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Abstract 

The results of a sensitivity analysis of a filtration model for submerged anaerobic 

MBRs (AnMBRs) are assessed in this paper. This study aimed to (1) identify the 

less-(or non-) influential factors of the model in order to facilitate model calibration 

and (2) validate the modelling approach (i.e. to determine the need for each of the 

proposed factors to be included in the model). The sensitivity analysis was 

conducted using a revised version of the Morris screening method. The dynamic 

simulations were conducted using long-term data obtained from an AnMBR plant 

fitted with industrial-scale hollow-fibre membranes. Of the 14 factors in the model, 

six were identified as influential, i.e. those calibrated using off-line protocols. A 

dynamic calibration (based on optimisation algorithms) of these influential factors 

was conducted. The resulting estimated model factors accurately predicted 

membrane performance. 
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Highlights 

A global sensitivity analysis of a filtration model for AnMBRs was conducted.  

It was conducted using a revised version of the Morris screening method. 

 Sensitivity results significantly simplified the input subset to be calibrated. 

 Only one input factor could be removed from the model. 

 

 

 

1. Introduction 

 

Understanding and optimising a complex system such as a membrane bioreactor 

(MBR) is a difficult and time-consuming process mainly because of the large number of 

sub-processes taking place simultaneously, which are generally highly dependent upon 

each other. In this respect, mathematical modelling is a powerful tool for studying such 

complex systems (Naessens et al., 2012). 

 

Certain models have been found to be useful for dealing with different aspects of 

WWTPs, e.g. R&D of wastewater treatment processes, design and upgrading of 

WWTPs, and the development of operating and control strategies designed to optimise 

process performance (Ferrer et al., 2004; Derbal et al., 2009; Ruano et al., 2012b). 

Computerised models make it possible to perform many virtual experiments in a short 

space of time. Therefore the mathematical modelling of filtration in submerged 

anaerobic MBRs (AnMBRs) may help gain an insight into the key factors in membrane 

fouling (Mannina et al., 2011), and are also invaluable for the design, prediction and 



 

3 

 

control of the membrane technology used for treating wastewater (Ng and Kim, 2007). 

However, predictions made on the basis of models are not free from uncertainty because 

models are an abstract approximation of reality and are usually based on a considerable 

number of assumptions. In this respect, sensitivity analysis provides useful information 

for modellers because it attempts to quantify how changes to a model’s input factors 

affect the model’s output. In addition, due to the limited data available about full-scale 

systems, the subset of identifiable factors can be reduced, which makes calibrating the 

model simpler. 

 

The different sensitivity analysis strategies applied in literature are usually 

classified in two main categories: global sensitivity analysis (GSA) which involves 

sampling and whose range of input uncertainty reflects the uncertainty in the output 

variables; and local sensitivity analysis, which is based on the local impact of input 

factors upon output variables.  

 

The Morris screening method (Morris, 1991) is a one-at-a-time (OAT) method of 

GSA which calculates the elementary effects (EEi) of input factors upon the output of a 

model. This screening method makes it possible to validate the modelling approach 

because it identifies the non-influential input factors, which could be useful for 

improving the definition of the model by evaluating the usefulness of the non-influential 

input factors. 

 

One key issue with the Morris screening method is that the sampling matrix is 

generated at random. This random sampling may not represent the sampling space well 

and result in an inadequate screening of non-influential input factors. In this regard, 

Campolongo et al. (2007) proposed an improved sampling method which maximised the 
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distances between the final trajectories (r) selected. However, this improved sampling 

was not suitable for large models because of the vast numbers of calculations needed to 

determine the best combinations. For this reason, Ruano et al. (2012a) proposed an 

improved sampling method based on trajectory design intended to overcome the great 

many calculations required by the Campolongo sampling method.  

 

In this study, a revised version of the Morris screening method that includes an 

improved sampling method (Ruano et al., 2012a) was applied to a filtration model 

(resistance-in-series-based) for submerged AnMBRs (Robles et al., 2013a; 2013b). 

Although the model was proven to be robust, the Morris screening method was used not 

only to identify the less/non-influential input factors of the model, but also to validate 

the modelling approach (i.e. to assess the need to include each of the proposed factors in 

the model). In addition, a dynamic calibration (based on optimisation algorithms) of the 

most influential input factors was conducted.  

 

2. Materials and methods 

 

2.1. AnMBR plant description 

 

The filtration model evaluated in this study was developed, calibrated and validated 

using data obtained from a AnMBR system fitted with industrial-scale submerged 

hollow-fibre (HF) membranes and fed with urban wastewater from the pre-treatment of 

the Carraixet WWTP (Valencia, Spain). The plant consists of an anaerobic reactor with 

a total volume of 1.3 m3 (0.4 m3 head space for biogas) connected to two membrane 

tanks each with a total volume of 0.8 m3 (0.2 m3 head space for biogas). Each 

membrane tank (MT) has one industrial HF ultrafiltration membrane unit (PURON®, 
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Koch Membrane Systems (PUR-PSH31) with 0.05 µm pores). Each module has a total 

membrane surface of 30 m2. For further details of this AnMBR system, see Robles et al. 

