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Abstract

Ground station operators have to assign different antennas in their ground
stations network to passes of satellites from customers that have requested
the use of the network. However, for operators that support a high number
of satellites, in many cases these requests yield conflicts (which appear when
more than one satellite requests the same time slot on the same antenna).
If there are many conflicts, the process of deconflicting (i.e., moving passes
to other antennas or sites or cancelling them so that conflicts are avoided) is
not very efficient when done manually, due to the large number of interacting
requests. Thus, there is a need for an automatic tool that is able to man-
age the Antenna-Satellite assignment problem for a large number of passes,
by considering the problem globally for a given time-frame (for instance,
a week). In this paper we propose to address the deconfliction process by
means of Integer Linear Programming. Models that take into account the
basic deconflicting operations (moving antenna, moving site, shortening, or
cancelling), are proposed and tested on real data provided by the company
that posed this problem, yielding better results than the solutions obtained
by their previous system.

Keywords: Deconfliction, Integer Programming, Antenna-Satellite
Allocation.
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1. Introduction

Satellite owners need the support of ground networks to be able to up-
load commands or download gathered data. Increasing data requirements
are resulting in a considerable growth of requests of time allocation of satel-
lite passes to ground antennas, particularly those located on strategic geo-
graphical locations—for instance, ground stations located close to the poles,
which are more frequently accessible to satellite in sun-synchronous orbits
(which includes the majority of Earth Observation Satellites, Barret and
Curtis (1992)), and thus are experiencing a considerable increase of time
allocation requests from customers. While ground networks continue to ex-
pand, and build sites in diverse locations throughout the world, the number of
satellite customers continues to increase. Also, the appearance of distributed
networks of small satellites (Schilling (2009)) could push the capabilities of
the networks to the limit. The number of requests is leading to very complex
problems of antenna-satellite allocation operations with several peculiarities,
which make the assignment planning a cumbersome task if done by hand.

The satellite-antenna assignment problem is often called “Satellite Range
Scheduling” (SRS) problem, for which some strategies have already been
proposed in the literature. Barbulescu et al. (2002) apply the SRS to the
US Air Force Satellite Control Network (AFSCN) employing 100 satellites,
16 antennas, 9 stations, 500 requests per day, producing several schedules
per day. The considered objective is the reduction of the number of conflicts
(typically 120). The authors observed that genetic algorithms performed
better. Barbulescu et al. (2004) analyze the SRS both empirically and for-
mally, proving that the problem is NP-complete. They also provide new
algorithms improving those in Barbulescu et al. (2002). Later, Barbulescu
et al. (2006a) present the evolution of the problem in the last 10 years in
the AFSCN. They analyze possible alternatives to the cost function such
as minimizing the sum of overlaps. The same group of authors study more
heuristics for the SRS in Barbulescu et al. (2006b), combining several algo-
rithms. Chien et al. (2012) studies the concept of timeline and reviews the
generic systems that have been developed. Clement and Johnston (2005)
describe the SRS for the Deep Space Network (DSN) with 16 antennas, 20
spacecrafts, four-month time-frames, 1650 passes per week. They generate
and repair schedules, describing the problem and heuristics for solving it with
emphasis in the re-scheduling problem. Corrao et al. (2012) integrate Ge-
netic Algorithms, Graph Theory and Linear Programming in order to build



conflict-free plans, and apply their approach to a case study obtained from a
satellite service company. Lee et al. (2008) study the scheduling of a single
geostationary satellite. Marinelli et al. (2011) formulates the problem as an
ILP model, which is declared as infeasible. The problem is solved by means
of a Lagrangian relaxation. As a case study they apply their approach to
the station Galileo. Schmidt and Schilling (2009) consider academic prob-
lems consisting of satellites and stations distributed all over the Earth. They
maximize redundancy in order to solve possible failures in communication.
They solve a toy example with 6 satellites and 4 stations yielding 51 contact
windows. Xhafa et al. (2013) use Struggle Genetic Algorithms and STK.
Zhang et al. (2014) propose ant-colony algorithms, solving examples with
17 satellites, 11 to 13 antennas yielding around 400 passes. Zufferey et al.
(2008) apply graph coloring algorithms over a set of 500 realistic instances.

