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Abstract: 

Different methodologies for fault diagnosis in multivariate quality control have been proposed in recent 

years. These methods work in the space of the original measured variables and have performed 

reasonably well when there is a reduced number of mildly correlated quality and/or process variables 

with a well-conditioned covariance matrix. These approaches have been introduced by emphasizing their 

positive or negative virtues, generally on an individual basis, so it is not clear for the practitioner the best 

method to be used. This paper provides a comprehensive study of the performance of diverse 

methodological approaches when tested on a large number of distinct simulated scenarios. Our primary 

aim is to highlight key weaknesses and strengths in these methods as well as clarifying their 

relationships and the requirements for their implementation in practice. 
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Introduction 

Industrial quality control usually involves a vector of measurements of either several critical to quality 

or critical to process parameters rather than a single characteristic. Typically, when these measurements 
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are mutually correlated, a more efficient statistical process monitoring scheme is obtained by using 

multivariate control charts rather than separate univariate control charts. 

Let xi represent a K-dimensional vector of measurements made on a process at sampling time i. 

Assuming that when the process is in control, the xi are independent and follow a multivariate normal 

distribution with a Kx1 mean vector ref and a KxK covariance matrix , i.e. x NK (ref, ). 

Among the most popular multivariate control charts is the one based on Hotelling´s T2 statistic1,2, which 

is defined as the estimated Mahalanobis squared distance from the K-dimensional sample observation xi 

to its sample mean vector x  
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where x  and S are respectively, the usual sample mean vector and covariance matrix calculated from a 

reference (in-control), with historical data set having N multivariate observations. When the sample 

observation xi is independent of the estimates x and S, the distribution of Hotelling´s T2 is given by 
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A major advantage of the above statistic is that it is the optimal single-test statistic for a general 

multivariate shift in the mean vector3. However, it has several practical drawbacks: a) it is not optimal 

for more structured mean shifts (i.e. mean shifts in only selected variables); b) it is not specific to a shift 

in mean as it is also affected by changes in the covariance matrix; c) it is not immediately interpretable, 

(i.e. if following a signal, it does not provide information on which specific variable or set of variables is 

out of control). 

In an attempt to improve the interpretability of T2-based fault diagnostics several approaches have been 

proposed in multivariate quality control literature. The step-down method of Roy4 assumes that there is 

a priori ordering among the means of the variables and that tests subsets sequentially using this ordering 

to determine the sequence. Murphy5 suggests a method based on a discriminant distance using 

Hotelling´s T2 statistic. Mason, Tracy and Young6,7 introduce a procedure for decomposing Hotelling´s 
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T2 statistic into orthogonal components. Hawkins3,8 uses regression adjustments for each individual 

variable. Runger and Montgomery9 define a distance to measure the contribution of a variable to the 

value of Hotelling´s T2 statistic. Doganaksoy, Faltin and Tucker10 propose to rank the variables most 

likely to have changed according to their relative contribution to Hotelling´s T2 statistic using a 

univariate t statistic as a criterion. Hayter and Tsui11, using a different procedure than Hotelling´s T2 

statistic as a trigger mechanism for out-of-control detection, propose to build exact simultaneous 

confidence intervals for each of the variable means. Li, Jin and Shi12 suggest a modification of Mason, 

Tracy and Young´s method based on the use of bayesian networks for reducing computational cost and 

improving the diagnosability. The problem with this method is that it can only be applied when a priori 

relationships among process variables and the interrelationships between process variables and quality 

variables are known. 

Mason, Tracy and Young6 show that some of these methods: the standardized t–based ranking technique 

of Doganaksoy, Faltin and Tucker10, the regression-adjusted variables of Hawkins8, the step-down 

procedure of Roy4 and the T2 discriminant distance procedure of Murphy5, are imbedded in the 

partitioning of Hotelling´s T2. With so many approaches, a practitioner might wonder which one should 

be used in a particular context. 

The objective of this paper is to provide a comprehensive comparison study of the performance of these 

approaches under a large number of different simulated scenarios where these methods might be 

implemented.  

Fault Diagnosis Methodologies 

In this paper the diagnosis performance of the different methods is compared in Phase II (model 

exploitation). After a previously established statistical monitoring chart detects a new signal, this new 

observation xnew is used to diagnose the cause of the fault. It must be noted that most of the compared 

methods use the Hotelling T2 statistic for the detection of out-of-control observations whilst some like 

Hawkins´ method, Hayter and Tsui´s method and the Step-down method use their own detection trigger 
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mechanism. In the following it is assumed that refk,μ is the in-control mean value for the kth variable and 

newk,μ is the mean value of the kth variable after the change (fault). 

