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Abstract

In this work, an approach based on task-priority redundancy resolution and
sliding mode ideas is proposed for robot coordination. In particular, equality
and inequality constraints representing the coordination of the multi-robot
system are considered as mandatory (for instance, rigid-body manipulation
constraints to distance between the end-effectors of several robot arms, or
other inequality constraints guaranteeing safe operation of a robotic swarm
or confining the robot’s workspace to avoid collision and joint limits). Besides
the mandatory constraints, other constraints with lower priority are consid-
ered for the tracking of the workspace reference and to achieve secondary
goals. Thus, lower-priority constraints are satisfied only in the null space of
the higher-priority ones. The fulfillment of the constraints is achieved us-
ing geometric invariance and sliding mode control theory. The validity and
effectiveness of the proposed approach is substantiated by 2D and 3D sim-
ulation results using two 3R planar robots and two 6R PUMA-762 robots,
respectively.

Keywords: multi-robot systems, cooperative robots, robot control, collision
avoidance

1. Introduction

Research topics for multi-robot systems (MRSs) [1], also known as dis-
tributed [2] or cooperative [3] or multi-agent [4] robotic systems, have sig-
nificantly increased in recent years: biological inspirations, robotic swarms,
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object transport and manipulation, reconfigurable robots, communication
and architectures, reactivity and social deliberation, motion coordination,
etc. In general, a team of robots provide redundancy and contribute cooper-
atively to solve the task for which they were conceived in a more reliable or
faster way than what is possible with a single robot.

Coordination is an important issue in robotics and integrated manufac-
turing systems [5, 6, 7]. Typically, robot coordination [8] can be expressed
in terms of equality and inequality constraints. These constraints could be
attempted to be solved analytically, but in most cases a closed-form solution
to the problem is not possible, specially if inequality constraints are present.

This work is focused on robot coordination within the context of MRSs.
In order to fulfill equality and inequality constraints, or reaching such feasi-
ble regions in finite time if not initially in them, sliding-mode (SM) control
theory has been used in literature [9, 10], in particular geometric-invariance
approaches [11]. Previous work by the authors discusses how sliding-mode
geometric invariance can be used to solve some problems in single-robot sys-
tems [12, 13, 14], while the third author has preliminarily evaluated its effec-
tiveness for the coordination of single scalar realizable references commanding
input-constrained dynamical systems [15, 16]. The objective of this work is
generalizing the above ideas to deal with MRSs as well as incorporating con-
straint prioritization situations. Other ways to tackle constraint-satisfaction
and coordination problems in robotic systems are artificial intelligence [17],
neural networks [18], fuzzy logic [19], genetic algorithms [20], etc.

This paper proposes a solution to the coordination problem based on task-
priority redundancy resolution [21] and sliding mode (SM) control theory.
The basic idea is to define mandatory constraints for the MRS in order to
satisfy them via SM conditioning [22]. For this purpose, a coordination
supervisor, which is aware of the configuration of each robot, generates the
commanded joint accelerations to be sent to the joint controllers of the robots
(which are controlled independently using their own control architecture) so
that the constraints are fulfilled and that the reference tracking error is made
as small as possible. The proposed method only requires a few program
lines, has a short computation time and simplifies the user interface since
the method directly deals with the fulfillment of the constraints specified by
the robot end-user. However, since the proposed approach does not include
high-level planning, other more sophisticated solutions in the literature for
robot coordination [17, 18, 19] could lead to a better performance in certain
cases, e.g., when facing trap situations [12], at the expense, however, of a
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much higher computational cost.
The structure of the paper is as follows. Next section introduces some

preliminaries and notation, while Section 3 states the main problem to be
addressed. Next, Section 4 presents the basic theory used in this work. The
proposed method for robot coordination is developed in Section 5, while some
important remarks about the method are given in Section 6. The proposed
approach is applied in Section 7 and Section 8 to the model of two three-
revolute (3R) planar robots and two 6R PUMA-762 robots, respectively,
in order to show its feasibility and effectiveness. Finally, some concluding
remarks are given.

2. Preliminaries and notation

Let us describe the different elements of a multi-robot system, composed
of r robots to be coordinated.

Kinematics of the individual robots. Following the standard notation [23],
consider the i-th robot of a MRS being the ni-dimensional joint position
vector qi = [q1 . . . qni

]T its configuration, and pi = [p1 . . . pmi
]T being its

pose expressed as an mi-dimensional workspace position vector. As widely
known, the relationship between the configuration of the robot and its pose
is generically expressed as:

pi = li(qi), (1)

where the nonlinear function li is called the kinematic function of the robot.
The first- and second-order kinematics of the robot result in:

ṗi =
∂li(qi)

∂qi

q̇i = Jqi(qi)q̇i, p̈i = Jqi(qi)q̈i + J̇qi(qi)q̇i, (2)

where Jqi(qi) is the mi × ni Jacobian matrix, or simply Jacobian, of the
kinematic function li.

Kinematics of the multi-robot system. Considering that the MRS is composed
of r robots, the juxtaposition of vectors q = [qT

1 . . .qT
r ]

T and p = [pT
1 . . .pT

r ]
T

are the composite configuration and composite pose of the MRS, respectively.

3



Therefore, the first- and second-order kinematics of the MRS result in:

ṗ =




Jq1(q1) O · · · O

O Jq2(q2) · · · O
...

...
. . .

...
O O · · · Jqr(qr)


 q̇ = Jq(q)q̇, (3)

p̈ = Jq(q)q̈+ J̇q(q)q̇, (4)

where O denotes the zero matrix of suitable size and Jq(q) defines the MRS
Jacobian, which is an m×n block diagonal matrix, where m = m1+ . . .+mr

and n = n1 + . . .+ nr.

Robot control. In this paper, it will be assumed that there exists an underly-
ing robot control hardware and software which will be in charge of achieving
a particular joint acceleration from an acceleration command q̈c. In general,
the actual joint acceleration q̈ = Cq̈c+dc will not be exactly the commanded
one q̈c, where C represents the dynamics of the low-level robot control loop
and dc represents inaccuracies due to other torque disturbances. However,
we will assume that the dynamics of C is fast enough compared to that of q̈c

so that the relationship:

q̈ = q̈c + dc, (5)

holds approximately true, avoiding the need of complicating the model with
extra state variables.

Hard workspace constraints. Several types of inequality constraints are
present in MRSs whatever the task to be accomplished. We will denote
as hard constraints those which must be satisfied at all times for reasons of
safety, physical limits, etc., so that if they are not fulfilled, the robot op-
eration must be aborted. On one hand, each individual robot has its own
constraints. For instance, an inequality constraint of the form σ(qi) ≤ 0,
where σ is a generic constraint function, can be used to avoid collision be-
tween robot i and the obstacles of the environment, to avoid exceeding the
physical joint limits of robot i, etc. On the other hand, there are hard con-
straints that involve several robots. For instance, an inequality constraint
of the form σ(qi,qj) ≤ 0 can be used to avoid collisions between robot i
and robot j. Other constraints regarding speed of movement could also be
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Fig. 1. Coordination of multi-robot systems.

stated, in expressions in the form φ(q, q̇) ≤ 0.

3. Problem definition and objectives

Task specification. The above-defined robot system with its dynamics, con-
trollers and hard workspace constraints should carry out a coordinated task,
which can be thought of achieving a reference value for a certain set of func-
tions of the global pose. Hence, the coordinated task for the MRS will be
expressed by the following equation:

vref (t) = v(p(t)), (6)

where v is the coordination vector, which is a function of the composite pose
p, and vref(t) is the reference trajectory for this vector generated by an
external operator or high-level planner. The number of equalities in (6) will
usually be lower than the degrees of freedom of the MRS but these degrees of
freedom are reduced if the above mentioned hard constraints become active.
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The first- and second-order kinematics of v result in:

v̇ =
∂v(p)

∂p
ṗ =

∂v(p)

∂p
Jq(q)q̇ = Jpq(q)q̇, (7)

v̈ = Jpq(q)q̈+ J̇pq(q)q̇, (8)

where Jpq(q) is defined as the product of matrices ∂v
∂p

and Jq from chain rule

as, from (1), obviously, the composite pose p is a function of the composite
configuration q.

With the above setup, the coordination task given by (6) represents an
equality constraint for the MRS. The components of vref can be either con-
stant or varying in time.

For example, one of the coordination vector components can be used
to ensure that the distance between the end-effectors of robot i and robot
j remains unchanged when they are used to cooperatively carry an object
while satisfying its rigid body constraint, see Fig. 1. In the same example,
another components can be used, for instance, to ensure that the carried
object tracks a reference trajectory and orientation.

Note: Once the main ideas are presented, in Section 5.7, inspired on [24],
the setting will be generalized to one in which the reference vref(t) will be
expressed as vref(s(t)) being s(t) a scalar path parameter whose speed ṡ
can be varied in order to adapt the speed of the task execution. For better
readability, such issue will be not considered for the moment.

