Document downloaded from:

http://hdl.handle.net/10251/49226

This paper must be cited as:

Verdu Martin, GJ.; Ginestar Peiro, D. (2014). Modal decomposition method for BWR

stability analysis using Alpha-modes. Annals of Nuclear Energy. 67:31-40.
doi:10.1016/j.anucene.2013.07.035.

The final publication is available at
http://dx.doi.org/10.1016/j.anucene.2013.07.035

Copyright
Pyrg Elsevier Masson



Modal Decomposition Method for BWR
Stability Analysis using Alpha-Modes

G. Verdu? D. Ginestar P*

& Departamento de Ingenieria Quimica y Nuclear, Universidad Politécnica de
Valencia. Camino de Vera, 14. Valencia. Spain.

b Instituto de Matemdtica Multidisciplinar, Universidad Politécnica de Valencia.
Camino de Vera, 14. Valencia. Spain.

Abstract

In-phase and out-of-phase oscillations have been observed in BWR reactors. To
improve the safety of these reactors it is necessary to detect in a reliable way these
oscillations from the neutronic signals. In this paper, a methodology to decompose
the neutronic signals in its modal amplitudes is proposed. Usually, to compute this
decomposition the Lambda eigenfunctions are used as expansion functions and their
adjoint modes are used as weight factors. Different approaches using the Alpha
modes are investigated to obtain the LPRM signals modal decomposition for a BWR
unstability event. The calculation of Alpha eigenmodes is reviewd and the oscillation
parameters for the modal decomposition of the neutronic signals from Ringhals NPP
have been calculated.

Key words: Lambda Modes, Alpha Modes, BWR reactors stability, LPRM
readings.

1 Introduction

Several events have been observed in BWR nuclear power reactors where fully
developed oscillations were present in the neutronic power measured by the
LPRM detectors installed in the reactor core. Some of these events were in-
voluntary and other ones were induced intentionally as experiments. Mainly,
BWR neutronic oscillations have been classified as in-phase oscillations, where
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Fig. 1. LPRMs disposition in an axial plane for Ringhals 1 reactor.

the whole core oscillates together. And the out-of-phase oscillations, where half
of the core behaves out-of-phase from the other half. A modal interpretation
has given for the in-phase and the out-of-phase oscillations of a BWR reactor,
associating the in-phase oscillations with the amplitude of the fundamental
mode of the reactor. The out-of-phase oscillations are interpreted as the con-
tribution of the subcritical azimuthal modes amplitudes to the oscillations
(March-Leuba and Rey, 1993).

For safe operation, it is desirable to have a monitoring system capable of
indicating the change in neutron multiplication within the reactor core as
criticality is approached. The neutron monitoring system in a BWR makes
use of fission detectors incorporated in different detector systems: Start-up,
Intermediate and Local Power Range (Morgan, 1970). The Local Power Range
Monitoring (LPRM) subsystem is the most elaborate and complex subsystem
of the neutron monitoring system. It is composed of numerous in-core fission
chambers, typically placed in four axial planes of the reactor core, arranged
along an in-core assembly. To provide core wide coverage, a geometrical array
of the in-core assemblies is used. A typical array is shown in Fig. 1.

The neutronic power signals obtained from the Local Power Range Moni-
tors are difficult to analyse. Several techniques exist to detect and classify
the possible oscillations in a BWR, as the one presented in (Van der Hagen
et al., 1994), where the out-of-phase oscillations contributions are separated
subtracting the contributions of signals from LPRMs placed in an opposite
direction with respect to the symmetry line of the core. The main disadvan-
tage of this method is that the determination of the symmetry line of the
core is not an easy task, and to obtain accurate results, a large number of
instrumented LPRMs are needed. Other possibility is to use a modal decom-
position of the signals from the LPRMs in the core (Verdu et al., 1998) using
the dominant Lambda modes previously computed for a given configuration
of the reactor core (Verdu et al., 1994). To use this technique it is necessary to



compute previously the dominant modes of a static configuration of the reac-
tor core. This computation is expensive from the computational point of view
and requires a set of nuclear cross-sections for the core configuration. In this
way, other options have been investigated that avoid this computation. The
Principal Component Analysis (PCA), considers the signals provided by all
instrumented LPRMs constructing an information matrix, and studying the
characteristics of the spectrum of the dominant singular values of this matrix
(Ginestar et al., 2006). Another option is the Independent Component Anal-
ysis (ICA) that computes experimental modes for the LPRMs signals using a
statistical independence criterion (Ginestar et al., 2011).