 

Doganaksoy, Faltin and Tucker´s Method (DFT)  

The diagnostic method proposed by Doganaksoy Faltin and Tucker10 (DFT) is triggered by an out of 

control signal from Hotelling´s T2 chart. The measured variables are ranked according to the univariate t 

statistic for the difference of two means:  
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Where newk,x is the value of the kth variable in the new observation; refk,x is the estimated mean of the kth 

variable in the in-control reference data set; 2

ks is the estimated variance of the kth variable in the in-

control reference data set and N is the size of the reference data set. 

This ranking is a valuable guide to diagnose the source of the change. Bonferroni’s type of simultaneous 

confidence intervals for new,ref, kk    (k = 1,..,K) are used to provide signals on individual variables. 

Variables for which the Bonferroni intervals do not enclose zero are highly suspect. 

The implementation of this approach is as follows: An observation is considered out of control when 

Hotelling´s T2 statistic for the new observation exceeds the upper control limit at the nominal confidence 

level CLnom.. Then, for each variable the smallest confidence level CLind that would yield an individual 

confidence interval for new,ref, kk    (k = 1,..,.K) that contains the zero is calculated as 

1)1;(T2  NtCL computedind , where computedt  is the calculated value of the univariate t statistic for a 

variable and T(t;d) is the cumulative distribution function of the t distribution with d degrees of freedom. 

Variables with larger CLind values are the ones with relatively larger univariate t statistics which require 

iis
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closer investigation. For each interval the confidence level according to Bonferroni’s proposal 

BonfBonfCL 1  is computed, where 
K

1/K sim
simBonf )1(1


  , being simsimCL 1  the desired 

nominal confidence level and sim the desired overall Type I risk in multiple testing. Then, the variables 

with CLind > CLBonf are classified as being those which are most likely to have changed. 

Consequently, the proposed method is correspondent to work out the p-value of each individual two 

sample comparisons, and signalling those variables which p-value is lower than Bonf . 

 

Modifications to the Doganoksoy, Faltin and Tucker´s Method 

The Bonferroni test13 is the simplest multiplicity adjustment procedure to ensure an overall Type I risk 

in multiple testing (K-dimensional measured variables). This method assumes independence throughout 

the different tests. Therefore, this proposal is too conservative when there are many tests and/or the tests 

are highly correlated. Being too conservative in the Type I risk derives in less sensitive tests (i.e. lack of 

power). In the present work we are going to consider some variations of the DFT methodology focused 

in reducing the risk of being too conservative when applying multiple hypothesis tests. Bonferroni’s test 

will be replaced by different stepwise procedures proposed by Holm14, Hochberg15 and Hommel16. 

These approaches are based on the realization that of the K null hypotheses tested, the only ones to 

protect against rejection (at a given step) are those not yet rejected. An example would be Holm´s 

procedure14: a step down approach which conducts the testing in a decreasing order of significance of 

the ordered hypotheses. The order in which the hypotheses are established is according to p-values. In 

each test the 
'K/1

simHolm )1(1   , where K’= K for the 1th test, K’= K-1 for the 2th test and K’=1 for 

the Kth test. Significance testing continues until a null hypothesis is accepted. Then, all remaining 

(untested) null hypotheses are accepted without further testing. In a similar way Hochberg15 and 

Hommel16 derived step-up procedures. In a step-up procedure the testing is conducted in an increasing 

order of significance of the (ordered) hypotheses. Significance testing continues until a null hypothesis 
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is rejected. Then all remaining (untested) null hypotheses are rejected without further testing. All these 

methods proved to be less conservative than the Bonferroni´s approach.  

In addition to these methods, Bonferroni’s test will also be replaced by two ad hoc procedures to take 

advantage of the correlation information amongst the measured variables. The first procedure, proposed 

by Tukey, Ciminera and Heyse17, suggests the adjustments: K

kak pp )1(1   and 

K
k

1

sim )1(1   , where pk and pak are, respectively, the observed and adjusted p-values for the kth 

variable, and k is the adjusted critical -level for the kth hypothesis for k =1,…,K. In the second 

procedure, proposed by Dubey18, Armitage and Parmar19, and Sankoh, Huque and Dubey13, the 

following adjustments were suggested: k

kak pp
m

)(11   and km

k

1

sim )1(1   , where 

.kr

k Km



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
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K

k

jk.k rKr
j

1)1(  , jkr  being the correlation coefficient between the jth and the kth 

variable.  

