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Abstract

An integrated solution based on sliding mode ideas is proposed for robotic
trajectory tracking. The proposal includes three sliding-mode algorithms for
speed auto-regulation, path conditioning and redundancy resolution in order
to fulfill velocity, workspace and C-space constraints, respectively. The pro-
posed method only requires a few program lines and simplifies the robot user
interface since it directly deals with the fulfillment of the constraints to find
a feasible solution for the robot trajectory tracking in a short computation
time. The proposed approach is evaluated in simulation on the freely acces-
sible 6R robot model PUMA-560, for which the main features of the method
are illustrated.

Keywords: Sliding mode, robot control, collision avoidance

1. Introduction

The main objective of robot control systems is the tracking of a reference
trajectory, which involves the generation of a control signal to make the error
between the robot position and the reference zero [1]. In this sense, this work
presents an integrated solution for robotic trajectory tracking based on three
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sliding-mode algorithms recently proposed by the authors1 for speed auto-
regulation [2], path conditioning [3] and redundancy resolution [4] in order
to fulfill velocity, workspace and C-space constraints, respectively. These
constraints may be due to different reasons such as joint speed limits [5],
joint angle limits [6], obstacle collision avoidance [7], etc.

The proposed approach, which only requires a few program lines, sim-
plifies the user interface since the method directly deals with the fulfillment
of the constraints specified by the robot end-user. Therefore, in case of rel-
atively simple tasks the proposed method finds a feasible solution for the
robot trajectory tracking in a short computation time.

The proposed approach can be useful for many type of robots and indus-
trial applications, such as spray painting [8], arc welding [9], assembly [10],
polishing [11], etc. For instance, in this work it is used a well-known and free-
access six-revolute (6R) robot, the PUMA 560, for which the main distinctive
features of the method are illustrated in a spray painting application.

The outline of the paper is as follows. Next section introduces some
preliminaries, while Section 3, Section 4 and Section 5 present the three
sliding-mode algorithms proposed for speed auto-regulation, path condition-
ing and redundancy resolution, respectively. A discussion about the method
is given in Section 6. The proposed approach is applied in Section 7 to the
PUMA-560 robot model in order to show the feasibility and effectiveness of
the method. Finally, some concluding remarks are given.

2. Preliminaries and control scheme

2.1. Notation

Following the standard notation [12], consider a robot system with
q = [q1 . . . qn]

T being the robot configuration or n-dimensional joint position
vector and p = [p1 . . . pm]

T being the robot pose or m-dimensional workspace
position vector. A robot is said to be redundant when the dimension m of the

1The three algorithms were individually developed and tested by the authors in previous
works [2, 3, 4]. However, all three are adapted in this work to be used in a more general
framework than that of previous works. In this sense, this research effectively integrates
the three algorithms in the same robot control scheme and shows their complementarity
for robot trajectory tracking. Another important contribution of this work is the given
pseudo-code for the proposed approach (including the three sliding-mode algorithms) so
that it can be easily implemented on many actual robot platforms.
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workspace is less than the dimension n of the configuration space (hereafter,
C-space), i.e., m < n. The degree of kinematic redundancy is computed as
n − m. For the rest of the paper it is assumed that the robot at hand is
redundant.

The relationship between the robot configuration and the robot pose is
highly nonlinear, generically expressed as:

p = l(q), (1)

where the function l is called the kinematic function of the robot model.
The first order kinematics results in:

ṗ =
∂l(q)

∂q
q̇ = J(q)q̇, (2)

where J(q) is denoted as the m × n Jacobian matrix or simply Jacobian of
the kinematic function.

Let us denote as pref (t) the workspace reference, which can be usually
expressed in terms of a desired path function v(λ) whose argument is the
so-called motion parameter λ(t) as

pref = v(λ). (3)

Finally, the gradient of a scalar function f(x1, . . . , xn) will be denoted
∇f = [ ∂f

∂x1
. . . ∂f

∂xn
]T.

2.2. Control scheme

Fig. 1 shows the control scheme proposed in this work for robotic trajec-
tory tracking, which contains three sliding-mode (SM) algorithms for speed
auto-regulation, path conditioning and redundancy resolution. The SM speed
auto-regulation block generates the motion rate parameter λ̇ so that it is as
close as possible to the desired value λ̇d and that satisfies velocity constraints
on the desired workspace velocity vector ṗd, desired joint velocity vector q̇d

and robot state (q, q̇), see Section 3. The SM path conditioning block gen-
erates a modified workspace reference p∗

ref to be sent to the robot kinematic
controller so that it is as close as possible to the original value pref and that
belongs to the allowed workspace, see Section 4. The redundancy resolu-
tion block computes the desired joint velocity vector q̇d in order to track
the desired workspace velocity vector ṗd as primary task, while a secondary
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goal is achieved using redundancy in order to satisfy C-space constraints on
the robot state (q, q̇), see Section 5. The kinematic controller generates the
workspace velocity vector ṗd closing a loop using the robot state and the
modified workspace reference p∗

ref in order to make the tracking error zero.

Kinematic controller. For this work, it is considered a classical kinematic
controller utilized for robotic trajectory tracking [13], see Fig. 1, which con-
sists of a two-degree of freedom (2-DOF) control that incorporates a cor-
rection based on the position error ep = p∗

ref − p by means of the position
loop controller Cp plus a feedforward term depending on the first-order time
derivative of the modified workspace reference, i.e. ṗ∗

ref . Note that, the path
function v(λ) needs to be differenciable due to the feedforward term. For
instance, if the reference path is given by a set of tracking points generated
by the robot operator, it can be made smooth and continuous by using spline
or Bézier interpolation.

