi+11 aαi+12 · · · aαi+1k−1 aαi+1k

...
...

...
...

aαk1 aαk2 · · · aαkk−1 aαkt


12



=



0 aα22 · · · aα2k−1 aα2k

...
...

...
...

0 aαi2 · · · aαik−1 aαik

ãl1 al2 · · · alk−1 alt
0 aαi+12 · · · aαi+1k−1 aαi+1k

...
...

...
...

0 aαk2 · · · aαkk−1 aαkt


= (−1)i+1(ãl1) detA[α2, α3, . . . , αk|2, 3, . . . , k] < 0,

we have that (−1)i+1(ãl1) > 0. Therefore

detA[1, α2, . . . , αi, l, αi+1, . . . , αk|1, 2, . . . , k, t]
= (−1)1+k+1(ã1t) detA[α2, . . . , αi, l, αi+1, . . . , αk|1, 2, . . . , k]
= (−1)1+k+1(ã1t)(−1)i+1(ãl1) detA[α2, α3, . . . , αk|2, . . . , k]

= −

(−1)1+k(ã1t)︸ ︷︷ ︸
>0

(−1)i+1(ãl1)︸ ︷︷ ︸
>0

detA[α2, α3, . . . , αk|2, . . . , k]︸ ︷︷ ︸
<0

 > 0,

which is absurdum because A is t.n.p. �

Proposition 5. Let A be an n × n nonsingular t.n.p. matrix. Then, for k =
2, 3, . . . , n, one of the following conditions holds,
(i) detA[1, 2, . . . , k|1, β2, β3, . . . , βk] < 0,
(ii) If detA[1, 2, . . . , k|1, β2, β3, . . . , βk] = 0 then A[2, . . . , k|β2, β3, . . . , βk] = 0.

Proof. The proof is similar to that of Proposition 4. �

From Propositions 4 and 5 we obtain the relationship between the nonsingu-
lar t.n.p. matrices with the (1, 1) entry equal to zero and the nonsingular t.n.p.
matrices with negative (1, 1) entry.

Proposition 6. Let A be an n × n nonsingular t.n.p. matrix with a11 = 0.
Then, there exists ϵ0 > 0 such that ∀ϵ < ϵ0 the matrix Aϵ = −ϵE11 +A, where
E11 is the n × n matrix whose only nonzero entry is 1 in position (1, 1), is a
nonsingular t.n.p. matrix.

Proof. The matrix Aϵ verifies

detAϵ[α|β] = detA[α|β] ≤ 0, if 1 ̸∈ α ∩ β,

therefore for all α ∈ Qk,n, with α1 ≥ 2, and for all β ∈ Qk,n, with β1 ≥ 2, we
have

detAϵ[α1, α2, . . . , αk|1, 2, . . . , k] = detA[α1, α2, . . . , αk|1, 2, . . . , k] ≤ 0,

detAϵ[1, 2, . . . , k|β1, β2, . . . , βk] = detA[1, 2, . . . , k|β1, β2, . . . , βk] ≤ 0.
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If 1 ∈ α ∩ β, for k = 2, 3, . . . , n, we have

detAϵ[1, 2, . . . , k] = −ϵ detAϵ[2, . . . , k] + detA[1, 2, . . . , k]

= −ϵ detA[2, . . . , k] + detA[1, 2, . . . , k],

since detA[1, 2, . . . , k] < 0 and detA[2, . . . , k] < 0, if ϵk =
detA[1, 2, . . . , k]

detA[2, . . . , k]
, for

all positive ϵ < min{ϵ1, ϵ2, . . . , ϵn} we have that detAϵ[1, 2, . . . , k] < 0.
Moreover

detAϵ[1, α2, . . . , αk|1, 2, . . . , k]
= −ϵdetAϵ[α2, . . . , αk|2, . . . , k] + detA[1, α2, . . . , αk|1, 2, . . . , k]
= −ϵdetA[α2, . . . , αk|2, . . . , k] + detA[1, α2, . . . , αk|1, 2, . . . , k].

