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1. Introduction 

All materials present in the core of a nuclear reactor can be activated by neutron 

irradiation. When activated materials are withdrawn from the reactor, a dose is produced 

around them. This dose is a potential risk for workers and people staying in the 

surrounding area. Therefore, it is necessary to assess the activity generated and the dose 

produced.  

In previous works [1-5], neutron activation of control rods and doses around the 

storage pool where control rods are placed have been calculated for a Boiling Water 

Reactor using the MCNP5 code [6] based on the Monte Carlo method.  

On the other hand, most of the activation is produced in stainless steel components of 

the control rod. Indeed, many components in the nuclear reactor core are made of 

stainless steel. Therefore, the Monte Carlo model can be applied to the activation 

produced in a piece of stainless steel exposed to some neutron flux in a reactor. As well 

the dose rate around the activated piece can be measured.  

In this work, a stainless steel sample is irradiated in the Training Reactor AKR-2 [7] 

of the Technical University Dresden. Dose measurements around the sample have been 

performed for different times after the irradiation.  
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Experimental dosimetric values are compared with results of the Monte Carlo 

simulation and the comparison shows a good agreement. It is an attempt to have an 

indirect validation of the Monte Carlo model for the neutron activation. That is, 

activities obtained with the Monte Carlo model of the neutron activation are used as 

input data for a second Monte Carlo model simulating the dose produced around the 

irradiated piece. These doses are compared with dosimetry measurements. As 

comparison shows a good agreement between measured and simulated doses, the 

activation Monte Carlo model can be considered as validated. 

 

2. Methodology 

2.1 Neutron activation 

The activity generated in neutron reactions depends on reaction cross sections, 

neutron spectrum, neutron flux distribution, concentration of precursors of each 

radionuclide, and irradiation time. After irradiation, activities decrease with time and 

disintegration constants. 

The interaction rate Q (reactions /cm
3
-s) is given by: 

 dE (E) (E) C  Q   (1) 

being 

C a normalization factor (at/barn-cm) depending on the target concentration;  

Φ(E) the neutron flux (n/cm
2
-s); and  

σ(E) the microscopic cross section of the reaction (barn). 

On the other hand, for each j-isotope generated, a matter balance can be done: 

jjj

j
N λ - Q  

dt

dN
  (2) 

integrating, the concentration Nj (nuclei/cm
3
) of the j-isotope is obtained, being ti the 

irradiation time: 

 ij tλ-

j

j

j  e - 1  
λ

Q
 )t(N 














  (3) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

For a cooling time tc the concentration Nj becomes: 

  cjij  tλ- tλ-

j

j

j  e   e - 1   
λ

Q
 )t(N 














  (4) 

and multiplying by λj to obtain activity: 

  cjij  t-λ t-λ

jj  e   e - 1   Q  )t(A   (5) 

Aj(t) is a volumetric activity (Bq/cm
3
). To obtain the total activity it is necessary to 

multiply by the cell volume. The maximum activity will be the asymptotic value, Qj, 

considering an irradiation time very long (~) and neglecting the cooling time. 

2.2 Experimental measurements 

The training reactor AKR2 [7], acronym for Ausbildungskernreaktor 2, is located at 

the Technical University in Dresden, Germany. It is a zero power, thermal reactor 

moderated by solid polyethylene. The fuel elements consist of a homogeneous mixture 

of moderator and uranium oxide fuel enriched 19.8%. It has a maximum power of 2 W 

and the maximum neutron flux in the central experimental channel is Φmax = 5 E+07 

n/cm
2
 s.  

The active zone of the core is made up of disk shaped fuel elements with a diameter 

of 25 cm. The height of the active zone is 27.5 cm. 

For the experiment, the reactor is driven at a power level of P=0.59 W. This 

corresponds to a measured neutron flux of 2.5 E+07 n/cm
2
 s. This flux has been 

measured in the central experimental channel of the reactor. The cross section of the 

whole reactor is shown in figure 1. 

A stainless steel sample type X8CrNiTi18.10 is irradiated for 10 hours in the central 

experimental channel of the reactor. The sample has cylindrical shape with a radius of 1 

cm and a length of 7 cm. It has a volume of 21.99 cm
3
 and a density ρ= 7.9 g/cm

3
. Thus 

it has a mass of 173.73 g. The composition of the sample is listed in Table 1 [8].  