Classical redundancy resolution. The desired joint velocity vector q̇d is com-
puted by the redundancy block in Fig. 1 in order to satisfy the first order
kinematic relation:

ṗd = J(q) q̇d. (4)

In general, in the case of redundant robots an infinite number of solutions
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for q̇d satisfying (4) exist2, which are given by:

q̇d =J†(q) ṗd +B(q) b, (5)

where J†(q) is the so-called right pseudo-inverse of J(q) (i.e., J† ≡
JT(JJT)−1); B(q) is an n × n matrix whose last m column vectors are
the n-dimensional null vector and whose first n − m column vectors form
an orthonormal basis for the null space of J(q) (e.g., this basis can be eas-
ily obtained from the singular value decomposition [15] of J(q)); and b is
the so-called performance vector which is an arbitrary n-dimensional column
vector. The first term in (5) represents the minimum-norm solution or base
solution, while the second term is the homogeneous solution that gives rise to
infinite possible solutions for q̇d depending on the value of performance vector
b. In general, this vector can be expressed as a function of the robot state,
i.e. b(q, q̇). The reader is referred to literature for choices of performance
vector [16, 6, 4].

2.3. Constrained control via sliding modes

Consider the following dynamical system

ẋ = f(x) + g(x)u+ ν (6)

where x is the state vector, u is the control input (which has been assumed
scalar for simplicity), f and g are two vector fields of x and vector ν accounts
for the system uncertainty.

Consider also the constraint:

σ(x) ≤ 0, (7)

where σ is a function of the state vector whose first-order time-derivative is
obtained as:

σ̇ =
∂σ(x)

∂x

T

(f(x) + g(x)u+ ν). (8)

Provided ∂σ(x)
∂x

T
g(x)‖σ(x)=0 6= 0, condition σ̇ < 0 can be ensured on the

2It is implicitly assumed that J(q) is full row rank, since otherwise the robot configu-
ration q is said to be singular [14] and the desired workspace velocity vector ṗd in general
cannot be achieved.
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border σ(x) = 0 by means of a high enough input u, so as to avoid violating
constraint (7). In this sense, the following switching law

u =

{

uSM if σ(x) ≥ 0
0 otherwise,

(9)

can be employed to enforce the system (6) to robustly fulfill a given con-
straint, i.e., a high enough uSM will yield a switching law robust against
unknown matched ν [17]. Observe that as long as the system tries by itself
to leave the allowed region, the above control law will give rise to a theoretical
infinite switching frequency, which can be seen as an ideal SM operation with
absence of open-loop phase (reaching mode). Although infinite switching fre-
quency cannot be achieved in practice, which leads to an oscillation within a
“band” around σ = 0 known as chattering [18], in software-based implemen-
tations this drawback becomes negligible for reasonable fast sampling rates.
This is the case of the three algorithms described in the subsequent sections.
Interested readers are referred to [19, 20] for further details on conventional
SM control theory and to [17] for constrained control applications.

3. Sliding-mode speed auto-regulation

3.1. Problem statement

We consider that the robotic system to be controlled is subjected to ve-
locity constraints given by:

ΦSA(ṗd, q̇d) =
{

[

ṗT
d q̇T

d

]T | σSA,i(ṗd, q̇d) ≤ 0
}

, i = 1, ..., NSA, (10)

where σSA,i is a function of velocity vectors ṗd and q̇d that is positive if and
only if the ith-constraint is not fulfilled. For the solution later proposed in
Section 3.2, it will be assumed that function σSA,i is differentiable around
the boundary given by σSA,i(c) = 0

The main control goal of the speed auto-regulation algorithm (SAA) can
therefore be stated as to generate a motion rate parameter λ̇ so that it is
as close as possible to the desired value λ̇d and that belongs to the allowed
workspace ΦSA given by (10).
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Fig. 2. Speed auto-regulation algorithm.

Constraint functions. In this work, two types of velocity constraint functions
are considered for the SAA:

σSA,W (ṗd) = ‖ṗd‖2 − ṗmax ≤ 0 (11)

σSA,Ji(q̇d,i) = |q̇d,i| − q̇max,i ≤ 0, (12)

where ṗmax is the maximum speed allowed for the Euclidean-norm of the
workspace velocity vector ṗ and q̇max,i is the maximum speed allowed for
the ith-joint3. The first constraint is useful, for example, in spray painting
applications in order to guarantee a minimum paint deposition at any point
on the workspace reference path. The second type of constraint is useful to
not exceed the speed limits of the joint actuators in order to avoid tracking
errors, since in general they arise when the desired joint velocities are sat-
urated. Note that, the maximum allowable speeds ṗmax and q̇max,i could be
computed as a function of the robot position in order to obtain lower values
when the robot is working close to the operator area, or as a function of the
output of proximity sensors in order to obtain lower values when a presence
is detected within the robotic workcell.

