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Abstract. Over the past few years, online multimedia educational repos-
itories have increased in number and popularity. The main aim of the
transLectures project is to develop cost-effective solutions for producing
accurate transcriptions and translations for large video lecture repos-
itories, such as VideoLectures.NET or the Universitat Politècnica de
València’s repository, poliMedia. In this paper, we present the transLectures-
UPV toolkit (TLK), which has been specifically designed to meet the
requirements of the transLectures project, but can also be used as a con-
ventional ASR toolkit. The main features of the current release include
HMM training and decoding with speaker adaptation techniques (fCM-
LLR). TLK has been tested on the VideoLectures.NET and poliMedia
repositories, yielding very competitive results. TLK has been released un-
der the permissive open source Apache License v2.0 and can be directly
downloaded from the transLectures website.

Keywords: TLK, ASR toolkit, transLectures, HMM

1 Introduction

Online multimedia repositories are on the rise and becoming evermore consoli-
dated as key knowledge assets. This is particularly true in the educational arena
where large repositories of video lectures are being established on the back of in-
creasingly available and standardized infrastructures. A well-known example of
this is VideoLectures.NET, a free and open access web portal that has so far pub-
lished more than 15K educational videos. VideoLectures.NET is a major player
in the diffusion of the open source Matterhorn platform currently being adopted
by many institutions and organizations within the Opencast community [3].
Other examples include massive open online course (MOOCs) aggregators, such
as Coursera, Udacity, EdX, Udemy, iVersity, UPV[x] and others.

The generation of subtitles for these repositories is a costly task, both in
terms of time and money, which prohibits many repositories from having their
videos transcribed. Most of the video lectures available on VideoLectures.NET
and MOOC aggregators, for instance, are not transcribed, despite the obvious
benefits of doing so, including the incorporation of search and analysis functions.
In order to overcome this deficit, the transLectures project aims to develop inno-
vative, cost-effective solutions for producing accurate transcriptions and trans-
lations for video lectures. The project has two case studies: the aforementioned
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VideoLectures.NET, and poliMedia, a Spanish and Catalan video lecture repos-
itory developed at the Universitat Politècnica de València (UPV).

An important area of work at transLectures is to develop solutions that can
be easily transferred to other repositories beyond VideoLectures.NET and poli-
Media. With this in mind, the transLectures-UPV team has developed a whole
series of transferable tools, including online applications. This paper is focused
on just one of these tools, the transLectures-UPV toolkit (TLK). TLK imple-
ments all the functionalities required to develop an automatic speech recognition
(ASR) system. Although developed as part of the transLectures project to meet
the specific requirements of video lecture transcription, it can also be used as
a conventional ASR toolkit, like HTK [20], RASR [17] or KALDI [15]. In this
paper, we go into more detail about this toolkit, which can be freely down-
loaded [6] under the permissive (for research and commercial purposes alike)
Apache License v2.0.

This paper is organised as follows. Section 2 describes the different tools
forming part of TLK that can be used either to build an ASR system or simply
to transcribe input media files. A practical guide to the development of an ASR
system using TLK is given in Section 3. Finally, the performance of TLK is
assessed in Section 4, and some conclusions are given in Section 5.

2 Overview of the Toolkit

TLK can be divided into three major components: the library, the basic com-
mand line tools and the high-level command line tools. The library, named
libTLK, is an ANSI C library and implements the core functionalities of TLK
(feature extraction, parameter estimation, decoding, adaptation, etc.). A set of
basic command line tools have been defined to use libTLK. Based on these basic
tools, high-level command line tools have also been developed in order to carry
out the main steps involved in building an HMM-based ASR system: prepro-
cessing, training and decoding.