These variants signal the variables where adjusted p-values, pak, are lower than sim  or, where 

equivalent, those variables whose non-adjusted p-values are lower than k 

 

Hayter and Tsui´s Method  

This procedure operates by calculating a set of simultaneous confidence intervals for each one of the K 

variables mean (k) with an overall coverage probability of 1-, assuming a known correlation structure. 

This method is similar to the bar plot of normalized errors of the variables that can be seen in Kourti and 

MacGregor20 or the multivariate profile charts proposed by Fuchs and Benjamini21. In Hayter and Tsui´s 

method the process is deemed to be out of control whenever any of these confidence intervals do not 

contain its in-control value, refk,μ , and the identification of the errant variable or variables is immediate. 
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For a known covariance structure  or correlation matrix R and a chosen Type I risk  , the 

experimenter first evaluates the critical point 
αCR,
 by simulation. This critical point is defined by:   


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Then, following any new observation },.....,....{ ,,,1 newKnewknewnew xxxx , simultaneous confidence intervals 

for the mean of each of the K measured variables ( k ) are obtained: 

];[ , α,knewk,αknewk CxCx RR,     

These confidence intervals assume a known variance and they are calculated for a fixed 

)1(  confidence level.  The process is considered out of control if at least one interval does not contain 

the corresponding reference value refk,μ . This is equivalent to consider that a new observation xnew is out 

of control when: 
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The variables xk whose confidence intervals do not contain refk,μ are identified as those responsible for 

the signal.  

 

Murphy´s Method  

Murphy´s method is an approach based on a discriminant distance. This considers a reference population 

when the process is in control 0 where the observations follow a NK(ref ;) distribution and a new 

population  after a change in the process, where the observations follow a  NK( ;) distribution.  

Once an out-of-control observation is detected by Hotelling´s T2 statistic, the method searches for the 

subset of variables which better discriminates between these two populations. Given a partition of the K 
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variables in two subsets: k1 variables 1(
x  and k2 variables 

2(
x , where K =k1+ k2 ,  in discriminant 

analysis, the true distance between the populations  and 0 is defined as 

)()( 12

ref

T

refK μμμμ Σ  Δ , and the reduced distance as )()( 1(1(1

1

1(1(2

1 ref

T

refk μμμμ Σ  Δ . Then to 

test H0: 022

1
 kK ΔΔ  is equivalent to testing that the k1 subset of variables discriminates just as well as 

the full set of K variables. Under the assumption that the null hypothesis H0 is true, the D 

statistic, 2

1kK TTD  2 , follows a 2

2k , where KT  is the overall Hotelling´s T2 statistic (full squared 

distance): T

newref

T

newrefKT ))( 1
xμxμ Σ   and 2

1kT  is the Hotelling´s T2 statistic based on the subset 

of  k1 variables 1(
x  (reduced squared distance):  T

newref
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newrefkT )()( 1(1(1
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1(1(2

1
xμxμ Σ    where 1(μ and 1(

refμ  

refer to the mean vector of 1(
x and 1Σ is the covariance matrix of 1(

x . If D is large, the hypothesis that 

the k1 subset caused the signal is rejected, if it remains small then it is accepted. No a priori ordering is 

assumed in this method and all the possible subsets can be tested. The subset of variables which best 

discriminates between these two groups is considered the responsible for the observed out-of-control 

signal and corresponds to the smallest value of the D statistic. A drawback of this methodology is the 

excessive number of terms to compute. In this paper, the out-of-control variable selection algorithm 

proposed by Murphy5 is implemented in order to reduce the intensive computational work. 

 

Hawkins´ Method 

The detection and diagnosis in Hawkins’ methodology is based on the residual vector znew, whose kth 

component is the standardized residual resulting when the kth variable is regressed onto all the other 

variables of x.  
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Where Kkkk .....1.1..3.2.1|  is the residual standard deviation of the conditional distribution of xk given all 

other variables of x. Note that if new differs from ref  only in its kth component, then the optimal test for 

a shift is one based on zk,new , the k
th component of vector znew. These zk,new residuals follow a N(0,1) when 

the process is in control. Hawkins8 proposes an easy way of working out the vector of scaled residuals. 