3.2. Algorithm

Fig. 2 shows the diagram of the SM algorithm proposed in [2] to solve4

the speed auto-regulation problem stated in Section 3.1. In particular, the

3It has been assumed for the sake of simplicity that joint velocity limits are symmetric,
i.e. q̇min,i = −q̇max,i, although expression (12) can be trivially modified if that were not
the case

4The framework of the SAA proposed in this work is more general than that presented
in [2], where only joint speed limit constraints (12) were considered.
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following variable structure control law is considered:

uSA =

{

0 if max
i

σSA,i(c) ≥ 0

1 otherwise.
(13)

As shown in Fig. 2, the control signal fSA is generated by passing the
discontinuous signal uSA through a low-pass filter. This control signal acts as
a scale factor for the desired motion rate parameter λ̇d, so that λ̇ is obtained
as:

λ̇ = fSAλ̇d. (14)

The filter in Fig. 2 has unit gain at low frequencies and its bandwidth

needs to be chosen sufficiently fast for quick stops to be allowed, but slow
enough in order to smooth out λ̇. Naturally, the best choice for the filter
bandwidth is strongly related with the workspace reference trajectory to be
followed.

The order of the filter is selected to satisfy the so-called transversality

condition [20] for SM, which imposes that the sliding manifold must have
unitary relative degree with respect to the discontinuous action, i.e., its first-
order time derivative (σ̇SA,i) must explicitly depend on uSA. Note that, the
kinematic controller in Fig. 1 includes a first-order time derivative term,
whereas the relative degree between signal p∗

ref and signal pref is zero, see
the path conditioning algorithm proposed in Section 4.2. Hence, ṗd and q̇d

(i.e., σSA,W and σSA,Ji) explicitly depend on λ̇, which in turns depends on
fSA, see Fig. 1. Therefore, the filter must be of first-order for σ̇SA,W and
σ̇SA,Ji to explicitly depend onf uSA. Thus, the control signal fSA is generated
from the discontinuous signal uSA by means of a first-order low-pass filter:

ḟSA = −αSA fSA + αSA uSA, (15)

where the scalar αSA is the filter cutoff frequency representing the filter
bandwidth. For further details see [2].
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4. Sliding-mode path conditioning

4.1. Problem statement

We consider now that the robotic system to be controlled is subjected to
workspace constraints given by:

ΦPC(p) = {p | σPC,i(p) ≤ 0} , i = 1, ..., NPC, (16)

where σPC,i is a function of the workspace position coordinate p that is
positive if and only if the ith-constraint is not fulfilled. Note that, σPC,i(p) =
0 represents the boundary of the ith-constraint. For instance, a constraint
σPC,sphere = 1− ‖p‖2 ≤ 0 would indicate that the allowed workspace ΦPC is
included outside a sphere of radius 1, centered at the origin.

In order to satisfy some requirements for the solution later proposed in
Section 4.2, the following assumptions are considered to hold: the workspace
reference pref is twice differentiable; the constraint functions σPC,i are twice
differentiable around the boundary given by σPC,i(p) = 0 and their gradients
∇σPC,i around this boundary do not vanish. For non-differentiable con-
straints, there are techniques in literature [21] that may be used to enclose
such non-smooth regions by smooth mathematical objects with an arbitrary
degree of precision.

The main control goal of the path conditioning algorithm (PCA) can
therefore be stated as to generate a modified workspace reference p∗

ref to be
sent to the robot kinematic controller so that it is as close as possible to
the original value pref and that belongs to the allowed workspace ΦPC given
by (16).

Improvement of the constraint space. The actual constraint space (16) will
be modified to also include the speed of movement in the following way:

Φ∗
PC(p, ṗ) =

{

[pT ṗT]T | φPC,i(p, ṗ) = σPC,i(p) +KPC,i

dσPC,i(p)

dt

= σPC,i +KPC,i ∇σT
PC,i ṗ ≤ 0

}

, i = 1, ..., NPC , (17)

where φPC,i(p, ṗ) is the modified ith workspace constraint and KPC,i is the
constraint approaching parameter of the PCA ith-constraint, which is a free
design parameter that determines the rate of approach to the boundary of
the ith-constraint. Thus, expression (17) introduces an additional degree

9
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of freedom necessary to reach the limit in a controlled fashion in a similar
way to the classical proportional-derivative (PD) controller: the closer to
the boundary of the original constraint, the lower the maximum allowed
approaching speed to this boundary.

4.2. Algorithm

Fig. 3 shows the diagram of the SM algorithm proposed in [3] to solve the
path conditioning problem stated in Section 4.1. The commanded workspace
path is shaped by modifying the workspace reference pref as follows:

p∗
ref = pref + fPC , (18)

where fPC is the correcting action to the original workspace reference.
Signal fPC is generated by passing the discontinuous signal uPC through

a low-pass filter, as shown in Fig. 3. This filter smooths out the signal added
to the main control loop and it must be of second-order for p̈∗

ref to explicitly

depend on uPC (i.e., for φ̇PC,i to explicitly depend on uPC) in order to have
unitary relative degree between the sliding manifold and the discontinuous
action, as required by SM theory. Particularly, the following second-order
butterworth low-pass filter could be used:

f̈PC = −
√
2αPC ḟPC − α2

PCfPC + α2
PCuPC , (19)

with the scalar αPC being the filter cutoff frequency.
Moreover, the following variable structure control law is considered:

uPC =

{

uSMp if max
i

φPC,i(p
∗
ref , ṗ

∗
ref) ≥ 0

0m otherwise,
(20)
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where uSMp is computed as:

uSMp = −∇σPC1hu
+
PC , (21)

where 1h is the h-dimensional column vector with all its components equal to
one, h is the number of active constraints, matrix∇σPC contains the gradient
vectors ∇σPC,i of all active constraints and u+