2.1 Building an ASR System Using TLK Tools

As illustrated in Fig. 1, an ASR system can be built using three high-level TLK
tools: tLtask-preprocess, tLtask-train and tLtask-recognise.

tLtask-preprocess This tool takes time-segmented audio signals and the corre-
sponding transcriptions as input and performs feature extraction and phonetic
annotation. It also extracts clusters from the input audio, which can be used
for speaker or video adaptation, and other useful data like the original or non-
punctuated text.

tLtask-preprocess uses the tLextract basic command tool to perform
the Mel-Frequency Cepstral Coefficients (MFCC) feature extraction process as
described in [20]. tLextract supports a large number of audio file formats since
it uses the libsox library. The parameters involved in the extraction process
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Fig. 1. Building an ASR system using TLK tools.

are easy to configure: sampling frequency, duration of the extraction window,
number of cepstral coefficients, etc. Furthermore, tLextract also allows the
application of a mean variance normalization to the input samples.

The phonetic transcription is obtained using different auxiliary scripts de-
pending on the input language. The current release supports Spanish and Cata-
lan.

tLtask-train. This tool takes the output from tLtask-preprocess and per-
forms the following training schema to estimate the HMMs:

1. Standard model training: monophone training, triphone training, transfor-
mation of the triphone model to a tied phoneme model, tied phoneme train-
ing.

2. Estimation of CMLLR matrices and CMLLR features.
3. CMLLR model training: CMLLR monophone training, CMLLR triphone

training, CMLLR transformation of the triphone model to a tied phoneme
model, CMLLR tied phoneme training.
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This is the training schema for a two-step recognition system using fCMLLR
features [9], and tied-state triphone HMMs. The final standard and CMLLR
models are made up of Gaussian mixture distributions estimated following on
an iterative training schema in which mixture components are mixed at each
iteration (mixing is performed using tLmumix). Tied-state triphone HMMs are
estimated following a phonetic decision tree approach [21]. This technique is
implemented as an auxiliary Python script based on predefined linguistic rules.
These rules are implemented as regular expressions in Python and can be easily
defined by users. The current release includes rules for English, Spanish and
Catalan.

tLtask-train uses the tLtrain basic command tool which implements Baum-
Welch and Viterbi algorithms for parameter estimation [7, 19]. tLtrain has been
designed to be able to properly manage large corpora by scaling in cluster en-
vironments. Specifically, tLtrain is used by tLtask-train following a Map-
Reduce approach. That is, training is split into two stages: a first stage in which
tLtrain is used to compute statistics, which can be split over several indepen-
dent processes; and a second stage where the statistics computed in the previous
stage are merged using the basic command line tool tLupdate. It is worth not-
ing that tLupdate has support for linear interpolation of counts which might be
useful in an online learning schema. Additionally, tLtrain allows samples to be
packed into tar files for a better I/O latency in a cluster environment.

tLtask-train uses additional basic command tools to complete the CMLLR
model training. tLcmllr is used to calculate a transformation matrix over all
Gaussian mixtures of a simple HMM using the Constrained MLLR algorithm
(CMLLR), while tLcmllrfeas transforms samples into fCMLLR features using
a CMLLR transformation matrix.

tLtask-recognise. This tool transcribes audio samples produced by tLtask-preprocess
using HMM models estimated by tLtask-train following a two-step recognition
schema:

1. Recognition using the standard tied phoneme HMMs.
2. Estimation of CMLLR matrices.
3. CMLLR transformation of input samples.
4. Recognition using the CMLLR tied phoneme HMMs.

tLtask-recognise uses the basic tool tLrecognise, which implements the
well-known Viterbi algorithm, to obtain the most probable hypothesis [19]. In
addition to HMMs, a language model and a pronunciation dictionary must be
provided for decoding. tLrecognise allows two different language model repre-
sentations. If the language model is a wordnet (without back-off), decoding is
carried out over a huge finite state model built by embedding HMMs into the
states of the wordnet [20]. In contrast, if the language model is in ARPA for-
mat (back-off), the decoder follows a word-conditioned tree search approach [12].
Specifically, a prefix tree with all the possible pronunciations is pre-calculated. To
speed up the process, prior to decoding (tLtask-recognise or tLrecognise),
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the language model must be transformed into an internal format. This transfor-
mation is carried out by the basic tool tLlmformat. tLrecognise implements
several well-known pruning techniques: beam search, histogram pruning, word
end pruning and look-ahead. Although look-ahead is not exactly a pruning tech-
nique, its use is highly recommended when pruning techniques are applied in
conjunction with a prefix tree approach [13]. tLrecognise also supports the
generation of lattices following the technique described in [14]. Two formats for
lattices are supported: the TLK format and the HTK format [20]. If desired,
lattices can be generated including information related to time alignment at
phoneme level.

