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Multicriteria fuzzy-polynomial observer design for a 3 DoF

nonlinear electromechanical platform
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Abstract

This paper proposes local fuzzy-polynomial observer discrete-time designs for state esti-
mation of a nonlinear 3 DoF electromechanical platform (fixed quadrotor). A trade-off
between H∞ norm bounds and speed of convergence performance is taken into account
in the design process. Actual experimental data are used to compare performance of the
fuzzy polynomial design with classical ones based on the Takagi-Sugeno and linearized
models, both using the same optimization criteria and design parameters.

Keywords: fuzzy polynomial systems, multicriteria optimisation, Sum of Squares, H∞

attenuation, state estimation, electromechanical systems

1. Introduction

In many cases, nonlinear systems can be modelled as fuzzy systems which interpolate
between linear [1] or polynomial vertex models [2, 3]. Fuzzy-sector modelling is still
nowadays a successful technique for the control of such class of systems [4, 5]. Fuzzy
systems with linear consequents are denoted as Takagi-Sugeno ones (TS), and those with
polynomial consequents are denoted as polynomial fuzzy systems.

Polynomial fuzzy systems have been proved to be amenable to direct analysis with
convex optimization, by using sum of squares (SOS) tools [6]; such tools transform SOS
problems as semidefinite programming (SDP) problems, and then call on widely-used
standard linear matrix inequality (LMI) solvers.

State estimators are important in control applications because most fuzzy control
laws in literature require knowledge of the state for its implementation. The design of
state observers for nonlinear systems using fuzzy TS models has been actively considered
recently in practical control applications, [7, 8, 9].

This paper extends the above literature to the polynomial framework, allowing to
obtain better results due to the lower mismodelling possible with polynomial equations.
Furthermore, in order to get sensible solutions, the paper discusses a practical design
which proposes a tradeoff between tracking speed versus H∞ worst-case attenuation in
a multicriteria setting.
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In order to demonstrate the results, this paper considers application of such tech-
niques to angular speed estimation on a 3doF electromechanical system with noisy sen-
sors, reporting a detailed comparative analysis between fuzzy and non-fuzzy (linearised)
techniques.

The objective of this paper is designing a discrete-time polynomial observer with low
computational cost in implementation, for a mechatronic system and validating it with
experimental data. The concrete goals are:

1. Developing multiobjective H∞ plus decay-rate observers for fuzzy polynomial sys-
tems, relaxing conservativeness by adding local information.

2. Adding extra constraints regarding the fastest components of the dynamics, in order
to avoid undesirable behaviours in practice due to approximate discretization.

3. Proposing a practical methodology to choose from the Pareto-front solutions.

4. Comparing the achieved results with other techniques in literature (with theoretical
guarantees absent in linearised designs for nonlinear systems), and validating the
results on an experimental benchmark.

This paper is structured as follows: Section 2 presents the experimental platform
(quadrotor) and its approximate polynomial model; Section 3 presents the discrete-time
polynomial observer design with dual decay-rate and H∞ objective; Section 4 discusses
the many compromises needed to craft a successful engineering application; Section 5
presents a comparative analysis between linear, Takagi-Sugeno and polynomial observers,
both theoretically and experimentally. Finally, a conclusion section closes the paper.

2. System description and modelling

The experimental platform chosen to evaluate the performance of the designed state
observer is a three degrees of freedom (3DoF) system provided by QuanserTM[10]. The
platform, shown in Fig. 1, consists in a quadrotor mounted on a 3 DoF pivot joint,
such that the body can freely move in roll, pitch and yaw. The data acquisition tasks
and the implementation of required control algorithms were carried out in a PC running
Linux-RT on top of an Ubuntu 12.04 installation. The communications between the
quadrotor platform and the PC were made with a PMC I/O board. The sensors of
the platform are encoders that measure the position of the three orientation-axes of the
quadrotor φ, θ and ψ. The control inputs are the voltages V1, V2, V3 and V4 applied
to each of the 4 propellers of the quadrotor. High-resolution encoders are available to
estimate the “true” speeds, but intentionally, a random noise has been added to them
in order to evaluate the behavior with much lower-quality sensors in a more demanding
setting. Indeed, the objective of the paper is testing the differences between linear and
polynomial approaches in far-from-ideal cases: as expected from common sense, if sensors
were “excellent” then any optimal observer design would, basically, disregard the (more
uncertain) model equations.