Constraint prioritization. In general, different levels of priority can be as-
signed to the constraints of the MRS. Such priority would indicate that a
lower-level constraint can be violated if its necessarily needed in order to
enforce a higher-level one.

In particular, the following levels are considered in this work:

• The first level includes the hard inequality constraints mentioned in
Section 2 (collision avoidance, joint limits, etc.) as well as those so
considered in the specification of the coordinated task, for instance
keeping fixed distance and relative orientation between effectors in or-
der to avoid breaking a transported object (rigid-body constraints).

• The second level includes the remaining constraints of the coordination
task.
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• Additionally, other soft constraints can be included into this level (or
in separate ones): for instance keeping non-critical distance bounds,
soft constraints on the speed of movement, etc.

Therefore, the constraints of the first level will be considered mandatory
for the MRS, while those belonging to second (and lower, if so introduced)
levels will be satisfied, if possible, using the remaining degrees of freedom
of the MRS. As later discussed, second-level constraints can be weighted in
order to apportion the amount of violation if needed to fulfill mandatory
ones. Obviously, there is no need to define such weights in the first-level ones
as they will always be fulfilled.

As discrete-time implementations of sliding regimes have a small chat-
tering band around the constraint (see [9] and Section 5.6), mandatory con-
straints should take into account such residual error in order to be cautiously
defined. Note that these issues are not too relevant if the proposed strategies
are evaluated at fast sampling rates.

3.1. Problem statement

Once the main concepts on the multi-robot setup and the coordinated
task to be executed have been presented (and are assumed to be specified
a priori), let us precisely state the problem to be addressed in the following
sections of this work.

Constraint space. From the above considerations, we will assume that the
MRS to be controlled is subjected to inequality constraints1 with different
levels of priority. This will give rise to lth-level feasible sets denoted as:

Φl =
{[

qT q̇T
]T | φl,i(q, q̇) ≤ 0

}
, l = 1, . . . ,M, i = 1, . . . , Cl, (9)

where Φl is the allowed region of the MRS’s state-space given by the con-
straints of the lth-level of priority, M is the number of priority levels, Cl is
the number of constraints in the lth-level of priority, and φl,i is a (nonlinear)

1Note that an equality constraint can be readily expressed as two inequality constraints,
i.e., the constraint φi = 0 is equivalent to φi ≤ 0 and −φi ≤ 0. Therefore, the above
equivalence will be implicitly used for the rest of the paper.

7



function of the MRS configuration2 q and its derivative q̇.
For the solution later proposed in this work for geometric invariance,

the functions φl,i need to be differentiable around the region given by
φl,i(q, q̇) = 0 and the partial derivatives ∂φl,i/∂q̇ around this boundary
should not vanish.

Constraint qualification. The mandatory constraints φ1,i included in the first
priority level must define a 1st-level feasible set Φ1 which must fulfill the
following two conditions in order to allow a “safe” abort:

∃
[
qT 0T

]T ∈ Φ1 (10)
[
qT q̇T

]T ∈ Φ1 ⇒
[
qT 0T

]T ∈ Φ1 (11)

where 0 represents the zero column vector of suitable size. The meaning
of such conditions is that a) Φ1 should be non-empty and, b) if a point of

the configuration
[
qT q̇T

]T
belongs to the feasible set Φ1, the same position

with zero speed also belongs to the feasible set. In this way, safe aborts can be
achieved by decelerating before reaching a point where the hard constraints
cannot be simultaneously satisfied (see Section 5.3 for details). Obviously, it
is assumed that the starting state of the MRS belongs to Φ1.

Objective. The goal of this work is to design a coordination supervisor (see
Fig. 1) that is aware of the configuration qi of each robot and that generates
the commanded joint acceleration vector q̈ic to be sent to the joint controllers
of each robot, so that:

• the first-level constraints are fulfilled;

• the actual coordination vector v of the MRS is as close as possible (via
a weighted measure) to the user-input value vref in the second-level
constraints;

• other third-level goals are achieved by using the remaining degrees of
freedom of the MRS.

2In many practical applications, some restrictions are usually made on the MRS pose p
and its derivative ṗ. As the MRS pose p is, actually, a function of the MRS configuration
q, such constraints are included in the general setting (9).
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The coordination system to be developed is based on task-priority redun-
dancy resolution, geometric invariance and sliding mode ideas.

The basic underlying idea in sliding-mode geometric invariance approach
is the ability to instantaneously change the derivative of a particular scalar
quantity related to a constraint. It will allow a simple computer implemen-
tation, in the line of other proposals by the authors [13, 14], fulfilling the
constraints specified by the robot end-user without recourse to high-level
planning.

In partially unstructured environments, the inequality constraints cor-
responding to the collision avoidance with unforeseen obstacles cannot be
known a priori. However, these constraints can be expressed in terms of the
measurements given by the proximity sensors of the robots (e.g., infrared or
ultrasonic sensors) in order to guarantee that the distance to the detected
obstacles does not fall below a certain threshold. If the unknown obstacles
do not change position, so the constraint qualification still holds (i.e., quickly
braking to zero speed is a feasible way of remaining in position bounds), the
reactive setting in [25] may be adapted to the case here considered (details
omitted for brevity).

Note that, in exchange for the simple implementation, however, compli-
cated tasks might not be solvable with such an approach and, in certain
cases, trap situations may occur [12] due to the absence of long-term plan-
ning. In that case, more sophisticated solutions in the literature for robot
coordination [17, 18, 19] would be needed.

4. Background theory

The proposal in next section of this work uses literature results from
priority-based redundancy resolution and singular value decomposition, as
well as geometric invariance via sliding mode. Well-known ideas on these
issues will be briefly reviewed next as preliminaries.

4.1. Task-priority based redundancy resolution

A classical approach to redundancy resolution in robotic systems consists
in augmenting the task vector in order to tackle several (possibly incompat-
ible) objectives simultaneously [26]. In this framework of multiple tasks, it
is useful to consider the task-priority strategy, which consists of assigning a
suitable order of priority to the given tasks. Thus, a lower-priority task is
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satisfied only by using the degrees of freedom in the null space of the higher-
priority ones [21]. When an exact solution is not possible for a given task at
a particular priority level, its error is minimized. The formulation for this
approach is as follows. Let us consider the case of M tasks which consist
on computing a command vector q̈c (i.e., in this work, the commanded joint
acceleration vector) while trying to fulfill the following acceleration equality
constraints:

Aiq̈c = bi, i = 1, . . . ,M, (12)

where matrix Ai and vector bi of the ith task are assumed known, and the
ordering given by index variable i reflects the priorities from highest priority
(i = 1) to lowest (i = M).

The solution q̈c,M that hierarchically minimizes the error of equations
in (12) is given by the following recursive formulation, proposed in [27]:

q̈c,i = q̈c,i−1 + (AiNi−1)
† (bi −Aiq̈c,i−1)

Ni = Ni−1(I− (AiNi−1)
†(AiNi−1)), i = 1, . . . ,M, q̈c,0 = 0, N0 = I,

(13)

where I and 0 denote the identity matrix and zero column vector, respec-
tively, of suitable size, superscript † denotes the Moore-Penrose pseudoin-
verse [28], and q̈c,i and Ni are the solution vector and null-space projection
matrix, respectively, for the set of first i tasks.

4.1.1. Regularization

Although the above solution does solve the required problem, a concern
for it [28] is that excessively large values of q̈c,i are obtained around the
singularities of matrix AiNi−1, i.e., when its minimum singular value tends
to zero.

In mandatory tasks it is indeed a serious problem due to ill-conditioning,
requiring speed reduction or task aborts. However, if minor deviations can be
allowed (for instance, in lower-level tasks), this drawback can be overcome
using matrix regularization for AiNi−1 in the computation of q̈c,i in (13).
A classical type of regularization is the damped least-squares (DLS) solu-
tion [29] that consists of minimizing the square norm of the equation error
together with the square norm of the solution weighted by a nonnegative
damping factor λ. In particular, the regularized Moore-Penrose pseudoin-
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verse of a matrix H using DLS results in:

H♯ = HT(HHT + λ2I)−1 = (HTH+ λ2I)−1HT, (14)

where superscript ♯ denotes the so-called regularized or singularity-robust
pseudoinverse and it is computationally more efficient to use the first ex-
pression above if H is a matrix with more columns than rows and to use
the second one otherwise. The value chosen for the damping factor can be
a small constant [30] or other more sophisticated proposals in the literature
can also be considered [31, 32].

4.2. Geometric invariance via sliding mode conditioning

This section reviews the basic ideas of geometric invariance theory [11].
Such theory has been successfully adapted by the authors to tackle some
particular problems in single-robot configurations [12, 13] and is also at the
heart of the proposals in this work.

Consider the following dynamical system with nx states and nu inputs:

ẋ = f(x,d) + g(x)u, (15)

being x(t) ∈ X ⊂ R
nx the state vector, d(t) ∈ D ⊂ R

nd an unmeasured
disturbance or model uncertainty, u(t) ∈ U ⊂ R

nu the control input vector
(possibly discontinuous), related by functions f : Rnx+nd → R

nx a vector field
defined in X

⋃
D, and g : Rnx → R

nx×nu a set of nu vector fields defined in
X .