(2013c). 

 

2.2. Monitoring system  

 

In addition to being monitored on line, grab samples of anaerobic sludge were taken 

once a day to assess filtration performance. MLTS concentration was determined 

according to Standard Methods (2005) using procedure 2540 B.  

 

2.3. Model description 

 

The filtration model used in this study (Robles et al., 2013a; 2013b) gives the 

dynamic evolution of the transmembrane pressure (TMP) by applying Eq. 1 and Eq. 2. 

 

TRJtTMP ··)(   (Eq. 1) 

where: 

- J is the transmembrane flux (m s-1) 

- µ is the permeate dynamic viscosity (kg m-1 s) 

- TMP (t) is the transmembrane pressure (Pa) 

- RT is the total filtration resistance (m-1)  

 

IICCMICMT RRRRR  ··   (Eq. 2) 

where: 

- RM is the intrinsic membrane resistance (m-1)  
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- RC is the cake layer resistance (m-1) 

- RI is the irreversible fouling resistance (m-1) 

- ωC is the mass of cake deposited per membrane area (kg m-2) 

- αC is the average specific cake resistance (m kg-1) 

- ωI is the mass of irreversible fouling per membrane area (kg m-2) 

- αI is the average specific irreversible fouling resistance (m kg-1) 

 

To account for cake layer compression, αC was defined as time- and TMP-

dependent as per Bugge et al. (2012) and Jørgensen et al. (2012). In addition, to account 

for sub-critical fouling, an additional dependence of αC on time was considered in the 

model (Robles et al., 2013a), as shown in Eq. 3 below: 
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 ·)(1··,max)()( 0,   (Eq. 3) 

Where: 

- )(tC is the specific resistance of the cake at time t (kg m-2). 

- )( ttC  is the specific resistance of the cake at a previous moment in time (kg 

m-2). 

- kSF is the parameter related to sub-critical fouling (kg m-2 s-1). 

- 0,C is the specific resistance of the cake at zero pressure (kg m-2) 

- TMPa is the pressure needed to double the specific resistance (Pa) 

- kt is the time constant (s-1).  

- ∆t is the time step (s). 
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To model the dynamics of ωC and ɷI a black-box approach was adopted in the 

model. This approach considers 3 suspended components: MLTS concentration TSX  

(kg TS m-3); dry mass of cake on the membrane surface, 
CmX (kg TS); and dry mass of 

irreversible fouling on the surface of the membrane, 
ImX (kg TS). In addition, this 

approach includes four kinetically governed physical processes: (1) cake layer build-up 

during filtration; (2) cake layer removal using biogas sparging to scour the membrane; 

(3) cake layer removal during back-flushing; and (4) consolidation of irreversible 

fouling. Table 1 shows the stoichiometry and kinetic formulae of the four processes 

considered in the model.  

 

Process 1 (cake layer build-up) is the convective transport of foulants (XTS in the 

model) to the membrane, which is a function of the permeate flow-rate, Q20P (m3 s-1), 

and bulk concentration (XTS). Process 2 (membrane scouring by biogas sparging) is the 

impact of the hydrodynamic conditions in the membrane tank caused by biogas sparging 

(measured as BRFV: biogas recycling flow per bulk volume in the membrane tank). A 

maximum membrane scouring velocity (qMS,Max) was defined for process 2. In process 

3, the back-flushing removal rate is defined as a function of the back-flushing flow rate, 

Q20BF (m3 s-1), and 
CmX . As per Sarioglu et al. (2012), a maximum back-flushing 

removal velocity was defined, qBF,Max (m
-3), for process 3. 

 

One half-saturation switching function (
CmXM , Eq. 4) for both membrane scouring 

(process 2) and back-flushing (process 3) was used to vary the removal of solids 

smoothly as the cake layer disappeared (Sarioglu et al., 2012).  

CCm

C

Cm

mXS

m

X
XK

X
M




,

        (Eq. 4) 
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where: 

- 
CmXSK , is the half-saturation coefficient of cake solids during membrane scouring 

and back-flushing (kg ST). 

 

Process 2 includes one sigmoid inhibition function (IMS, Eq. 5) to model the impact 

of filtering above or below critical conditions. 

 

   


MLTSBRFJeK
I

VF

MS
·····1

1

2120

     (Eq. 5) 

where: 

- KF is the adjustment parameter representing the fouling rate when the gross 20 

ºC-normalised transmembrane flux (J20) tends to zero (Pa s-1). 

- J20 is the gross 20 ºC-normalised transmembrane flux (m s-1). 

- BRFV is the biogas recycling flow per bulk volume in the membrane tank (Nm3 

s-1 m-3). 

- MLTS is the mixed liquor total solids concentration (kg m-3). 

- β1 (s2 m-1), β2 (s m2 kg-1) and γ (s m-1) are the parameters of the model. 