PC is a positive constant to be
chosen high enough to establish a SM on the constraints boundary. To fulfill
that, u+

PC must be [3]:

u+
PC >

h
∑

i=1

(max(Di, 0))

/

eigmin(∇σT
PC ∇σPC), (22)

with Di =∇σT
PC,i

(

pref +
√
2α−1

PC ṗref + α−2
PC p̈ref

)

+ α−2
PC ṗ∗ T

ref HPC,i ṗ
∗
ref

−∇σT
PC,i

(

p∗
ref + (

√
2α−1

PC − α−2
PC K−1

PC,i)ṗ
∗
ref

)

, (23)

where function eigmin(·) computes the minimum eigenvalue of a square matrix
and HPC,i denotes the Hessian matrix of second-order partial derivatives of
σPC,i. In order to obtain a definite value for u+

PC in (22), matrix ∇σT
PC has

to be full row rank, which is the transversality condition [20] for the PCA
and implies that the gradients of the active constraints must be linearly
independent (obviously, h ≤ m must be fulfilled).

The above control law leads to a sliding regime [19] (i.e., control signal
uPC switches between 0m and uSMp with a theoretically infinite frequency)
on the boundary of the ith-constraint if around this boundary the system
tries by itself to leave the allowed region. For further details see [3].

5. Sliding-mode redundancy resolution

5.1. Problem statement

We consider now that the robotic system to be controlled is subjected to
C-space constraints given by:

ΦRR(q) = {q | σRR,i(q) ≤ 0} , i = 1, ..., NRR, (24)

where σRR,i is a function of the robot configuration q that is positive if and
only if the ith-constraint is not fulfilled.
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For the solution later proposed in Section 5.2, the functions σRR,i need to
be twice differentiable around the boundary given by σRR,i(q) = 0 and their
gradients ∇σRR,i around this boundary should not vanish. Moreover, it will
also be assumed the kinematic framework, i.e. the dynamics given by the joint
controllers is negligible compared to the dynamics of the workspace reference
pref , which implies that the actual joint velocity vector q̇ is approximately
equal to the desired joint velocity vector q̇d, see Fig. 1.

The main control goal can therefore be stated as to generate a joint
velocity vector q̇d to be sent to the robot joint controllers so that the desired
workspace velocity vector ṗd is tracked using the non-redundant degrees of
freedom of the robot, while the remaining redundant degrees of freedom are
used to implement a classical redundancy resolution scheme (RRS) together
with a supervisory block to guarantee that q belongs to the allowed C-space
ΦRR given by (24).

Improvement of the constraint space. As before, the actual constraint
space (24) will be modified in the following way:

Φ∗
RR(q, q̇) =

{

[qT q̇T]T | φRR,i(q, q̇) = σRR,i(q) +KRR,i

dσRR,i(q)

dt

= σRR,i +KRR,i ∇σT
RR,i q̇ ≤ 0

}

, i = 1, ..., NRR, (25)

where φRR,i(q, q̇) is the modified ith C-space constraint and KRR,i is the
constraint approaching parameter of the RRS ith-constraint, which is again
a free design parameter that determines the rate of approach to the boundary
of the ith-constraint.

Cartesian position constraints. In practical applications with redundant
robots one common objective is that the Cartesian position p̄j =
[

xj yj zj
]T

of every point j of the robot belongs to the allowed Carte-
sian position space ΦRR,P (p̄j) = {p̄j | σRR,i(p̄j) ≤ 0 ∀ i}. Thus, the allowed
C-space results in ΦRR,C(q) =

{

q | σRR,i(̄lj(q)) ≤ 0 ∀ i, j
}

, where l̄j is the
kinematic function of the Cartesian position of point j. The infinite number
of points of the robot to be considered in the above expression can reduced
to a set of characteristic points such that the distance from every point on
the boundary surface of the robot links to the closest characteristic point
is less than a predetermined value which is used to enlarge the constrained

12
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region of the Cartesian position space. Some simplifications can be made in
case the allowed Cartesian position space is convex. In such circumstances,
the links could be enclosed with polyhedrons and the characteristic points
to be considered are those on their vertices, whereas the original constrained
region does not have to be enlarged. Moreover, if the width of the robot
links is negligible, the characteristic points to be considered are reduced to
the end-points of the links.

5.2. Algorithm

The RRS proposed in this research, see Fig. 4, consists of the combination
of two signals:

b = bc + fRR, (26)

where bc is the performance vector of a classical RRS and fRR is a dis-
continuous signal generated by a supervisor block in order to fulfill C-space
constraints. Thus, the supervisor block becomes active when there is a risk of
violating a given constraint. Otherwise, a secondary goal given by a classical
RRS is achieved using redundancy.

Signal fRR is obtained by passing the discontinuous signal uRR through a
low-pass filter, as shown in Fig. 4. In order to have unitary relative degree
between the sliding manifold and the discontinuous action, this filter must
be of first-order for q̈d, see (5) and (26), to explicitly depend on uRR (i.e.,
for φ̇RR,i to explicitly depend on uRR):

ḟRR = −αRR fRR + αRR uRR, (27)

with the scalar αRR being the filter cutoff frequency.

