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Abstra
t

In-phase and out-of-phase os
illations have been observed in BWR rea
tors. To

improve the safety of these rea
tors it is ne
essary to dete
t in a reliable way these

os
illations from the neutroni
 signals. In this paper, a methodology to de
ompose

the neutroni
 signals in its modal amplitudes is proposed. Usually, to 
ompute this

de
omposition the Lambda eigenfun
tions are used as expansion fun
tions and their

adjoint modes are used as weight fa
tors. Di�erent approa
hes using the Alpha

modes are investigated to obtain the LPRM signals modal de
omposition for a BWR

unstability event. The 
al
ulation of Alpha eigenmodes is reviewd and the os
illation

parameters for the modal de
omposition of the neutroni
 signals from Ringhals NPP

have been 
al
ulated.

Key words: Lambda Modes, Alpha Modes, BWR rea
tors stability, LPRM

readings.

1 Introdu
tion

Several events have been observed in BWR nu
lear power rea
tors where fully

developed os
illations were present in the neutroni
 power measured by the

LPRM dete
tors installed in the rea
tor 
ore. Some of these events were in-

voluntary and other ones were indu
ed intentionally as experiments. Mainly,

BWR neutroni
 os
illations have been 
lassi�ed as in-phase os
illations, where
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Fig. 1. LPRMs disposition in an axial plane for Ringhals 1 rea
tor.

the whole 
ore os
illates together. And the out-of-phase os
illations, where half

of the 
ore behaves out-of-phase from the other half. A modal interpretation

has given for the in-phase and the out-of-phase os
illations of a BWR rea
tor,

asso
iating the in-phase os
illations with the amplitude of the fundamental

mode of the rea
tor. The out-of-phase os
illations are interpreted as the 
on-

tribution of the sub
riti
al azimuthal modes amplitudes to the os
illations

(Mar
h-Leuba and Rey, 1993).

For safe operation, it is desirable to have a monitoring system 
apable of

indi
ating the 
hange in neutron multipli
ation within the rea
tor 
ore as


riti
ality is approa
hed. The neutron monitoring system in a BWR makes

use of �ssion dete
tors in
orporated in di�erent dete
tor systems: Start-up,

Intermediate and Lo
al Power Range (Morgan, 1970). The Lo
al Power Range

Monitoring (LPRM) subsystem is the most elaborate and 
omplex subsystem

of the neutron monitoring system. It is 
omposed of numerous in-
ore �ssion


hambers, typi
ally pla
ed in four axial planes of the rea
tor 
ore, arranged

along an in-
ore assembly. To provide 
ore wide 
overage, a geometri
al array

of the in-
ore assemblies is used. A typi
al array is shown in Fig. 1.

The neutroni
 power signals obtained from the Lo
al Power Range Moni-

tors are di�
ult to analyse. Several te
hniques exist to dete
t and 
lassify

the possible os
illations in a BWR, as the one presented in (Van der Hagen

et al., 1994), where the out-of-phase os
illations 
ontributions are separated

subtra
ting the 
ontributions of signals from LPRMs pla
ed in an opposite

dire
tion with respe
t to the symmetry line of the 
ore. The main disadvan-

tage of this method is that the determination of the symmetry line of the


ore is not an easy task, and to obtain a

urate results, a large number of

instrumented LPRMs are needed. Other possibility is to use a modal de
om-

position of the signals from the LPRMs in the 
ore (Verdú et al., 1998) using

the dominant Lambda modes previously 
omputed for a given 
on�guration

of the rea
tor 
ore (Verdú et al., 1994). To use this te
hnique it is ne
essary to
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ompute previously the dominant modes of a stati
 
on�guration of the rea
-

tor 
ore. This 
omputation is expensive from the 
omputational point of view

and requires a set of nu
lear 
ross-se
tions for the 
ore 
on�guration. In this

way, other options have been investigated that avoid this 
omputation. The

Prin
ipal Component Analysis (PCA), 
onsiders the signals provided by all

instrumented LPRMs 
onstru
ting an information matrix, and studying the


hara
teristi
s of the spe
trum of the dominant singular values of this matrix

(Ginestar et al., 2006). Another option is the Independent Component Anal-

ysis (ICA) that 
omputes experimental modes for the LPRMs signals using a

statisti
al independen
e 
riterion (Ginestar et al., 2011).