An approximate non-linear model of the 3DoF platform is presented in the following
equations giving accelerations in roll, pitch and yaw coordinates, as given in [11]:
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Figure 1: The Quanser quadrotor 3DoF system.

φ̈ =
Jrθ̇

Ixx
ug +

Iyy − Izz
Ixx

θ̇ψ̇ + u1

θ̈ =
Jrφ̇

Ixx
ug +

Izz − Ixx
Iyy

ψ̇φ̇+ u2

ψ̈ =
Ixx − Iyy

Izz
θ̇φ̇+ u3

(1)

where the gyroscopic effects in the roll and pitch dynamics contain the term

ug(V1, . . . , V4) = Kv(V1 + V3 − V2 − V4) (2)

which is the sum of the applied (known) voltages. Furthermore, each acceleration input
(u1, u2, u3) from the nonlinear propellers’ actuation, depends on the applied voltages as
follows 1:

u1 =
blK2

v(V
2
2 − V 2

4 )

Ixx

u2 =
blK2

v(V
2
3 − V 2

1 )

Iyy

u3 =
dK2

v (V
2
1 − V 2

2 + V 2
3 − V 2

4 )

Izz

(3)

The symbols used and their values, where applicable, are given in Appendix A,
Table A.3 (extracted from [10]). For observer design purposes, in what follows, the input
voltage signals will be considered to be the transformed signals ui.

1The square is shorthand for sign(Vi)V 2
i to account for upwards and downwards thrust.
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2.1. Fuzzy modelling

Fuzzy-polynomial model. The bounds on the term ug can be computed based on the
bounds of the voltage input, and they are a lower bound ug = 4KvVmin and an upper

one ug = 4KvVmax. Following well-known procedures [12], if we define the weighting
functions

µ1(V1, . . . , V4) =
ug − ug(V1, . . . , V4)

ug − ug
(4)

µ2(V1, . . . , V4) = 1− µ1(V1, . . . , V4) (5)

then, the term ug is expressed as ug = µ1ug + µ2ug. Note that the arguments to µi and
ug are omitted for brevity.

With the above input voltage bounds and taking x = (φ, φ̇, θ, θ̇, ψ, ψ̇) as states, de-
noting as premise variables z(t) = (V1, . . . V4), the quadrotor model (1) can be expressed
at sample time Ts = 5 ms (by Euler-discretization method) in the form:

xk+1 =

2
∑

i=1

µi(zk)Ai(xk) + B(uk) + TsQwk

yk = C(xk) +Rνk (6)

where xk, zk denote the samples x(kTs), z(kTs), model matrices are given by

A1(xk) =















x1k + 0.005x2k

x2k + 0.012x4k − 0.005x4kx6k

x3k + 0.005x4k

x4k − 0.012x2k + 0.005x2kx6k

x5k + 0.005x6k

x6k















, A2(x) =















x1k + 0.005x2k

x2k − 0.012x4k − 0.005x4kx6k

x3k + 0.005x4k

x4k + 0.012x2k + 0.005x2kx6k

x5k + 0.005x6k

x6k















,

B(uk) =















0
0.005u1k

0
0.005u2k

0
0.005u3k















, C(xk) =

[

x1k

x3k

x5k

]

,

x ∈ R
6 is the state, u ∈ R

3 is the control input, y ∈ R
3 is the output and w ∈ R

6, ν ∈ R
3

are unknown process disturbance inputs and measurement noise respectively. Matrices
Q and R are scaling matrices for expected disturbance and noise powers respectively,
later specified. In this way, we may assume that the norm of the vector [wT νT ]T is 1 in
later designs without loss of generality.

Definition 1. Systems expressed in the form (6) are denoted as fuzzy polynomial dy-
namic systems [2, 3], and matrices Ai are denoted as “ vertex models”.