However, due in part to tradition, and in part to the complexities of the
problem, manual elaboration of schedules are still usual procedure for ground
networks managers. This problem has also arisen in the context of ground
station networks (Schmidt et al. (2008); Bester (2009)) provided by research
institutions for small satellites used for academic projects, which usually have
some specific needs such as redundancy and flexibility, and therefore require
specific algorithms.

When planning, it must be taken into account that a given satellite can be
supported just by a subset of the available antennas, and during specific time
intervals which must be computed by using knowledge of the satellite orbit
and the antenna geographical location and allowable positions of Azimuth-
Elevation for the antenna (i.e. which region of the sky is accessible for the
antenna). Each pass has a default antenna, which is the one requested by the
user; this would be considered as the most preferred antenna. Since different
users make requests independently of one another, preferred allocations may
cause conflicts, i.e., time intervals where requests from different passes over-
lap on the same antenna. Such conflicts can be addressed by a number of
alternatives. First, the preferred option would be reallocating some passes to
compatible antennas located in the same site; other options would be chang-
ing the pass to another site (which could imply a considerable change in the
previously allocated time of access if the new site is far away from the origi-
nal site), shortening the pass (up to a minimum duration) to accommodate
several passes, or, if no other options are available, canceling the pass. These
operations might be available only for a subset of passes if there is a number
of already allocated passes that must be honored (for instance for preferred
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clients or previous commitments). It also must be taken into account that
some satellites or customers could be of higher priorities than others.

In this paper we propose the use of Integer Linear Programming (ILP)
models to solve the problem of deconfliction posed by a ground network
operator that manages several sites with dozens of antennas, from now on
called “the company”. While the scheduling problem has been reported
NP complete (Barbulescu et al. (2004)), using our models we have been
able to solve in a reasonable time (less than a minute) real-world instances
of the problem for realistic dimensions (thousands of passes over dozens of
antennas) and time frames (a week) by using an open source ILP solver.
The use of Integer Linear Programming modelling has proven fruitful for
other space mission optimization problems, such as the problem of swath
acquisition planning for multiple Earth Observation Satellites, see Galan-
Vioque et al. (2011).

The remainder of this paper is structured as follows. In Section 2, the
problem is formally stated and the notation used throughout the paper is
introduced. The different deconfliction objectives, and the resulting models
are described in Section 3, formulated as Integer Linear Programming prob-
lems. Computational results, taken from real data, are analyzed in Section
4. We finish with some concluding remarks in Section 5.

2. Input data

We next show which data are needed on satellites, antennas and passes
and which computations are required to formulate the Antenna-Satellite as-
signment problem.

2.1. Input data
The input data of the problem are:

e The time-frame for the planning problem is an interval [Ty, T¢| given
by the initial and final times 7 and T;. At times we might refer to
this interval as T (in our case, usually a week).

e A set S of satellites. The orbit of the satellites can be given in any
conventional format, for instance given as Two-Line Elements (TLEs)
for a certain epoch (which should be close to the time-frame to be able
to precisely determine the passes).



o A set A ={A,.., A, } of antennas, given by their geographical lo-
cations. Antennas which are geographically close to each other are
considered to be in the same site, whereas antennas located far away
from each other are in different sites. For each antenna, we also assume
that we know its admissible range of Azimuth-Elevation, which would
depend on obstacles and local geography (for instance mountains) and
the required minimum elevation above the horizon to avoid atmospheric
effects. This is mathematically formulated as the set 2, = {(Az, El)}
of accessible points in the sky given by their azimuths and elevations.

e Other relevant input data include the minimum duration for a pass
to be considered valid t,,;,., (which can depend on the satellite and
antenna) and the set of compatible antenna-satellite pairs C C A x S.