Let )(1

refμxy Σ    thus the kth component of y is the regression residual when variable xk is regressed 

on all other variables, scaled by factor 2

.....1.1..3.2.1| Kkkk  . When the process is in control  

y N(0, 1Σ ) and then z is just a rescaling of y: 

)(]g[ 2/11

refμxAy)(diaz Σ  
 

Where the transformation matrix 11  ΣΣ 1/2
)diag(A  and when the process is in control )(N B0;z   

where    1/21/2
)diag()diag(B ΣΣΣ  111  is the covariance matrix for the vector of scaled residuals 

znew.  

The original proposal consists of monitoring the process using separate control charts for all of the zk,new. 

If the control chart for one of the zk,new signals while charts of others do not, then that indicates that it is 

zk,new has shifted8. Note that the original proposal does not make any correction either for multiple testing 

or correlation among the scaled residuals. So it is necessary to adjust the Type I risk with an appropriate 

selection of the number of standard deviations (d) when calculating the upper control limits of the 

monitoring charts.  

 

Montgomery and Runger´s method. 

This methodology tries to establish the contribution of a variable to the value of Hotelling´s T2 statistic 

used for monitoring the process when a control chart signals. The contribution ck for variable xk,new is the 

required change in the single variable xk which gives a minimum value of the chi-squared (or F-

Snedecor) statistic. So the method looks for the ck that minimizes the expression:  
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where ke  is the unit vector in the direction of the kth coordinate axis and   2/11

k

T

k ee Σ is a scale factor so 

that ck can be interpreted as a measure of a Euclidean distance. 

Variables that require large changes (ck) aim to the responsible variables. Authors proved that the 

squared contribution 2

kc  is equivalent to the Murphy´s D difference for the subset of the k1 variables,     

x(1 = (x1 x2….xk-1 xk+1…xk)  

22

1kk TTDc 2

K   

where 2

1kT  is Hotelling´s T2 statistic based on a subset x(1 made up of K-1 variables after excluding the kth 

variable. A large contribution 2

kc  corresponds to a large D statistic, therefore, we reject that the k1 subset 

of variables causes the signal, highlighting the variable xk as responsible for the shift.   

 

Mason, Tracy and Young´s Method (MTY) 

This method decomposes the overall Hotelling´s T2 statistic into independent components, each 

reflecting the contribution of the different variables to the statistic. The Hotelling´s T2 statistic for a new 

observation may be iteratively decomposed according to Rencher22 in two classes of components: a) the 

unconditional components 

2
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T that measure the “marginal” contribution of the 

variable kx to the statistic T2 and, therefore, records changes in variable magnitudes but does not account 

for correlation structure; b) the conditional components that, assuming a particular ordering in the 

variables, can be expressed as 
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the contribution of the variable newk,x  to the value of the T2 statistic after being adjusted by a regression 

onto a subset of the other variables and, therefore, records events that break the correlation structure.  

The unconditional components are distributed as 1,1

2 1



 Nk F

N

N
T , while the conditional components 

are distributed as 11,

2

1,2,..
)1(

)1)(1(





 MN..M|k F

MNN

NN
T , where N is the number of observations of the 

reference data set and M the number of variables conditioning the component distribution. 

Each decomposition leads to one unconditional component and K-1 conditional components, as given by 

the expression: 
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As this method does not assume any special order in the variables, there are K! different decompositions 

of the T2 , each one with K independent components. Then, all the components are compared against its 

corresponding component distribution threshold, and the variables with significant components are 

identified as responsible for the detected fault. In this paper, the computational scheme proposed by 

Mason, Tracy and Young7 (MTY) is implemented. 

Step-Down Method 

The step-down methodology23 assumes a certain a priori ordering among subsets that can be formed 

with the K measured variables. According to the ordering, the step-down procedure uses partitioning of 

the mean vector of the new observation new  and the mean vector of the reference data ref  into Q 

subvectors  new,1 ,  new,2  , …new,q ….  new,Q  and   ref,1 ,  ref,2 , …ref,q…..  ref,Q , respectively. Then, it 

sequentially tests 1(

0H : new,1 = ref,1 versus 1(

1H : new,1  ref,1 ; then  2(

0H : new,2 = ref,2 versus 2(

1H : new,2 

 ref,2  given new,1 = ref,1;  then 3(

0H : new,3 = ref,3  versus  3(

1H : new,3  ref,3 given new,1 = ref,1 and 

x

1

  

x

2 

 