 

On the basis of long-term experimental results, the value of γ was defined as a 

function of RI to account for the reduction over time in the filtering capacity of the 

membranes due to the onset of irreversible fouling. This dependence on irreversible 

fouling can be expressed as: 

 

  RIIIt kRR
t

·
00         (Eq. 6) 
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where: 

- γt is the value of γ at time t (s m-1). 

- γ0 is the value of γ at the initial time (s m-1). 

- 
tIR is the irreversible fouling resistance at time t (m-1). 

- 
0IR is the irreversible fouling resistance at the initial time (m-1). 

- kRI is the proportional constant (s). 

 

Finally, irreversible fouling (process 4) was given in the evaluated model as a direct 

function of 
CmX and a maximum irreversible fouling kinetic constant, qIF,Max (s

-1).  

 

This filtration model features a total of 14 factors that must be calibrated for each 

specific system (see Table 2). These factors were previously calibrated by off-line and 

dynamic calibration methods using short-term and long-term data from the AnMBR 

plant (Robles et al., 2013a; 2013b). In addition, on the basis of expert knowledge, 

default values were assigned to those factors that could not be estimated from the 

available data (Robles et al., 2013a). Table 2 shows these default values calibrated 

beforehand and used in the sensitivity analysis carried out in this study. 

 

2.4. Simulation  

 

This study included 1 month of dynamic simulations using data obtained from the 

above-mentioned AnMBR system. This period was selected as a compromise between 

obtaining reliable results and the cost of calculations. It is important to note that the 

simulation period must be sufficiently long to enable the effect of both reversible and 

irreversible fouling mechanisms to be evaluated (Drews, 2010). 
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Simulation entailed the following dynamic operating conditions recorded during the 

long-term performance of the AnMBR plant: MLTS levels from approx. 15 – 18 g L-1; 

biogas recycling flow (BRF) from 4 to 12 Nm3 h-1; and J20 from approx. 4 to 12 LMH. 

The dynamics in J20 considered the fluctuations in the influent flows of WWTPs. For 

this purpose, the standard dry-weather influent records (updated in 2006) recommended 

by Copp (1999) were used as shown in Robles et al. (2013d). 

 

2.5. Morris screening method 

 

The Morris screening method (Morris, 1991) is a one-factor-at-a-time method of 

GSA that evaluates the distribution (Fi) of the elementary effects (EEi) of each input 

factor upon model outputs, used to calculate the statistical parameters that provide 

sensitivity data. In this study the scaled elementary effect (SEEi) proposed by Sin and 

Gernaey (2009) was applied. EEi is in itself a local measure of sensitivity, but this 

drawback is overcome by repeating EEi calculations in the input region of interest using 

Morris’s efficient random sampling strategy, which is obtained by using a trajectory-

based design. This sampling strategy then evaluates the EEi of each input factor with 

the same step size but at different initial points in the input region of interest. Finally, 

the analysis of Fi of the elementary effects of each input factor will determine the 

relative importance of the input factors, providing a good approximation of a GSA. 

 

The finite distribution of elementary effects associated with each input factor Fi is 

commonly obtained by sampling different coordinates (X) from the input space at 

random. However, this random sampling of X may only cover a small part of the space. 

Therefore, in this study the trajectory-based sampling strategy proposed in Ruano et al. 
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(2012a) was applied. This strategy is based on the improved sampling proposed by 

Campolongo et al. (2007), which consists in selecting the r trajectories in such a way as 

to maximise their dispersion in the input space. At first, a high number of random 

Morris trajectories M are generated and then the highest spread r trajectories are chosen 

out of M. This spread is calculated following the definition of distance between a couple 

of trajectories m and l defined by Eq. 7. 
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iml zXzXd  for m l otherwise dml= 0   (Eq. 7) 

where: 

- )(zX m

i
indicates the zth coordinate of the ith point of the mth Morris trajectory. 

 

Consequently, the best r trajectories out of M are selected by maximising the 

distance dml among them, and thus, the quantity D, which is the sum of all the distances 

dml between couple of trajectories belonging to the combination. This D quantity must 

be calculated for each possible combination of r trajectories. Consequently, the 

evaluation of all the possible combinations results in a high computational demand. To 

solve this problem Ruano et al. (2012a) developed an alternative methodology which 

does not take into account all the possible combinations, but it gets a combination of r 

trajectories out of M that are really close to the highest spread one and with low 

computational demand. Although the proposed sampling does not guarantee maximum 

overall distances between the final trajectories (r) selected (i.e. maximum dispersion in 

the input space), at least these distances are maximised locally. For further details on 

this trajectory-based sampling strategy and its comparison with to the Morris’ random 

strategy see Ruano et al. (2012a). 
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As per Saltelli et al. (2004), the mean (), standard deviation (σ) and absolute mean 

() of the SEEi values of each Fi were used in this study as sensitivity measures. In 

accordance with Campolongo et al. (2007), it is required to evaluate  and σ 

simultaneously to reliably assess stability rankings since an input factor with elementary 

effects of different sign would have a low value of  but a considerable value of σ (i.e. 