As with tLtask-train, tLtask-recognise has been designed to work well
in cluster environments. Specifically, it can be configured to split recognition
into parallel processes, and cache big files (like models) on host machines.

The output of tLtask-recognise is given in different formats: plain text,
recognise output, CTM format [4], etc.

2.2 Using TLK Tools For Decoding Only

TLK includes a high-level tool named tLtranscribe that allows users to directly
transcribe media files. This tool reads a preinstalled system, freeing the user
from all the technical details. As illustrated in Fig. 2, tLtranscribe makes
use of the high-level tools tLtask-recognise and tLtask-segment. The tool
tLtask-segment uses tLextract to automatically perform the segmentation of
the audio signal. For the purposes of testing the tLtranscribe tool, a system for
Spanish transcription has been released under a Creative Commons Attribution
4.0 International License.

3 Using TLK

This section describes how an ASR system can be built using TLK following the
process depicted in Fig. 1. A more detailed version of this tutorial is available
on the transLectures website [6].

1. TLK installation and data preparation.
– The current version of TLK runs on Linux and Mac OS X, and can be

easily installed from the transLectures website.

– Acoustic data is also available on the transLectures website and can be
downloaded by executing:
wget translectures.eu/files/tlk/tlk-tutorial-data.tgz

tar -xzvf tlk-tutorial-data.tgz

This will create the directory tlk-tutorial-data, which itself contains
several directories. The train directory contains the data that will be
used to train HMMs, while the test directory contains the data that will
be used to asses the system. These data correspond to Spanish lectures
recorded at Universitat Politècnica de València and their annotations in
.trs and .dfxp format.
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Fig. 2. Transcribing media files with tLtranscribe.

– Now, running tLtask-preprocess the data is preprocessed obtaining
the required files for training and evaluation:
tLtask-preprocess es dfxp tlk-tutorial-data/train preprocess-train

tLtask-preprocess es dfxp tlk-tutorial-data/test preprocess-test

Note that the configuration options (i.e. es and dfxp) indicate the lan-
guage and the file format, respectively.

2. HMM training:
– First of all, a directory should be created to store the training files:

mkdir training; cd training

– Then, the two directories inside preprocess-train need to be linked to
the training directory:
ln -s ../preprocess-train/samples ../preprocess-train/lists .

– Next, a template of the tool’s configuration file tLtask-train should be
generated:
tLtask-train --write-example-config-file > config-file.ini

This configuration file contains the default parameters needed to train
standard HMMs for the Spanish language. In order to use previously
preprocessed acoustic data, the Lists section of this configuration file
has to be changed:
[Lists]

set_name = lists/samples

...

[General]

...

prefix-name = training-tutorial
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– Finally, the following command runs the tool tLtask-train to perform
the HMM training:
tLtask-train config-file.ini --log-folder log

The tool tLtask-train will execute all necessary commands to train
HMMs following the training schema described in previous section Note
that, although certain processes are executed in parallel depending on
the computer, this process might take some time.

3. Automatic transcription:
– As in the case of training, a directory should be created in the base

directory for storing the automatic transcriptions:
mkdir recognition; cd recognition

– Also, some links must be created to the acoustic data and models:
ln -s ../preprocess-test/samples ../preprocess-test/lists \

../preprocess-test/references ../training/models \

../tlk-tutorial-data/misc/mono.lex \

../tlk-tutorial-data/misc/mlm.gz .

– The tool tLtask-recognise needs a configuration file, easily generated
by running:
tLtask-recognise --write-example-config-file > config-file.ini

Some changes need to be made to this file in order to use previously
preprocessed test data:
[General]

prefix-name = tutorial

...

[HMM]

prefix-name = training-tutorial

...