Sin
e there is a physi
al interpretation for the amplitudes evolution of the

di�erent neutroni
 harmoni
s, espe
ially in the analysis of instability events,

a 
ombination of these tools be
omes useful to analyse this kind of events, dis-

tinguishing the 
ontributions of the in-phase os
illations and the out-of-phase

os
illations. Apart from the Lambda modes other kind of modes 
an be de�ned

for the neutron di�usion equation, su
h as the Alpha modes (time-eigenvalues

problem). The Alpha modes problem is basi
 in the �eld of nu
lear rea
-

tor physi
s (Bell and Glasstone, 1970), and it is important for sub
riti
ality


ontinuous monitoring te
hniques (see, for example, (Uhrig, 1970; Williams,

1974)). Re
ently, it has been proposed in Ref. Kobayashi (2005) to use the

quasi-stati
 method to solve time dependent sour
e problems using as weight

fun
tion the adjoint Alpha fundamental eigenmode, whi
h is shown to be

better than the adjoint Lambda eigenmode, espe
ially for the analysis of sub-


riti
al systems. This is justi�ed be
ause the use of the adjoint Alpha modes

eliminates the �rst order error in the 
hange of the �ux introdu
ed by the use

of the adjoint Lambda mode as weighting fun
tion.

The Alpha modes 
an be e�
iently 
omputed for a 
ommer
ial rea
tor (Verdú

et al., 2010), in this way, to 
omplete the set of tools available to analyse the

LPRM signals provided during an instability event, in this paper, di�erent

power modal de
omposition methods using the Alpha modes are proposed

and 
ompared with the ones performed using the Lambda modes.

The rest of the paper is stru
tured as follows: se
tions 2 and 3 are devoted,

respe
tively, to review the Lambda modes, the Alpha modes and their proper-

ties. The di�erent modal de
ompositions proposed using the Lambda modes

and the Alpha modes are presented in se
tion 4. The results of the di�erent

modal de
ompositions performed for some of the LPRMs signals provided in

the Ringhals stability ben
hmark are shown in se
tion 5. Finally, the main


on
lusions of the paper are summarized in se
tion 6.
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2 Lambda modes

To obtain the Lambda modes equation (Henry, 1982), our starting point is

the two-energy groups approximation of the neutron di�usion equation,

(

v−1
) ∂φ

∂t
+ Lφ = (1− β)Mφ+

K
∑

k=1

λdkCkχ ,

dCk
dt

= βkM1φ− λdkCk , k = 1, . . . , K, (1)

where

L =







−~∇
(

D1
~∇
)

+ Σa1 + Σ12 0

−Σ12 −~∇
(

D2
~∇
)

+ Σa2





 ,
(

v−1
)

=







1
v1

0

0 1
v2





 ,

(2)

and

M =







νΣf1 νΣf2

0 0





 , M1 =
(

νΣf1 νΣf2

)

, φ =







φ1

φ2





 , χ =







1

0





 .

(3)

Criti
ality 
an be for
ed by dividing the �ssion nu
lear 
ross se
tions by a

positive number, λ, obtaining the steady state equations

Lφ = (1− β)
M

λ
φ+

K
∑

k=1

λdkCkχ ,

0 = βk
M

λ
φ− λdkCkχ ,

that is,

Lφ = (1− β)
M

λ
φ+

K
∑

k=1

βk
M

λ
φ .

Taking into a

ount that

∑K
k=1 βk = β, we obtain the Lambda modes equation

Lφn =
1

λn
Mφn , (4)

where λn are the Lambda eigenvalues and φn their 
orresponding Lambda

modes. A stati
 
on�guration of the rea
tor is des
ribed by the dominant

Lambda eigenvalue, whi
h is the k-e�e
tive, and its 
orresponding eigenmode

des
ribes the stationary neutron �ux distribution in the rea
tor 
ore.
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The adjoint problem asso
iated with (4) is given by

L†φ†
n =

1

λn
M†φ†

n , (5)

where

L† =







−~∇
(

D1
~∇
)

+ Σa1 + Σ12 −Σ12

0 −~∇
(

D2
~∇
)

+ Σa2





 , M† =







νΣf1 0

νΣf2 0





 .