13



Moreover, the following variable structure control law is considered:

uRR =

{

uSMb if max
i

φRR,i(q, q̇) ≥ 0

0n otherwise,
(28)

where uSMb is computed as:

uSMb = −BT∇σRR1hu
+
RR, (29)

where h is the number of active constraints, matrix ∇σRR contains the gra-
dient vectors ∇σRR,i of all active constraints and u+

RR is a positive constant
to be chosen high enough to establish a SM on the constraints boundary. To
fulfill that, u+

RR must be [4]:

u+
RR >

h
∑

i=1

(max(Fi, 0))

/

eigmin(∇σT
RR BBT ∇σRR), (30)

with Fi =(α−1
RR K−1

RR,i − 1)∇σT
RR,i q̇+ α−1

RR q̇T HRR,i q̇

+∇σT
RR,i (J

† ṗd +B bc), (31)

where HRR,i denotes the Hessian matrix of second-order partial derivatives
of σRR,i. In order to obtain a definite value for u+

RR in (30), matrix ∇σT
RR B

has to be full row rank, which is the transversality condition [20] for the RRS
and implies that the vectors obtained by projection of the gradients of the
active constraints onto the null space of J must be linearly independent.

The above control law leads to a sliding regime [19] (i.e., control signal
uRR switches between 0n and uSMb with a theoretically infinite frequency)
on the boundary of the ith-constraint if around this boundary the system
tries by itself to leave the allowed region. For further details see [4].

6. Discussion

Constraints definition. As we could use as constraint function, for example,
either σi or 5σi, all the PCA and RRS constraints should defined to be in-
terpretable in a homogeneous way. Moreover, as mentioned in Section 2.3,
all SM algorithms suffer from chattering and, hence, the constraints will be
violated by a small amount. Therefore, the constraint functions should be
defined adding a safety margin depending on the estimated chattering ampli-
tudes, the environment modeling inaccuracies, the robot control inaccuracies,
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etc. The values of the chattering amplitudes for the SAA, PCA and RRS
can be found in [2, 3, 4].

Main advantages of the algorithms.

• The three SM algorithms only require a few program lines and have
reduced computation time, see the Appendix.

• The PCA and RRS nicely complement each other, since the former
modifies the reference path to fulfill workspace constraints, while the
latter uses redundancy to fulfill C-space constraints as secondary task
(i.e., the RRS cannot modify the main task given by the workspace
reference).

• The SAA generates, without explicit knowledge of it, the maximal
tracking speed which is compatible with the velocity constraints, so
that the cycle time of the robot task is minimized.

• The robot workspace is fully exploited by the PCA in order to maintain
the faithfulness to the workspace reference path.

• The limit surface of the workspace and C-space constraints is reached
smoothly, depending on a free design parameter.

Limitations of the algorithms. The SM algorithms used in this work use linear
extrapolation to predict the value of the constraint functions at the next step,
i.e., σ(t+ T ) = σ(t) + T σ̇(t). This implies that only local data of first-order
derivatives are used. Therefore, since higher-order derivatives are ignored,
the PCA and RRS algorithms may be blocked in trap situations. In some
cases, these situations could be avoided using a planner with the complete
geometric data of the problem in order to “simulate” for a large prediction
horizon. However, the complexity of this planner and its computational cost
are substantially greater than those of the algorithms proposed in this work,
see the Appendix.

Use of the algorithms. The proposed method with three SM algorithms can
be executed either online or offline. The latter requires the robot model
(e.g., it is typically approximated to an integrator if the low-level control
of the robot is fast enough) and, as part of the planning stage, allows to
anticipate the trap situations mentioned above. The result is a sequence of
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joint velocities {q̇d0, q̇d1, . . .} to be sent to the robot joint controllers. If the
proposed method runs online, there is a risk of having trap situations, but it
has the advantage of correcting the position errors (e.g., the initial position
error) and of being robust against robot modeling errors. The ideal situation
is a hybrid execution, i.e., the method is firstly executed offline to anticipate
and solve abnormal behaviors and, secondly, it is executed on the real robot
system, where abnormal behaviors may arise only if the robot modeling error
in the offline execution is large.

Guidelines for designing the algorithm parameters. Next, some guidelines for
the conceptual design of the four groups of parameters of the SAA, PCA and
RRS are given.

The value of constraint approaching parameters KPC,i and KRR,i can be
interpreted as the time constant of the “braking” process when approaching
the boundary of the original constraints σPC,i and σRR,i. That is, when
approaching a PCA or RRS constraint at high speed, it will be reached in
approximately 3KPC,i or 3KRR,i seconds, respectively, and transversal speed
will be also lowered to zero after that time has elapsed.

The value of the cutoff frequencies αSA, αPC and αRR of the SAA, PCA
and RRS filters, respectively, must be high enough to obtain a good approx-
imation of the theoretical SM behavior, but not too high to avoid significant
chattering amplitude.

The values ‖uSMp‖2 and ‖uSMb‖2 of the PCA and RRS control action
amplitudes (which are directly related to u+

PC and u+
RR, respectively) have to

be as close as possible to their lower bounds given by (22) and (30) (with,
perhaps, some safety margin) in order to have reduced chattering amplitude
and high chattering frequency.