Since there is a physical interpretation for the amplitudes evolution of the
different neutronic harmonics, especially in the analysis of instability events,
a combination of these tools becomes useful to analyse this kind of events, dis-
tinguishing the contributions of the in-phase oscillations and the out-of-phase
oscillations. Apart from the Lambda modes other kind of modes can be defined
for the neutron diffusion equation, such as the Alpha modes (time-eigenvalues
problem). The Alpha modes problem is basic in the field of nuclear reac-
tor physics (Bell and Glasstone, 1970), and it is important for subcriticality
continuous monitoring techniques (see, for example, (Uhrig, 1970; Williams,
1974)). Recently, it has been proposed in Ref. Kobayashi (2005) to use the
quasi-static method to solve time dependent source problems using as weight
function the adjoint Alpha fundamental eigenmode, which is shown to be
better than the adjoint Lambda eigenmode, especially for the analysis of sub-
critical systems. This is justified because the use of the adjoint Alpha modes
eliminates the first order error in the change of the flux introduced by the use
of the adjoint Lambda mode as weighting function.

The Alpha modes can be efficiently computed for a commercial reactor (Verda
et al., 2010), in this way, to complete the set of tools available to analyse the
LPRM signals provided during an instability event, in this paper, different
power modal decomposition methods using the Alpha modes are proposed
and compared with the ones performed using the Lambda modes.

The rest of the paper is structured as follows: sections 2 and 3 are devoted,
respectively, to review the Lambda modes, the Alpha modes and their proper-
ties. The different modal decompositions proposed using the Lambda modes
and the Alpha modes are presented in section 4. The results of the different
modal decompositions performed for some of the LPRMs signals provided in
the Ringhals stability benchmark are shown in section 5. Finally, the main
conclusions of the paper are summarized in section 6.



2 Lambda modes

To obtain the Lambda modes equation (Henry, 1982), our starting point is
the two-energy groups approximation of the neutron diffusion equation,
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Criticality can be forced by dividing the fission nuclear cross sections by a
positive number, A, obtaining the steady state equations
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Taking into account that S°&_, 8, = 3, we obtain the Lambda modes equation

c%:%M%, (4)

where ), are the Lambda eigenvalues and ¢, their corresponding Lambda
modes. A static configuration of the reactor is described by the dominant
Lambda eigenvalue, which is the k-effective, and its corresponding eigenmode
describes the stationary neutron flux distribution in the reactor core.



The adjoint problem associated with (4) is given by
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The Lambda modes, ¢,, and their adjoint Lambda modes, ¢! , satisfy a
biorthogonality relation of the form

(61 Mén) = [ d7 6!, My = b (8} Mn) (6)

where R is the volume defined by the reactor core and 9,,, is Kronecker’s
delta.

3 Alpha modes

To obtain the Alpha modes equation (Bell and Glasstone, 1970), the starting
point is again the neutron diffusion equation,
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and the delayed neutron precursors are assumed to be in steady state
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for the neutronic flux, we obtain the Alpha modes equation (Modak and
Gupta, 2007), (Verdu et al., 2010),

(_ (U) L+ (U) M) U = ann (8)

where «,, are the Alpha eigenvalues and 1, their corresponding Alpha modes.
It is worth to be remarked that a critical configuration of the reactor corre-
sponds to the value a = 0 and, while for the Lambda modes problem we are
interested on computing the dominant eigenmodes (the ones with the associ-
ated eigenvalue with largest magnitude), for the Alpha modes problem we will
be interested on computing the Alpha modes whose corresponding eigenvalues
have the smallest magnitude.