identifiable input factors affecting the output non-linearly or interactively). To 

overcome this problem, as suggested in Campolongo et al. (2007), * was used in this 

study to rank the input factors in order to systematically identify the optimal number of 

repetitions of elementary effects calculations (i.e. ropt). can be also used to 

systematically differentiate between non-influential input factors (low and 

influential input factors (high . ropt for each Fi was sought with a constant resolution 

of p = 4. In order to identify ropt, r was sequentially increased until the ranking of input 

factors remained nearby stable, i.e. type II error was minimised (type II error: 

identifying an important factor as insignificant). This stability was numerically 

evaluated using a modified version of the position index PFrirj proposed by Ruano et 

al. (2012a). For given rankings obtained by ri and rj, this modified index PFrirj is 

defined by Eq. 8 
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     (Eq. 8) 

 

where: 

- Pk,i is the position of the kth input factor in the ranking obtained by ri  

- Pk,j is the position of the kth input factor in the ranking obtained by rj  
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- 
jkik PP ,, ,  is the average of the positions of the kth input factor in the ranking 

obtained by ri and rj. 

- PFMAX is the maximum value of PFrirj for the number of input factors evaluated 

 

PFrirj is maximum when the maximum spread of all factors is obtained for the two 

rankings compared. For instance, for 3 input factors and P1,i = 1, P2,i = 2, P3,i = 3 the 

maximum value of PFrirj occurs when P1,i = 3, P2,i = 1, P3,i = 2 (Cosenza et al., 2013). 

For 14 input factors PFMAX results in 14.13.On the basis of this position index PFrirj 

(Eq. 8) a general criteria for quantifying the convergence of the Morris screening 

method is established. Based on previous studies, reaching two consecutive PFrirj 

values below 0.3 is proposed as criteria for selecting rj as ropt.  

 

Once ropt was found, the graphical Morris approach was used to identify the factors 

that influence the model. The μ and σ obtained for all SEEi values of each Fi are plotted. 

Two lines were also plotted, corresponding to μi ± 2SEMi, where SEMi is the standard 

error of the mean that can be calculated thus: SEMi = 
r

i . Factors laying outside the 

wedge formed by the two lines corresponding to μi = ±2SEMi (presenting high μ and 

relatively small σ) are deemed in this study to be influential presenting linear and 

additive effects upon the output. Factors laying inside this wedge that present small μ 

but high σ are deemed to be influential presenting non-linear or interactive effects upon 

the output (the factor carries the effect of different signs, depending on the values 

assumed by the other factors). Factors laying inside/outside this wedge that present 

small μ and σ are deemed to be less/non-influential factors with negligible effects upon 

the output (Morris, 1991). 
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2.6. Dynamic calibration of the model being evaluated 

 

The dynamic calibration (based on optimisation algorithms) of the influential input 

factors of the model consisted of adjusting the simulated TMP (TMPSIM) to the 

experimental TMP (TMPEXP) by means of the least squares method together with the 

subspace trust region method (Coleman and Li, 1996), based on the interior-reflective 

Newton method (implemented in MATLAB® LSQNONLIN), and the Runge-Kutta 

method (MATLAB® ode45 function). The objective function (OF) applied is shown in 

Eq. 9. 

 

 
2

  EXPSIM TMPTMPOF        (Eq. 9) 

 

To enhance the dynamic calibration, appropriate initial values for the model factors 

had to be selected. In this respect, on the basis of the different Morris simulations 

carried out to select ropt, the optimum initial values chosen were those which combined 

to give the minimum least squares error between TMPSIM and TMPEXP (see Eq. 9).  

 

Model performance statistical analysis based on the use of the regression line 

method was performed by using IBM® SPSS® Statistics v.19 and statgraphics® 

Centurion v.16.2 were used for model performance statistical analysis. 

 

3. Results and discussion 

 

3.1. Sensitivity analysis results 
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The revised version of the Morris screening method was applied to different 

number of trajectories (r), chosen from M =1000 initial Morris trajectories, until the 

ranking of significant factors remained more or less stable, as measured quantitatively 

by the index PFri rj. Factor uncertainty was set to 20% of the variability of the default 

values shown in Table 2. This value was established on the basis of the results from 

different trials in which uncertainty ranged from 10 to 50%.  

 

Table 3 shows the resulting * from the model inputs calculated for the different 

number of runs selected for the Morris simulations. As Table 3 illustrates, higher 

numbers of runs (i.e. an increase in r) did not significantly modify the sensitivity 

measures of the inputs. For instance, increasing the number of runs from 10 to 40 had 

no significant impact on the rankings of the different model factors.  

 

Table 4 shows PFri rj for the different number of trajectories evaluated. As can be 

seen in Table 4, PFri rj was low even when the number of runs was low (e.g. r = 

10~40). This means that in this study, values of r below 40 (e.g. r = 10~30) give a 

suitable estimate of sensitivity measurements. These results tally with other applications 

of the Morris screening method involving few repetitions (e.g. r = 10~20) (Campolongo 

et al., 2011; Ruano et al., 2011).  