[LM]

language-model = mlm.gz

lexicon = mono.lex

– Finally, upon executing the following command, the test audio sam-
ples will be automatically transcribed following the two-step recognition
schema described in previous section:
tLtask-recognise config-file.ini --log-folder log

4. Measuring the transcription quality:
– The sclite tool in SCTK is used to compute the Word Error Rate (WER)

of the automatic transcriptions [4]:
sclite -r references/035040d6-7fd4-ab4a-80ff-e87d3a5d84db.stm \

stm -h tutorial/cmllr_step2/transcription.ctm ctm

4 Empirical Results

TLK has been developed within the framework of the transLectures project to
deal with the transcription of video lectures. Specifically, ASR systems have
been developed for three languages: English, Spanish and Catalan. The En-
glish ASR system has been developed for the transcription of English lectures
from the VideoLectures.NET repository. The Spanish and Catalan ASR systems
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have been developed for the poliMedia repository. For training and evaluation
purposes, three databases have been developed by manually transcribing video
lectures from these repositories. The main statistics of these speech databases
are shown in Table 1.

Table 1. Main statistics of the English, Spanish and Catalan speech databases used
in the transLectures project.

English Spanish Catalan

Videos 28 704 210
Speakers 104 83 53
Hours 26.6 114.2 25.8
Sentences 7.3K 41.6K 13.7K
Running Words 192K 1M 198K
Vocabulary Size 13K 35.9K 24.4K

From each database some lectures were selected for evaluation purposes: 3.4h
for Spanish and English, and 2.1h for Catalan. However, since video lectures from
VideoLectures.NET are longer (≈ 50min) than poliMedia lectures (≈ 10min),
this means just 4 videos were selected for English in absolute terms, while 23
and 16 videos were selected for Spanish and Catalan, respectively. The remaining
data were used for training and development. For tasks where there was a lack
of training data, as was the case for English and Catalan, the training data was
increased by out-of-domain corpora.

The progress of the ASR systems developed within the transLectures project
using TLK for each language is depicted in Fig. 3. As can be observed, the
performances of the three systems have improved continuously throughout the
project. In particular, very high performance levels have been achieved in Spanish
(12.8% WER). Work began on the English and Catalan systems later than on
the Spanish system (specifically, one year later). However, big improvements in
WER have been achieved in the six-month period (20.1% in Catalan and 22.7%
in English). In all languages, the performance is close or below 20% WER, which
has been reported as the threshold under which ASR output becomes useful for
users [11]. All these improvements can in part be explained by the fact that
TLK has been under active development since the beginning of the project.
This includes some features currently being tested, for example, hybrid models
with deep neural networks (DNNs) [16, 8, 18], and multilingual DNNs [10]. It
is worth noting that, in all cases, the language model used has about 200K
words. Moreover, the percentage of out-of-vocabulary words is below 2% (1.7%
for Spanish). For further details on the development of these systems, please
refer to the public transLectures reports [2, 5, 1].



The transLectures-UPV toolkit 9

 10

 15

 20

 25

 30

 35

 40

Oct’12 Apr’13 Oct’13 Apr’14 Oct’14

WER

En

Ca

Es

Fig. 3. Progress measured in WER of the TLK ASR systems developed within the
transLectures project for Spanish (Es), English (En) and Catalan (Ca).

5 Conclusions and Further Remarks

In this paper we have presented the transLectures-UPV ASR toolkit (TLK)
based on HMMs. TLK implements well-known ASR features and released under
the open source Apache License 2.0. The functionality of TLK has been recently
extended, adding a new component that supports Deep Neural Networks (DNNs)
following a hybrid decoding approach [8]. Although the current release does not
include DNN training, with this still being at an experimental stage, it does
include DNN support for recognition. In fact, beside the standard Gaussian
HMM based Spanish system, we have also released a Spanish system based on
DNNs. Both systems can be downloaded from the transLectures website [6].

As future work, we plan to improve TLK further by adding new state-of-the-
art features, such as convolutional NNs or recurrent NNs. Also, we plan to carry
out extensive, comparative tests with other toolkits.
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