The adjoint Alpha modes problem is given by

(—£" (@) + M (v)) 0] = antsh . (9)

If the Alpha modes are non degenerate, the Alpha modes and their corre-
sponding adjoint modes are biorthogonal, that is

(b ton) = [ dFEltn = b (¥, 0) (10)

Using the Alpha modes equation (8) and the adjoint Lambda modes, we can
write
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thus,
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and using the adjoint Lambda modes equation (5), we obtain a relation be-
tween the Lambda modes and the Alpha modes given by
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4 LPRM modal decomposition

4.1 Lambda modes

As it has been exposed above, BWR reactors have different number of Local
Power Range Monitors installed in its core, which measure the neutronic power
in different positions of the core at different levels.



In the two energy groups approximation, the neutronic flux is composed of
the fast and thermal fluxes

o]
&2

and the local neutronic power distribution is of the form (Verdu et al., 1998)
P =K (Zp1+Zpe0) ,
where K is a normalization constant.

Assuming that the neutronic flux can be described as a linear combination of
N,, Lambda modes

¢1 N ¢1,n
= Z Qn ’
¢2 n=1 ¢2,n

the neutronic power can be written as

N Nm
P = Z Qp, (Efl(bl,n + 2f2¢2,n) = Z anPn y (12)
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where P, are the power modes

Pn = 2fl(bl,n + 2f2§b2,n .

Assuming that the average number of neutrons per fission, v, is the same for
the fast and thermal groups and that it remains constant for the whole reactor
core, by using the biorthogonality relation (6), we obtain the amplitudes, a,,,
of the power modal decomposition as,

a, m /R dF ¢l P . (13)

A discrete version of expression (13) works well if the power distribution is
known in all the nodes of the core discretization. Unfortunately, in a real
situation the only information we have is the neutronic power measured by

the LPRMs.

To simplify the process, we consider that the LPRM signal contributions cor-
respond to an average plane of the reactor. These signals are

Ly(rT), Lo(rT), ..., L,(rT), r=1,2,..., Ny,

and T is the sampling time of the acquisition system. Each signal L;(r7T) is
considered to be placed in the spatial coordinates (x;,y;). Also it is assumed



that the signals have zero mean. Using the power modal decomposition (12),
it can be assumed that the LPRM signals can be expanded as

5
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To estimate the amplitudes a,(rT"), we follow two ways. First, analogously
to the continuous case, we use the fast adjoint Lambda modes to construct
weighting factors W, (z;,y;) = QSL (x1,y1). These factors are not orthogonal to
the power modes if only the positions of the LPRMs are considered, but they
can be used to construct a system of linear equations of the form

Z¢1m (w1, 90) Li(rT) = Zm (i &1 (21, 91) Pa (%yl)) an(rT) , (15)

=1

with m =1,..., N,,. Solving these systems for » = 1,..., N;, the time evolu-
tion of the amplitudes of the different power modes are obtained.

A second procedure used to compute the power mode amplitudes is based on a
least squares criterion. Using this criterion it is assumed that the amplitudes,
a,(rT), make minimum the square error

2

g2 = zpj (Ll (rT) %j xl,yl)>

=1

Computing the derivative of this error with respect to the amplitudes, we have

852 N,
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=1

obtaining the system of equations

lzp:Pm xy, 1) Ly(rT) Z (ZP x,y) P, (a:l,yl)> a,(rT) , (16)

whose solution provides the evolution of the power modes amplitudes using
a least squares criterion. System (16) is similar to the system (15) obtained
above. The only change is that the power modes are used as weighting factors
instead of the fast adjoint Lambda modes.



4.2 Alpha modes

Now, instead of using the Lambda modes as basis functions, it is assumed that
the neutronic flux can be expanded in terms of the Alpha modes

¢1 N ’l/}l,n
= Z Cn ’
®2 n=1 %,n

the neutronic power can now be expressed as

Nm N,
P = Z Cn (Zflwl,n + 2f2’l/}2,n) - Z CnPan ) (17)
n=1 n=1

where P,, are the Alpha power modes,

Pan - 2fl’l/}l,n + 2f2w2,n .