 

As previously commented, achieving two consecutives PFrirj values below 0.3 

(i.e. PFrirj values below 30% of PFMAX) was established as the criteria for establishing 

rj as ropt. In this respect, PFri rj resulted in a value of 0.3 when r was increased (from 10 

to 20) and remained below this threshold value at higher r (from 20 to 40). On the basis 

of these results, r = 20 was selected as the optimal number of repetitions (ropt) in this 

study. r = 20 was considered to be optimal not only because PF1020 was low but also 
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because of the significant stability of the factors at the top of the ranking (see Table 3). 

In addition, similar results regarding the significant stability of the factors at the ranking 

were obtained for the case of r = 10~40, since PFri rj remained close to zero. When ropt 

= 20, 300 simulations (simulations = r · (k+1); r = 20; k = 14) were required to evaluate 

the entire model. One simulation (covering 1 month’s operations) took approximately 

10 minutes to calculate using a PC with 8 GHz Intel® CORETM i5 processor. Therefore, 

in this study, it was possible to estimate the sensitivity measures adequately with a low 

number of repetitions (requiring few calculations). These results suggest adequate 

coverage of the input space and, therefore, that possible problems related to type I error 

(i.e. considering a factor to be significant when it is not) and type II error (i.e. failing to 

identify a factor that influences the model considerably) are minimised. 

 

Figure 1 shows the graphical Morris approach for the optimal number of repetitions 

selected for the sensitivity evaluation. This figure shows the most influential input 

factors in the model. Figure 1a shows the 6 most influential input factors, which lie 

outside the wedge formed by two lines plotted according to i = ±2SEMi.  They have 

means substantially different from 0 and relatively small standard deviations. It 

consisted of: (1) the model factor related to reversible fouling γ0 ( = -0.527 and σ = 

0.185); (2) the model factor related to reversible fouling β2 ( = -0.159 and σ = 0.090); 

(3) the model factor related to reversible fouling β1 ( = -0.112 and σ = 0.068); (4) the 

factor related to sub-critical fouling kSF ( = -0.089 and σ = 0.051); (5) the fouling rate 

when J20 tends to zero KF ( = -0.060 and σ = 0.038); and (6) the maximum membrane 

scouring velocity qMS,Max ( = 0.051 and σ = 0.034). It is important to note that 3 of the 

4 model factors in the sigmoid inhibition function (see Eq. 5) included in process 2 

(cake layer removal using biogas sparging to scour the membrane) had the highest mean 
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and standard deviation values: γ0, β2 and β1. These results highlight the importance of 

these factors for an adequate representation of the filtration results achieved using the 

developed model. It is important to note that the calibration method proposed for these 

factors (in addition to KF) entailed off-line experiments based on the data obtained from 

different flux-step trials according to Robles et al. (2012). The next in importance were 

kSF, qMS,Max and KF. These 3 factors are also related to the reversible fouling 

mechanisms modelled. 

 

In particular, it is important to highlight the great influence of the factor γ0, which 

has the highest  (in absolute term) and σ. According to the Morris theory, factors with 

high σ are expected to have a non-linear or interactive impact on output. Indeed, based 

on the defined model, γ0 modifies the impact of other inputs on the model output 

(interactions between input factors). Finally, γ0 determines the critical filtration 

conditions for given MLTS and BRF, and thus affects the final value of ωC at given 

operating conditions. Therefore, γ0 indirectly determines the final value of ωI, which is 

a direct function of ωC and qIF,Max. Both ωC and ωI finally determine the model output 

(TMP). Behaviour similar to γ0 but to a lesser extent was observed for β2 and β1 (both 

affect critical filtration conditions). On the other hand, the impacts of kSF, qMS,Max and 

KF upon output are expected to be more linear and additive: their mean is quite high and 

their standard deviation not very high. This behaviour is desirable when estimating 

factors on the basis of optimisation algorithms. 

 

Six model factors were identified as less/non-influential input factors (see Figure 1b): 

(1) specific resistance of cake at zero pressure 0,C  ( = -0.018 and σ = 0.004); (2) 

proportional constant kRI ( = -0.009 and σ = 0.009); (3) maximum irreversible fouling 
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kinetic constant qIF,Max ( = -0.006 and σ = 0.009); (4) half-saturation coefficient for 

cake solids during membrane scouring and back-flushing 
CmXSK , ( = -0.005 and σ = 

0.003); (5) average specific irreversible fouling resistance I  ( = -0.004 and σ = 

0.006); and (6) pressure needed to double specific resistance TMPa ( = 0.010 and σ = 

0.004). It is important to highlight that 3 of the 7 factors identified as less/non-

influential are related to irreversible fouling: qIF,Max, I  and kRI. The low impact of these 

factors on the model output was attributed to the expected non-linear or interactive 

impact on the output of the influential input factors related to reversible fouling. 

