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Abstract. Online multimedia repositories are growing rapidly. How-
ever, language barriers are often difficult to overcome for many of the
current and potential users. In this paper we describe a TTS Spanish sys-
tem and we apply it to the synthesis of transcribed and translated video
lectures. A statistical parametric speech synthesis system, in which the
acoustic mapping is performed with either HMM-based or DNN-based
acoustic models, has been developed. To the best of our knowledge, this is
the first time that a DNN-based TTS system has been implemented for
the synthesis of Spanish. A comparative objective evaluation between
both models has been carried out. Our results show that DNN-based
systems can reconstruct speech waveforms more accurately.
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1 Introduction

The proliferation of online video lecture repositories over recent years is a phe-
nomenon hard to ignore. In particular, in the field of education, universities
around the world are making a huge effort in the recording and publication of
video lectures. Some of the most successful online video lecture repositories are
TED talks [21], VideoLectures.NET [28], Coursera [2], and Khan Academy [4],
to name just a few.

These repositories are opened on a global scale, but their monolingual content
creates a language barrier that is difficult to overcome, driving away many po-
tential users. Although the most popular video lectures in these repositories are
manually transcribed and translated by dedicated users in a collaborative effort,
manual subtitling cannot keep pace with the increasing rhythm of video gener-
ation on the long term. This subtitling process becomes even more cumbersome
when dealing with talks that include highly specialized vocabulary.

Recent advances in automatic speech recognition (ASR) [7] and machine
translation (MT) [5,13,15] have pushed the scientific community to tackle more
challenging subtitling tasks related to large video lecture repositories. Indeed,
current state-of-the-art ASR and MT systems can provide accurate enough sub-
titles that can be manually revised with minimum effort, saving time and money.
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In particular, the transLectures project [20] is aiming to develop high qual-
ity, cost-effective solutions for the transcription and translation of massive online
repositories. This project has so far resulted in the release of the open-source
transLectures -UPV toolkit [22]. Nevertheless, the availability of subtitles may
not be enough to fully exploit video visualisation, since users are forced to split
their attention between subtitles and lecture slides. In addition, visually im-
paired users cannot benefit from subtitles. In these cases, it would be much
more convenient to be able to listen to the lecturer in the user’s own language.

A text-to-speech (TTS) synthesizer is a system capable of generating an arti-
ficial speech track for a given text. State-of-the-art TTS systems usually employ
one of two approaches: unit selection [11] or statistical parametric speech syn-
thesis [34]. The TTS system presented here is based on the latter, as it is usually
regarded as the most reliable synthesis approach when it comes to intelligibil-
ity [12], which is a key factor in our problem. However, the current reference
Spanish TTS system publicly available only provides pre-trained HMM-based
models [17].

In this work, two statistical TTS systems for Spanish are presented. The
first of them is based on the conventional HMM acoustic modeling [30], while
the second system implements state-of-the-art deep neural networks (DNN) for
acoustic modeling [33]. These TTS systems were objectively evaluated on a real-
life video-lecture repository. To the best of our knowledge, this evaluation has
never been performed for the Spanish language. The best performing TTS system
is intended to be applied to the generation of Spanish audio tracks on large video
lecture repositories. The TTS-generated voice will be seamlessly integrated into
the original video in order to allow users to concentrate on the video lecture
content, keeping them from having to read subtitles.

The rest of this paper is organized as follows. Firstly, an overview of a TTS
system is depicted in Section 2. Then, TTS systems, both HMM-based and
DNN-based, are described in Section 3. Next, results on the objective evaluation
with both TTS systems are reported in Section 4. Finally, concluding remarks
and future research lines are wrapped up in Section 5.

2 System overview

In Figure 1 we provide an overview of the modules that make up our TTS system.
We describe the modules involved in our system from the moment the subtitle
file is received to the point the speech output is ready to be embedded.

In the first step, the subtitle file is divided into segments according to its
timestamps. This division allows us to process large transcription files in parallel,
and we will later concatenate the segments appropriately. Furthermore, silences
between segments will not be passed to the synthesizer, so the generation is more
efficient.