 12 

new,2 = ref,2; and so on. The test statistics associated with testing these sub hypotheses, 2

qG , are 

independently distributed under H0,  

where
))1/((1 2
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q  is the MTY unconditional T2
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Under H0 assumption it follows that ),(
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
 and it is possible to use separated 

control charts for monitoring them with a critical value (i.e. upper control limit, UCL) for the sub-

hypothesis q given by:  

),(
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q
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   for q=1,2,...,Q 

where ),( qq LNkF
q

  is the 100)1(  q  percentile of the ),( qq LNkF   distribution. 

The process is considered out of control if at least one Gq
2 exceeds the corresponding threshold UCLq. 

Key drawbacks of this methodology are: a) it assumes the existence of an a priori order among the 

different types of faults; and b) it is impossible to implement this methodology when there are faults that 

share common measured variables.  

Simulation procedure 

In order to compare the methods, several faults consisting of small, medium or large shifts in the mean 

of one (or more) variables under different scenarios of correlation matrices will be simulated. 

In the simulation, the different methodologies are applied to a case of four measured variables under 

eleven different correlation structures shown in Table 1 where the covariance matrix condition numbers  

tend to increase its value from C1 to C11. The standard deviations of the four variables were uniformly 

distributed between 0.3 and 0.4. Scenarios leading to unfeasible covariance matrices were discarded. 
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Reference data sets of 50.000 observations for each of the 11 covariance structures were obtained using 

the algorithm proposed by Arteaga and Ferrer24. These reference data sets were used to adjust the Type I 

risk when the methodologies under comparison used a different detection trigger mechanism in the 

detection of the out-of-control observations other than Hotelling´s T2 statistic (i.e. Hawkins´ method, 

Hayter and Tsui´s method and Step-down method). For every correlation structure 102 different types of 

faults were considered. The faults consisted in mean shifts in one, two or three variables. The size of the 

shifts were small (0.5 units or 1.25 to 1.66 standard deviations), medium (1 units or 2.5 to 3.33 standard 

deviations) or large (2 units or 5 to 6.6 standard deviations). The shifts involving several means 

happened in both the same or opposite directions. For each type of fault, 500 observations using the 

algorithm proposed by Arteaga and Ferrer24 were simulated. In this study we have only considered faults 

affecting the mean of the process and excluded faults affecting the covariance structure. The rationale 

for this decision is: i) this approach is most commonly used to address the performance of different 

diagnostic methods; ii) this allows the appropriate comparison of the methodologies especially as some 

of them are not suited for the detection of changes in the covariance matrix of the process. 

TABLE 1 [HERE] 

These faulty data sets were processed under the different proposed fault diagnosis methodologies and 

their performance were measured and compared according to several performance indices that were 

computed for every correlation structure and a particular type of fault. The considered performance 

indices were the following: 

 0PTC : Proportion of observations correctly diagnosed  

500
500

1

,0



i

i0 PPTC  

where P0 =1 if all the variables in the observation are correctly diagnosed, and P0 = 0 on the 

contrary. 

 PTCv : Proportion of faulty variables correctly diagnosed (i.e., true positives in variables)    
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500
500

1

,v



i

iv PPTC  

where iiiv NNP ,f,df,   with Ndf,i equals to the number of correctly diagnosed faulty variables in 

the ith observation, and Nf,i  equals to the number of faulty variables in the ith observation.  

 

 0PWC  Proportion of observations with any non faulty variable wrongly diagnosed (i.e. false 

positives in observations)  

500
500

1

,0



i

i0 WPWC  

where W0 =1 if there is any non-faulty variable in the observation wrongly classified, and W0 = 0 

on the contrary. 

 PWCv : Proportion of non faulty variables wrongly diagnosed (i.e. false positives in variables) 

500
500

1

,



i

ivv WPWC  

where infidfiv NNWW ,,,   with NWdf,i  equals to the number of wrongly diagnosed non-faulty 

variables in the ith observation, and Nnf,i equals to the number of non-faulty variables in the ith 

observation.  

 PND : Proportion of faulty observations which are not detected as faults. This is related to the 

lack of detection power 

500
500

1

,d



i

iPPND  

where Pd,i =1 if the ith observation is not detected as a faulty observation, and Pd,i = 0 on the 

contrary. 