 

One aspect to highlight is that only two model factors, the time constant kt and the 

maximum back-flushing removal velocity qBF,Max, were identified as non-influential 

with a value of zero for both sensitivity measures ( and σ). The value of kt is related to 

the time required for compressing the cake to its equilibrium value for a given TMP 

level (i.e. increasing C to TMPC , ). In this respect, it was assumed that TMPC ,  was 

always achieved independently of the value established for kt within the selected input 

uncertainty. The effect of this input factor (kt) on the output is therefore expected to be 

negligible, therefore this result suggests it is not necessary to calibrate this input factor 

in this particular application of the model. On the other hand, qBF,Max gives the 

maximum back-flushing removal velocity. Since this factor was identified as non-

influential, it can be assumed that for the back-flushing duration interval evaluated in 

this study (from 30 to 50 seconds), the reversible cake-layer was completely removed 

from the membrane surface. Moreover, it is interesting to note that low back-flushing 

frequencies (1 back-flushing for each 10 filtration-relaxation cycles on average) were 

applied, therefore this input factor was expected to influence the output less than other 

inputs (e.g. the input factors related to the removal of fouling by using biogas sparging 
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to scour the membrane).  

 

Input factors identified as less/non-influential can be set to default values based on 

optimisation algorithms. It must be emphasised that these factors are for the input 

factors whose values were not calibrated off-line beforehand. To be precise, these 

factors were either dynamically calibrated ( 0,C and TMPa), or calculated on the basis of 

experimental data (qIF,Max, 
CmXSK ,  and kRI), or set to default values ( I , qBF,Max and kt).  

 

3.2. Assessment of the modelling approach 

 

As mentioned before, one main characteristic of the model evaluated in this study is 

that it was developed on the basis of the operating results of an AnMBR system fitted 

with industrial-scale membranes. Hence, most of the factors included in the model were 

defined in order to represent all possible filtration process performances. Indeed, the 

results of the sensitivity analysis tally with the knowledge of the process because most 

of the proposed model factors defined and calibrated by off-line experiments were 

identified as the most influential input factors. In this respect, the factors related to 

membrane scouring (β1, β2, γ0, KF and qMS,Max) were defined in the model on the basis of 

trials designed to identify the critical filtration conditions of the AnMBR plant.  

 

As regards the less/non-influential input factors, those related to cake layer build-up 

and compression during filtration (kSF, 0,C  and TMPa) and cake layer removal during 

back-flushing (
CmXSK , ) were included in the model on the basis of experimental results 

found in recent literature (Bugge et al., 2012; Jørgensen et al., 2012; Sarioglu et al., 

2012). As regards irreversible fouling mechanisms, factors qIF,Max, I  and kRI were 
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included in the model on the basis of experimental results concerning long-term 

membrane performance (i.e. on the basis of the results showing an increase in the total 

filtering resistance of the system and a decrease in the critical flux determined in 

experiments throughout the operating period of the plant).  

 

As regards the input factors identified in this study as non-influential (kt and 

qBF,Max), the result obtained for kt predicts that this factor can be fixed to a constant 

value in the model. The result for qBF,Max suggests that this input factor is not required in 

the model definition although this factor was identified as non-influential in this specific 

study in which low back-flushing frequencies were applied. Therefore, it must be said 

that this input factor is expected to model the output in other specific situations or 

model applications (e.g. operating with variable duration, high back-flushing 

frequencies, modelling short-term process performance, etc.).  

 

3.3. Model calibration 

 

For the experimental period evaluated in this study, the 6 influential input factors 

(β1, β2, γ0, KF, qMS,Max, kSF) were calibrated by an optimisation algorithm, and the other 

factors were set to the optimised initial values. Table 5 shows the initial values used in 

this dynamic calibration (column 1) and the calibrated values for the influential input 

factors mentioned above (column 2). It is important to highlight the results obtained 

from the dynamic calibration of the highly-influential factors that were previously 

calibrated by off-line experiments (i.e. β1, β2, γ0, KF and qMS,Max). Specifically, similar 

values were obtained for these influential factors when calibrated either dynamically or 

experimentally (see Table 2 and Table 5). Hence, suitable estimation of these factors 

can be obtained when using parameter estimation methods. 
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Figure 2 shows the results of the dynamic model calibration. Figure 2a shows the 

average daily values of J20net, BRF, and MLTS. Figure 2b shows the average daily 

TMPSIM and TMPEXP. Hence, Figure 2 shows that, even when operating at different 

MLTS, J20net and BRF levels (see Figure 2a), the model accurately predicted the 

membrane performance using the calibrated values for the model factors (see Figure 

2b): an adequate Pearson Product-Moment correlation coefficient (R) between TMPEXP 

and TMPSIM was obtained (0.947). Nevertheless, the model also gave accurate results 

when using the default values (Pearson’s R coefficient was 0.898). Hence, the 

performance of the model was only slightly enhanced by dynamically calibrating the 

influential model factors because the initial factor values had been calibrated previously 

using long-term data (Robles et al., 2013a).  

 

In order to validate the results obtained using the dynamically calibrated filtration 

model, the regression line method was used in this study. 