The sampling periods TSA, TPC and TRR of the SAA, PCA and RRS,
respectively, have to be small enough in order for the discrete implementa-
tions of the SAA, PCA and RRS filters to work properly (i.e., TSA ≪ π/αSA,
TPC ≪ π/αPC and TRR ≪ π/αRR) and have small chattering amplitude.

Initial transient. If the tracking error is large (e.g., during the initial phase),
ṗd and q̇d may exceed the speed limits even with λ̇ = 0 due to the error
correction performed by the kinematic controller. This is shown intentionally
in the simulation example of next section. However, this could be trivially
overcome if ṗd and q̇d are saturated previously to the redundancy resolution
and joint controller blocks in Fig. 1, respectively. Moreover, depending on
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the robot task, the tool could be switched off while the tracking error is above
a prescribed threshold to avoid degrading the robot performance.

7. Simulation

In this section the main features of the proposed tracking control scheme
(Fig. 1) are illustrated for the well-known 6DOF robotic arm PUMA-560
through simulation results obtained using the freely accessible Robotics Tool-
box [22] (Release 7.1) for MATLABR©. This Toolbox includes the kinematic
and dynamic model of the PUMA-560 robot, which have been used to gen-
erate the results (the reader is referred to the toolbox documentation for
geometry, mass and inertia parameters). The PUMA-560 robot is a classical
6R serial manipulator with spherical wrist, which is widely used in industrial
applications such as spray painting, arc welding, assembly, polishing, etc.

In particular, in this section the PUMA robot is considered to be used for
a spray painting application where the tool (spray gun) does not need to be
completely perpendicular to the painted surface5, i.e., there is no reference for
the tool orientation although it has to be kept within a limit (Section 7.1.3).
Therefore, three elements are considered for the robot workspace vector p:
the cartesian coordinates6 [x y z]T of a point located along the spray gun
axis at a distance dS from its nozzle. This point tracks the reference path
on the painted surface, i.e., the spray gun stand-off distance is dS. Assuming
that the spray gun axis matches the axis of the last joint of the robot, the
angle of the last joint has no influence on the workspace position and, hence,
the last joint will not be further considered here. Therefore, the robot has
two (5− 3) degrees of redundancy.

7.1. Constraints

7.1.1. Speed auto-regulation

The velocity constraints for the SAA are (11) and (12). If the flow rate
of the spray gun is variable, it could be adjusted proportionally to the actual
workspace speed ‖ṗ‖2 to obtain the same paint deposition at any point on

5The same example shown in this work can be extended to other types of robotic
applications, e.g. laser engraving, where the reference for the tool orientation can be
relaxed within a cone of allowable values.

6The Z -axis of the reference frame is aligned with the first joint of the robot and its
origin is located at the same height of the second joint, i.e., the shoulder joint.
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the reference path, and the maximum workspace speed ṗmax in (11) would be
designed for the flow rate to not exceed its maximum value. Moreover, the
spray gun should be switch off when the tracking error is above a prescribed
threshold, since it only makes sense to paint the surface when the actual
workspace position is close to the desired reference.

For the simulations in this section, the signals uSA and fSA of the SAA are
splitted into two subsignals {uSA,W , uSA,J} and {fSA,W , fSA,J} corresponding
to each type of SAA constraint.

7.1.2. Path conditioning

It will be considered that the boundary of the allowed workspace is given
by two vertical planes {a, b} and two horizontal planes {c, d} which represent
the limits of the “canvas” or painted surface:

σPC,a = y∗ref − ya ≤ 0 (32)

σPC,b = −(y∗ref − yb) ≤ 0 (33)

σPC,c = z∗ref − zc ≤ 0 (34)

σPC,d = −(z∗ref − zd) ≤ 0, (35)

where ya, yb, zc and zd are the parameters of each plane.

7.1.3. Redundancy resolution

It will be considered that the boundary of the allowed Cartesian position
space for every point of the robot is given by two parallel vertical planes e and
f placed on both sides of the robot in order to prevent collisions with other
industrial machines located close to the robot. Since this space is convex and
assuming for simplicity that the width of the robot links is negligible, the
following constraints must be fulfilled to ensure that every part of the PUMA
robot remains within the allowed Cartesian position space (see Section 5.1):

σRR,pie = yi − ye ≤ 0, i = 1, . . . , 6, (36)

σRR,pif = −(yi − yf) ≤ 0, i = 1, . . . , 6, (37)

where the subindex i is associated with the end-point of the ith moving link

(i.e., pi ≡ p̄i =
[

xi yi zi
]T

is the position of the end-point of the ith
moving link) and ye and yf are the parameters of the vertical planes e and
f , respectively.
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The following constraints are also considered for the joint limits:

σRR,qi = −1 + |qnorm,i| ≤ 0, i = 1, . . . , 5, (38)

where qnorm,i = (qi − qmid,i)/(∆qmax,i/2) is the normalized joint position ob-
tained using the mid joint position qmid,i and the joint maximum range of
motion ∆qmax,i. Note that the joint limits are exceeded when the absolute
value of the normalized joint position is greater than one.

Finally, another constraint is considered for the tool orientation:

σRR,or = β − βmax ≤ 0, (39)

where β is the angle between the tool axis (i.e., the spray gun axis) and the
line perpendicular to the painted surface and βmax is the maximum allowable
value for this angle.