2.2. Computation of passes

The next step to formulate the problem is to calculate the set of possible
passes for all satellites S and antennas A. For each revolution of satellite
s € § over the Earth we obtain a pass P when there are time intervals of
the form [tg,t1] C T during which a satellite is accessible for one or more
antennas a € A, given that the duration of the accesses, t; — to, is greater
or equal than the minimum duration ¢,,;,,, and the antenna is compatible
with the satellite requirements, i.e. (a,s) € C. We assume that there is an
antenna to which the pass is originally assigned; the possible antennas to
which the pass can be assigned (different from the original one) are called
alternative antennas.

To compute the passes, the first step is to propagate the orbital elements
of the satellites during the mission time-frame. This can be done using any
of the many possible methods available in the literature, which incorporate
more or less accurate models of orbit perturbations (see for instance Vallado
and McClain (2007), and references therein). Once the elements are known
at all times t € T, the vector position 75(t) in the geographical reference
frame (that rotates with the Earth) can be computed (Curtis (2009)), for
all s € §. Then, using the antenna geographical coordinates the vector
position of the antennas 7, for all @ € A can be also computed. Then, by
projecting the relative position of the satellite with respect to the antenna,
Tas(t) = Ts(t)—7, on the topocentric frame centered in the respective antenna,
one can compute the azimuth and elevation for each compatible antenna-
satellite pair, (Azus(t), has(t)) for (a,s) € C. Each of the time intervals



in which (Az.(t), hes(t)) € Q, for at least the minimum duration ..
constitutes an access which will give an alternative to the pass. Satellites
will generate a pass only each time the groundtrack passes close to a given
antenna (for most locations once or twice a day).

Notice that oftentimes satellites will have sun-synchronous orbits since
these are the most frequently used orbit for Earth Observation Satellites
(due to constant lighting properties), which transmit large amounts of data
and therefore constitute a large amount of the satellites requesting passes.
Given that these satellites have almost-polar low orbits, it is advantageous
to locate bases close to the poles of the Earth, since then one would obtain
passes on most orbit revolutions (around 13 passes each day).

2.8. Additional input data for the passes

Once the passes have been computed, we have sets P = {Py,..., P, }, A =
{A4, ..., A, } consisting of n, passes and n, antennas, respectively. The time
interval that each of these passes P; covers in a given antenna Aj is given
by the intervals [y, B;x]. Passes are classified as accepted or free. In the
first case, the requested antenna and time slot are considered to be fixed,
while for free passes, one is allowed to change the requested conditions (an-
tenna requested, pass length), or even to cancel them in order to improve
the conflicts status. The following parameters are additional input data for
our problem:

o ' C {1,...,n,} is the set of free passes, i.e., passes which can be
modified with respect to the original request.

® p; : priority of pass P; in antenna Ay. p; < pyx means that P; is more
preferred than P, for antenna Aj.

® a;; : minimum length of time in which P, must be active if antenna Ay
is to get its data (Such length of time includes pre and post-processing
times, which depend on the satellite-antenna pair.)

e The binary parameter e;;, takes the value 1 if pass P; is originally re-
quested to be assigned to antenna A;. We assume that ZZ; eir = 1
for every pass P;, that is, originally pass F; is assigned to one and only
one antenna.

e (; is the set of antennas which have access and are compatible with
pass P;. The binary parameter c;, takes value 1 if pass P; has access
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and is compatible with antenna Ay, and 0 otherwise. In other words,
ci = 1 if and only if k£ € C.

o (e, Bix) is the period of time in which pass P; has access to antenna

Ay, k € O,

2.4. Computation of time intervals

Once all the passes have been computed and the input data on the passes
has been gathered, the formulation of the Antenna-Satellite assignment prob-
lem requires the analysis of the different time intervals in which, for a given
antenna, possible passes can overlap.

e For each antenna Ay, we consider the intersections of all possible in-
tervals of time («;y, Bix) of compatible passes. The result is ng (ns <
2n, — 1) intervals Iy, ..., Ik, with lengths {1y, ..., [, The intervals
are sorted in such a way that the beginning of interval [;; is equal to
the end of interval I;_; , or larger if there is a “gap” during which no
compatible passes exist for the antenna.

o Siy C{1,2,...,n4} is the set of indices of the sorted intervals {I;z,j =
1,...,ns}, in which P; can be active in antenna A;. Taking into account
the accepted (fixed) passes, in some intervals, the antenna will already
be occupied by these accepted passes, and thus, by construction, for
such intervals [, we have j & Si.