 

Figure 3a shows the scatter plot of the pairs of modelled and observed TMP data 

values of the dynamically calibrated filtration model for the same point in time, i.e. the 

modelled output values are plotted against the corresponding measured (observed) data. 

According to the results shown in Figure 3a, the relationship between modelled and 

observed data can be visually described as linear model. Specifically, this linear model 

significantly approximates to an ideal, unbiased model since it yields a slope line similar 

to a unity-slope line through the origin (slope and intercept approximate to 1 and 0, 

respectively). In addition, no systematic divergence from the slope line is observed, 

which indicates non unmodelled behaviour (i.e. underestimation or overestimation). In 

this respect, the R-Squared statistic indicates that the model as fitted explains 89.72% of 
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the variability in the modelled TMP. 

 

The resulting P-value in the Analysis of Variance (ANOVA) of the results shown in 

Figure 3a resulted in a value lower than 0.05 (P-value = 0.0000). Therefore, there is a 

statistically significant relationship between the modelled and observed TMP at the 

95.0% confidence level. Moreover, a hypothesis contrast was conducted to evaluate 

whether the linear regression model slope is significantly different from the unit. This 

hypothesis contrast resulted in a P-value above 0.05, validating the null hypothesis for 

which the slope equals the unit. Therefore, it can be drawn that there are no statistically 

significant differences between the modelled and observed TMP at the 95.0% 

confidence level. In addition, as mentioned before, the corresponding Pearson Product-

Moment correlation coefficient (R) between modelled and observed values equals 

0.947, indicating a relatively strong relationship between the variables.  

 

Figure 3b shows the studentised residuals, which are the quotient resulting from the 

division of a residual (the difference between observed and modelled data) by an 

estimate of its standard deviation (Student's t-statistic), resulting from the linear 

regression model shown in Figure 3a. Specifically, Figure 3b shows the studentised 

residual error as dependent variable and the simulation time as descriptor variable. This 

plot does not reveal high unmodelled behaviour since a nearby uniform spread of 

residuals is observed (i.e. there is systematic difference from cero and not systematic 

changes over the descriptor variable). Nevertheless, a slightly higher density of positive 

values can be observed in this figure, indicating that the dynamically calibrated model 

slightly tends to overestimate correct values. As Figure 3b shows, two observations 

resulted in studentised residuals greater than 2 in absolute value, but no observations 

resulted in values higher than 3 in absolute terms. Therefore, outliers were not 
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identified. 

 

On the other hand, the Durbin-Watson (DW) statistic was calculated, which tests 

the residuals in order to determine if there is any significant correlation. According to 

Figure 3b, DW indicated a possible serial correlation at the 95.0% confidence level 

since the P-value is less than 0.05 (DW = 1.190). The plot of standardised residuals vs. 

standardised modelled values resulted in a uniform scatter of the pairs of values, which 

indicated that the variance is statistically uniform (i.e. homocedasticity of the predictive 

model). Finally, Kolmogorov-Smirnov-Lilliefors test was performed to assess normality 

in the residuals. This test resulted in a P-value > 0.05, thus the stochastic character of 

the error was statistically confirmed. 

 

Therefore, the statistical analysis confirmed the validity of the results obtained from 

the dynamically calibrated filtration model. 

 

4. Conclusions  

 

A sensitivity analysis of a filtration model for AnMBRs using a revised version of 

the Morris screening method was conducted. The optimal number of repetitions found 

in this study (ropt = 20) was similar to the number of repetitions mainly used in other 

applications of the Morris screening method. Using the Morris screening method 

enabled to validate the model: 6 of the model’s 14 factors were identified as influential, 

i.e. the factors calibrated using off-line methods. This tallied with the knowledge of the 

process because the model was developed on the basis of experimental results.  
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Table 1. Stoichiometry and kinetic expressions of the processes considered in the model. 

Table 2. Default values of factors in the evaluated filtration model. Uncertainty was set to 20% of the 

variability of these values in the dynamics simulations.  

Table 3. Sensitivity analysis results: sensitivity measures of the model factors for the different values of r 

evaluated (ropt = 20). 

Table 4. Sensitivity analysis results: position factors (PFri → rj) for the r evaluated. 

Table 5. Initial and dynamically calibrated values for the different model factors in the experimental 

period evaluated in this study. 

 

Figure 1. (a) Sensitivity analysis results: µ versus σ for the final value of ropt of 20. (b) Zoom of the 

sensitivity analysis results in the range of - 0.025 < µ < 0.025 and 0 < σ < 0.02. Lines correspond to µi = ± 

2 SEMi. 
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Figure 2. Model validation using the optimised model factors values. Average daily values of (a) MLTS, 

J20net and BRF and (b) TMPEXP and TMPSIM. * R represents the Pearson Product-Moment correlation 

coefficient between TMPEXP and TMPSIM. 

Figure 3. (a) Scatter plot of the pairs of modelled and observed TMP data of the dynamically calibrated 

filtration model for the same point in time. (b) Studentised residuals resulting from the linear model 

representing the relationship between modelled and observed TMP data 
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Table 1. Stoichiometry and kinetic expressions of the processes considered in the model. 