7.2. Reference

The reference path lies in a vertical plane and is given by the following
expression which resembles a “flower” with eight petals:

pref (λ) =





xref(λ)
yref(λ)
zref(λ)



 =





0.7818
−0.1501 + 0.255 sin (4λ) cos (λ− π/8)
0.0266 + 0.255 sin (4λ) sin (λ− π/8)



 , (40)

with λ = 0...2π, where the units for linear and angular dimensions are meters
and radians, respectively.

7.3. Simulation conditions and parameter values

Simulation was run under the following conditions:

i) For the sake of simplicity, the joint controllers of the robot have been
implemented as a proportional correction of the joint speed error, i.e.,
q̈dj = Kdj (q̇d − q̇), where q̈dj is the desired joint acceleration vector
and Kdj is the gain correction which has been set to 100 s−1. The
inverse dynamics of the robot is used to compute the joint torques τi
required to achieve the desired joint acceleration vector. The main
sampling period TR of the robot (i.e., the sampling period of both the
input signals to the joint controllers and the readings obtained from
the robot’s sensors to be used by the kinematic controller) has been set
to 5 milliseconds.
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ii) No classical RRS was simulated (i.e., bc = 0n) in order to focus on the
behavior of the proposed SM algorithms.

iii) For the sake of simplicity, a proportional controller has been used for
the correction of the position error, i.e., Cp = Kp. This gain correction
Kp was set to 20 s−1 in all three coordinates.

iv) The constraint functions of the PCA and RRS were computed using
the constraint approaching parameters KPC,i = KRR,or = 0.03 s and
KRR,pie = KRR,pif = KRR,qi = 0.1 s.

v) The SAA was implemented using a cutoff frequency αSA of 20 rad/s
for the filter, the maximum speeds ṗmax = 0.6 m/s and q̇max,i = 1 rad/s
and a desired motion rate parameter λ̇d of 1 rad/s.

vi) The PCA was implemented using a cutoff frequency αPC of 20 rad/s
for the filter and an amplitude ‖uSMp‖2 = 0.15 for the switching law.

vii) The RRS was implemented using a cutoff frequency αRR of 20 rad/s
for the filter and an amplitude ‖uSMb‖2 = 5 for the switching law.

viii) All the algorithms were implemented with a sampling period of half
millisecond.

ix) The tool length was set to 144 mm, i.e., the distance from the spray
gun nozzle to the wrist center is equal to 200 mm. Moreover, the spray
gun stand-off distance dS was set to the typical value 250 mm.

x) The workspace constraints were computed with ya = 0.07 m, yb =
−0.37 m, zc = 0.177 m and zd = −0.123 m.

xi) The Cartesian position constraints of the RRS were computed with
ye = 0.01 m and yf = −0.26 m and the tool orientation constraint was
computed with the maximum allowable angle βmax = 0.5 rad.

xii) The joint limit constraints were computed using a mid joint position

vector qmid =
[

0 π/2 −π/2 π/6 0
]T

rad and a joint maximum

range of motion ∆qmax =
[

5.55 4.643 4.521 4.887 3.491
]T

rad [23].
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xiii) We considered an initial workspace position error ep(0) =
[

0.05 0.1 −0.05
]T

m and the initial robot configuration q(0) =
[

−0.316 1.368 −3.821 −0.401 0.923
]T

rad.

7.4. Simulation results

Fig. 5 to Fig. 12 show the simulated behavior of the global system. A
schematic representation of the robot and the reference paths are depicted
in Fig. 5 whereas Fig. 6 shows the torques generated by the joint controllers.
The behavior of the PCA is shown in Fig. 7, where it can be seen that all
four workspace constraints become active at some point; the control signal
fPC is non-zero whenever some constraints φPC,i is active to guarantee the
constraint fulfillment, i.e., min(φPC,i) <= 0. Fig. 8 illustrates the fulfillment
of the workspace constraints with the front view of the original and modified
reference paths. The behavior of the RRS is shown in Fig. 9, where it can be
seen that four different constraints become active at least once and some of
them are simultaneously active on some phases; as before, the control signal
fRR is non-zero whenever some constraint φRR,i is active to guarantee the
constraint fulfillment, i.e., min(φRR,i) <= 0. Fig. 10 illustrates the fulfill-
ment of the three types of RRS constraint with the top view of the paths
followed by the end-points of the robot links7 and with the variation with
time of the normalized joint positions and tool orientation. Fig. 11 shows the
speed profile λ̇ generated by the proposed SAA, where the desired motion
rate λ̇d is achieved when the workspace speed and joint velocity constraints
are not active. It can bee seen in Fig. 12 that the initial position error is
made zero. Note also in this figure that the normalized workspace speed and
the joint velocities are within the limits except at the beginning of the refer-
ence tracking due to the initial position error, i.e., the motion rate is zero λ̇
(Fig. 11) but velocity limits are exceeded due to the position error correction
performed by the kinematic controller. Therefore, at the beginning of the
reference tracking, the spray gun should be switched off to avoid painting at
some point far from the target point on the painted surface.

