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Abstract 

In this letter, new estimators of the a-m distribution are derived based on the skewness 

of the logarithmic a-m distribution using the moments method. This distribution has 

been recently proposed to model the received field strength in nonlinear propagation 

mediums. Therefore, simple and computationally efficient estimators are required to 

infer the parameters of the received signal amplitude distribution in nonlinear wireless 

communication propagation channels. The performance of these new estimators is 

compared to that obtained with the estimators calculated with the moments method of 

the a-m distribution by solving numerically transcendental equations. These estimators 

are easily evaluated with simple expressions.  
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I INTRODUCTION 

Recently, the a-m distribution has been become attractive for wireless communication 

fading modeling. The a-m distribution is most often referred to as the generalized 

gamma distribution [1] or the Stacy distribution [2] in the statistical literature 

although by now it is acknowledged that Amoroso’s paper in Annali di Matematica 

[3] was probably the first work in which the generalized gamma distribution 

appeared. This distribution was proposed by Yacoub in [4], [5] to model the fading in 

nonlinear environments where the surfaces which cause diffuse scattering are spatially 

correlated. The main advantage of the a-μ distribution is its mathematical simplicity 

and versatility even though includes important distributions as gamma, Nakagami-m, 

Weibull, one-side Gaussian and Rayleigh as particular cases. In [4], [5] the probability 

density function (PDF), cumulative distribution function (CDF) and moments of the 

a-m distribution were derived and related to the physical parameters of the fading 

assuming nonlinearities. The bivariate a-μ distribution was studied in [6], where 

infinite series expressions were proposed for the joint PDF and CDF. In [7] a 

performance analysis of generalized-selection combining receivers over a-m fading 

channels was carried out. Coulson et al. compared in [8] the a-μ distribution with the 

Suzuki distribution to model the composite fast-fading and shadowing in narrowband 

wireless channels. 

The a-m is a tri-parametric distribution. Many efforts have been carried out to 

estimate the parameters of the a-m distribution [4], [5], [9]-[13].  Since there are a-m 

distributions with rather different sets of a and m parameters which can look very 

similar, the inference procedures to estimate a and m parameters present significant 

problems. Maximum likelihood estimation (MLE) method is not straightforward. 

Two main approaches have been proposed: the maximization of the likelihood 

function [9] and the resolution of a scalar nonlinear equation derived from the 

likelihood equations [10]. However, the first method is not computationally efficient 

and the second can present persistent divergence. In [11] Huang and Hwan have 

found estimators of the parameters of the a-m distribution based on the moments 

method (MM), more efficient than MLE procedures for small number of samples. 

Even an iterative heuristic procedure by generating a-m random variables (RVs) has 

been proposed to estimate a and m parameters in [12]. Recently, Song in [13] has 

obtained fast and globally convergent algorithms for estimating the three-parameters 
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of the generalized gamma distribution based on scale-independent shape estimation 

(SISE) equations applied to real-time signals, video and image processing. 

In this letter, a new approach for estimating the a-m distribution parameters based 

on the MM of the logarithmic a-m distribution is proposed. The advantages of the 

new proposed estimators are the following: i) the parameters of the a-m distribution 

are calculated using direct equations from these new estimators and therefore their 

derivation is considerably simple; and ii) a unique solution exists for the parameters 

of this distribution with these novel estimators. 

This letter is organized as follows: Section II presents the PDF, CDF and moments of 

the logarithmic a-m distribution and the fading margin which is a performance 

parameter used in wireless communications. In Section III, the estimators of the a-m 

distribution are derived calculating numerically the error due to the functions 

approximations. Section IV illustrates numerical examples, and finally the conclusions 

are discussed in Section V. 

 

II THE LOGARITHMIC a-m DISTRIBUTION 

Let  2 2

1
j j

j

r x y






   be the envelope of the sum of multipath components, where xj 

and yj are mutually independent Gaussian processes corresponding to the multipath 

component j-th, with     0j jE x E y   and    2 2 2
j jE x E y   , where  E   is the 

expectation operator. The PDF of r is given by [4] 
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where 22a s mW = , ( ) ( )1

0

expxx t t dt
¥

-G = -ò  is the gamma function [14, (6.1.1)], and  
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a

a a
m =

-
. (2) 

Note that in similar way to [15, (120)], m can be extended to positive numbers, 

satisfying m > 0. For m = 1, the a-m distribution becomes the Weibull distribution. 

For a = 1 and a = 2 the a-m distribution converts into the gamma and Nakagami-m 

distributions, respectively.  By setting a = 2 and m = 1, we turn the a-m distribution 
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into the Rayleigh distribution. Also, the a-m distribution is equivalent to the one-

sided Gaussian distribution for  a = 2 and m = 1/2 [4]. 