Segments are processed by the linguistic analysis module that has been devel-
oped for this work. The words are split into syllables, which are then converted
to phonemes with a rule-based grapheme-to-phoneme algorithm. As Spanish
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orthography is highly phonemic, this conversion is carried out without much
loss. Please note that while this approach can deal appropriately with Spanish
words, it does not cover foreign words (e.g. proper nouns of people). The mod-
ule also extracts contextual information of each phoneme, syllable and word,
and then employs it to create context-dependent (CD) phonemes [31]. We have
not included some of the higher-level features, which are used in other speech
synthesizers, such as POS tagging, stress marks or ToBI endtones.

Next, an acoustic feature generation module converts the CD-phonemes into
an acoustic parameter sequence. It is currently divided into three parts, which
correspond to the duration generation module, the acoustic mapping module
and the parameter generation module. These modules will be described in detail
in Section 3.

The acoustic parameter sequence is then post-processed with a spectral en-
hancement algorithm and then sent to the vocoder to generate the audio seg-
ments. The vocoder’s task is to reconstruct the speech waveforms from the
acoustic parameter sequence. Our system uses a harmonics-plus-noise model
based vocoder [8], and makes use of the free implementation provided by their
authors [1]. In this vocoder, the spectral parameters are the Mel-frequency cep-
stral coefficients (mfcc), while the excitation parameters are the logarithm of the
fundamental frequency (log F0), which determines the pitch, and the maximum
voiced frequency (mvf ).

The track montage module uses temporal annotations included in the sub-
title file to create a new track by concatenating silence and synthesized audio
segments. This track may later be embedded in the multimedia file as a side
track, in order to allow the user to select their preferred language.

3 Acoustic modeling

In this section, the two main approaches to acoustic modeling investigated in this
work, HMM and DNN, are described in detail. The reader familiar with ASR
should note that in TTS, in contrast to ASR, the acoustic modeling process
tackles the reverse problem of mapping acoustic features to CD-phonemes.

3.1 HMM-based

The conventional approach to acoustic modeling in speech synthesis is to perform
the acoustic mapping through context-dependent Hidden Markov Models with
explicit duration, also known as Hidden Semi-Markov Models (HSMMs). In the
generation step, first the state durations for each phoneme are predicted by
a Gaussian distribution model. Then, an HMM model is selected. Finally, the
means and variances of the output acoustic parameter vector are generated by
the HMM model. In order to avoid the discontinuities that would arise from
a maximum likelihood approach, the acoustic parameter sequence is smoothed
with the introduction of dynamic features and the use of the maximum likelihood
parameter generation (MLPG) algorithm [24].
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As CD-phonemes often have high dimensionality, training a CD-HMM for
each possible combination of text analysis features is unrealistic and would result
into poorly estimated HMMs. By way of solution, context clustering techniques
at a state-level are used. Clustering is performed by means of binary decision
trees. In the training phase, the Minimum Description Length (MDL) criterion is
used to construct these decision trees [19]. The size of the trees can be controlled
through the penalty term α (where α is typically set to 1). As the spectral and
excitation parameters have different context dependency, separate trees are built
for each one. This approach allows our model to handle unseen contexts.

An extra problem emerges from the modelization of the non-continuous pa-
rameters log F0 and mvf. These parameters are defined in the regions known as
“voiced”, and undefined in the regions known as “unvoiced”. Log F0 has been
modeled with a multi-space probability distribution [25], while the mvf param-
eter was added as an extra stream and modeled with a continuous distribution,
as suggested in [8]. The mvf values were interpolated in the unvoiced frames.

3.2 DNN-based

DNNs have been successfully applied to acoustic modeling in ASR tasks [10].
DNNs map frame features, including textual and temporal features, to acoustic
features in a feed-forward approach. The textual information is composed of bi-
nary features, such as is-current-syllable-accented, and numerical features, such
as number-of-phonemes-in-current-word. Four temporal features are defined, cor-
responding to the position of the current frame (forward and backward) in the
current phoneme, the duration of the phoneme and the duration of the whole
segment. Similar to the HSMMs method, the duration of the phonemes is pre-
dicted by an external Gaussian model. However, in contrast to HMM models,
all the parameters for every possible CD-phoneme will be generated by the same
network. This joint modeling procedure results in a more robust estimation,
which produces better generalization [33].