Assume that the system state vector x is subject to user-specified in-
equality constraints φi(x) ≤ 0, i = 1, . . . , N , where φi(x) is the ith inequal-
ity constraint function. The region Φ of the state space compatible with the
constraints on state x is given by the set:

Φ = {x | φi(x) ≤ 0} , i = 1, . . . , N. (16)

and φi are assumed to be defined in such a way so that Φ is non-empty.
The goal is, then, to find a control input u such that the region Φ becomes

invariant (i.e., trajectories originating in Φ remain in Φ for all times t). Later,
the case of driving x as close as possible to a desired trajectory xref will be
integrated into the approach.

To ensure the invariance of Φ, the control input u must guarantee that
the right hand side of (15) points to the interior of Φ at all points in the
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boundary of Φ.
Mathematically, the invariance of Φ is ensured by an input u such that:

d(φi(x))

dt
= ∇φT

i (x)ẋ = ∇φT
i (x)f(x,d) +∇φT

i (x)g(x)u

= Lfφi(x,d) + Lgφi(x)u ≤ 0, ∀i | φi(x) > 0, (17)

where ∇ denotes the gradient vector, the scalar Lfφi and the nu-dimensional
row vector Lgφi denote the Lie derivatives of φi(x) in the direction of vector
field f and in the direction of the set of vector fields g, respectively. Note
that constraints such that φi(x) > 0 conform the set of active constraints.
The number of active constraints will be denoted as b.

In general, any vector u pointing toward the interior of the allowed re-
gion can be used to satisfy (17), i.e., any vector u such that the scalar Lgφiu

is negative. This vector could be computed, for instance, solving a linear
programming optimization problem for a fixed x. Although such direct so-
lution may be plausible with high-capacity hardware, the goal of this work
is presenting a simpler strategy, involving only gradient computation and a
handful of matrix operations. In particular, we can make the set Φ invariant
by means of the following variable structure control law:

u =

{
0 if max

i
{φi(x)} ≤ 0

uc otherwise,
(18)

where vector uc is chosen to satisfy:

Lgφ uc = −1b u
+, (19)

where matrix Lgφ contains the row vectors Lgφi of all active inequality
constraints (i.e., those constraints with φi > 0), b is the number of active
constraints, 1b is the b-dimensional column vector with all its components
equal to one and u+ is a positive constant to be chosen high enough to
satisfy (17). In particular, one set of sufficient, but not necessary, conditions
for making the set Φ invariant are that matrix Lgφ is full row rank and
that [13]:

u+ >
b∑

i=1

(max(Lfφi, 0)). (20)
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As long as the state trajectory tries by itself to leave the allowed region
Φ, the above control law (18) will make u switch between 0 and uc at a
theoretically infinite frequency, which can be seen as an ideal sliding mode
(SM) operation with absence of open-loop phase (reaching mode) [9]. There-
fore, sliding regimes are exploited here as a transitional mode of operation,
contrarily to conventional sliding control where φ = 0 is made attractive and
invariant. In fact, the above approach could be seen as a “one-side” sliding
control: if we are at φi > 0 then we make φi = 0 attractive in finite-time just
as sliding-mode control does, otherwise (i.e., when φi ≤ 0) we disregard it.

Note that the two inequality constraints obtained from an original equal-
ity constraint actually give rise to the classical “permanent” sliding regime,
i.e., we have a “two-sided” conventional sliding control where φi = 0 is made
attractive and invariant. In this case, (19) will alternatively contain a row
with different sign in Lgφi. This fact can be interpreted as adding conditions
Lgφi uc = −sign(φi) u

+ to (19) for the (always active) equality constraints.
This is well-known in conventional sliding-mode control literature to which
the reader is referred for further details [10].

Once SM is established on the boundary of Φ by the control action u,
a continuous equivalent control [9] can be obtained, which is the control re-
quired to keep the system on the boundary of Φ. Consequently, the SM
conditioning generated by (18) produces such control action without explicit
knowledge of it and with a low computational cost; this is a distinctive ad-
vantage of SM conditioning strategies [10].

Interested readers are referred to [9, 10] for further details on conventional
SM control theory, and to [11] for geometric-invariance based constrained
control applications of SM reference conditioning, as well as the previously
cited works by the authors [12, 13].

4.2.1. Higher-order invariance

The above presented framework produces a non-smooth u. If a smooth
control action is wished, the following proposal can be applied.

First, the initial constraint φ(x) ≤ 0 can be transformed to φ = φ(x) +
Kφ̇(x) ≤ 0. Then, we have φ = φ(x) +K∇φ · ẋ = φ(x) +K∇φ · (f(x,d) +
g(x)u). Hence, if we introduce an augmented state denoted as x̄T = [xT uT],
which includes the input u, then φ is actually a function of the augmented
state, i.e, φ(x̄,d).

Now, taking time derivatives, we have φ̇ = (∂φ/∂x̄)T ˙̄x + (∂φ/∂d)Tḋ;
hence, as u̇ appears in ˙̄x, then φ is relative degree one in u̇, so considering u̇ as

13



,q q�Robot
Dynamics

cq��

refv

Joint
Controllers

q��Priority-Task
Redundancy
Resolution

2 2

Level 2:
Reference Tracking

c
=A q b��

3 3

Level 3: Other Goals

c
=A q b��

1 1

Level 1:
Mandatory Constraints

c =A q b��

Fig. 2. Overview of the proposed approach.

the “new” input, the actual control u will be now smooth3. Indeed, it is u̇ the
variable which will now have a switching behavior if sliding-mode approaches
are again used. Alternatively, if the model were precisely known, one could
directly compute the range of u fulfilling φ ≤ 0 without differentiating φ.

When the constraint is active φ = 0 entails exponential decrease of the
original φ towards φ = 0 which is the original switching surface, i.e., φ(t) =
φ(0)e−K−1t. Hence, the value of K−1 represents a sort of pole-assignment
limiting the control action bandwidth.

This idea is revisited in Section 5.4.1.

5. Proposal

5.1. Overview

We are interested in exploiting the task-priority based redundancy reso-
lution and the geometric invariance setups described in the previous section
to address the problem stated in Section 3.1.

It is important to remark that, in general, the number of priority levels
and the constraints considered in each level can be freely chosen by the MRS
end-user. In particular, three priority levels are considered in this section4,
see Fig. 2.

The first level includes themandatory constraints whose violation would
result in collisions, invasion of forbidden space, breaking a transported ob-

3The assumption that ḋ is bounded is also needed as ḋ appears in φ̇. The assumption
is fulfilled, for instance, if d has finite bandwidth.

4Although a specific 3-level setup is considered in this section, other different setups
can be easily defined, adapting the guidelines presented here.
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ject, etc. The second priority level includes the constraints related with the
tracking of a reference trajectory by the MRS: deviations from the planned
trajectory are allowed if such deviations are needed to enforce the high-
priority constraints. Finally, the third priority level, which is the one with
the lowest priority, is considered to achieve a tertiary goal (for instance,
minimizing joint speeds, as later proposed) using the remaining degrees of
freedom of the MRS, if any. Following the notation in (9), we will assume
constraints are suitably grouped into φ1,i, φ2,i, φ3,i for each of the three levels.

In an abstract setting, the input to the the priority levels (Fig. 2) is
the state {q, q̇} of the MRS and each level gives an acceleration equality
Aiq̈c = bi (12) whose square error must be minimized. These acceleration
equalities are obtained using the geometric invariance theory presented Sec-
tion 4.2, in order to fulfill the corresponding constraints. The commanded
joint acceleration vector q̈c is determined by the task-priority redundancy
resolution block, where (13) is implemented, and serves as input to the joint
controllers of the robots.

5.2. Dynamical system and Lie derivatives

In order to use the geometric invariance theory in Section 4.2, a dy-
namical system in the form of (15) is constructed with the state vector

x =
[
qT q̇T

]T
, the disturbance vector d = dc and the input vector u = q̈c.

Therefore, the model is a double integrator and the following state equation
is obtained from (5):

ẋ =

[
O I

O O

]
x+

[
0

dc

]
+

[
O

I

]
u, (21)

and, hence, in order to set up (17), the Lie derivatives of each of the constraint
functions φi are given by:

Lgφi =∇φT

i g = (∂φi/∂q̇)
T (22)

Lfφi =∇φT

i f = (∂φi/∂q)
T
q̇ + (∂φi/∂q̇)

T
dc. (23)

5.3. Level 1: Mandatory constraints

As previously mentioned, the first level includes the hard inequality con-
straints mentioned in Section 2 (collision avoidance, joint limits, etc.), as
well as those so considered in the specification of the coordinated task, for
instance keeping fixed distance and relative orientation between effectors in
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order to avoid breaking a transported object (rigid-body constraints). To
satisfy these mandatory constraints, the SM conditioning of Section 4.2 is
considered with the dynamical system and Lie derivatives (22) and (23), the
constraint functions φi being those of the mandatory constraints φ1,i.