The k-moment of the a-m distribution is given by [4], [5] 

( )
( )/

k

k
k

k

E r a

m
a

m m

æ ö÷çW G + ÷ç ÷çè ø
=

G
. (3) 

We can define lnK re = , where ( )20 / ln 10K = . Using the elementary 

transformation of variables, the PDF of e is given by 

( )
( )

1
exp ,Kp e

K K

aem
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e e e
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æ ö÷ç= - - ¥ < < ¥÷ç ÷çè øW G W

. (4) 

The moment-generating function of e is calculated as 

( ) ( )
( )
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Using the transformation ( )exp /u Kae=  the integral of equation (5) can be 

expressed as 
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which is easily solved using [16, (3.381 4)] as 
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From (7), we can derive the first three moments of e as 

( ) ( )1
ln

K
m E

a

m
e y m

a

æ öæ ö æ ö÷ç÷ ÷ç ç ÷÷ ÷= -çç ç ÷÷ ÷çç ç ÷÷ ÷ç ç ÷ç Wè ø è øè ø
 , (8) 

( ) ( ) ( )
22

2

2
ln '

K
m E

a

m
e y m y m

a

æ öæ öæ ö æ ö ÷ç ÷÷ç÷ ÷çç ç ÷÷÷ ÷= - +ççç ç ÷÷÷ ÷ççç ç ÷÷÷ ÷ç ç ÷ç Wè ø è øçè ø ÷÷çè ø
 , (9)  

( ) ( ) ( ) ( ) ( )
33

3

3
ln 3 ' ln ''

K
m E

a a

m m
e y m y m y m y m

a

æ öæ ö æ öæ ö æ ö æ ö ÷ç ÷÷ ÷ç ç÷ ÷ ÷çç ç ç ÷÷ ÷÷ ÷ ÷= - + - +ç ççç ç ç ÷÷ ÷÷ ÷ ÷ç ççç ç ç ÷÷ ÷÷ ÷ ÷ç ç ç÷ ÷ç çW Wè ø è ø è øçè ø è ø ÷÷çè ø
 , (10) 



SUBMITTED TO IEEE TRANS. ON COMMUNICATIONS                            3rd Review 

 

DRAFT 03/24/2011 5 

where ( ) ( )ln x
x

x
y

¶ G
=

¶
 is the psi (digamma) function [14, (6.3.1)]; and 
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 are the polygamma 

functions of first and second order, respectively [14, (6.4.1)]. 

The first central moments of e can be calculated from (8)-(10) as 
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For a = 2, the a-m distribution becomes the Nakagami-m distribution and (11), (12) 

are equivalent to [15, (20)].  

The CDF of e is derived by substituting ( )exp /r Ke=  in [5, (8)] as 

( )
( )

( )
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,KF

a

e

m a
g m e

e e
m
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G

, (13) 

where ( ) ( )1

0

, exp
x

aa x t t dtg -= -ò  is the lower incomplete gamma function [14, (6.5.2)]. 

In wireless communications, it is useful to define the fading margin, denoted by 
P

MF , 

as the difference expressed in dB between the mean of the logarithmic distribution 

and the amplitude exceeded with a probability P. Then, for the a-m distribution, the 

fading margin is given by 

( )a m-= - W -1
1 , , ,1PMF m F P , (14) 

where ( )1 , , ,F ua m- W  represents the inverse of the CDF of e given by (13), and m1 is 

calculated in (8). 

Therefore, the second term of (14), ( )1 , , ,1F Pa m- W - , can be expressed as 

( ) ( )1 1, , ,1 ln ,
K

F P Q P
a

a m m
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- -
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, (15) 
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where ( )1 ,Q a u-  is the inverse of the regularized incomplete gamma function defined 

as ( )
( )
( )

1 ,
, /

a z
z Q a u u

a
- G

= =
G

 in [17, (06.12.02.0001.01)] and ( ) ( ) ( ), ,a z a a zgG = G -  

[14, (6.4.1)]. 

From (8), (14) and (15), we can calculate the fading margin of the a-m distribution as 

( ) ( )( )1ln ,
P

K
MF Q Py m m

a
-é ù= - ê úë û , (16) 

Using the asymptotic expression of ( )1 ,Q a x-  when 1x   given by [17, 

(06.12.06.0007.01)] 
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with ( ) ( )( )1/

1 1
a

w x a= - - G + , we can expand the fading margin for P close to 1 as  
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III. ESTIMATORS OF a-m DISTRIBUTION 

In this section, the estimators of the a-m distribution based on the MM are described. 

Later, we present new estimators using the logarithmic a-m distribution with the 

moments method. 

We can define bm  [4, (23)] as 

( )
( ) ( )

( )
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Using (19), we can evaluate a and m from 
1b
m  and 

2b
m  with numerical methods using 

the two following transcendental equations 
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where â  and m̂  are the estimators of the parameters a and m, respectively; and ri, i 

= 1,…, N are the samples of the amplitudes, where N is the number of samples.   