The speeds of the quadrotor η = (φ̇, θ̇, ψ̇) = (x2, x4, x6) will be assumed to lie in the
operating region:

Ωx = {x2, x4, x6 : ηT η ≤ R2
max}, (7)

with R2
max = 3

(

π
2

)2
. The above bound include a hypercube centered in the origin

spanning the interval [−π/2, π/2] on each coordinate.
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Takagi-Sugeno model. In order to compare the experiment with existent results in TS
fuzzy literature, the quadrotor dynamics (1) was also modeled as a TS system (linear
consequents):

xk+1 =
8

∑

i=1

µi(zk)Aixk + Buk + TsQwk

yk = Cxk +Rνk (8)

The model had 8 vertices, because the Coriolis terms (products of angular speeds),
say for instance φ̇θ̇, had to be modelled as a TS model interpolating between vertices
pθ̇ and qθ̇ where p and q are constants denoting a priori chosen speed bounds φ̇max

and φ̇min, respectively; the resulting membership function depends on φ̇. Details on the
model and procedure can be consulted in [8].

Linear model. In order to compare with standard linear time-invariant techniques, the
linearized model of the quadrotor around x = 0 is provided on Appendix A.

3. Observer design for polynomial systems

This section discusses the observer design for discrete-time systems expressed as fuzzy
polynomial models.

The set of polynomials in a variable z will be denoted as Rz, and the n-dimensional
vectors of polynomials as Rn

z . The corresponding element of a polynomial symmetric
expression will be denoted as (∗).

Polynomials in some variables z which can be decomposed as a sum of squares [13] of
other polynomials will be denoted by Σz. Similarly the n × n matrix SOS polynomials
will be denoted by Σn×n

z . Determining if a SOS decomposition of a polynomial exists is
a convex problem. Ample information on SOS programming can be consulted in [6]; for
convenience, some background material and results on the topic appear in Appendix B.

Definition 2. A fuzzy polynomial discrete-time observer for a fuzzy polynomial dis-
cretized system (6) is expressed as:

x̂k+1 =

r
∑

i=1

µi(zk)(Ai(x̂k) + Li(x̂k, yk) · (yk − ŷk)) + B(uk) (9)

where r is the number of fuzzy rules and the observer gains Li may depend polynomially
on sensor measurements and estimated states.

In the particular fuzzy polynomial model of the quadrotor (6), as the arguments of µi

are measurable (z are the input voltages), on-line implementation of (9) can be carried
out with very low computational requirements.

3.1. Discrete-time design

In order to carry out observer design, the observer error ek = xk − x̂k follows the
equation:

ek+1 =

2
∑

i=1

µi (Ai(xk)−Ai(x̂k)− Li(x̂k, yk)(C(xk) +Rνk − C(x̂k))) + TsQwk (10)
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Note that the well-known fact that linear systems are globally stable does not hold in
the polynomial case; hence, many times the problems are infeasible if local regions (Ωx,
Ωe) are not introduced for states which do not appear linearly in the system’s dynamics.
In order to do that, the observer speed error (es = η − η̂ where η̂ are the estimated
speeds) is assumed to lie inside the same sphere as the actual speed, see (7), i.e.:

Ωe = {eTs es ≤ R2
max}. (11)

This assumption is reasonable when the initial estimated state is x̂(0) = 0 (usual
observer start-up condition) and the initial state is inside some level-set of a Lyapunov
function (to be later computed): in that case, es(0) = η(0) and stability will make the
Lyapunov function decrease [14].

From the above considerations, on the following we will assume that the state and
estimation error do not leave expected operation regions e ∈ Ωe and x ∈ Ωx, being Ωe

and Ωx described in (11) and (7) respectively. Also, the following notation will be used
as a shorthand:

• Āi(xk, x̂k) stands as Ai(xk)−Ai(x̂k),

• likewise C̄(xk, x̂k) stands as C(xk)− C(x̂k).

• Subscript notation of a sample k is omitted for simplicity, i.e., e stands as ek where
appropriate.

Consider now a quadratic candidate Lyapunov function on the error in the form

V (e) = eTPe (12)

where P is a constant symmetric positive-definite matrix.