Dose experimental measurements were done with a Berthold dose rate meter type 

LB133-1 equipped with an ionisation chamber detector LB6006, suitable for photon 

dose equivalent measurements in photon energy range 30 keV - 1.3 MeV. The device 

was calibrated by official authorities. 
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2.3 Monte Carlo model 

An activation Monte Carlo model has been developed using MCNP5. The interaction 

rate Q (eq. 1) is calculated using F4 tally and FM4 (tally multiplier card), which 

provides data for the reactions included in the calculation, listed in Table 2. 

The energy spectrum of fission neutrons [9] used for the simulation is the Watt 

distribution described by equation 6.  

(E) = 0.453 e
-1.036E

  sinh (2.29 E)
1/2

 (6) 

The Watt fission spectrum can be considered as a Maxwellian spectrum from a 

moving reference system [10]. The Maxwell fission spectrum alone describes the 

energy distribution of neutrons emitted by the fission fragments. This does however not 

include the kinetic energy of the fission ion fragments themselves. As both fission 

fragments are positively charged, they repel each other due to Coulomb force. This 

results in kinetic energy of the fission fragments. The Watt spectrum considers the 

Maxwellian distribution plus the fact that neutrons are emitted from moving fragments. 

Thus it is more accurate than the Maxwellian spectrum alone. It is a continuous 

spectrum with an average energy of 1.98 MeV. 

All tallies obtained with MCNP5 are normalized to be per starting particle. Therefore, 

activity is calculated per emitted neutron and per second, and it should be multiplied by 

the instantaneous neutron population that can be calculated as 

 c P   N   (7) 

where 

  N  is instantaneous neutron population (n/s) 

P  is the mean power (W)  

c is equal to 3.12E+10 fissions/W-s; and  

ν is the mean number of neutrons emitted per fission, equal to 2.47 

neutrons/fission. 

For the measured power of 0.59 W, a neutron population equal to 4.55 E+10 n/s is 

obtained. 
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2.4 Dose rate assessment 

Dose rate at different distances from the irradiated sample have been calculated using 

again the MCNP5 code and the F4 tally, now with the FMESH card that allows the user 

to define a mesh tally superimposed over the problem geometry. Hence, with F4MESH, 

fluence (cm
-2

) in nodes of a mesh has been obtained. If the source is expressed in 

photons/s, the tally will be obtained in particle flux (cm
-2

 s
-1

). 

Using the DF4 card with appropriated conversion factors, air energy-mass absorption 

coefficients µen/ρ extracted from National Institute of Standards and Technology (NIST) 

[11] for each photon energy of interest and multiplying by this energy, dose rate in 

MeV/g-s can be obtained. By means of an appropriated constant for conversion of units, 

dose rate can be expressed in μSv/h per emitted photon, taking into account that for 

photons 1 Sv = 1 Gy. 

As stated above, MCNP5 results are always normalized to be per starting particle. So 

they must be multiplied by the number of photons/s emitted by the sample. That number 

can be obtained from the activity in Bq and the intensity (photons/disintegration) of 

each photopeak, data extracted from JANIS database [12]. 

It has been simulated 100 million particles to obtain relative errors lower than 0.3 %. 

MODE P, E has been activated to follow tracks of photons and electrons. A cutoff of 5 

keV for electrons has been used in order to reduce the computation time. 

3. Results and discussion 

3.1 Activity 

Results from MCNP5 simulation are listed in Tables 3 and 4 respectively for cooling 

times of 10 and 30 min. In both tables, the following results are presented for each 

radionuclide produced in the sample by neutron activation as listed in table 2:  

 Tally F4 obtained with MCNP5;  

 volumetric activity calculated with equation (5);  

 activity (per neutron/s emitted at the source) equal to the volumetric activity 

times the volume of the sample; and  

 total activity (Bq) considering the instantaneous neutron population at the 

irradiation calculated with equation (7). 
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It can be observed in Tables 3 and 4 that the most important activity is obtained for 

Mn
56

. It is due to the high cross section for the reaction (n, γ) in manganese and to the 

short half-life of Mn
56

 (2.582 h) that permits this radionuclide to reach equilibrium 

during an irradiation time of 10 hours.  