In order to deal with the voiced/unvoiced (V/UV) discontinuity problem, a
continuous explicit modeling approach has been used for both log F0 and mvf.
An extra bit of the output is used to classify the frame as voiced or unvoiced.
To produce smoother parameter trajectories, the output includes dynamic in-
formation (first and second derivatives) of the parameter sequence. The network
output is assumed to be the mean vector of a Gaussian posterior distribution,
and is combined with a precomputed variance vector to generate the acoustic
feature vector through the MLPG algorithm used in HMM synthesis. A single
variance for each output is estimated from all the training samples.

4 Experimental results

In this section, the corpus employed in our experiments is described. Then, the
evaluation measures are presented along with the experimental setup. Finally,
comparative results between HMM-based and DNN-based TTS systems are re-
ported and discussed.
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4.1 Corpus description

The data used for our experiments has been extracted from the poli[Media] repos-
itory, which contains over 2, 000 hours of video lectures. poli[Media] is a recent,
innovative service for the creation and distribution of multimedia educational
content at the UPV [16,27] mostly in Spanish, but also in Catalan and English.
It is primarily designed to allow UPV lecturers to record their courses in short
videos lasting up to 10 minutes, accompanied by time-aligned slides.

The production process of a poli[Media] repository has been carefully designed
to achieve both a high rate of production and a fine quality, comparable to a
TV production but at a lower cost. However, this repository was not specifically
recorded with synthesizer training in mind, and so audio conditions are far from
perfect. Furthermor, the recordings contain speaker hesitations, unfinished words
and various noises (i.e. coughs).

The complete poli[Media] repository has been automatically transcribed using
the open-source ASR system called transLectures-UPV toolkit [22]. In order
to train this ASR system, a set of 100 hours of video lectures were manually
transcribed. From this set, a subset of 40 videos with 2320 utterances by a single
male native Spanish speaker was selected. After removing the silences from the
videos, 6 hours of speech remain for our experiments.

From this subset, 49 utterances were used for testing purposes. The remain-
ing 2271 utterances were used to train the HMM-based system. In the case of
the DNN-based system, 2171 utterances were devoted to pretraining and fine-
tuning stages, while 100 utterances were reserved as a validation set in order
to avoid overfitting. Phoneme alignments were automatically performed by the
best acoustic model deployed in the transLectures project at month 24 [26].

4.2 Evaluation measures

The comparative evaluation of our TTS systems was performed in terms of
well-known objective error measures. These measures are mean Mel-cepstral dis-
tortion [14] (MMCD), voiced/unvoiced error rate and root mean squared error
(RMSE) in log F0. In the latter case, the RMSE was only computed for the
frames where the system had correctly guessed whether the frame was voiced or
unvoiced. Phoneme durations were set to match those from the natural speech,
rather than being generated by the Gaussian model described in Section 3.

It should be noticed that while these objective values are frequently used in
the TTS research field to compare the performance of the acoustic models, they
do not perfectly correlate with the naturalness of the synthesized speech [23].

4.3 Experimental setup

For training purposes, audio was extracted from the video and downsampled
from 44100Hz to 16000Hz. Every 5 milliseconds, 40 Mel-cepstral coefficients,
log F0 and maximum voiced frequency values were extracted using AhoCoder
tools [1]. The mvf parameter was interpolated in the unvoiced regions for both
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models, while the log F0 was interpolated for the DNN explicit voicing. The
acoustic parameter vectors were then augmented with the information of the
first and second derivatives. The textual analysis information was the same for
both models.