Theorem 1. Given a decay rate parameter α > 0, a polynomial observer (9) which
gives a L2

2 gain attenuation bound γ on the estimation error for system (6) against the
worst-case disturbance, over regions on the error (11) and the state (7), is obtained by
solving the following SOS problem for i = 1, 2:

Minimize γ such that
xTPx− ǫ(x) ∈ Σx (13)

[

eT (P −DTD)e+ γWTW −Ψ1i(η, η̂) (∗)T
P Āi(x, x̂)−Hi(x̂, y)C̄(x, x̂) + TsPQw −Hi(x̂, y)Rν P

]

∈ Σ12×12
x,x̂,w,ν (14)

[

exp(−2αTs)e
TPe− Ψ2i(η, η̂) (∗)T

P Āi(x, x̂)−Hi(x̂, C(x))C̄(x, x̂) P

]

∈ Σ12×12
x,x̂ (15)

2eTP Āi(x, x̂)− 2eTHi(x̂, C(x))C̄(x, x̂)−Ψ3i(η, η̂) ∈ Σx,x̂ (16)

where Ψji(η, η̂) = sji(η, η̂)(R
2
max−ηT η)+qji(η, η̂) (R2

max−eTs es) with j = 1, 2, 3 to enforce

validity in the regions of η and η̂ determined in (7) and (11), γ > 0, W = [w ν]
T
is the

disturbance vector, (s11, s21, q11, q21, s12, s22, q12, q22) ∈ Ση,η̂ are SOS multipliers, ǫ(x) is
an arbitrary radially unbounded positive polynomial2 and D is a constant matrix which

2In the implementation in Section 5, ǫ(x) = 10−4xTx, for this theorem.
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stands as an user-defined scaling weight, in order to choose a particular combination
of errors to minimize. The polynomial observer gains can be computed as Li(x̂, y) =
P−1Hi(x̂, y).

If the above problem renders feasible, then:

1. If initial condition e0 = 0,
√
γ is an upper bound on the (weighted) L2

2 gain (which
is the nonlinear analogous to the linear H∞ norm) [15], i.e.:

sup
0<||w||2<∞

||De||22
||W ||22

< γ (17)

2. If the initial condition e0 6= 0, the initial estimation error decays exponentially with
rate3 α in absence of disturbances, i.e.:

V (ek) ≤ (exp(−2αTs))
kV (e0)

Proof. See Appendix C.

Remark 1. Conditions (16) are stated in order to avoid high-frequency oscillations with
period 2Ts in the error dynamics. Although such conditions may be considered as “op-
tional”, including them is reasonable in practice both for having an acceptable transient
and to avoid exciting high-frequency dynamics in the underlying physical system: in this
way the result will be more tolerant to errors (such as those due to Euler discretization
and unmodelled dynamics). In TS and linear cases we get familiar pole-region LMIs, see
later (23).

With some manipulations, existent results in fuzzy TS observer literature can be
obtained as a particular case in a straightforward way. Note, however, that in the plant
in consideration in this application paper, TS modelling has an important side effect: the
observer problem gets converted to one with unmeasurable premises, as the memberships
must be evaluated with speed estimates η̂ instead of the actual ones η. This did not
occur in the polynomial case, and it will lead to an important performance decrease as
discussed in the experimental results (Section 5) and will require theoretical refinements,
addressed next.

With the TS model (8), the observer error dynamics is given by

ek+1 =

8
∑

i=1

µi(x̂k)((Ai − LiC)ek − LiRνk) + TsQwk +

8
∑

i=1

(µi(zk)− µi(ẑk))Aixk (18)

and the observer-model mismatch must fulfill a Lipschitz-like bound
∥

∥

∥

∥

∥

8
∑

i=1

(µi(z)− µi(ẑ))Aix

∥

∥

∥

∥

∥

≤ σ ‖e‖ (19)

in order to proceed further and set up LMI’s (see [8, 9]). The bound σ depends on the
shape of the memberships (actually, bounds in ‖∂µ

∂x
‖), the model Ai and the modelling

3α is a decay rate in continuous-time (exponential) equivalent units, i.e., the discrete (geometric)
decay is exp(−αTs).
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region Ωx. For this quadrotor case, the taken bound is σ = 0.003. See the above cited
references for details about how to compute it.