For the Alpha power modes there is not a biorthogonality relation that pro-
vides a closed expression for the amplitudes, similar to (13). Thus, a least
squares criterion will be used to compute the evolution amplitudes of the
Alpha power modes, by solving the linear systems

lzp:Pam xy, ) Li(rT) = znfl (i Pam (21,91) Pan (3617191)) cn(rT) (18)

=1

5 Signal analysis results

To test and compare the performance of the methodologies exposed above,
two cases of the Ringhals 1 Stability Benchmark have been considered.

Ringhals 1 is an ABB design BWR with a 2270 MW of nominal thermal power
and 11550 kg/s of total core rated mass flow. The first analysed case is known
as Record 10 of the benchmark. During this event, the reactor was working at
77.7% of its nominal power and the core flow was of 4104 kg/s (58.2%). This
event has been classified as an in-phase oscillation (Lefvert, 1996). The second
case is known as Record 9 of the benchmark and corresponds to LPRMs’
measurements when the reactor was working at 72.6% of its nominal power
and a core flow of 3694 kg/s (52.4%). This event has been classified as an out-
of-phase oscillation (Lefvert, 1996). Table 1 presents a summary of the core
working conditions and the calculated stability characteristics of the global
oscillation for both cases.



Table 1
Stability characteristics of Ringhals reactor for Records 10 and 9.

Power (%) Flow (%) Frequency (Hz) Decay Ratio

(Global oscillation)

Rec. 10 7.7 58.2 0.50 0.71
Rec. 9 72.6 52.4 0.56 0.80
Table 2
Three dominant Lambda eigenvalues for Records 10 and 9 of Ringhals reactor.
A1 A2 A3

Rec. 10 0.99369 0.99073 0.98716
Rec. 9 1.00178 0.99493 0.99297

Table 3
Three smallest Alpha eigenvalues for Records 10 and 9 of Ringhals reactor.

a1 Qa2 as
Rec. 10 -106.1040 -281.7486 -321.9185
Rec. 9 41.9364 -119.4661 -165.0216

5.1 Lambda modes

The first three dominant Lambda modes for Records 10 and 9 have been
computed using the LAMBDA code (Verdu et al., 1999, 2005). The computed
values for the three dominant eigenvalues for Records 10 and 9 are shown in
Table 2.

The shapes of an average plane of the power modes distribution associated
with these eigenvalues are presented in Fig. 2 and Fig. 3. For both configu-
rations we obtain, consecutively, the fundamental mode and two azimuthal
modes.

5.2 Alpha modes

The first three Alpha modes with smallest magnitude have been also computed
for Records 10 and 9 (Verdu et al., 2010). The obtained values for the three
smallest eigenvalues for Records 10 and 9 are shown in Table 3.

The shapes of an average plane of the Alpha power modes associated with
these eigenvalues are presented in Fig. 4 and Fig. 5. The shape of the Alpha
modes are in both cases quite similar to ones obtained for the Lambda modes.
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5.8  Signals decompositions

For both Records 10 and 9, we have considered signals of the LPRMs placed
in two axial planes with 36 detectors per plane. These signals have a sampling
time of T=0.08 s and we have considered N; = 1000 samples for each signal.
The signals for the two axial planes are averaged and the mean of each signal
is subtracted.

The three computed eigenmodes are used to perform the LPRM Modal De-
composition of Records 10 and 9 and in order to compare the power modal
decompositions using the Lambda and the Alpha modes, only the least squares
criterion for the computation of the amplitudes evolution is used.