 PNF : Proportion of detected faulty observations in which no variable is found as responsible. 

This is related with the lack of isolation power    
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500
500

1

,f



i

iPPNF  

where Pf,i =1 if the ith observation is detected as a faulty observation but no variable is found as 

responsible, and Pf,i = 0 on the contrary. 

Type I risk considerations 

In order to check the accuracy and precision of the adjusted Type I risk for the 11 covariance matrices 

under different detection trigger mechanisms, 10 reference data sets under each correlation matrix were 

simulated and the real Type I risk for each data set were computed. 

In the methodologies based on Hotelling´s T2 the real Type I risk is centered in the desired value as it 

expected since the Type I risk level is adjusted from a theoretical distribution that takes into account the 

correlation between variables.  

Hawkins´ methodology assumes that the marginal distribution of the monitored residuals follows a 

standardized normal distribution. The overall Type I risk depends on the number of hypotheses tests and 

the Type I risk  of each of the hypotheses tests. In the case of four independent variables, the overall 

Type I risk is .)1(1 4  For a desired overall rate of 05.0overall , 01274.0)1(1 4/1  overall  

so the number of standard deviations to consider for a two-tail hypothesis test is 2.49. Figure 1 a) 

shows the Type I risk of Hawkins´ methodology after Bonferroni correction for the 11 correlation 

structures simulated. The underestimation of overall  in most scenarios is due to the lack of independence 

between the monitored residuals. The B matrix of the Hawkins´ methodology shows that the monitored 

standardized normal residuals are correlated and, consequently, it is necessary to adjust for the Type I 

risk in every case. 

FIGURE 1 [HERE] 
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Table 2 shows the selection of the number of standard deviation (d) to use in the construction of the 

upper control limit (UCL) in Hawkins´ methodology in order to get an overall Type I risk, overall=0.05 

in the 11 correlation matrices simulated.  

TABLE 2 [HERE] 

 

. Figure 1 b) shows that after the adjustment the objective of overall Type I risk of 5% is accomplished. 

In the case of Hayter and Tsui´s and the Step-down´s methodologies the monitored statistic follows 

known theoretical distributions what makes easier to adjust them for the overall Type I risk 

(overall=0.05). 

Statistical comparison of methodologies 

The results for the different performance indices obtained from the simulation study were analyzed with 

a multifactor analysis of variance (ANOVA) considering the factors: number of faulty variables, Nf  (3 

levels: 1, 2 and 3 faulty variables); diagnostic method, M (14 levels, see Table 3); and correlation 

structure, C (11 levels, see Table 1). 

The ANOVA results show that all the factors and most of their interactions are statistically significant 

(p-value< 0.05) for all the performance indices. 

In the Step-down method two a priori ordering among the different types of faults were considered: 

profile 1-1-1-1 (fault in x1, fault in x2, fault in x3, fault in x4) and profile 1-1-2  (fault in x1, fault in x2,  

 

TABLA 3 [HERE] 

fault in x3 and x4). A variant of Hawkins´ methodology to detect faults affecting one single variable 

(Hawkins’ one single variable method) was also considered in this paper. In this variant, the algorithm 

identifies as responsible the variable with the largest significant residual zk,new.  

The mean and 95% least significance difference (LSD) intervals plots displayed in Figure 2 show that 

the MTY (M10), the ad hoc and Bonferroni variants of the DFT method (M7, M8 and M3) give the best 

results in PTC0 (correct diagnosis). The MTY (M10) also displays the best results in PTCv (true 



 17 

positives) and intermediate results in PWC0 and PWCv (false positives). The Hawkins’ (M1), Murphy’s 

(M9) and Montgomery and Runger’s (M11) methods have serious problems of false positives in 

diagnosis as it can be concluded from their large values in PWC0 and PWCv, yielding a low performance 

in terms of correct diagnosis (PTC0).  

 

FIGURE 2 [HERE] 
 

The interaction plots displayed in Figure 3 shows that one of the main reasons for the statistically 

significant interaction between correlation structure and the diagnosis method is the performance in 

PTC0, PWC0 and PWCv of the methods M1, M9, M11 is much more sensitive to changes in the 

correlation structure than the others.  