We show a simplified example of such a timeline in Figure 1, which con-
siders three passes (p1, p2 and p3) and two antennas (A; and A,). For the
sake of simplicity the passes could be located in either antenna with the
same start and end times. From the figure we see that the beginning of p;
in either antenna is ay; = aq9 = tg, the ending of py is £1; = [12 = t2, and
similarly for ps we have ag; = a9y = t; and P91 = a9 = t4, and for p3 we
have a3; = a3y = t3 and f9; = a2 = t5. The resulting intervals for both
antennas are [y = I1o = [to,t1], Togr = Ioe = [t1,t2], I31 = Isa = [lo, 3],
Iy = Iys = [t3,t4) and 5y = I5y = [t4,t5]. Assuming no passes are fixed we
have 811 = 512 = {]_, 2}, 521 = 522 = {273,4} and 531 = Sgg = {4,5}, which
means that the first pass spans (in either antenna) the time intervals 1 and
2, the second pass the time intervals 2, 3 and 4, and third pass the time in-
tervals 4 and 5. If Figure 1 represents the originally proposed schedule then
we see there is a conflict in antenna 1 between passes 1 and 2, which can



be trivially resolved either by moving pass 1 to antenna 2 (solution 1) or by
switching antenna between passes 2 and 3 (solution 2), as show in Figure 2.

2l ]
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Figure 1: Simple example of construction of time intervals and conflict.
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Figure 2: Two possible solutions for the example.

3. ILP Models

The models developed here aim at solving conflicts. A conflict is produced
if there is an overlap, i.e if over the same time interval, two passes are assigned
to the same antenna. Using our notation, this occurs when there exist an
antenna Ay and an interval I;;, such that

Z eir > 1.

1EP:JES ik

When conflicts are found, the company requires that one of the following
three deconflicting operations is done:



1. Moving passes to a different antenna (see Section 3.1) which could be
in the same site or in another site.

2. Shortening a pass time allocation on the antenna (Section 3.2).

3. Cancellation of passes (Section 3.3).

These operations are written in order of preference, i.e., first, if possible,
conflicts should be addressed by moving passes to antennas different to the
default ones (and if possible within the same site). Only if conflicts exist
after this operation, some passes should be shortened (taking into account
the minimum duration of a pass). Still, if some conflicts persist, some passes
(beginning with those with lower priority) should be canceled until a feasible
solution is found.

In what follows we formulate an integer linear programming (ILP) model
that includes all the possible deconflicting operations and at the same time
optimizing a performance index directly related with the priority of the dif-
ferent satellites.

3.1. Mowing passes to a different antenna

We address the problem of re-allocating free passes to antennas so that
conflicts disappear. Priorities of the different passes are taken into account.
Our ILP model uses the following binary variables:

e For each i € F for each k € (j, i.e., for each free pass and compatible
antenna, define the binary variable y;; which takes the value 1 if pass
P, is assigned to antenna Ay and 0 otherwise.

The constraints of the model would be:

e Every free pass has to be assigned to one and only one antenna.

Y yr=1VieF. (1)

keC;

e For a given antenna A and a time interval I, available for free passes,
L.e., with U;epSir # 0, there should be no conflict among the n, passes.

Z Yie <1, YV k,j: UiepSi # 0. (2)

1€F: jES K, kEC;



The objective is to keep as many passes allocated to the requested anten-
nas as possible, taking into account the different priorities. We model this
as the maximization of the cost index J; defined as the sum of priorities of
passes that remain assigned to the requested antennas.