The HMM system was composed of 5-state, no-skip models with diagonal co-
variance matrices. A total of 1017 different questions were used for the construc-
tion of the decision trees. For comparison purposes, we trained 3 HMM-based
systems modifying the parameter α which controls the number of nodes of the
decision trees (with α = 0.5, 1.0 and 2.0). The training was performed using the
most recent stable version (2.2) of the the HMM-based Speech Synthesis System
(HTS) [3].

In the case of the DNN-based system, the number of neurons in the input
layer was 169, while the number of neurons in the output layer was 127, corre-
sponding to 39 mfcc plus energy, log F0, mvf, first and second derivatives and
the V/UV bit. Inputs to the DNN were normalized to have zero mean and one
variance, while outputs were normalized between 0.01 and 0.99. Different neural
network sizes were tested by changing the number of hidden layers (1, 2, 3 or 4)
and the number of neurons per layer (128, 256, 512 or 1024). The sigmoid acti-
vation function was used in the hidden and output layers. Neural networks with
more than one hidden layer were pretrained using a discriminative approach [18],
and then fine-tuned with a stochastic minibatch backpropagation algorithm [6].
The error criterion in both steps was the mean squared error (MSE). The training
was performed with a CUDA-based GPU implementation, part of a development
version of the transLectures toolkit.

4.4 Results and Discussion

Table 1 shows the objective evaluation measures computed for each DNN con-
figuration, together with the results of the best HMM model. For every DNN
configuration, the optimal number of neurons per layer has been selected so that
the evaluation measure is optimized. We can see that DNN-based systems sys-
tematically achieve better results in every measure than HMM-based systems.
The optimal number of layers is unclear, since the evaluation measures exhibit
different behaviour. The V/UV error rate performs better when using simpler
architectures, while the spectral parameters benefit more from a complex archi-
tecture.

Table 1. Comparison between HMM-based and DNN-based acoustic models.

System # layers RMSE log F0 MMCD V/UV Error rate

HMM - 0.190 6.987 13.35

DNN

1 0.183 6.792 12.08
2 0.183 6.702 12.27
3 0.184 6.678 12.36
4 0.184 6.679 12.42
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5 Conclusions and future work

We have presented a novel text-to-speech system for the synthesis of Spanish
subtitles in video lectures. We have reviewed the statistical speech synthesis
framework and discussed why it is appropriate for our task. We have described
the whole system and presented two different approaches to performing acoustic
mapping: HMM-based and DNN-based. We have performed a series of experi-
ments to compare the performance of both approaches. Objective measures show
that the best DNN systems consistently outperform the HMM systems.

Currently, our next steps include the training of a female Spanish voice and
the integration of the system in the UPV video lecture platform poli[Media].
Once integrated, subjective evaluation of the intelligibility and naturalness of
the voices will be carried out. Future work also includes the exploration of
other network topologies [9], incorporating variance modeling into the DNNs
[32], cross-lingual speaker adaptation [29] and a more in-depth linguistic analy-
sis.
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20. Silvestre-Cerdà, J.A., et al.: Translectures. In: Proc. of IberSPEECH. pp. 345–351
(2012)

21. TED Ideas worth spreading, http://www.ted.com
22. The transLectures-UPV Team.: The transLectures-UPV toolkit (TLK). http://

translectures.eu/tlk
23. Toda, T., Black, A.W., Tokuda, K.: Mapping from articulatory movements to vocal

tract spectrum with Gaussian mixture model for articulatory speech synthesis. In:
Proc. of ISCA Speech Synthesis Workshop (2004)

24. Tokuda, K., Kobayashi, T., Imai, S.: Speech parameter generation from hmm using
dynamic features. In: Proc. of ICASSP. vol. 1, pp. 660–663 (1995)

25. Tokuda, K., Masuko, T., Miyazaki, N., Kobayashi, T.: Multi-space probability
distribution HMM. IEICE Transactions on Information and Systems 85(3), 455–
464 (2002)

26. transLectures: D3.1.2: Second report on massive adaptation, http:

//www.translectures.eu/wp-content/uploads/2014/01/transLectures-D3.1.

2-15Nov2013.pdf
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