FIGURE 3 [HERE] 

 

The interaction plots between the number of faults and the fault diagnosis method displayed in Figure 4 

show that although M12 and M14 are the best methods in PTC0 for one single variable faults they 

perform badly faulty variables 2 and 3. This explains their bad performance in PTC0 as shown in Figure 

5 a). Methods M1, M9, M11 and M13 perform badly in PTC0 no matter the number of faulty variables.  

Regarding PTCv Figure 4 b) shows that the M1 has the best performance for one single variable faults 

while the M10 gives the best diagnosis performance for 2 and 3 faulty variables. Methods M12, M13 

and M14 perform badly for 2 and 3 faulty variables. This explains their bad performance in PTCv shown 

in Figure 2 b). 

FIGURE 4 [HERE] 

In the case of one single variable faults, Figure 5 a) shows that M14 (Hawkins´ one single fault method) 

and M12 (Step-down method with 1-1-1-1 subsets) perform better in PTC0 than the rest of the methods. 

Figures 5 b) and c) shows that M12 and M14 present small values for PWC0 and PWCv. The good result 

of these methods in single variable faults can be explained as they are specially designed for this 
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situation. On the contrary these methods give bad results when the actual fault involves more than one 

variable as already shown in Figure 4. Another drawback in the  

Step-down method is the difficulty in implementing the monitoring plots when two different types of 

faults share a common out-of-control variable (i.e. if one type of fault supposes that the variables 1 and 2 

become out of control and a second type of fault supposes that variable 1 and 3 becomes out of control). 

FIGURE 5 [HERE] 

If the size of fault (3 levels: small, medium and large) is introduced as a new factor in the ANOVA we 

observe an interesting result in Figure 6 whereby ANOVA interaction plots between the diagnosis 

method and the size of fault show that large and medium faults are particularly responsible for the 

excessive false positive rates in methods M1, M9 and M11.  

 

FIGURE 6 [HERE] 

 

As it can be seen in Figure 7 a) and Figure 2 e) PND is equal on methods M3 to M11 since the detection 

on these methods is based on the same Hotelling´s T2 statistic. Methods M1, M12 and M13 have slightly 

larger PND in all the correlations structures. It can be appreciated that PND higher values are obtained in 

the weakest correlation structures C1, C2 and C3 for all the methodologies with the exception of the M2. 

The M2 presents a singular behavior since the PND results become close similar in all the correlation 

structures. This method has the worst results in PND.   

FIGURE 7 [HERE] 

FIGURE 8 [HERE] 

 

Figure 7 b) and Figure 2 e) show that the DFT methods (from M3 to M8) give high values on PNF, thus 

indicating a lack of diagnostic power. Figure 8 shows that the bad PNF results are mainly associated to 

the small size faults, being particularly problematic in M3 to M6 methods.  
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Summary and Conclusions 

The simulation showed that the MTY method has a better diagnosis performance than the rest of the 

methods because it combines better results in PTCv with similar results in PTC0 of other methods. 

Additionally, the MTY provides an easy interpretability of the terms and relationships between variables 

classifying the out-of-control cases in situations that may or not break the correlation structure between 

the variables. In the simulation it could be seen that Hawkins´, Murphy´s and Montgomery´s methods 

increase the number of false positives in the case of strong correlations and, consequently, yielded a bad 

performance in PTCo.  

In the simulation, the DFT method and its variants manifested problems in “lack of power in fault 

isolation” (PNF). The ad hoc methods D/AP and TCH showed a better power in fault isolation and PTC0 

values in the case of faults involving three variables or small faults, than the Bonferroni´s variant. The 

Holm´s, Hochberg´s and Hommel´s variants had the worst results in all the scenarios simulated.  

In the simulation, the step-down method with profile 1-1-1-1 and the Hawkins´method for faults in one 

single variable yielded the best results in the case of one single variable faults. The problem with these 

methods is that they cannot be used to diagnose fault situations where more than one variable is 

responsible  

 

The imperative result of this study is that it has clearly shown that most of the compared methodologies 

have problems with false positives that have often not been reported in literature. Future research is 

needed to introduce variants in these methods or improve the algorithms to reduce the impact of the 

PWC indices in the diagnosis performance of these methodologies and, consequently, improve their 

classification results.  
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TABLES 

 

TABLE 1.  Correlation structures. 