If detA[1, α2, . . . , αk|1, 2, . . . , k] = 0, then detA[α2, . . . , αk|2, . . . , k] = 0 apply-
ing Proposition 4. Then, detAϵ[1, α2, . . . , αk|1, 2, . . . , k] = 0 for all ϵ > 0.

If detA[1, α2, . . . , αk|1, 2, . . . , k] < 0 and detA[α2, . . . , αk|2, . . . , k] < 0, pro-
vided that

ϵ < ϵα,k =
detA[1, α2, . . . , αk|1, 2, . . . , k]
detA[α2, . . . , αk|2, . . . , k]

,

we have detAϵ[1, α2, . . . , αk|1, 2, . . . , k] < 0.
Therefore, for all ϵ < min{ϵα,k, α ⊂ {2, 3, . . . , n}, k = 2, 3, . . . , n} it is

satisfied that
detAϵ[1, α2, . . . , αk|1, 2, . . . , k] ≤ 0.

Similarly, we have for all ϵ < min{ϵβ,k, β ⊂ {2, 3, . . . , n}, k = 2, 3, . . . , n}

detAϵ[1, 2, . . . , k|1, β2, . . . , βk] ≤ 0.

If ϵ0 < min{ϵ1, ϵ2, . . . , ϵn, ϵα,k, ϵβ,k, α ⊂ {2, 3, . . . , n}, β ⊂ {2, 3, . . . , n}, k =
2, 3, . . . , n} we have for all ϵ ≤ ϵ0 that Aϵ is a nonsingular t.n.p. matrix. �

Proposition 7. Let C be an n × n nonsingular t.n.p. matrix with c11 < 0.
Then, A = C−c11E11, is a nonsingular t.n.p. matrix with the (1, 1) entry equal
to zero.

Proof. Since C is a nonsingular t.n.p. matrix, for k = 1, 2, . . . , n, the following
inequalities hold

detC[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n

detC[1, 2, . . . , k|β] ≤ 0, ∀β ∈ Qk,n

detC[1, 2, . . . , k] < 0.

Matrix A is also a nonsingular t.n.p. matrix because it verifies,

• detA = detC︸ ︷︷ ︸
<0

− c11 detC[2, 3, . . . , n]︸ ︷︷ ︸
<0

< 0 =⇒ detA < 0,
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• if 1 ̸∈ α ∩ β we have that detA[α|β] = detC[α|β] ≤ 0,
• if 1 ∈ α ∩ β, detA[1, α2, . . . , αk|1, β2, . . . , βk] =

detC[1, α2, . . . , αk|1, β2, . . . , βk]− c11 detC[α2, . . . , αk|β2, . . . , βk] ≤ 0.

�
As a consequence of Propositions 6 and 7 we deduced the following results.

The analogous ones for nonsingular t.n.p. matrices with a11 < 0 can be found
in [3].

Proposition 8. If A is an n× n nonsingular t.n.p. matrix with a11 = 0, then
detA[1, α] < 0 for all α ⊂ {2, 3, . . . , n}.

Proposition 9. Let A be an n × n nonsingular t.n.p. matrix with a11 = 0.
Then, detA[α] < 0, for all α ∈ Qk,n, k = 1, 2, . . . , n, except for k = 1 and α = 1
or α = n.