Note that many mandatory constraints depend only on the MRS con-
figuration q, i.e., σ1,i(q) ≤ 0. In order to achieve smooth speeds and using
acceleration as control variable, such constraints will be modified as proposed
in Section 4.2.1, in order for the sliding manifold to have relative degree one
with respect to q̈, that is:

φ1,i(q, q̇) = σ1,i(q) +K1,i

dσ1,i(q)

dt
= σ1,i +K1,i ∇σT

1,i q̇ ≤ 0, (24)

where K1,i is an arbitrary strictly positive parameter that determines the
rate of approach to the boundary of the original constraint σ1,i(q) ≤ 0.

From (5), it follows that the sliding manifold has relative degree one with
respect to the discontinuous action u, as required by SM theory [9], since φ̇1,i

(and q̈) explicitly depends on signal q̈c.
The partial derivatives of φ1,i for the original mandatory constraints σ1,i

depending only on the MRS configuration q, see (24), are given by:

(∂φ1,i/∂q)
T =∇σT

1,i +K1,iq̇
THσi (25)

(∂φ1,i/∂q̇)
T =K1,i∇σT

i , (26)

where Hσ1,i denotes the Hessian matrix of second-order partial derivatives of
σ1,i.

Of course, if there were constraints in this level which directly depended
on joint speeds, they would abide to the general case (22)–(23) without the
need of higher-order-invariance modifications.

Equation (19), for the first priority level results in:

Lgφ1q̈c = −1bu
+

1 , (27)

where matrix Lgφ1 contains the row vectors Lgφ1,i, see (22), of all active
mandatory constraints and u+

1 is the value of u+ chosen for the first priority
level.

Note that, if all these constraints originally depended only on the MRS
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configuration q, from (22) and (26) matrix Lgφ1 could be written as:

Lgφ1 = K1 ∇σT

1 , (28)

where K1 is a diagonal matrix with diagonal entries K1,i and matrix ∇σ1

contains the gradient vectors ∇σ1,i of all active mandatory constraints.

5.3.1. Unfulfillment of the constraints

If the solution given by the task-priority redundancy resolution (13) does
not satisfy the mandatory constraints the robots must be stopped to avoid
violating the constraints.

This situation may occur due to two causes: either matrix Lgφ1 is not
full row rank (e.g., this situation arises when the number of active constraints
is greater than the total number of joints n), or u+

1 has not been chosen high
enough (see Section 5.6).

Note that (24) fulfills the constraint qualification conditions (10)–(11).
Then, when the above situation arises, we known that σ1,i < 0 (indeed, a
first-order system σ + Kσ̇ ≤ 0 with initial condition σ(0) < 0 will verify
σ(t) ≤ σ(0)e−K−1t < 0 for all t ≥ 0; hence, while the system had solution for
q̈c we can ensure that σ1,i < 0 and the speed is also bounded σ̇ ≤ −σ/K).
So, at the moment(27) ceases to have a solution we have some time to carry
out a brake maneuver (in a fast enough way) before reaching the position
limits σ1,i = 0, further helped by the fact that the closer we are to the limit,
the slower the speed will be.

An option to reduce the robot speed in a “controlled” way is slowing
down the reference trajectory; this is later addressed in Section 5.7.

5.4. Level 2: reference tracking

The second priority level includes the equality constraint (6) related with
the tracking of a time-varying reference trajectory by the coordination vector
v of the MRS. This equality constraint can be rewritten as:

σ2(q) = vref − v(p) = e = 0, (29)

where e represents the tracking position error of the coordination vector.
As before, the above constraint will be modified via higher-order invari-

ance (Section 4.2.1) in order for the sliding manifold to have relative degree
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one with respect to q̈, that is:

φ2(q, q̇) = σ2 +K2,1

dσ2

dt
= e+K2,1ė = 0, (30)

where K2,1 is a positive parameter representing the desired time constant for
correcting deviations from the reference trajectory (if level 1 constraints do
not hinder it).

From (30) and (29), the time derivative of the vector constraint function
φ2 results in:

φ̇2 = ė +K2,1ë = v̇ref − v̇ +K2,1(v̈ref − v̈). (31)

Substituting (7) and (8) into equation (31), gives:

φ̇2 = v̇ref − Jpqq̇+K2,1(v̈ref − Jpqq̈− J̇pqq̇). (32)

So, from (32) and (5), the Lie derivatives of φ2 result in:

Lgφ2 =−K2,1Jpq (33)

Lfφ2 =(v̇ref +K2,1v̈ref)− (Jpq +K2,1J̇pq)q̇−K2,1Jpqdc (34)

Therefore, the equation (19) for the second priority level results in:

Lgφ2 q̈c = −sign(φ2)u
+
2 , (35)

where u+
2 is the value of u+ chosen for the second priority level and sign(·)

is the sign function discussed in Section 4.2 for equality constraints, i.e., the
tracking of the reference trajectory using (35) is equivalent to the conven-
tional sliding-mode control with switching command acceleration q̈c (with,
of course, no need of computing (34) due to the inherent robustness of the
sliding-mode approach).

5.4.1. Smooth acceleration options

If a smooth acceleration were wished, the higher-order invariance5 men-
tioned in Section 4.2.1 can be used more than one time, to obtain the new

5Note that this approach requires that the other priority levels consider also the jerk
as the control input instead of the acceleration, using higher-order invariance, too.
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sliding manifold:

φ2(q, q̇, q̈) = φ2 +K2,2

dφ2

dt
=e +K2,1ė+K2,2(ė+K2,1ë)

=e + (K2,1 +K2,2)ė +K2,1K2,2ë = 0, (36)

where K2,2 determines the time constant of the approach to φ2 = 0. Equiv-
alently, scaling φ2, we obtain the sliding manifold as:

K2,pe+K2,vė+ ë = 0, (37)

with K2,p = (K2,1K2,2)
−1, and K2,v = (K−1

2,1 + K−1
2,2 ). If sliding-mode ap-

proaches are again used (arising from the expression of the time-derivative
of φ2) the new control input

...
q c (i.e., the commanded jerk vector) will have

a switching behavior but acceleration q̈c will not.
Indeed, as an alternative to the previous jerk approach, the smooth com-

manded acceleration vector q̈c could be directly computed from solving (37)
without differentiating φ2. In particular, substituting (29), (8) and (5) into
equation (37), gives:

K2,pe +K2,vė + v̈ref − v̈ = K2,pe+K2,vė+ v̈ref − Jpqq̈− J̇pqq̇

= K2,pe +K2,vė + v̈ref − Jpq(q̈c + dc)− J̇pqq̇ = 0. (38)

Solving Jpqq̈c from (38) results in:

W2Jpqq̈c =W2(v̈ref +K2,pe+K2,vė)−W2(Jpqdc + J̇pqq̇), (39)

where W2 is an arbitrary diagonal weighting matrix.
Remark: Note that the acceleration equality (39) is equivalent to the

classical operational space robot control [33]. Moreover, the commanded ac-
celeration v̈c in (39) for the coordination vector (i.e., v̈c = v̈ref+K2,pe+K2,vė)
represents a classical kinematic controller utilized for robotic trajectory track-
ing [34] (i.e., a correction based on the position and velocity errors plus a feed-
forward of the second-order time derivative of the reference) and introduces
the poles given by the roots of the polynomial with coefficients [1 K2,v K2,p].

The main drawback of the equation-solving approach is that all the terms
in (39) should be known (i.e., the system model). For example, if the dis-
turbance dc is not known a priori, as common in practice, the accurate
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computation of q̈c with (39) is not possible, whereas the computation of q̈c

with (35) is robust [9] against dc since it is collinear with the discontinuous
control action, see (5).

5.5. Level 3: other goals

The third priority level is used to achieve a secondary goal by means of
the remaining degrees of freedom of the MRS, if any. Among the different
available options in literature, in this work we have chosen to stop moving
unnecessary joints, i.e., trying to fulfill level-3 constraints φ3,i(q, q̇) defined
as q̇ = 0. As in the above case, this can be achieved in three ways: (a)
sliding-mode settings in acceleration, or for smooth accelerations (b) choosing
sliding-mode in jerk, or (c) solving the equality

q̈c = −K3,redq̇, (40)

where K3,red is the desired time constant for the joint speed reduction.