7The path followed by point p5 is not shown in Fig. 10(a) because this point lies on
the straight line connecting the points p4 and p6 (i.e., p5 fulfills the constraints of the
Cartesian position space if both p4 and p6 fulfill them, see Section 5.1). Note also that
point p1 remains static.
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Fig. 5. 3D view of the original and modified reference paths and schematic representation
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gun nozzle with the point that tracks the target on the painted surface.
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8. Conclusions

An integrated solution for robotic trajectory tracking was developed us-
ing sliding mode related concepts. In particular, the proposal includes three
sliding-mode algorithms for speed auto-regulation, path conditioning and re-
dundancy resolution. The proposed approach only requires a few program
lines (see the Appendix) and simplifies the robot user interface since the
method directly deals with the fulfillment of velocity, workspace and C-space
constraints. Therefore, in case of relatively simple tasks the proposed method
finds a feasible solution for the robot trajectory tracking in a short compu-
tation time.

Although the method was illustrated for a particular 6R robot (PUMA-
560 robot) and a particular industrial application (spray painting), the con-
clusions drawn for the proposed approach also apply to other robots and
applications.

Appendix. Computer Implementation

The pseudo-code of the proposed SAA (13)–(15), PCA (18)–(21) and
RRS (26)–(29) is shown below. These three functions use the following aux-
iliary functions:
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Fig. 8. Front view of the paths followed by the reference signals (original pref and
modified p∗

ref ) and the tracking point (p). The limit planes of the workspace constraints
are shown as dashed lines.

• Filters: FiltFirstOrderSA(αSA, uSA), FiltSecondOrderPC (αPC,uPC)
and FiltFirstOrderRR(αRR,uRR) which are discrete time implementa-
tions of the low-pass filters (15), (19) and (27), respectively. Obviously,
the filter implementations must take care of preserving their internal
states between calls.

• Constraint functions and gradient vectors: σSA,i(ṗd, q̇d),
φPC,i(p

∗
ref , ṗ

∗
ref), φRR,i(q, q̇), ∇σPC,i(p

∗
ref) and ∇σRR,i(q).

• Path and kinematic functions: v(λ) and l(q).

• Matrices and vectors for the redundancy resolution: pseudo-inverse
Jacobian J†(q), basis B(q) for the null space of the robot Jacobian,
and performance vector bc(q, q̇) of a classical RRS.

• Sensors: GetSensorReadings(), which returns the current sensor read-
ings q and q̇.

• Actuators: SendToJointControllers(q̇d), which sends the current de-
sired joint velocity vector to the joint controllers.
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The SAA, PCA and RRS functions are used by the Main Loop shown
below, which calculates the robot tracking control shown in Fig. 1 at a sam-
pling period of Ts seconds. Note that this implementation supports the claim
made in the paper that the proposed approach only requires a few program
lines. For the case study in Section 7, the computation time per iteration in
a modern computer using MATLABR© R2009a (compiled C-MEX-file) was
around 0.03 µs (microseconds) for the SAA, 0.6 µs for the PCA and 0.95 µs
for the RRS.

Function SAA(ṗd, q̇d, λ̇d)

1 if max(σSA,1(ṗd, q̇d), . . . σSA,NSA
(ṗd, q̇d)) ≥ 0 then uSA = 0;

2 else uSA = 1 ; // Eq. (13)
3 fSA =FiltFirstOrderSA(αSA , uSA) ; // Eq. (15)

4 λ̇ = fSAλ̇d ; // Eq. (14)

5 return λ̇;

Function PCA(pref ,p
∗
ref , ṗ

∗
ref)

1 k = 0m;
2 for i← 1 to NPC do

3 if φPC,i(p
∗
ref , ṗ

∗
ref) ≥ 0 then k = k+∇σPC,i(p

∗
ref) ; // Eq. (21)

4 end

5 if ‖k‖2 ≤ 10−6 then uPC = 0m;
6 else uPC = −k‖uSMp‖2/‖k‖2 ; // Eq. (20)
7 fPC =FiltSecondOrderPC(αPC ,uPC) ; // Eq. (19)
8 p∗

ref = pref + fPC ; // Eq. (18)

9 return p∗
ref ;
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Function RRS(q, q̇)

1 k = 0n;
2 for i← 1 to NRR do

3 if φRR,i(q, q̇) ≥ 0 then k = k +∇σRR,i(q);
4 end

5 k = B(q)Tk ; // Eq. (29)
6 if ‖k‖2 ≤ 10−6 then uRR = 0n;
7 else uRR = −k‖uSMb‖2/‖k‖2 ; // Eq. (28)
8 fRR =FiltFirstOrderRR(αRR ,uRR) ; // Eq. (27)
9 b = bc(q, q̇) + fRR ; // Eq. (26)

10 return b;

Main Loop

1 while λ < λend do

2 [q, q̇] =GetSensorReadings();

3 λ = λ+ Tsλ̇ ; // Discrete-time integration (see Fig. 1)

4 pref = v(λ) ; // Eq. (3)
5 p∗

ref,prev = p∗
ref ;

6 p∗
ref =PCA(pref ,p

∗
ref , ṗ

∗
ref) ; // Path conditioning

7 ṗ∗
ref = (p∗

ref − p∗
ref,prev)/Ts ; // Discrete-time derivative

8 ṗd = ṗ∗
ref +Kp(p

∗
ref − l(q)) ; // Kinematic controller

9 b=RRS(q, q̇) ; // Redundancy resolution scheme

10 q̇d = J†(q)ṗd +B(q)b ; // Eq. (5)

11 λ̇= SAA(ṗd, q̇d, λ̇d) ; // Speed auto-regulation, λ̇d set by

user elsewhere

12 SendToJointControllers(q̇d);

13 end
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