4. Another quasi-LDU factorization of nonsingular t.n.p. matrices
with the (1, 1) entry equal to zero using the transpose

In Section 2, given the nonsingular t.n.p. matrix A = (aij) ∈ Rn×n with
a11 = 0, from the factorization LBDBUB of B = PA, where P is the permuta-
tion matrix P = [2, 1, 3, . . . , n], we have obtained the factorization A = L̃DU ,
where U is a unit upper triangular TP matrix with positive entries above the
main diagonal, D = diag(−d1, −d2, d3, . . . , dn) with di > 0, for i = 1, 2, . . . , n,
and L̃ is the block lower triangular matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
where the entries in the first column of L̃21 are positive, in the second one are
nonpositive, L̃22 is unit lower triangular TP matrix with positive entries under
the main diagonal, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Now, consider the matrix C = PAT . Since AT is nonsingular t.n.p. matrix
with AT (1, 1) = 0, by applying Theorem 1 to AT we obtain a factorization AT =
L̃ATDATUAT , where UAT is a unit upper triangular TP matrix with positive
entries above the main diagonal, DAT = diag(−dAT

1
, −dAT

2
, dAT

3
, . . . , dAT

n
) with

dAT
i
> 0, for i = 1, 2, . . . , n, and L̃AT is the block lower triangular matrix

L̃AT =

[
L̃AT

11
O

L̃AT
21

L̃AT
22

]
, with L̃AT

11
=

[
0 1
1 0

]
where the entries in the first column of L̃AT

21
are positive, in the second one are

nonpositive, L̃AT
22

is unit lower triangular TP matrix with positive entries under
the main diagonal, and such that

det L̃AT [α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.
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From this factorization we obtain that

A =
(
L̃ATDATUAT

)T
= UT

ATD
T
AT L̃

T
AT = LD̄Ũ ,

where L = UT
AT , Ũ = L̃T

AT and D̄ = DT
AT (note that D̄ = PDP ). Then, we can

give the following result.

Theorem 4. Let A be an n×n nonsingular t.n.p. matrix with a11 = 0, ann ≤ 0.
Then, A is t.n.p. if and only if A has a factorization LD̄Ũ , where L is a
unit lower triangular TP matrix with positive entries under the main diagonal,
D̄ = diag(−d̄1, −d̄2, d̄3, . . . , d̄n) with d̄i > 0, for i = 1, 2, . . . , n, and Ũ is the
block upper triangular matrix

Ũ =

[
Ũ11 Ũ12

O Ũ22

]
, with Ũ11 =

[
0 1
1 0

]
where the entries in the first row of Ũ12 are positive, in the second one are
nonpositive, Ũ22 is unit upper triangular TP matrix with positive entries above
the main diagonal, and such that

det Ũ [1, 2, . . . , k|β] ≤ 0, ∀β ∈ Qk,n, k = 2, 3, . . . , n.

Example 4. The nonsingular t.n.p. matrix

A =


0 −1 −2 −3

−15 −15 −15 −15
−15 −14 −12 −8
−30 −27 −20 −3

 ,

admits the following factorizations.

A = L̃DU =


0 1 0 0
1 0 0 0
1 −1 1 0
2 −3 4 1




−15 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 2




1 1 1 1
0 1 2 3
0 0 1 4
0 0 0 1

 ,

A = LD̄Ũ =


1 0 0 0
15 1 0 0
14 1 1 0
27 2 4 1




−1 0 0 0
0 −15 0 0
0 0 1 0
0 0 0 2




0 1 2 3
1 0 −1 −2
0 0 1 4
0 0 0 1

 .

5. Conclusions

Nonsingular t.n.p. matrices with a negative (1, 1) entry have been characteri-
zed in terms of the factors of their LDU factorization. This factorization pro-
vides a criteria to determine if a matrix is t.n.p. and moreover, it is a useful
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tool to easily obtain nonsingular t.n.p. matrices of any size. Nevertheless, when
the (1, 1) entry is equal to zero the LDU factorization resulting from Gauss or
Neville elimination with no pivoting does not exist. In this case, we have ob-
tained a quasi-LDU factorization which allows us to determine if a given matrix
with the (1, 1) entry equal to zero is t.n.p. and to construct this kind of matrices
of any size.

Consequently, with this factorization we have completely characterized the
nonsingular t.n.p. matrices.
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