The longer half-lives of some radionuclides, like Ni
59

 (80,000 y), Ni
63

 (100 y) and 

Mo
93

 (3,000 y) causes that a low activity is generated because equilibrium is far to be 

reached.  

Co
60

 is a similar case with high half-life (5.272 y), Furthermore, cobalt is not present 

in X8CrNiTi18 stainless steel being Co
60

 only produced by the (n, p) reaction in Ni
60

 

with a low thermal cross section that contributes to strongly decrease the activity 

produced in the neutron activation. 

Really many of the radionuclides produced in the neutron activation can be canceled 

from the list appearing in Tables 3 and 4. Thus, P
32

, Ni
59

, Ni
63

 and Mo
93

 can be 

discarded for dose assessment as they are not gamma emitters. Mn
54

, Fe
59

 and Co
60

 can 

also be neglected a cause of the low activity generated in the irradiation. Cr
55

 and 

Fe
55

will be also excluded due to the low intensity of the photons emitted [12]. 

Finally, only Cr
51

, Mn
56

, and Ni
65

 will remain. They produce practically 100% of all 

photons emitted by the irradiated sample. Furthermore, 98.20% of these photons 

correspond to the emission of the 3 main lines (2.11305; 1.810719; and 0.846754 MeV) 

of Mn
56

. Therefore, only Mn
56 

and only these 3 lines will be considered for dose 

assessment. Its relevance is due to the combined effect of higher activity generated in 

the irradiation and higher intensity of emitted photons corresponding to these 

photopeaks. 

3.2 Dose 

Doses calculated by MCNP5 and measured doses are compared in Tables 5 and 6 

respectively for cooling times of 10 and 30 minutes. A good agreement between the 

experimental and simulated values can be seen. For 10 minutes cooling time, the 

maximal deviation between MCNP5 and experiment is 8%. For a cooling time of 30 

minutes the maximal deviation is 12%. 
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The MCNP5 values are partly above and partly below the measured values. Thus 

there is not a systematic error as for example an offset deviation. In average MCNP5 

results tend to be below measured doses.  

 

4. Conclusions 

A Monte Carlo model developed to simulate the neutron activation in a reactor has 

been applied to calculate the activation of a stainless steel sample irradiated in the AKR-

2 reactor of TU Dresden. 

A Monte Carlo model has been also used with the MCNP5 code to assess dose rates 

at different distances from the irradiated sample, some time after irradiation. 

Results of the simulation have been compared with experimental measurements. 

Maximum discrepancies for distances up to 1 m from the sample are respectively 8 % 

and 12 % for cooling times of 10 and 30 min after the irradiation. 

These results permit to confirm the validation of Monte Carlo models developed. 

Further developments are foreseen for the next future in order to perform 

measurements in other experimental or training reactors and compare measurements 

with Monte Carlo simulation results. 

Irradiation of reactor components in power reactors is very long compared to the time 

of irradiation of the sample in AKR2. A component in a reactor is irradiated up to 15 

years in average. Thus, also radionuclides with high half life build up during the 

irradiation in power reactors, but they hardly appear in the current problem. However, 

this is not downgrading the model.  

As it works for short lived nuclides, it will also be applicable for long lived nuclides. 
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Table 1. Composition of the sample. 

 

Element 
Weight 

fraction % 

Molar mass 

g/mol 

Cr 19.000 51.9961 

Ni 12.000 58.6934 

C 0.100 12.0107 

Si 1.000 28.0855 

Mn 2.000 54.938 

P 0.045 30.973 

S 0.015 32.065 

Ti 0.400 47.867 

Fe 65.440 55.845 

 

 

 

Table 1. Composition of the sample.
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Table 2. Reactions produced in the sample. 