Once â  has been calculated, the estimation of W  parameter, denoted by Ŵ , can be 

easily obtained as 

ˆ1/

ˆ
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1ˆ
N

i
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a
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æ ö÷çW = ÷ç ÷÷çè øå . (22) 

We define a new estimator, ĥ , as 
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where 

1
1

1
ˆ ln

N

i
i

m K r
N =

= å , (24) 

and 
2̂

m  and 3m̂  are the estimators of the second and third central moments of the 

logarithmic a-m distribution, respectively. Note that ĥ  is an estimation of the 

multiplicative inverse of the logarithmic a-m distribution sample skewness [18]. 

Substituting (11) and (12) into (23), it yields 

( )( )
( )

3/2

ˆ'
ˆ

ˆ''

y m
h

y m
= . (25) 

The inverse of the function given by (25), i.e. ˆ ˆ( )fm h= , where ()f ⋅  represents a 

function, is evaluated numerically with a relative error less than 10-4. From this 
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inverse function, the m̂  estimator of the a-m distribution can be approximated using 

the least-squares method as 

2

4 3 2

3 2

1
ˆ ˆ 2.85

2
ˆ ˆ ˆ ˆ ˆ ˆ0.0773 0.6046 0.7949 2.4675 0.9208 2.85 0.6

ˆ ˆ ˆ ˆ132.8995 232.0659 137.6303 27.3616 0.6 0.5

h h

m h h h h h

h h h h

ìïï + £ -ïïïï= - - - - - - < £ -íïïï - - - - - < < -ïïïî

.  (26) 

Fig. 1 shows the m̂  estimator approximation using (26) as a function of ĥ . Note that 

m̂   0 for ĥ  -0.5. The relative error of this approximation is less than 3.4⋅10-3 

using the approximation of the first interval (relative error of 3.4⋅10-3 for ˆ 2.85h = - ). 

The maximum relative error for the second interval approximation is 4.1⋅10-2.  

From (11), the estimation of the â  parameter can be easily obtained as 

( )
2

ˆ'
ˆ

ˆ
K

y m
a

m
= , (27) 

where 
2̂

m  is the estimator of the second central moment of the logarithmic a-m 

distribution and m̂  is the m estimator of the a-m distribution, given by (26). 

Since m̂  as a function of ĥ  is a monotonically decreasing function, a unique solution 

exists for â  and m̂  given a pair of ĥ  and 2̂m  values. 

 

IV. NUMERICAL RESULTS 

We have compared the performance of the two estimators using the Monte Carlo 

method: the central moment (CM) estimators proposed in [4], calculated solving (20) 

and (21) through numerical methods for b1 = 1, b2 = 2; and the skewness logarithmic 

(SL) estimators obtained from (23), (26) and (27).   

In order to generate a-m distributed samples, it is useful to note that if t is a gamma 

RV, denoted by t  (m, aW ), whose PDF is given by 

( )
( )

1

exp , 0t

t t
p t t

m m

a a

m
m

m

-æ ö æ ö÷ ÷ç ç= - ³÷ ÷ç ç÷ ÷è ø è øW G W
,  (28) 

then r ta=  is a a-m RV [4] whose PDF is given by (1). 

We have generated N samples following an a-m distribution with the procedure 

described above. For convenience, we have set 1W = .  
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We can calculate the mean of an estimator ŝ , denoted by ˆMs , as 

1

1
ˆ ˆ

M

M j
j

s s
M =

= å , (29) 

where ĵs  corresponds to each trial of the ŝ  estimator for a given distribution and M 

is the number of trials of each RV. The sample confidence region of the ŝ  estimator, 

denoted by 
M̂s

C , can be defined as 

2
22 2

1 1 1

1 1 1
ˆ ˆ ˆ ˆ2 2 2

M M

M M M

Ms s j j j
j j j

C s s s s
M M M

s
= = =

æ öæ ö æ ö ÷ç÷ ÷ç ç ÷ç÷ ÷=  =  - =  -ç ç ÷ç÷ ÷ ÷ç çç÷ ÷ç ç ÷÷è ø è øçè ø
å å å , (30) 

where 
M̂s

s  is the sample standard deviation of the ŝ  estimator. The sample 

confidence region is useful for examining the variations of an estimator in terms of 

the others estimators and the number of samples N [19]. M = 500 trials of each a-m 

RV have been carried out to obtain statistical parameters of each estimator. 

Fig. 2 shows the sample mean and the sample confidence region of m̂  for N = 10 000 

samples and a = 1.2 using the CM and SL estimators. Since the sample means of m̂  

are slightly above the reference line with a slope equal to 1, both estimators are very 

slightly positive biased. The sample confidence region is slightly broader in the CM 

than in the SL estimator for a = 1.2.  