Then, if an analogue development to Theorem 1 is carried out for TS models (adding,
however, the Lipschitz-bound construction), the SOS results, as a particular case, get
converted to the classical LMIs (basically, similar to the ones reported in [8, 9]) given in
the following corollary (details omitted for brevity):

Corollary 1. If the quadrotor’s TS model (8) is used and non-polynomial fuzzy observer
gains Li are to be designed, the observer is stable if the following LMI problem is feasible
for α > 0 fixed and i = 1, . . . , 8:

Minimize γ such that
P ≻ 0 (20)











P −DTD − τ1σ
2I (∗) 0 0 0

PAi −HiC P (∗) (∗) P
0 TsQ

TP γI 0 0
0 −RTHT

i 0 γI 0
0 P 0 0 τ1I











≻ 0 (21)





exp(−2αTs)P − τ2σ
2I (∗) 0

PAi −HiC P P
0 P τ2I



 ≻ 0 (22)

AT
i P − CTHT

i + PAi −HiC ≻ 0 (23)

where, τ1 > 0 and τ2 > 0 are Lagrange multipliers, γ > 0, and the fuzzy observer gains
can be obtained by Li = P−1Hi.

Furthermore, if the quadrotor’s linearized model (A.1) is used (Ai = A), the well-
known linear observer L design (with the same criteria) trivially results from setting
σ = 0 in the above corollary. In the linear case, (23) state that poles must lie in the
right-half plane (of course, inside the circle of radius exp(−αTs) from (22)).

4. Design compromises in practice

There are some issues to be discussed in order to obtain acceptable responses in
practice from the above observer design techniques, addressed next.

4.1. Disturbance rejection vs. decay trade-off

In many practical cases, such as the application here discussed, there is a tradeoff
between different relevant aspects:

• Performance, i.e., trying to maximize decay-rate parameter α in (15) for fast con-
vergence from nonzero initial conditions. This point is very important from the
tracking point of view problem.

• Worst-case disturbance rejection, i.e., robustness, asH∞ bounds can be understood
as robustness margins to unstructured time-varying uncertainty via the small-gain
theorem [14].
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• Actual-case disturbance rejection (i.e., actual mean error performance with the
random noises, operating ranges and modelling errors of a test experiment).

Note that H∞ disturbance rejection design is minimizing the effect of the “worst-
case” disturbance (which can be either an external disturbance or a modeling error).
However, it does not directly minimize the effect of “actual” disturbances (particularly,
zero mean random noise).

From the above considerations, a better H∞ attenuation bound (in the design phase)
may result in, for instance, a larger accumulated integral squared error index (ISE) in a
particular experiment (compared to an alternative design with theoretically worse H∞

bound).
Moreover, in order to minimize the effect of the worst-case disturbance, the obtained

gains may be very small so achieved decay performance is very bad. On the other hand,
decay-rate optimization does not take into account the affordable amount of risk if the
worst-case disturbance appears. Also, desired decay-rate performance is very related to
the amount of random noise in sensor readings.

Figures 2(a) and 2(b) illustrate the above-discussed extremal cases4. For instance,
with a noisy sensor, the optimal H∞ estimated speeds are smooth (noise is very-well
filtered) but with an unacceptable error from tracking point of view (Figure 2(a)). If a
fast decay rate is required, the estimated speeds are also useless because there is a high
amount of accumulated error due to noise spikes (Figure 2(b)).

Therefore, as there is a trade-off, there is no single “optimal” observer design, but
a collection of optimal ones (the multicriteria Pareto front [16, 17]). For instance, the
Pareto front can be built by; (a) providing the fastest decay rate for a given robustness
bound, (b) conversely, the better robustness bound for a given decay rate or (c) a weighted
combination of both following some importance criteria.

Hence, it’s a choice of the end-user where to lie in the tradeoff: in practice both
extreme designs may be useless (Figure 2) whereas an intermediate one (Figure 3) will
be satisfactory5 for the “actual case” performance.