 

P
31

 (n, γ) P
32

 Fe
58

 (n, γ) Fe
59

 

Cr
50

 (n, γ) Cr
51

 Ni
58

 (n, γ) Ni
59

 

Cr
54

 (n, γ) Cr
55

 Ni
58

 (n, α) Fe
55

 

Mn
55

 (n, 2n) Mn
54

 Ni
60

 (n, p) Co
60

 

Mn
55

 (n, γ) Mn
56

 Ni
62

 (n, γ) Ni
63

 

Fe
54

 (n,p) Mn
54

 Ni
64

 (n, γ) Ni
65

 

Fe
54

 (n, γ) Fe
55

 Mo
92

 (n, γ) Mo
93

 

 

 

 

Table 2. Reactions produced in the sample.
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Table 3. Activities calculated for tc=10 min 

 

nuclide Tally F4 A (Bq/cm
3
) 

A (Bq)  

per neutron A total (Bq) 

P
32

 7.777E-09 1.556E-10 3.422E-09 1.56E+02 

Cr
51

 5.793E-06 6.004E-08 1.320E-06 6.00E+04 

Cr
55

 6.088E-08 8.691E-09 1.911E-07 8.69E+03 

Mn
54

 2.226E-08 2.056E-11 4.522E-10 2.06E+01 

Mn
56

 1.310E-05 1.167E-05 2.566E-04 1.17E+07 

Fe
55

 4.274E-06 1.252E-09 2.754E-08 1.25E+03 

Fe
59

 1.061E-07 6.846E-10 1.505E-08 6.84E+02 

Co
60

 3.902E-10 5.855E-14 1.288E-12 5.85E-02 

Ni
59

 1.594E-05 1.577E-13 3.467E-12 1.58E-01 

Ni
63

 2.733E-06 2.162E-11 4.754E-10 2.16E+01 

Ni
65

 6.985E-08 6.246E-08 1.373E-06 6.24E+04 

Mo
93

 2.648E-06 6.983E-13 1.536E-11 6.98E-01 

 

 

 

Table 3. Activities calculated for tc=10 min.
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Table 4. Activities calculated for tc=30 min 

 

nuclide Tally F4 A (Bq/cm
3
) 

A (Bq)  

per neutron A total (Bq) 

P
32

 7.777E-09 1.555E-10 3.420E-09 1.55E+02 

Cr
51

 5.793E-06 6.002E-08 1.320E-06 6.00E+04 

Cr
55

 6.088E-08 1.771E-10 3.895E-09 1.77E+02 

Mn
54

 2.226E-08 2.056E-11 4.522E-10 2.06E+01 

Mn
56

 1.310E-05 1.067E-05 2.347E-04 1.07E+07 

Fe
55

 4.274E-06 1.252E-09 2.754E-08 1.25E+03 

Fe
59

 1.061E-07 6.844E-10 1.505E-08 6.84E+02 

Co
60

 3.902E-10 5.855E-14 1.288E-12 5.85E-02 

Ni
59

 1.594E-05 1.577E-13 3.467E-12 1.58E-01 

Ni
63

 2.733E-06 2.162E-11 4.754E-10 2.16E+01 

Ni
65

 6.985E-08 5.699E-08 1.253E-06 5.70E+04 

Mo
93

 2.648E-06 6.983E-13 1.536E-11 6.98E-01 
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Table 5. Doses after tcool=10 min 

 

Distance 

(cm) 

MCNP 

(µSv/h) 

Measured 

(µSv/h) 

Ratio 

MCNP/measured 

10 162 160 1.01 

20 45.8 50 0.92 

30 20.9 23 0.91 

40 11.9 13 0.92 

50 7.8 8 0.98 

60 5.4 5 1.08 

80 3.1 3 1.03 

100 2 2 1 
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Table 6. Doses after tcool=30 min 

 

Distance 

(cm) 

MCNP 

(µSv/h) 

Measured 

(µSv/h) 

Ratio 

MCNP/measured 

10 148.4 150 0.99 

20 41.9 45 0.93 

30 19.2 20 0.96 

40 10.9 11 0.99 

50 7.12 8 0.89 

60 4.9 5 0.98 

80 2.8 2.5 1.12 

100 1.85 1.8 1.03 
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Figure 1. Cross section of the whole reactor.
Click here to download high resolution image

http://ees.elsevier.com/rpc/download.aspx?id=137829&guid=654c3600-05ec-417f-b944-4e2b69f382b5&scheme=1


All materials present in the core of a nuclear reactor can be activated by neutron 

irradiation. 

 

Neutron activation can be simulated using the MCNP5 code based on the Monte Carlo 

method. 

 

Most of the activation is produced in stainless steel components of the nuclear reactor 

core. 

 

A stainless steel sample is irradiated in a reactor and doses are measured around the 

sample. 

 

Experimental dosimetric values are compared with results of the Monte Carlo 

simulation. 

 

*Highlights (for review)