5.6. Chattering

In theory, sliding regimes are produced by infinite-frequency commuta-
tion. However, as widely known, the finite-frequency commutation of any
practical SM implementation makes the system leave the ideal SM and os-
cillate with finite frequency and amplitude inside a “band” around φ = 0,
which is called chattering [9]. Similarly to other robotic applications based
on SM conditioning [12, 13, 14], an upper bound for the chattering band △φ

of the proposed approach can be derived using the Euler-integration of the
discontinuous action given by (19), that is:

△φ = Ts |Lgφ uc| = Ts u
+ 1b, (41)

where Ts is the sampling period of the robotic system and the value of u+ is u+

1

for the first priority level, u+

2 for the second priority level, etc. This chattering
amplitude must be less than the error allowed in the constraint inequality
fulfillment. For instance, this allowable error could be given by the looseness
of the joints, the mechanical rigidity between the robot gripper and the object
being held, the security margin used in the definition of the constraints for
collision avoidance, etc. The value of u+ can be chosen in a conservative
manner setting it to a “big” number to ensure that it is greater than the
lower bound given by (20) and (23), as usual in SM applications. However,
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from (41), such big numbers may induce unnecessary chattering amplitude,
so it is a design compromise. Also, there is a relationship between the choice
of u+ and the speed at which a particular trajectory can be followed. This
issue is discussed next.

5.7. Reference speed auto-regulation (optional)

The above sections propose a complete multi-level sliding-mode based
robot coordination. Anyway, as outlined in Section 3, if the reference trajec-
tory is expressed as a function of a parameter s(t), i.e., vref(s), the above
scheme can be optionally refined in order to regulate ṡ (speed of task execu-
tion) in order to better fulfill speed-related constraints with reduced error:
based on the constraint qualification (11) slow movement will help entering
the feasible zone, hence, if speed of reference can be reduced there is greater
opportunity for mandatory constraints to be fulfilled with lower errors and
avoiding emergency stop procedures (Section 5.3.1), reducing the chattering
amplitude, too. In order to accomplish the above goal, the procedures in [24]
are adapted in the context of the present problem below.

First, note that reducing the value of the joint speeds q̇, the term
(∂φi/∂q)

T
q̇ in (23) gets smaller. Hence, from (20), if disturbances are

not large, this will allow using a smaller value of u+, beneficial for reducing
chattering while keeping invariance conditions.

Note now that, if tracking error and disturbances are small and (39)
is fulfilled, then from equation (37) the velocity error ė converges to zero
exponentially with time constant K−1

2,v , i.e., v̇ converges to v̇ref , and v̇ is
proportional (via suitable Jacobians) to q̇.

In summary, under the above conditions q̇ is approximately proportional
to v̇ref at a particular position q(s). As v̇ref is, too, proportional to ṡ,
this motivates the idea of slowing down the advance of s (i.e., reducing ṡ
and, henceforth q̇) in order to avoid significant unfulfillment of mandatory
constraints without needing to increase u+

1 .
In numerical implementations, checking that the value of u+

1 is not large
enough can be carried out by detecting that a particular constraint is repeat-
edly unfulfilled in consecutive time steps because, for active constraints, (27)
entails that the sign of φi must immediately switch from positive to negative
in one sample.

If such situation is detected, it means that the joint speeds (i.e., ṡ) must
be reduced in order to decrease the minimum value of u+

1 required for invari-
ance. In order to recover and accelerate again, if such repeated unfulfillment
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situation does not occur, it means that there is room for increasing ṡ again
(up to a reasonable maximum ṡmax), as u

+

1 is higher than needed.
Therefore, the following equations governing ṡ are proposed, with design

parameters ṡmax and τAR indicating, respectively, the maximum speed of the
tracking task and the time allowed for completely braking to zero speed (or
accelerating to ṡmax):

uAR =

{
−1 if ∃ i | (φ1,i(k) > 0) and (φ1,i(k − 1) > 0)
1 otherwise

(42)

fAR = τ−1

AR

∫
uAR, with fAR ∈ [0, 1] (43)

ṡ = fARṡmax. (44)

In the above equations, uAR is a signal indicating whether the speed
should be increased or decreased depending on the detection of repeated
unfulfillment, fAR is the accumulated6 effect of uAR, saturated at zero (full
stop) and one (full speed ṡmax), used in (44) as a scale factor for the motion
rate parameter.

Note that in normal operation (when the optimal speed is in intermediate
values) uAR will be a high-frequency switching signal between −1 and 1 whose
average value (integral has a low-pass effect) will transparently regulate ṡ to
achieve the commanded task without violation of mandatory constraints. In
this way, the speed autoregulation integrates nicely in the overall sliding-
mode control framework.

Note however, as q̇ depends, too, on disturbance signals and possible
nonzero initial error, reference speed autoregulation does not preclude a sit-
uation in which emergency stops might be required due to these situations.

6. Additional remarks

Some remarks on the proposed method are given below.

6.1. Advantages and disadvantages of the proposed approach

Main advantages of the proposed method:

6Obviously, integral in (43) is actually implemented as summation of uARTs.
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• Only requires a few program lines (see the Appendix) and has reduced
computation time since only linear algebra is used.

• Simplifies the user interface since the method directly deals with the
fulfillment of the constraints specified by the robot end-user.

• Uses partial information of the system model, i.e., the Lie derivatives
Lfφi (23) are not needed, only the Lie derivatives Lgφi (22) are re-
quired. Therefore, only first order derivatives (gradient vectors, Jaco-
bian matrices, etc.) are needed, see (26) and (33), and no second-order
derivatives (Hessian matrices, derivative of Jacobians, etc.) are re-
quired, see (25) and (34).

Let us now comment on the possible limitations:

• The SM algorithm used in this work uses linear extrapolation to predict
the value of the constraint functions at the next step. This implies
that only local data of first-order derivatives are used. Therefore, since
higher-order derivatives are ignored, the algorithm may be blocked in
trap situations. In some cases, these situations could be avoided using
a planner with the complete geometric data of the problem in order to
“simulate” for a large prediction horizon. However, the complexity of
this planner and its computational cost are substantially greater than
those of the algorithms proposed in this work, see the Appendix.

• Similarly to other SM control applications, the proposed method suffers
from the chattering problem, see Section 5.6. However, this drawback
becomes negligible for reasonable fast sampling rates, see (41).

6.2. Guidelines for designing the algorithm parameters

Constraint approaching parameter. The value of constraint approaching pa-
rameter Kj,i can be interpreted as the time constant of the “braking” process
when approaching the boundary of the original constraints σj,i, i.e., when
approaching a constraint at high speed, the constraint will be reached in ap-
proximately 3Kj,i seconds and transversal speed will be also lowered to zero
after that time has elapsed.

Amplitude of the control action. The value of u+ has to be as close as possible
to its lower bound given by (20) (with, perhaps, some safety margin) in
order to have reduced chattering amplitude and high chattering frequency,
see Section 5.6.
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Sampling period. The sampling period Ts has to be small enough in order to
have small chattering amplitude (41). The minimum value for the sampling
period is determined by the computation time of one iteration of the proposed
algorithm, which is around five microseconds for the case study in Section 8
(see the Appendix).

6.3. Differentiability of the constraint functions

As stated in Section 3.1, the constraint functions φl,i must be differen-
tiable. If this assumption is not satisfied at a certain time, the SM behavior
of the proposed approach (Section 4.2) is temporarily lost and the constraints
may be unfulfilled.

6.4. Moving constraints

The proposed approach can also be used if there are moving constraints,
e.g., moving obstacles with known trajectories. In this case φi also depends
explicitly on time and, hence, the derivative of φi in equation (17) must be

replaced by φ̇i = L̃fφi
+ Lgφi u, where L̃fφi

is equal to Lfφi + ∂φi/∂t, and
Lgφi and Lfφi are given again by (22) and (23), respectively. Therefore, all

developments keep unchanged except for changing Lfφi to L̃fφi
. Thus, only

the value of the lower bound for u+ is changed when moving constraints are
considered and, hence, the iterative computation of the proposed algorithm
remains the same and a high-enough constant u+ will suffice for practical
implementation.

7. Simulation: first example

Although the proposed approach for robot coordination can be applied
to any MRS, in this section a simple two-dimensional example is considered
for better illustration of the main features of the algorithm. The simulation
results presented in this section were obtained using MATLABR©. A real-time
animation of the resulting movement for this first simulation example can be
visualized at http://politube.upv.es/play.php?vid=58151.

Details of pseudo-code and computing time for actual implementation of
the proposed strategy appears in an Appendix at the end of the paper.
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Fig. 3. Multi-robot system used for 2D simulation: two 3R planar robots carrying a bar.

7.1. Description of the 3R planar double robot setup for the first example

In the proposed first simulation example, coordination between two open-
chain planar mechanisms composed by four links (the first of them is fixed)
connected serially by three revolute joints, i.e., two 3R planar robots, is
considered. The end-effector of each robot is used to grasp the end of a rigid
bar and, therefore, both robots must be properly coordinated to carry the
bar.

Fig. 3 depicts the MRS in consideration, as well as the notation for the
different coordinates of the robots and the transported object. In the figure,
Li is the length of the ith moving link and Lsep is the distance between the

first joint of both robots, and
[
xi yi

]T
denote the cartesian planar position

of the point located at the end of the ith moving link (i = 1, 2, 3 for the first
3R robot and i = 4, 5, 6 for the second 3R robot).