The Lambda modes, φn, and their adjoint Lambda modes, φ†
m, satisfy a

biorthogonality relation of the form

〈

φ†
m,Mφn

〉

=
∫

R
d~r φ†

mMφn = δm,n
〈

φ†
m,Mφn

〉

, (6)

where R is the volume de�ned by the rea
tor 
ore and δm,n is Krone
ker's

delta.

3 Alpha modes

To obtain the Alpha modes equation (Bell and Glasstone, 1970), the starting

point is again the neutron di�usion equation,

(

v−1
) ∂φ

∂t
+ Lφ = (1− β)Mφ+

K
∑

k=1

λdkCkχ ,

and the delayed neutron pre
ursors are assumed to be in steady state

0 = βkM1φ− λdkCk .

This implies

(

v−1
) ∂φ

∂t
+ Lφ = (1− β)Mφ+

K
∑

k=1

βkMφ ,

that is,

(

v−1
) ∂φ

∂t
+ Lφ = Mφ .

Assuming the time fa
torization

φ (~r, t) = eαtψ (~r) , (7)

5



for the neutroni
 �ux, we obtain the Alpha modes equation (Modak and

Gupta, 2007), (Verdú et al., 2010),

(− (v)L+ (v)M)ψn = αnψn , (8)

where αn are the Alpha eigenvalues and ψn their 
orresponding Alpha modes.

It is worth to be remarked that a 
riti
al 
on�guration of the rea
tor 
orre-

sponds to the value α = 0 and, while for the Lambda modes problem we are

interested on 
omputing the dominant eigenmodes (the ones with the asso
i-

ated eigenvalue with largest magnitude), for the Alpha modes problem we will

be interested on 
omputing the Alpha modes whose 
orresponding eigenvalues

have the smallest magnitude.

The adjoint Alpha modes problem is given by

(

−L† (v) +M† (v)
)

ψ†
n = αnψ

†
n . (9)

If the Alpha modes are non degenerate, the Alpha modes and their 
orre-

sponding adjoint modes are biorthogonal, that is

〈

ψ†
m, ψn

〉

=
∫

R
d~r ψ†

mψn = δm,n
〈

ψ†
m, ψn

〉

(10)

Using the Alpha modes equation (8) and the adjoint Lambda modes, we 
an

write

〈

φ†
n, (−L+M)ψn

〉

= αn
〈

φ†
n,
(

v−1
)

ψn
〉

,

thus,

−
〈

L†φ†
n, ψn

〉

+
〈

φ†
n,Mψn

〉

= αn
〈

φ†
n, (v)

−1
ψn
〉

,

and using the adjoint Lambda modes equation (5), we obtain a relation be-

tween the Lambda modes and the Alpha modes given by

αn =

(

1− 1
λn

)

〈φ†n,[v−1]ψn〉
〈φ†n,Mψn〉

. (11)

4 LPRM modal de
omposition

4.1 Lambda modes

As it has been exposed above, BWR rea
tors have di�erent number of Lo
al

Power Range Monitors installed in its 
ore, whi
h measure the neutroni
 power

in di�erent positions of the 
ore at di�erent levels.

6



In the two energy groups approximation, the neutroni
 �ux is 
omposed of

the fast and thermal �uxes

φ =







φ1

φ2





 ,

and the lo
al neutroni
 power distribution is of the form (Verdú et al., 1998)

P = K (Σf1φ1 + Σf2φ2) ,

where K is a normalization 
onstant.

Assuming that the neutroni
 �ux 
an be des
ribed as a linear 
ombination of

Nm Lambda modes







φ1

φ2





 =
Nm
∑

n=1

an







φ1,n

φ2,n





 ,

the neutroni
 power 
an be written as

P =
Nm
∑

n=1

an (Σf1φ1,n + Σf2φ2,n) =
Nm
∑

n=1

anPn , (12)

where Pn are the power modes

Pn = Σf1φ1,n + Σf2φ2,n .