The above ideas suggests the following methodology in order to select, in practice, a
particular observer:

I. As the actual disturbances, model errors and the to be tracked signal bandwidth
in practical operation are not known with precision at design time, obtain a whole
Pareto-front for multicriteria H∞ plus decay-rate settings.

II. Carry out a representative experiment and collect input-output data.
III. Test the different observers in the Pareto front over the same data (single experi-

ment from step II).
IV. Evaluate achieved performance (see details on the particular setting for the 3DoF

system in Section 5.2.2).
V. Choose the design which has achieved the best experimental performance with the

“actual case” disturbances and modelling errors.

In this way, the “practically” optimal solution is selected from a set of multiple
“theoretically” optimal ones.

4Data come from the actual experimental platform, but the discussion in this section applies to more
general settings.

5The referred figures have been obtained with the experiments and datasets discussed in Section 5.
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Figure 2: Useless speed estimates in the Pareto front.
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Figure 3: Acceptable speed estimates.

4.2. Choice of disturbance size parameters

Even if the presented results are correct in theory, there is no clear rule on how to
choose observer design parameters Q, R, D. Indeed, the main idea is that the resulting
time response of the observer error will depend on:

• the proportion between process noise/model error Q and sensor noise/modelling
error R.

• the accuracy of the model (expecting polynomial models to be more accurate than
plain linearized ones).
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• the relative proportions between the elements of D: giving more weight to some
position or speed errors trades off a larger error for the less weighted variables.

• the decay-rate parameter discussed above.

For simplicity, from the above considerations, it is suggested to choose simple struc-
tures for the design matrices (such as diagonal), and tune actual performance of the
observer via the decay-rate parameter instead of devoting too much time in modifying
such matrices.

5. Experimental results

The above results have been experimentally tested on the platform described in Sec-
tion 2.

The objectives of the experiment are; (a) showing that, with actual experimental
data, reasonable solutions regarding the performance/robustness are achieved with the
proposed polynomial design and (b) showing that the use of polynomial techniques dom-
inate non-polynomial ones based on fuzzy TS models or on linearised models.

The expected disturbance, modelling errors and noise sizes on this application, jointly
with considerations discussed on Section 4, made us select the following scaling matrices
in order to run the optimization problem:

Q =











0 0 0
0.02 0 0
0 0 0
0 0.02 0
0 0 0
0 0 0.02











R =

[

0.01 0 0
0 0.01 0
0 0 0.01

]

Indeed, by definition process disturbances on the speed dynamic equations do not
exist. The constant weighting matrix D in (17) is chosen as follows

D = diag(0.001, 0.1, 0.001, 0.1, 0.001, 0.1);

in order to take into account speed estimation errors as the objective of the experiments.
A Pareto front with different decay rates, obtaining different suboptimal H∞ norm

bounds, is made for different observer designs (linear, TS and polynomial), being [yk −
Cx̂k] the output estimation error at sample k.

Note that the decay-rate parameter is used to tune the aggressiveness of the observer
instead of the manipulation of the disturbance-size design weights6.

The compared observer design strategies were:

• [LM-D]: x̂k+1 = Ax̂k + Buk − L[yk − Cx̂k], classical linear observer design with
linearized model (Corollary 1 with Ai = A, µ = 0). Without theoretical guarantees
in practice (only for infinitesimally small disturbances and initial conditions on state
and estimated state).

6Actually, quite a few other values for those matrices were tested, but they are not reported be-
cause results are very similar to the ones presented (once the suitable Pareto-front decay-rate tuning is
accounted for).
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• [LM-A]: x̂k+1 =
∑2

i=1 µiAi(x̂k)+B(uk)−L[yk−C(x̂k)], analizes the above LM-D
obtained linear gain with the actual fuzzy polynomial model (Theorem 1 with fixed
Li(yk, x̂k) = L). This yields a posteriori guaranteed performance in all operating
region.

• [TS-8GD]: x̂k+1 =
∑8

i=1 µi(Aix̂k −Li[yk−Cx̂k])+Buk, optimal LMI design with
fuzzy Takagi-Sugenomodel (Corollary 1) and 8 fuzzy observer gains Li. Guaranteed
a priori performance in all operating region.