The real LPRM number 30 for Record 10 together with its Lambda power
modal reconstruction by means of expression (12) and its Alpha power modal
reconstruction with expression (17) are shown in Figure 6. LPRM number 30 of
Record 9 and its reconstructions are shown in Figure 7. To give a quantitative
measure of the error obtained for the signals reconstruction using the Lambda
modes we introduce the relative error

i 3 (Lz rT) Z fEl,yz)>
g = r=1]=1 T n=1 ) (19)
2; (Lu(rT))”

Similarly, for the signals reconstruction using the Alpha modes we introduce
the error

Ny Nom 2\ 3
> (Lz('r’T) =Y cn(rT)Pay (%m))
Ea — r=1 =1 Nt pn 1 (20)
ZZ Ll TT
r=11=1

The relative errors obtained in the reconstruction of the 36 signals of Record
10 and Record 9 using the Lambda modes and the Alpha modes are shown in
Table 4.

It is observed that the obtained relative errors are quite similar for both recon-
structions, being the reconstruction obtained with the Lambda modes slightly
better than the reconstruction obtained using the Alpha modes. Also, it is in-
teresting to remark that similar results are obtained if the adjoint modes are

15



Table 4
Relative errors for the reconstruction of the signals of Records 10 and 9 of Ringhals
reactor using the Lambda modes and the Alpha modes.

€l €a

Rec. 10 0.536 0.543
Rec. 9 0.435 0.451

signal
o

RN

Real signal
' Rec. Lambda
== Rec. Alpha

1k

2L

I I
80 85 90 95
Time

Fig. 6. LPRM number 30 of Record 10 together with its Lambda Power modal
reconstruction and its Alpha power modal reconstruction.

Real signal
sr . " Rec. Lambda |

== Rec. Alpha

MY

I I |
80 85 90 95
Time

signal
o

Fig. 7. LPRM number 30 of Record 9 together with its Lambda Power modal re-
construction and its Alpha power modal reconstruction.

used to construct weighting factors to compute the power modes amplitudes
evolution.

The results for the time evolution of the amplitudes of the different Lambda
power modes corresponding to Record 10 are shown in Fig. 8, and the corre-
sponding to Record 9 in Fig. 9. This is a near stable case, with a decay ratio
about 0.7 and a fundamental frequency of 0.54 Hz. Nevertheless, from Fig.
9 we can see a developed oscillation for the second and third modal power
contributions.

The power modal decomposition of the LPRMs has been also computed using
the Alpha-modes. The results obtained for the time evolution of the amplitudes
of the different modes corresponding to Record 10 are shown in Fig. 10, and
the corresponding to Record 9 in Fig. 11, and the corresponding ones to the
Record 10. These results are very similar to the ones obtained with the Lambda

16
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Fig. 8. Time evolution of the amplitudes of the power lambda modal decomposition
for Record 10.
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Fig. 9. Time evolution of the amplitudes of the lambda power modal decomposition
for Record 9.

modes.

6 Conclusions

For safe operation of BWR reactors it is important to have an efficient system
to detect and classify the unstable events using the signals provided by the
LPRMs installed in the reactor core. For some instability events, such as the
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Fig. 10. Time evolution of the amplitudes of the Alpha power modal decomposition
for Record 10.
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Fig. 11. Time evolution of the amplitudes of the Alpha power modal decomposition
for Record 9.

in-phase and the out-of-phase oscillation a modal interpretation has been given
associating the in-phase oscillations with the oscillations of the amplitude of
the fundamental mode and the out-of-phase oscillations with the oscillations of
the azimuthal modes. Several modal equations have been proposed associated
with the neutron diffusion equation. In this paper, the Lambda modes and
the Alpha modes have been reviewed and a simple method to decompose the
LPRMs signals in different power modes contribution using both, the Lambda
and the Alpha modes has been proposed and the performance of each kind of
modes has been compared studying two cases of Ringhlas 1 stability bench-
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mark. This analysis shows that both the Alpha and the Lambda modes for a
nuclear reactor, which is a nearly critical system, have a similar shape and can
be successfully used to analyse the different LPRM signals contributions. The
Alpha modes and the Lambda modes have different mathematical properties,
in this way, they can be used to construct different reduced order models to
analyse the BWR stability characteristics.
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