Correlation 

Structure 
Correlation Values 

Extreme 

Correlations 

(0.9) 

Condition 

number 

CN=
min

max




 

C1: Weak correlations Weak correlation coefficients uniform 

distributed, U[-0.1 , +0.1] 

No 1.57 

C2: Moderate positive  

       correlations 

Moderate positive correlation coefficients 

uniformly distributed, U[+0.1 , +0.4] 

No 3.24 

C3: Moderate mixed    

      correlations 

Moderate mixed positive-negative 

correlations. Absolute correlation 

coefficients uniformly distributed,   

U[+0.1 , +0.4] 

No 4.91 

C4: Moderate negative   

      correlations 

Moderate negative correlation coefficients 

uniformly distributed, U[-0.1 , -0.4]  

No 22.32 

C5: Weak correlations 

       with one extreme  

       correlation 

Weak correlation coefficients uniformly 

distributed, U[-0.1 , +0.1] with one 

coefficient  +0.9 

Yes 20.38 

C6: Moderate positive  

       correlations with one  

       extreme correlation 

Moderate positive correlation coefficients 

uniformly distributed, U[+0.1 , +0.4] with 

one coefficient  +0.9 

Yes 21.49 

C7: Moderate mixed  

       Correlations with one 

       extreme correlation 

Moderate mixed positive-negative 

correlations. Absolute correlation 

coefficients uniformly distributed, U[+0.1 

, +0.4] with one coefficient  +0.9 

Yes 29.92 

C8: Strong positive  

       correlations 

Strong positive correlation coefficients 

uniformly distributed, U[+0.5 , +0.8] 

No 17.37 

C9: Strong positive  

       correlations with one 

       extreme correlation 

Strong positive correlation coefficients 

uniformly distributed, U[+0.5 , +0.8] with 

one coefficient  +0.9 

Yes 38.07 

C10: Strong mixed           

        correlations 

Moderate strong positive-negative 

correlations. Absolute correlation 

coefficients uniformly distributed, U[+0.5 

, +0.8] 

No 17.91 

C11: Strong mixed  

        correlations with one 

   extreme correlation 

Moderate strong positive-negative 

correlations. Absolute correlation 

coefficients uniformly distributed, U[+0.5 

, +0.8] with one coefficient  +0.9 

Yes 39.35 
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TABLE 2.  Selected  number of standard deviations (d) to use in the construction of the UCL in Hawkins’ 

                  methodology for an overall Type I risk, overall=0.05, in the 11 correlation matrix scenarios 

 

C  1 2 3 4 5 6 7 8 9 10 11 

 d 2.49 2.44 2.48 2.44 2.31 2.47 2.41 2.46 2.44 2.46 2.45 

 

 

TABLE 3.  List of diagnostic methods  

                   

Label Method 
M1 Hawkins 

M2 Hayter and Tsui 

M3 Doganaksoy, Faltin and Tucker (Bonferroni) 

M4 Doganaksoy, Faltin and Tucker (Holm) 

M5 Doganaksoy, Faltin and Tucker (Hochberg) 

M6 Doganaksoy, Faltin and Tucker (Hommel) 

M7 Doganaksoy, Faltin and Tucker (TCH) 

M8 Doganaksoy, Faltin and Tucker (D/AP) 

M9 Murphy 

M10 Mason, Tracy and Young (MTY)  

M11 Montgomery and Runger 

M12 Step-down with profile (1-1-1-1) 

M13 Step-down with profile (1-1-2) 

M14 Hawkins’ one single variable  
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FIGURE 1: Type I risk ( 100
overall

 ) for the 11 correlation structures: 

 a) Original Hawkins´ method; b) Adjusted Hawkins´ method  
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FIGURE 2:  Means and 95% LSD intervals plot: a) PTC0 , b) PTCv , c) PWC0 , d) PWCv , e) PND ,  f) PNF. 
 

a) b) 

c) d) 

e) f) 

FIGURE 3:  Interaction plots for diagnosis method  covariance structure: a) PTC0  ,  b) PWC0  c) PWCv 

Arrows in the plots indicate the direction of increment of condition number of the correlation structures.  
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Interaction Plot
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FIGURE 4:  Interaction plots for diagnosis method  number of faults: a) PTC0 ,  b) PTCv. 
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FIGURE 5:  One single variable fault interaction plots: diagnosis method  covariance structure: 

 a) PTC0 ,   b) PWC0, c) PWCv. 
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FIGURE 6:  One single variable fault interaction plots: diagnosis method  fault size  
a)PWC0,,b) PWCv 
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FIGURE 7:  Interaction plots: diagnosis method  correlation structure: a) PND b) PNF 
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