Ji = Z Z (p" — pir + 1)&ir, (3)

i€F keC;
where p* = max; p; and &, is a weighting function that is defined as
17 €ik = 17
k=14 1/2, ey =0,A in the same site, (4)
1/4, ey =0, Ag in a different site.

Thus we favor to stay in the initially assigned antenna and penalize changing
antenna and site.

In the example presented in Figure 1, we would have e;; = ey; = e30 =
1, and e19 = eg = e3; = 0. Assume for simplicity that all preferences
are the same and equal to 1 and that both antennas are located in the
same site. Then we would have 6 binary variables yi1, y12, Y21, Y22, Y31,
ys2. Constraint (1), which implies that every pass is assigned only to one
(compatible) antenna, would read

yii+yi2 = 1, (5)
Y1 +y2 = 1, (6)
Y31+ Y2 = 1. (7)

Constraint (2), which implies that a solution has no overlaps, is constructed
by looking at the potential overlaps interval by interval, and would read

Yintya < 1, (8)
Yoty < 1 (9)
Yiz+y2 < 1, (10)
Yo +ys2 < 1 (11)
Finally the cost index (3) becomes
J1=y11+%+y21+%+%+y32. (12)

Thus, maximizing J subject to constraints (5)—(11) one obtains yjo = ya1 =
yso = 1 and y11 = Yoo = y31 = 0, i.e., the solution shown in Figure 2 (left),
which represents a conflict-free solution optimizing the number of changes
according to (3).
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3.2. Shortening

If the re-assignment of antennas does not solve all conflicts, the possibility
of shortening (for passes that allow it) is considered.

To model this possibility, consider, for each pair of compatible pass-
antenna, P, Ag, and for each connected! subset of S, C Sj that satisfies
> jest, lix > ai, we define a subpass Pf, which will span a time interval

(65, p%]. The objective is now to choose one such subpass for each pass B
so that the objective function is optimized, and no conflicts arise. This can
be modeled as follows.

For each each subpass P, we define the following set of binary variables:

e y; = 1 if subpass Pf}~C is selected, and zero otherwise.

The objective is now twofold: to maximize the active time of passes and
to keep passes in the antennas they were originally assigned to or at least
keep the preference as in Section 3.1. This could be modeled by defining an
additional cost index Jy = 37, ,, (p5 — 053 )yier Which counts the active time
of passes, to later on maximize a linear combination of J; and .J; defined as:

(1 =)y + T, (13)

where parameter vy € [0, 1] measures the importance given to each of the two
objectives (7 = 0 means that the only objective is to keep as may passes
allocated to the requested antennas as possible, v = 1 means that the only
objective is to maximize the active time of passes, any other v € (0,1)
maximizes a combination of both objectives).

The constraints of the model are the constraints of Section 3.1 substitut-
ing the constraints that include shortened passes by

> Y =1, Vi (14)
0k
Z Yk + Z Vi <1, V k,j (15)

i€F: jES,,keC i,0:j€S

Equations (14) force that, for each pass exactly one subpass is assigned to
exactly one antenna. Equations (15) impose that for each antenna and each
interval, at most one pass or shortened subpass is active.

LA set of intervals is considered connected if their union forms a unique interval.
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In the example presented in Figure 1, we could force the necessity of
subpasses if we assume, for instance, that pass 1 is compatible only with
antenna 1 and pass 3 is compatible only with antenna 2. Thus the variables
y12 and ys; disappear and constraints (5)—(11) are reduced to

yu = 1, (16)
Yar + Y2 = 1, (17)
Y32 L, (18)
Y +ya < 1, (19)
Yo +ys2 < 1 (20)