The normalized mean square error (NMSE) of a generic estimator ŝ  is defined as 

( )
=

-
=

å
2

1

2

1
ˆ

NMSE

M

j
j

s s
M

s
, (31) 

where s is the parameter of the distribution to be estimated. 

Fig. 3 shows a comparison of NMSE of m̂  for the estimators CM and SL as a 

function of m for a = 0.8, 1.2, 1.8 and N = 10 000 samples. The NMSE is 

considerably higher in the CM compared to the SL estimator with a = 0.8. For a = 

1.2, the NMSE in the SL is also lower than in the CM.  Otherwise, the NMSE is 

similar in the CM and SL estimators with a = 1.8. From these curves, it can be 

shown that the NMSE of m̂  for the SL estimator is independent on the value of m, 

increasing with m from 1.5 to 10. 

In Fig. 4 the NMSE of the m̂  estimator is shown in terms of the number of samples 

for the CM and SL estimator methods. We have plotted the NMSE of the m̂  
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estimator from N = 10 000 to 100 000 samples for three pairs of a and  parameters: 

a = 1.1,  = 1.3; a = 1.6,  = 1.3; and a = 2.2,  = 1.8. The NMSE of m̂  using the 

CM estimator is strongly dependent on .  For low values of a (e.g. a = 1.1), the 

NMSE of m̂  with the CM estimator method increases significantly. Otherwise, the 

NMSE of m̂  scarcely depends on  using the SL estimator for the values of these 

simulations.  The NMSE of m̂  presents a poorer behaviour in the CM than in the SL 

estimator for high values of N (for N > 40 000; and a = 1.6,  = 1.3 or a = 2.2,  = 

1.8). Obviously, since SL estimators do not require numerical methods to be solved, 

the computer simulation time is considerably higher using the CM estimator, 

increased significantly as N. 

Finally, Fig. 5 shows the NMSE of the m̂  estimator as a function of the number of 

samples for the SL and the SISE estimator methods. This NMSE has been plotted 

from N = 10 000 to 100 000 samples for three pairs of a and  parameters: a = 0.8,  

= 4.3; a = 3.9,  = 0.7; and a = 2.5,  = 1.9. The SISE estimators have been 

calculated using [13, (12)] with the Newston-Raphson algorithm. From Fig. 5, it can 

be observed that the NMSE of m̂  using the SISE estimator depends strongly on a.  

For a given value of N dependent on a (e.g. N < 3 000 for a = 0.8 and  = 4.3; N < 

20 000 for a = 2.5 and  = 1.9), the SL estimator provides a NMSE less than using 

the SISE estimator method. Nevertheless, the NMSE of m̂  using the SISE estimator 

decreases substantially for low values of  (e.g.  = 0.7). Moreover, the NMSE of m̂  

as a function of N in a logarithmic plot using the SL estimator can be approximated 

by a straight line whose slope is approximately constant. 

 

V. CONCLUSION 

New estimators of the - distribution based on the moments method have been 

obtained using the logarithm of a - RV avoiding the numerical resolution of the 

central moments transcendental equations of the - distribution. These estimators 

are calculated from the multiplicative inverse of the logarithmic - distribution 

skewness. They can be of interest for estimating the envelope of the received signal in 

nonlinear propagation mediums. The NMSE of m̂  with the skewness logarithmic 

estimators provides superior behaviour to solve central moments equations for low  

values (less than 1.2). Moreover, the NMSE of m̂  with these proposed skewness 

logarithmic estimators is smaller than using both the central moment and the scale 
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independent shape estimation methods for large number of samples and values of  

higher than 1.2. 
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Figure 1. Polynomial approximation of m̂  as a function of the ĥ  estimator. 
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Figure 2. Sample mean and the sample confidence region of m̂  for the skewness logarithmic (SL) and central moment (CM) 

estimators (N = 10 000, a = 1.2). 
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Figure 3. Normalized mean square error (MSE) of m̂  estimator for the central 

moment (CM) and the skewness logarithmic (SL) methods as a function of  (N = 

10 000 samples and a = 0.8, 1.2 and 1.8). 
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Figure 4. Normalized mean square error (MSE) of m̂  estimator for the central 

moment (CM) and the skewness logarithmic (SL) methods as a function of the 

number of samples. Parameters used in simulations: a = 1.1,  = 1.3; a = 1.6,  = 

1.3; and a = 2.2,  = 1.8. 
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Figure 5. Normalized mean square error (MSE) of m̂  estimator for the scale-

independent shape estimator (SISE) and the skewness logarithmic (SL) methods as a 

function of the number of samples. Parameters used in simulations: a = 0.8,  = 4.3; 

a = 3.9,  = 0.7; and a = 2.5,  = 1.9. 

 

 

 