The origin of the reference frame has been located at the midpoint be-
tween the first joint of both robots and the X-axis is aligned along the line
joining these joints, see Fig. 3. The bar angle with respect to the horizontal
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axis is denoted as θV .
It will be assumed that the transported bar can freely rotate around the

grippers located at both ends of the bar, i.e., there is an extra revolute joint
between the end-effectors of each robot and the bar.

From the referred figure and reference frame, the positions
[
xi yi

]T
are

given by the equations:

[
xi

yi

]
=



−(Lsep/2) +

i∑
j=1

Lj cos(q1 + · · ·+ qj)

i∑
j=1

Lj sin(q1 + · · ·+ qj)


 , i = 1, 2, 3, (45)

[
xi

yi

]
=



(Lsep/2) +

i∑
j=4

Lj cos(q4 + · · ·+ qj)

i∑
j=4

Lj sin(q4 + · · ·+ qj)


 , i = 4, 5, 6. (46)

The pose vector considered for both 3R robots is the cartesian position
of their end-effectors, that is:

p1 = l1(q1) = l1(q1, q2, q3) =
[
x3 y3

]T
(47)

p2 = l2(q2) = l2(q4, q5, q6) =
[
x6 y6

]T
. (48)

Furthermore, three elements are considered for the coordination vector v
of the MRS: the cartesian coordinates (xV , yV ) of the midpoint of the bar
(namely, the tracking point, i.e., the point that tracks the reference) and the
bar angle θV . Therefore, the 3-element coordination vector of the MRS is
given by:

v(p) = v(x3, y3, x6, y6) =



xV

yV
θV


 =




(x3 + x6)/2
(y3 + y6)/2

arctan
(
y6 − y3
x6 − x3

)


 . (49)

7.2. Constraints for the first example

As previously discussed, level 3 constraints have been considered to be
q̇ = 0. The constraints arising in the two upper levels are discussed next.
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7.2.1. Mandatory constraints (level 1) for the first example

Three sets of constraints are considered in the first priority level, i.e., that
with the highest priority.

First, the rigid body constraint associated with the bar carried by the
robots must be fulfilled at all times. This equality constraint is given by:

σ1,R = L2
bar −

(
(x6 − x3)

2 + (y6 − y3)
2
)
= 0, (50)

where Lbar is the length of the bar.
Second, it will be considered that the boundary of the allowed workspace

is given by two perpendicular straight lines. Such lines will depart from
the point (xmax, ymin) and will be parallel to the reference frame axis, i.e.,
xmax and ymin are the maximum and minimum allowed values for the x- and
y-coordinates, respectively.

Since the allowed workspace is convex, assuming for simplicity that the
width of the robot links and carried bar is negligible, the following inequality
constraints must be fulfilled to guarantee that every point of the 3R robots
and carried bar is inside the allowed workspace:

σ1,i = xi − xmax ≤ 0, i = 1, . . . , 6, (51)

σ1,i = −yi−6 + ymin ≤ 0, i = 7, . . . , 12. (52)

As a last mandatory constraint, the following inequality is also considered
for the angle of the bar carried by the robots:

σ1,θ = |θV | − θmax ≤ 0, (53)

where θmax is the maximum allowed value for the bar angle deviation from
the horizontal direction.

7.2.2. Reference tracking (level 2) for the first example

For the simulations, the reference path for the bar’s center is given by the
following expression:

vref(s) =



xV,ref(s)
yV,ref(s)
θV,ref(s)


 =



2 cos(s+ π/4)− 2 sin2(s+ π/4)

2.6 sin(s+ π/4)
0


 , (54)
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with s = 0 . . . (2π− 0.1). The resulting reference trajectory appears in green
lines in Fig. 6a and Fig. 6b to be later discussed.

7.3. Simulation conditions and parameter values for the first example
Simulation was run under the following conditions:

i) The length Li of the robot links, the length Lbar of the bar, and the
distance Lsep between the first joint of both robots were set to 1.

ii) The acceleration equalities used for the first, second and third priority
levels are (27), (39) and (40), respectively. Therefore, by comparing
these acceleration equalities with equation (12), it is clear that A1 =
Lgφ1, b1 = −1bu

+
1 , A2 = W2Jpq, b2 = W2(v̈c−J̇pqq̇) (the disturbance

vector dc has been considered zero), A3 = I and b3 = −Kredq̇.

iii) For the mandatory constraints in the first priority level, the following
parameter values were used: an amplitude u+

1 of 10 for the switching
law; a constraint approaching parameter K1,i of 0.1 seconds for all
constraint functions; and the parameter values xmax = 2.2, ymin = −2.2
and θmax = 0.1 rad.

iv) For the reference tracking in the second priority level, the follow-
ing parameter values were used: a diagonal weighting matrix W2 =
diag

([
1 1 0.1

])
, a correction gain K2,p of 400 s−2 and a correction

gain K2,v of 40 s−1.

v) For the joint speed reduction in the third priority level, a reduction
gain K3,red of 50 s−1 was used.

vi) The speed auto-regulation algorithm described in Section 5.7 was im-
plemented using a maximum speed ṡmax for the tracking task of 1 s−1

and an integration time constant τAR of 0.05 s.

vii) The commanded joint acceleration vector q̈c was computed with a sam-
pling period Ts of 0.5 milliseconds, using (13) but replacing the Moore-
Penrose pseudoinverse by the singularity-robust pseudoinverse (14). A
constant damping factor λ = 0.01 was used.

viii) We considered the initial MRS configuration vector q(0) =[
π/2 0.4930 −1.9056 π/2 −1.4126 1.9056

]T
rad, yielding an ini-

tial robot position error vector e(0) =
[
−0.1 −0.2 0

]T
.
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Fig. 4. Position tracking error e = vref − v: ex (solid, blue), ey (dashed, magenta) and
eθ (dotted, red).

7.4. Simulation results for the first example

The results of the simulation are depicted at different figures: Fig. 4 and
Fig. 5 show the simulated behavior of the global system regarding tracking
errors and constraints; twelve snapshot frames of the robot configuration
during the reference tracking at different time instants are shown in Fig. 6a–
6b.

Fig. 4 shows how initial error is corrected with the dynamics (37), and
how deviations from the reference trajectory are forced by hitting level-1
constraints in later instants; the mandatory angle limitation is hit at the
time interval 7-9 s.

Fig. 5 depicts the detail of different parameters of the proposed strategy
(speed autoregulation, active constraints). The figure shows that:

• the minimum-amplitude auto-regulation algorithm is active (i.e., fAR <
1) during most of the simulation (see two upper plots in the figure and
actual joint speeds in third plot);

• all mandatory constraints are fulfilled, i.e., max(φ1,i) ≤ 0 (4th plot)
–note that the bar length constraint is an equality, hence, always equal
to zero so it has been omitted from the plots–;

• in some phases of the simulation there are up to three active constraints
at a time ( bottom plot).

For further clarity, details on each of the presented frames from the
achieved movements in Fig. 6a and Fig. 6b are discussed below:
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Fig. 6a. Sequence of frames (frames 1 to 6) showing the 2D MRS configuration during
the task simulation: reference path (thick line, green), path followed by the tracking point
(thin line, blue), boundary of the allowed workspace (dashed red lines), robot joints (solid
black discs), robot moving links (thin cyan bars), fixed link (triangles), carried bar (thick
magenta bar) and tracking point (solid blue star). Active constraints at each frame shown
in Fig. 5. (A video of the simulation can be played at http://politube.upv.es/play.
php?vid=58151)
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Fig. 6b. Sequence of frames (frames 7 to 12) showing the 2D MRS configuration during
the task simulation: reference path (thick line, green), path followed by the tracking point
(thin line, blue), boundary of the allowed workspace (dashed red lines), robot joints (solid
black discs), robot moving links (thin cyan bars), fixed link (triangles), carried bar (thick
magenta bar) and tracking point (solid blue star). Active constraints at each frame shown
in Fig. 5. (A video of the simulation can be played at http://politube.upv.es/play.
php?vid=58151)
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• first and second frames (t = 0 and t = 0.35, respectively) in Fig. 6a:
the initial position error is made zero;

• third and fourth frames (t = 0.7 and t = 1.7, respectively): track-
ing error arises because the robot end-effectors reach the mechanical
boundary of their workspace (i.e., the robots are completely extended);

• fifth and sixth frames (t = 2.3 and t = 3, respectively): the tracking
error is made zero again;

• seventh frame (t = 3.7, Fig. 6b): tracking error arises because the
end-effectors reach again their fully stretched mechanical limits;

• eighth frame (t = 5.45): the workspace constraint on the y-coordinate
becomes simultaneously active for both end-effectors;

• ninth frame (t = 6.3): the tracking error is zero again;

• tenth frame (t = 6.9): the workspace constraint on the x-coordinate
becomes active for one end-effector;

• eleventh frame (t = 8.7): the workspace constraint on the x-coordinate
and the bar angle constraint are simultaneously active;

• twelfth frame (t = 9.7): the end point of the reference path is achieved.