Notice that this results in an infeasible problem; it is not possible to use any
of the solutions pictured in Figure 2 as there is no antenna to which we can
move pass 2 without overlapping with other passes. Thus we need to include
the possibility of shortening. To simplify, assume also that passes 1 and 3
cannot be shortened. Thus one considers shortening pass 2. The possible sub-
passes would span the following time intervals:[t, t4], [t1, 3], [t1,t2], [t2, t4],
[ta, t3], [t3,t4]. Assuming that, of these, [t1,t2] and [t3,t4] are too short to be
considered, we would end up with four potential subpasses for each antenna,
namely Pj, P} P3Py, and Ps,, P4, P3, Py, and the corresponding binary
variables yo11, Y221, Y231, Y241 and Y12, Y222, Y232, Y242. The possible subpasses
are shown in Figure 3 (only for antenna 1 to avoid cluttering the figure). The

p21[ ]
p22[ ]
p23 [ |
p24 [ ]
pr[ ]
| 112 1314 15 |
\ T T \

t0 t1 t2 t3t4 t5

Al

Figure 3: Construction of subpasses (only shown for pass 2 in antenna 1).

respective intervals would be [63,, pi,] = [t1,t4], [05,, p3,] = [t1,t3], [05,, p3,] =
[t27t4]7 [5317p31] = [t27t3]a and equally [5527052] = [t17t4]7 [5%2,P§2] = [tlvt?)]?
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03,, 3] = [ta, ta], [09, pas] = [t2,t3]. The new set of constraints would be

yu = 1, (21)
Y211 + Yoo1 + Y231 + Y241

+Y212 + Y222 + Y232 + Y242 L, (22)
ys2 = 1, (23)

Y11+ yo11 + Y21 <1, (24)

Yo11 + Y221 + Y231 + o1 <1, (25)
Yo11 + Y231 + Y21 <1, (26)

Yo11 + Y231 < 1, (27)

Yor2 + Y222 < 1, (28)

Yo12 + Y222 + Y232 + Yoz < 1, (29)
Yor12 + Yoz2 + Yy2a2 < 1, (30)

Ys2 + Yo12 + Yazz < 1 (31)

The cost function now becomes

J =y +yse + (Y(ts —t1) + 1 — ¥)yors
+(y(ts —t1) + 1 — ¥)yao + (V(ta — t2) + 1 — 7)yos

1_
+(y(ts —t2) + 1 = ¥)yoar + (Y(ta — t1) + 77)3/212

1-— 1 -
+(y(ts —t1) + T’y)ymz + (Y(ty — t2) + T’y)y232
]_ _

+(v(ts — t2) + 77)9242- (32)

The solution would depend on the particular values of v and the times. If
one chooses v = 1/2 and the time intervals are to scale in Figure 1, then the
solution is to choose subpass P»3; as shown in Figure 4.

3.3. Cancelling

If it is not possible to resolve all conflicts, the pass(es) with lowest pri-
ority should be cancelled. For this situation we use the same variables as in
Section 3.1 and Section 3.2. To find a feasible solution, we allow that passes
are assigned either to one antenna or none:

oy <LVieFR (33)
keC;
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Figure 4: Simple example of a shortened solution.

and similarly subpasses can be rejected as well

> Ty <1,V (34)
0k

The remaining constraints and cost functions are as in Section 3.1 and Sec-
tion 3.2.

In the example presented in Figure 1, we could force the necessity of
cancelling if we assume, as before, that pass 1 is compatible only with antenna
1 and pass 3 is compatible only with antenna 2, but now instead of the
possibility of shortening we only allow cancellations. Thus constraints (5)—
(11) are reduced to

yn < 1 (35)
Yor + Y22 < 1, (36)
ys2 < 1, (37)
yuut+ya <1, (38)
Y2 +yz2 < L. (39)

The cost index (12) remains the same. The obvious solution is to cancel
either pass 1 or pass 2; since we have assumed they have the same priority,
both solutions are equally valid. If not, one would cancel the lowest priority
pass.

4. Computational results

This section aims at showing how our procedures are able to handle re-
alistic instances, with real schedules provided by the company in seconds.
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More specifically, we present the results on 10 instances in which about 3000
passes (a typical quantity of requests for a busy week) were to be managed,
see Table 1. We should point out that in some cases the data correspond to
very challenging examples with a high number of satellites and sites involved
in the conflicts.