Assuming that the average number of neutrons per �ssion, ν, is the same for

the fast and thermal groups and that it remains 
onstant for the whole rea
tor


ore, by using the biorthogonality relation (6), we obtain the amplitudes, an,

of the power modal de
omposition as,

an =
ν

〈

φ
†
n,Mφn

〉

∫

R
d~r φ

†
1,nP . (13)

A dis
rete version of expression (13) works well if the power distribution is

known in all the nodes of the 
ore dis
retization. Unfortunately, in a real

situation the only information we have is the neutroni
 power measured by

the LPRMs.

To simplify the pro
ess, we 
onsider that the LPRM signal 
ontributions 
or-

respond to an average plane of the rea
tor. These signals are

L1(rT ), L2(rT ), . . . , Lp(rT ), r = 1, 2, . . . , Nt,

and T is the sampling time of the a
quisition system. Ea
h signal Ll(rT ) is

onsidered to be pla
ed in the spatial 
oordinates (xl, yl). Also it is assumed
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that the signals have zero mean. Using the power modal de
omposition (12),

it 
an be assumed that the LPRM signals 
an be expanded as

Ll(rT ) =
Nm
∑

n=1

an(rT )Pn (xl, yl) . (14)

To estimate the amplitudes an(rT ), we follow two ways. First, analogously

to the 
ontinuous 
ase, we use the fast adjoint Lambda modes to 
onstru
t

weighting fa
tors Wl (xl, yl) = φ
†
1,l (xl, yl). These fa
tors are not orthogonal to

the power modes if only the positions of the LPRMs are 
onsidered, but they


an be used to 
onstru
t a system of linear equations of the form

p
∑

l=1

φ
†
1,m (xl, yl)Ll(rT ) =

Nm
∑

n=1

(

p
∑

l=1

φ
†
1,m (xl, yl)Pn (xl, yl)

)

an(rT ) , (15)

with m = 1, . . . , Nm. Solving these systems for r = 1, . . . , Nt, the time evolu-

tion of the amplitudes of the di�erent power modes are obtained.

A se
ond pro
edure used to 
ompute the power mode amplitudes is based on a

least squares 
riterion. Using this 
riterion it is assumed that the amplitudes,

an(rT ), make minimum the square error

ε2 =
p
∑

l=1

(

Ll(rT )−
Nm
∑

n=1

an(rT )Pn (xl, yl)

)2

.

Computing the derivative of this error with respe
t to the amplitudes, we have

∂ε2

∂am(rT )
= 0 =

p
∑

l=1

(

Ll(rT )−
Nm
∑

n=1

an(rT )Pn (xl, yl)

)

Pm (xl, yl) ,

obtaining the system of equations

p
∑

l=1

Pm (xl, yl)Ll(rT ) =
Nm
∑

n=1

(

p
∑

l=1

Pm (xl, yl)Pn (xl, yl)

)

an(rT ) , (16)

whose solution provides the evolution of the power modes amplitudes using

a least squares 
riterion. System (16) is similar to the system (15) obtained

above. The only 
hange is that the power modes are used as weighting fa
tors

instead of the fast adjoint Lambda modes.
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4.2 Alpha modes

Now, instead of using the Lambda modes as basis fun
tions, it is assumed that

the neutroni
 �ux 
an be expanded in terms of the Alpha modes







φ1

φ2





 =
Nm
∑

n=1

cn







ψ1,n

ψ2,n





 ,

the neutroni
 power 
an now be expressed as

P =
Nm
∑

n=1

cn (Σf1ψ1,n + Σf2ψ2,n) =
Nm
∑

n=1

cnPan , (17)

where Pan are the Alpha power modes,

Pan = Σf1ψ1,n + Σf2ψ2,n .

For the Alpha power modes there is not a biorthogonality relation that pro-

vides a 
losed expression for the amplitudes, similar to (13). Thus, a least

squares 
riterion will be used to 
ompute the evolution amplitudes of the

Alpha power modes, by solving the linear systems

p
∑

l=1

Pam (xl, yl)Ll(rT ) =
Nm
∑

n=1

(

p
∑

l=1

Pam (xl, yl)Pan (xl, yl)

)

cn(rT ) . (18)

5 Signal analysis results

To test and 
ompare the performan
e of the methodologies exposed above,

two 
ases of the Ringhals 1 Stability Ben
hmark have been 
onsidered.