8. Simulation: case study

The two-dimensional example shown in previous section was developed
for better illustration of the main features of the algorithm. However, one
could argue that it cannot be taken as evidence of generality of the proposed
method. Therefore, a three-dimensional case study is presented in this sec-
tion to demonstrate the effectiveness and real applicability of the method.
As before, simulation results presented in this section were obtained using
MATLABR© and a real-time animation of the resulting movement for this case
study can be visualized at http://politube.upv.es/play.php?vid=58153.
Details of pseudo-code and computing time for actual implementation of the
proposed strategy appears in an Appendix at the end of the paper.
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Fig. 7. Multi-robot system used for 3D simulation: two 6R PUMA-762 robots carrying
a bar.

8.1. Description of the robot setup for the case study

In the proposed case study, coordination between two PUMA-762 robots
is considered. The PUMA-762 robot is a classical 6R serial manipulator with
spherical wrist, which is widely used in industrial applications. The grippers
of both robotic arms are used to grasp the end of a rigid bar in the shape of a
rectangular prism and, therefore, both robots must be properly coordinated
to carry the bar. Fig. 7 depicts the MRS in consideration for the case study,
where letters “A” and “B” stand for the robot on the left and right side,
respectively.

The location of both robots is as follows. The Z -axis of the reference
frame is aligned with the first joint of robot A and its origin is located at the
same height of the second joint, i.e., the shoulder joint. Robot B is located
2 m away from robot A along the Y -axis of the reference frame and is rotated
by π rad around the Z -axis of the reference frame, see Fig. 7.
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The pose vector considered for both PUMA-762 robots is composed by
the cartesian coordinates (x, y, z) describing the end-effector position and the
roll-pitch-yaw Euler angles (α, β, γ) describing the end-effector orientation,
that is:

pA = lA(qA) = lA(q1, q2, q3, q4, q5, q6) =
[
xA yA zA αA βA γA

]T
(55)

pB = lB(qB) = lB(q7, q8, q9, q10, q11, q12) =
[
xB yB zB αB βB γB

]T
,

(56)

where the units for linear and angular dimensions are meters and radians,
respectively, and lA and lB represent the kinematic function of robot A
and robot B, respectively, which can be readily obtained using the Denavit-
Hartenberg method [33] (the Denavit-Hartenberg parameters of the PUMA-
762 robot are shown in Table 1).

Link i αi−1 (rad) ai−1 (m) di (m) θi
1 0 0 0 q1
2 −π/2 0 0 q2
3 0 0.65 0.19 q3
4 −π/2 0 0.6 q4
5 π/2 0 0 q5
6 −π/2 0 0.211 q6

Table 1. Denavit-Hartenberg parameters of the PUMA-762 robot using the standard
convention (the value of d6 includes the gripper length).

Furthermore, six elements are considered for the coordination vector v

of the MRS: the cartesian coordinates (xV , yV , zV ) of the midpoint of the
bar (i.e., the tracking point) and the roll-pitch-yaw Euler angles (αV , βV , γV )
describing the bar orientation. Therefore, the 6-element coordination vector
of the MRS is given by:

v(p) = v(pA,pB) =
[
xV yV zV αV βV γV

]T
. (57)

Assuming that the rigid body constraints of the bar (which are defined
below) are satisfied, the midpoint of the bar and its orientation can be com-
puted, for instance, using only the pose vector of robot A.
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8.2. Constraints for the case study

The constraints arising in the two upper levels are discussed below and,
again, level 3 constraints have been considered to be q̇ = 0. However, note
that if the six rigid body constraints in level 1 (Section 8.2.1) together with
the six constraints in level 2 (Section 8.2.2) associated with the reference
tracking are independent, no remaining degrees of freedom of the MRS will
be available for level 3.

8.2.1. Mandatory constraints (level 1) for the case study

As in the first simulation example, three sets of constraints are considered
in the first priority level.

The first set is composed of the equality rigid body constraints associated
with the bar carried by the robots. These equality constraints are given by:

σ1,eq,L = L2

bar −
(
(xB − xA)

2 + (yB − yA)
2 + (zB − zA)

2
)
= 0 (58)

σ1,eq,u =
[
xB − xA yB − yA zB − zA

]
uA = 0 (59)

σ1,eq,v =
[
xB − xA yB − yA zB − zA

]
vA = 0 (60)

σ1,eq,α = αB − αA = 0 (61)

σ1,eq,β = βB − βA = 0 (62)

σ1,eq,γ = γB + π − γA = 0 (63)

where Lbar is the length of the bar and vectors uA and vA represent the
directions of the X - and Y -axis, respectively, of the tool frame of robot A.
These vectors are computed from the Euler angles (αA, βA, γA) using the
expression:

uA =
[
cos(αA) cos(βA) sin(αA) cos(βA) − sin(βA)

]T
(64)

vA =



− sin(αA) cos(γA) + cos(αA) sin(βA) sin(γA)
cos(αA) cos(γA) + sin(αA) sin(βA) sin(γA)

cos(βA) sin(γA)


 (65)

The meaning of the above rigid body constraints is as follows. The equal-
ity (58) forces the distance between the tools of both robots to be constant
and equal to the bar length. The equalities (59) and (60) guarantee that the
tool of robot A points to the position of the tool of robot B. Finally, the
equalities (61)–(63) ensure that the tool of robot B points in the opposite
direction of the tool of robot A and has the same rotation.
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A second set of inequality constraints is considered to avoid collision be-
tween the carried bar and a sphere obstacle. In particular, the Cartesian

position
[
xcb,i ycb,i zcb,i

]T
of every point i of the carried bar must fulfill the

following inequality constraint:

Rso −
√

((xcb,i − xso)2 + (ycb,i − yso)2 + (zcb,i − zso)2 ≤ 0 ∀i, (66)

where Rso and
[
xso yso zso

]T
are the radius and center, respectively, of the

sphere obstacle.
The infinite number of points of the carried bar to be considered in (66) for

collision avoidance can reduced to a set of characteristic points Pi such that
the distance from every point of the carried bar to the closest characteristic
point is less than a predetermined value, namely security margin, which is
used to enlarge the constrained region of the sphere obstacle. Therefore, the
following set of inequality constraints are considered:

σ1,in,P i = dsm +Rso −
√

((xcb,P i − xso)2 + (ycb,P i − yso)2 + (zcb,P i − zso)2 ≤ 0

i = 1, . . . , Ncp, (67)

where dsm is the security margin, Ncp is the number of characteristic points

considered and
[
xcb,P i ycb,P i zcb,P i

]T
is the Cartesian position of the char-

acteristic point Pi of the carried bar.
As a last mandatory constraint, the following inequality is also considered

for the angle θcb between the carried bar and the the horizontal plane to not
exceed the maximum allowed value θmax:

σ1,in,θ = |θcb| − θmax =
∣∣∣arctan

(
wAz

/√
w2

Ax + w2
Ay

)∣∣∣− θmax ≤ 0, (68)

where vector wA =
[
wAx wAy wAz

]T
represents the direction of the Z -

axis of the tool frame of robot A and is computed from the Euler angles
(αA, βA, γA) using the expression:

wA =




sin(αA) sin(γA) + cos(αA) sin(βA) cos(γA)
− cos(αA) sin(γA) + sin(αA) sin(βA) cos(γA)

cos(βA) cos(γA)


 . (69)
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8.2.2. Reference tracking (level 2) for the case study

For the case study, the reference path for the coordination vector is a
straight line parallel to the X -axis of the reference frame given by the fol-
lowing expression:

vref(s) =




xV,ref(s)
yV,ref(s)
θV,ref(s)
αV,ref(s)
βV,ref(s)
γV,ref(s)



=




0.51− s/10
1.111
0.35
0
0

−π/2



, (70)

with s = 0 . . . 10.

8.3. Simulation conditions and parameter values for the case study

Simulation was run under the same conditions as the first example (Sec-
tion 7.3) except for the following:

i) The dimensions of the carried bar (i.e., the rectangular prism) are:
length (Lbar) 0.6 m, width 0.08 m and height 0.04 m.

ii) For the mandatory constraints in the first priority level, the follow-

ing parameter values were used: Rso = 0.25 m,
[
xso yso zso

]T
=[

0 0.95 0.2
]T

m, Ncp = 7 (characteristic points for collision avoid-
ance located uniformly along the symmetry axis of the bar), dsm = 0.1
m7 and θmax = 0.5 rad.

iii) For the reference tracking in the second priority level, a diagonal weight-
ing matrix W2 = diag

([
1 1 1 0.1 0.1 0.1

])
was used.

iv) The commanded joint acceleration vector q̈c was computed with a sam-
pling period Ts of of 0.2 milliseconds.

7Since there are seven characteristic points located uniformly along the symmetry axis
of the bar and the dimensions of the bar are (L×W×H) = (0.6×0.08×0.04), the distance
from a point on the boundary surface of the carried bar to the closest characteristic point
ranges from 0.02 m to

√
0.052 + 0.042 + 0.022 = 0.0671 m. Therefore the security margin

must be larger than 0.0671 m.
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Fig. 8. Position tracking error e = vref − v: ex and eα (solid, blue), ey and eβ (dashed,
magenta) and ez and eγ (dotted, red).

v) We considered the initial MRS configuration given by qA(0) =[
0.6226 −1.2196 0.0976 −1.2689 −1.0176 2.6065

]T
rad and

qB(0) =
[
2.1998 −1.4427 0.3852 0.9771 −0.7893 −2.3775

]T
rad,

yielding a zero initial robot position error e(0) = 0.