Columns in this table represent:

“Passes”: number of passes considered.

e “Conflicts”: number of conflicts arising in the corresponding instance.
e “Cancelations”: represent the total number of canceled passes.

e Column “Shortenings” represent the number of passes that were short-
ened.

e “Movements” represents the number of movements done in each in-
stance (between parenthesis those movements done to other sites).

e Columns “Variables” and “Constraints” represent the number of vari-
ables and constraints in the corresponding ILP problem, respectively.

e Column “Time” gives the necessary computational time to solve the
corresponding instance, in seconds.

These instances were built from real schedules for one week of requests.
To perform the deconflicting operations and obtain an optimal deconflicted
schedule, the following computational setup was used:

e The calculation of alternative passes from the antenna locations (and
their admissible range of Azimuth-Elevation) and the satellite orbital
elements (given as TLEs) was performed by SaVoir software (www.taitussoftware.com),
a powerful Satellite Planning and Mission Analysis tool.

e Given all passes and their possible alternatives, we developed (in C++)
a software tool that efficiently computes all time intervals and possible
subpasses following the steps of Section 2.4 and subsequently computed
the problem constraints and coefficients of the cost function according
to Section 3.
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e To solve the resulting ILP problem, the free-software package Lpsolve
solver was used. We have used version 5.5.2.0 for windows 32 bits(
http://lpsolve.sourceforge.net/5.5/).

o All experiments were run on a laptop, Intel Core i7 2 GHz and 4 GB
of RAM memory, O.S. Windows 7 Professional 32 bits.

The following straightforward conclusions to these results can be noted :

e On average, 2605.2 passes were analyzed in each instance with 287.9
conflicts. The corresponding problems had 9154.7 variables and 9013.7
constraints. The average computational time required to solve these
problems was 64.8 seconds.

e Only 3.13% of passes were canceled.

e Only 0.02% of passes were shortened (note however that many of the
passes did not allow for shortening).

e 19.32% of passes were moved to other antennas (0.38% to other site).

From the results cast in table 1 we can affirm that the algorithm proposed
in this project provides a real time (around a minute) optimal solution for
problems of considerable size (up to 4000 passes) that typically correspond
to a full week of operation.

The computation time does not correlate directly with the size or the
number of conflicts but depends more on the complexity of the conflicts.

The operation constraints and priorities have been efficiently integrated
in the modeling and different adjustments can be achieved by tuning the cost
weights according to the specifications of the passes.

5. Conclusions

In this paper we have introduced Integer Linear Programming models
to efficiently manage the scheduling of passes for a multi-antenna, multi-site
ground network serving numerous customers. A dramatic growth in the num-
ber of requests has rendered manual scheduling planning virtually unfeasible.
The aim of our methods is to solve conflicts in the best possible way while re-
specting preferred assignments and priorities. A conflict appears when, over
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the same time interval, two or more passes are scheduled to the same an-
tenna. Several possibilities can be applied to solve such conflicts: movement
of passes to other antennas (possibly located on other sites), shortening of
acquisitions or cancelation of passes. We have modeled these problems using
a basic tool of operations research: Integer Linear Programming.

Our models have been tested over a number of realistic instances provided
by the ground network operator, which was previously scheduling the passes
manually. Conversations with the company representatives let us know that
the performance of our procedures exceeded the operator’s expectations in
terms of speed and quality of solutions (few number of movements, even
fewer number of cancelations) with respect to their previous manual system.

Among future possible refinements, we could mention the inclusion of ad-
ditional objectives, such as fairness criteria (penalizing multiple cancellations
for the same customer) or the development of advanced tools such as adap-
tive online scheduling (which would imply an scheduler running online with
capabilities such as including last-minute requests for passes as they come, or
immediately adapting to dynamic constraints, for instance, antenna failures).
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