Ringhals 1 is an ABB design BWR with a 2270 MW of nominal thermal power

and 11550 kg/s of total 
ore rated mass �ow. The �rst analysed 
ase is known

as Re
ord 10 of the ben
hmark. During this event, the rea
tor was working at

77.7% of its nominal power and the 
ore �ow was of 4104 kg/s (58.2%). This

event has been 
lassi�ed as an in-phase os
illation (Lefvert, 1996). The se
ond


ase is known as Re
ord 9 of the ben
hmark and 
orresponds to LPRMs'

measurements when the rea
tor was working at 72.6% of its nominal power

and a 
ore �ow of 3694 kg/s (52.4%). This event has been 
lassi�ed as an out-

of-phase os
illation (Lefvert, 1996). Table 1 presents a summary of the 
ore

working 
onditions and the 
al
ulated stability 
hara
teristi
s of the global

os
illation for both 
ases.
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Table 1

Stability 
hara
teristi
s of Ringhals rea
tor for Re
ords 10 and 9.

Power (%) Flow (%) Frequen
y (Hz) De
ay Ratio

(Global os
illation)

Re
. 10 77.7 58.2 0.50 0.71

Re
. 9 72.6 52.4 0.56 0.80

Table 2

Three dominant Lambda eigenvalues for Re
ords 10 and 9 of Ringhals rea
tor.

λ1 λ2 λ3

Re
. 10 0.99369 0.99073 0.98716

Re
. 9 1.00178 0.99493 0.99297

Table 3

Three smallest Alpha eigenvalues for Re
ords 10 and 9 of Ringhals rea
tor.

α1 α2 α3

Re
. 10 -106.1040 -281.7486 -321.9185

Re
. 9 41.9364 -119.4661 -165.0216

5.1 Lambda modes

The �rst three dominant Lambda modes for Re
ords 10 and 9 have been


omputed using the LAMBDA 
ode (Verdú et al., 1999, 2005). The 
omputed

values for the three dominant eigenvalues for Re
ords 10 and 9 are shown in

Table 2.

The shapes of an average plane of the power modes distribution asso
iated

with these eigenvalues are presented in Fig. 2 and Fig. 3. For both 
on�gu-

rations we obtain, 
onse
utively, the fundamental mode and two azimuthal

modes.

5.2 Alpha modes

The �rst three Alpha modes with smallest magnitude have been also 
omputed

for Re
ords 10 and 9 (Verdú et al., 2010). The obtained values for the three

smallest eigenvalues for Re
ords 10 and 9 are shown in Table 3.

The shapes of an average plane of the Alpha power modes asso
iated with

these eigenvalues are presented in Fig. 4 and Fig. 5. The shape of the Alpha

modes are in both 
ases quite similar to ones obtained for the Lambda modes.
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5.3 Signals de
ompositions

For both Re
ords 10 and 9, we have 
onsidered signals of the LPRMs pla
ed

in two axial planes with 36 dete
tors per plane. These signals have a sampling

time of T=0.08 s and we have 
onsidered Nt = 1000 samples for ea
h signal.

The signals for the two axial planes are averaged and the mean of ea
h signal

is subtra
ted.

The three 
omputed eigenmodes are used to perform the LPRM Modal De-


omposition of Re
ords 10 and 9 and in order to 
ompare the power modal

de
ompositions using the Lambda and the Alpha modes, only the least squares


riterion for the 
omputation of the amplitudes evolution is used.

The real LPRM number 30 for Re
ord 10 together with its Lambda power

modal re
onstru
tion by means of expression (12) and its Alpha power modal

re
onstru
tion with expression (17) are shown in Figure 6. LPRM number 30 of

Re
ord 9 and its re
onstru
tions are shown in Figure 7. To give a quantitative

measure of the error obtained for the signals re
onstru
tion using the Lambda

modes we introdu
e the relative error

εl =

















Nt
∑

r=1

p
∑

l=1

(

Ll(rT )−
Nm
∑

n=1

an(rT )Pn (xl, yl)

)2

Nt
∑

r=1

p
∑

l=1

(Ll(rT ))
2

















1

2

. (19)

Similarly, for the signals re
onstru
tion using the Alpha modes we introdu
e

the error

εa =

















Nt
∑

r=1

p
∑

l=1

(

Ll(rT )−
Nm
∑

n=1

cn(rT )Pan (xl, yl)

)2

Nt
∑

r=1

p
∑

l=1

(Ll(rT ))
2

















1

2

. (20)

The relative errors obtained in the re
onstru
tion of the 36 signals of Re
ord

10 and Re
ord 9 using the Lambda modes and the Alpha modes are shown in

Table 4.