Component i 

Process j 
TSX  

CmX  
ImX  Kinetic expression 

1. Cake layer formation -1 1  TSP XQ ·20  

2. Membrane scouring by 

biogas  
1 -1  

CCm mVMSXMaxMS XBRFIMq ····,  

3. Cake layer detachment 

during back-flushing 
1 -1  

CCm mXBFMaxBF XMQq ··· 20,  

4. Irreversible fouling 

consolidation 
 -1 1 

CmMaxIF Xq ·,  
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Table 2. Default values of factor in the evaluated filtration model. Uncertainty was set to 20% of the 

variability of these values in the dynamics simulations.  

Factor Units Default value 

qMS,Max 
 

6.31 

qBF,Max m-3 1 

qIF,Max s-1 3·10-07 

KS,XmC kg SST 0.2 

αC,0 m kg-1 1.02·1013 

TMPa kPa 18.9 

kt s-1 1 

kSF m kg-1 s-1 4.09·1010 

KF Pa s-1 5.6·10-4 

β1 s2 m-1 -2.48·108 

β2 s m2 kg-1 5.1·104 

γ0 s m-1 2.81·106 

kRI s 1.6·10-07 

αI m kg-1 1·1014 
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Table 3. Sensitivity analysis results: sensitivity measures of the model factors for the different values of r 

evaluated (ropt = 20). 

r = 10     r = 20   

Factor µ* 
 

Factor µ* 

γ0 0.496 
 

γ0 0.547 

β2 0.151 
 

β2 0.159 

kSF 0.096 
 

β1 0.119 

β1 0.092 
 

kSF 0.089 

KF 0.046 
 

qMS,Max 0.060 

qMS,Max 0.046 
 

KF 0.051 

αC,0 0.016 
 

αC,0 0.018 

kRI 
0.010 

 kRI 
0.010 

TMPa 0.009 
 

TMPa 0.009 

KS,XmC 0.004 
 

KS,XmC 0.007 

qIF,Max 0.004 
 

qIF,Max 0.005 

αI 0.003 
 

αI 0.004 

kt 0.000 
 

kt 0.000 

qBF,Max 0.000 
 

qBF,Max 0.000 

     
r = 30   

 
r = 40   

Factor µ* 
 

Factor µ* 

γ0 0.599 
 

γ0 0.527 

β2 0.182 
 

β2 0.159 

β1 0.128 
 

β1 0.116 

kSF 0.097 
 

kSF 0.090 

KF 0.068 
 

qMS,Max 0.054 

qMS,Max 0.062 
 

KF 0.051 

αC,0 0.015 
 

αC,0 0.015 

TMPa 0.015 
 kRI 0.010 

kRI 0.008 
 

TMPa 0.008 

qIF,Max 0.006 
 

KS,XmC 0.005 

KS,XmC 0.005 
 

qIF,Max 0.003 

αI 0.005 
 

αI 0.003 

kt 0.000 
 

kt 0.000 

qBF,Max 0.000   qBF,Max 0.000 
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Table 4. Sensitivity analysis results: position factors (PFri → rj) for the r evaluated.  

ri → rj 10 → 20 20 → 30 30 → 40 

PFri → rj 0.07 0.06 0.06 
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Table 5. Initial and dynamically calibrated values for the different model factors in the experimental 

period evaluated in this study. 

Factor Unit Initial value Calibrated value 

qMS,Max 
 

5.89 4.71 

qBF,Max m-3 1.07  

qIF,Max s-1 3·60-07  

KS,XmC kg SST 0.19  

αC,0 m kg-1 1.08·1013  

TMPa kPa 20.1  

kt s-1 1.2  

kSF m kg-1 s-1 3.81·1010 2.30·1010 

KF Pa s-1 4.5·10-4 5.4·10-4 

β1 s2 m-1 -2.31·108 -1.85·108 

β 2 s m2 kg-1 4.1·104 4.9·104 

γ0 s m-1 2.62·106 3.14·106 

kRI s 1.9·10-07  

αI m kg-1 1·2014  
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(a) 

 

(b) 

Figure 1. (a) Sensitivity analysis results: µ versus σ for the final value of ropt of 20. (b) Zoom of the 

sensitivity analysis results in the range of - 0.025 < µ < 0.025 and 0 < σ < 0.02. Lines correspond to µi = ± 

2 SEMi. 
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(a) 

 

(b) 

Figure 2. Model validation using the optimised model factor values. Average daily values of (a) MLTS, 

J20net and BRF and (b) TMPEXP and TMPSIM. * R represents the Pearson Product-Moment correlation 

coefficient between TMPEXP and TMPSIM. 
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(b) 

Figure 3. (a) Scatter plot of the pairs of modelled and observed TMP data of the dynamically calibrated 

filtration model for the same point in time. (b) Studentised residuals resulting from the linear model 

representing the relationship between modelled and observed TMP data. 
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