8.4. Simulation results for the case study

As in the first example, the results of the simulation are depicted at
different figures: Fig. 8 and Fig. 9 show the simulated behavior of the global
system regarding tracking errors and constraints; twelve snapshot frames
of a 3D representation of the MRS (robot A, robot B, carried bar, sphere
obstacle) during the reference tracking at different time instants are shown
in Fig. 10a–10b.

Fig. 8 shows how deviations from the reference trajectory arise when the
mandatory inequality constraints for collision avoidance (i.e., φ1,in,P i) become
active at the time interval 1.8-8.2 s, see fifth plot in Fig. 9. Fig. 8 also shows
that the deviation eγ for the yaw angle of the carried bar stops increasing
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Fig. 10a. Sequence of frames (frames 1 to 6) showing a detailed view of the 3D MRS
operation area during the task simulation: reference path (thick line, green), path followed
by the tracking point (thin line, blue), obstacle (sphere) and carried bar (prism, gray).
Active constraints at each frame shown in Fig. 9. (A video of the simulation from different
perspectives can be played at http://politube.upv.es/play.php?vid=58153)
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Fig. 10b. Sequence of frames (frames 7 to 12) showing a detailed view of the 3D MRS
operation area during the task simulation: reference path (thick line, green), path followed
by the tracking point (thin line, blue), obstacle (sphere) and carried bar (prism, gray).
Active constraints at each frame shown in Fig. 9. (A video of the simulation from different
perspectives can be played at http://politube.upv.es/play.php?vid=58153)
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once it reaches 0.5 rad since the inequality constraint for the bar angle θcb
(i.e., φ1,in,θ) becomes active, which occurs at the time interval 4.4-5.8 s, see
fifth plot in Fig. 9.

In contrast to the first example, the scale factor fAR of the speed auto-
regulation algorithm has been omitted from the plots of Fig. 9 because its
value is almost constant at 1 during the whole simulation. Therefore, the
motion rate parameter ṡ is constant at full speed ṡmax, which means that the
chosen amplitude u+

1 for the switching law of the mandatory constraints is
large enough to track the whole reference trajectory at maximum speed.

Fig. 9 also shows that:

• the joint speeds for robot A and robot B are less than 4 rad/s and 2
rad/s, respectively (see two upper plots in the figure);

• the error in the fulfillment of the mandatory equality constrains
(rigid body constraints of the carried bar) is below 2 · 10−3, i.e.,
maxi(|φ1,eq,i|) ≤ 2 · 10−3, which agrees with the value given by (41)
for the chattering band: Tsu

+

1 = 2 · 10−4 · 10 = 2 · 10−3. Note also
that the maximum error in the fulfillment of the original constraint
functions σ1,eq,i is even smaller8, around 10−3 m (linear coordinates)
and rad (angular coordinates), which is a very reasonable value for the
maximum error9 in the fulfillment of the rigid body constraints (third
plot);

• all inequality constraints of level 1 are fulfilled, i.e., maxi(φ1,in,i) ≤ 0
(fourth plot);

• in some phases of the simulation there are up to three active inequality
constraints at a time, i.e., up to nine constraints of level 1 are active
at a time (bottom plot).

For further clarity, details on each of the presented frames from the
achieved movements in Fig. 10a and Fig. 10b are discussed below:

8Note that σ1,eq,i is obtained by passing signal φ1,eq,i through a first-order low-pass filter
whose cutoff frequency is equal to 1/K1,i, see (24). Therefore, this filter smooths out the
chattering band of φ1,eq,i as the chattering frequency and/or the constraint approaching
parameter K1,i increase.

9If needed, smaller errors can be obtained by increasing the sampling rate.
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• first and second frames (t = 0 and t = 0.91): there is no tracking error;

• third frame (t = 1.82): tracking error arises because two inequality
constraints of level 1 become active in order to avoid collision with the
sphere obstacle;

• fourth to ninth frames (t = 2.73, t = 3.64, t = 4.55, t = 5.45, t = 6.36,
t = 7.27): there is tracking error;

• tenth frame (t = 8.18): the tracking error is made zero again since
no inequality constraint is active because the sphere obstacle has been
overcome;

• eleventh frame (t = 9.09): there is no tracking error;

• twelfth frame (t = 10): the end point of the reference path is achieved.

9. Conclusions

An approach for robot coordination was developed using task-priority
and sliding mode related concepts. In particular, the proposal is based on
defining mandatory constraints representing the coordination of the multi-
robot system, non-mandatory reference tracking ones and third-level goals.
Sliding mode conditioning was proposed to ensure the satisfaction of the
constraints, at different levels, using joint acceleration (or jerk, if so wished)
as control input. If the model is known, lower level constraints can be also
satisfied via model inversion.

The pseudo-code of the proposed approach appears in the Appendix,
which simplifies the robot user interface since the method directly deals
with the fulfillment of the constraints. Although the method was illustrated
for two particular multi-robot systems (two 3R planar robots and two 6R
PUMA-762 robots), the conclusions drawn for the proposed approach also
apply to other settings.

Appendix. Computer Implementation

The pseudo-code of the proposed approach for robot coordination is
shown below. The algorithm, which is executed at a sampling period of
Ts seconds, uses the following auxiliary functions:
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• Constraint functions and gradient vectors for the first priority level:
φ1,i(q, q̇) and ∇σ1,i(q).

• Kinematic functions and Jacobian matrix: li(qi) and Jpq(q).

• Coordination vector and reference path: v([pT
1 . . .pT

r ]
T) and vref(s).

• Moore-Penrose pseudoinverse and regularized pseudoinverse functions
(Section 4.1): (·)† and (·)♯.

• Sensors: GetRobotState(), which returns the current robot state given
by q and q̇.

• Actuators: SendToJointControllers(q̈c), which sends the current com-
manded joint acceleration vector to the joint controllers.

The computation time per iteration of the algorithm in a computer with
Intel Core i7-870 processor at 2.93 GHz clock frequency using MATLABR©

R2009a (compiled C-MEX-file) was around 1.2 microseconds and 5 microsec-
onds for the first simulation example in Section 7 and the case study example
in Section 8, respectively.
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Algorithm executed at sampling period of Ts seconds

1 while s < send do

2 [q, q̇] =GetRobotState();
3 if ∃ i | (φ1,i(q, q̇) > 0) and (φ1,i,prev > 0) then uAR = −1;
4 else uAR = 1 ; // Eq. (42)
5 fAR = fAR + (Ts/τAR)uAR ; // Integrator, Eq. (43)
6 if fAR > 1 then fAR = 1 ; // Integrator saturation

7 if fAR < 0 then fAR = 0 ; // Integrator saturation

8 ṡ = fARṡmax ; // Speed auto-regulation, Eq. (44)
9 s = s+ Tsṡ ; // Discrete-time (D-t) integration

10 v̇ref = (vref(s)− vref,prev)/Ts ; // D-t derivative

11 v̈ref = (v̇ref − v̇ref,prev)/Ts ; // D-t derivative

12 J̇pq = (Jpq(q)− Jpq,prev)/Ts ; // D-t derivative

13 v̈c = v̈ref +K2,v(v̇ref − Jpq(q)q̇) +K2,p(vref(s)
−v([l1(q1)

T . . . lr(qr)
T]T) ; // Kinematic controller, Eq. (39)

14 A1 = K1∇σT
1 (q), ∇σ1 with all ∇σ1,i | φ1,i > 0 ; // Eq. (28)

15 b1 = −1bu
+

1 ; // Eq. (27)
16 A2 = W2Jpq(q) ; // Eq. (39)

17 b2 = W2(v̈c − J̇pqq̇) ; // Eq. (39)
18 A3 = I ; // Eq. (40)
19 b3 = −K3,redq̇ ; // Eq. (40)

20 q̈c,1 = A
♯
1b1 ; // Eq. (13), i = 1

21 N1 = I−A
†
1A1 ; // Eq. (13), i = 1

22 q̈c,2 = q̈c,1 + (A2N1)
♯(b2 −A2q̈c,1) ; // Eq. (13), i = 2

23 N2 = N1(I− (A2N1)
†(A2N1)) ; // Eq. (13), i = 2

24 q̈c,3 = q̈c,2 + (A3N2)
♯(b3 −A3q̈c,2) ; // Eq. (13), i = 3

25 φ1,i,prev = φ1,i(q, q̇) ∀ i ; // For next iteration

26 vref,prev = vref(s) ; // For next iteration

27 v̇ref,prev = v̇ref ; // For next iteration

28 Jpq,prev = Jpq(q) ; // For next iteration

29 SendToJointControllers(q̈c,3);

30 end
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