It is observed that the obtained relative errors are quite similar for both re
on-

stru
tions, being the re
onstru
tion obtained with the Lambda modes slightly

better than the re
onstru
tion obtained using the Alpha modes. Also, it is in-

teresting to remark that similar results are obtained if the adjoint modes are

15



Table 4

Relative errors for the re
onstru
tion of the signals of Re
ords 10 and 9 of Ringhals

rea
tor using the Lambda modes and the Alpha modes.

εl εa

Re
. 10 0.536 0.543

Re
. 9 0.435 0.451
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Fig. 6. LPRM number 30 of Re
ord 10 together with its Lambda Power modal

re
onstru
tion and its Alpha power modal re
onstru
tion.
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Fig. 7. LPRM number 30 of Re
ord 9 together with its Lambda Power modal re-


onstru
tion and its Alpha power modal re
onstru
tion.

used to 
onstru
t weighting fa
tors to 
ompute the power modes amplitudes

evolution.

The results for the time evolution of the amplitudes of the di�erent Lambda

power modes 
orresponding to Re
ord 10 are shown in Fig. 8, and the 
orre-

sponding to Re
ord 9 in Fig. 9. This is a near stable 
ase, with a de
ay ratio

about 0.7 and a fundamental frequen
y of 0.54 Hz. Nevertheless, from Fig.

9 we 
an see a developed os
illation for the se
ond and third modal power


ontributions.

The power modal de
omposition of the LPRMs has been also 
omputed using

the Alpha-modes. The results obtained for the time evolution of the amplitudes

of the di�erent modes 
orresponding to Re
ord 10 are shown in Fig. 10, and

the 
orresponding to Re
ord 9 in Fig. 11, and the 
orresponding ones to the

Re
ord 10. These results are very similar to the ones obtained with the Lambda
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Fig. 8. Time evolution of the amplitudes of the power lambda modal de
omposition

for Re
ord 10.
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Fig. 9. Time evolution of the amplitudes of the lambda power modal de
omposition

for Re
ord 9.

modes.

6 Con
lusions

For safe operation of BWR rea
tors it is important to have an e�
ient system

to dete
t and 
lassify the unstable events using the signals provided by the

LPRMs installed in the rea
tor 
ore. For some instability events, su
h as the
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Fig. 10. Time evolution of the amplitudes of the Alpha power modal de
omposition

for Re
ord 10.
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Fig. 11. Time evolution of the amplitudes of the Alpha power modal de
omposition

for Re
ord 9.

in-phase and the out-of-phase os
illation a modal interpretation has been given

asso
iating the in-phase os
illations with the os
illations of the amplitude of

the fundamental mode and the out-of-phase os
illations with the os
illations of

the azimuthal modes. Several modal equations have been proposed asso
iated

with the neutron di�usion equation. In this paper, the Lambda modes and

the Alpha modes have been reviewed and a simple method to de
ompose the

LPRMs signals in di�erent power modes 
ontribution using both, the Lambda

and the Alpha modes has been proposed and the performan
e of ea
h kind of

modes has been 
ompared studying two 
ases of Ringhlas 1 stability ben
h-

18



mark. This analysis shows that both the Alpha and the Lambda modes for a

nu
lear rea
tor, whi
h is a nearly 
riti
al system, have a similar shape and 
an

be su

essfully used to analyse the di�erent LPRM signals 
ontributions. The

Alpha modes and the Lambda modes have di�erent mathemati
al properties,

in this way, they 
an be used to 
onstru
t di�erent redu
ed order models to

analyse the BWR stability 
hara
teristi
s.
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