• [TS-1GD]: x̂k+1 =
∑8

i=1 µi(Aix̂k −L[yk −Cx̂k]) +Buk, optimal LMI design with
fuzzy TS model (Corollary 1) and one observer gain Li = L. Guaranteed a priori
performance in all operating region.

• [TS-1GA]: x̂k+1 =
∑2

i=1 µiAi(x̂k) + B(uk) − L[yk − C(x̂k)], analizes the above
obtained single-gain observer with the fuzzy polynomial model (Theorem 1 with
fixed Li(yk, x̂k) = L). A posteriori guaranteed performance in the operating region.

• [SOS-2G]: x̂k+1 =
∑2

i=1 µi(Ai(x̂k)−Li[yk −C(x̂k)])+B(uk), optimal SOS design
with fuzzy polynomial model (Theorem 1), and 2 non-polynomial7 observer gains.
Guaranteed a priori performance in all operating region.

Computational cost. Note that the theorems in this paper are evaluated off-line, so when
computational requirements are discussed, they refer to memory and CPU of the work-
station with MATLAB R©code carrying out sum of squares optimizations in the observer
design phase. Such optimizations are not needed in on-line operation, but only a very
simple direct evaluation of (9) once the coefficients of L are fixed. Such on-line evalu-
ations can be easily encoded on a few lines of code on any low-range industrial control
computer.

In the off-line gain computation, with the selected quadrotor case, Table 1 shows the
demanded computational resources on a machine with Windows R© XP, Intel Pentium R©III
at 640 MHz and 512 Mb of RAM. Only the two more demanding alternatives (TS-8GD
and SOS-2G with degree of multipliers s, q equal to 2) are shown for brevity. The results
were obtained using MATLAB R© 6.5 R13, YALMIP R20110318 and SeDuMi 1.21.

H
H
H
H
H

Problem size RAM
YALMIP

time
Solver
time

SOS-2G 10262×1180 140 Mb 31.48 s 20.05 s
TS-8GD 11596×168 4 Mb 2.17 s 13.02 s

Table 1: Approximate computational resources for design.

5.1. Pareto-front results

The results for the six different strategies are shown on Table 2. Some important
conclusions can be extracted:

7Polynomial techniques presented on Section 3 allow to design polynomial observer gains Li(y, x̂).
However, in this quadrotor particular case the use of polynomial terms in observer gains didn’t seem to
obtain better results than those with constant gains Li, above reported.
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H
H
H
H
H

α
1.5 6 10 14 18 22

LM-D 1.628 6.45 11.06 15.89 20.9 26.09
LM-A 22.37 39.44 31.34 30.64 33.07 36.93

TS-8GD 13.94 30.64 50.23 73.95 102.87 138.65
TS-1GD 14.89 32.63 52.87 77.35 107.25 144.46
TS-1GA 9.708 22.3 35.3 49.71 65.65 83.21
SOS-2G 5.986 9.915 14.36 19.18 24.26 29.57

Table 2: Set of optimal solutions in the Pareto-front sense, with different approaches.

• LM-D performances (row 1) assume that the process is linear or the operation
region is infinitesimal. Hence, they are menaningless, overly optimistic. LM-A
(row 2) evaluates the design (a posteriori) in the non-infinitesimal region of study
with polynomial models, and results are more meaningful (markedly worse, as
expected).

• Performances obtained with the TS model and 8 fuzzy gains (TS-8GD, row 3)
dominate those obtained with single gain (TS-1GD, row 4), as intuitively expected.
However the improvement of using fuzzy observer gains is not very significant, so
the use of only single gain is justified in the present application.

• Valid TS designs (TS-8GD, TS-1GD) are very conservative due to the need of
fulfilling the Lipschitz condition (19). This can be noted by comparing them with
the fuzzy polynomial design results (SOS-2G), even in an a posteriori analysis
(TS-1GA).

• TS designs outperform linear ones for low decay requirements (compare rows 2 and
5 on Table 2). However, for high decays, the need of ensuring Lyapunov constraints
with the Lipschitz bound (19) seems to make the TS design very conservative.

• Using the SOS-2G design (row 6), the worst-case disturbance attenuation is always
better than the obtained with all other LMI strategies which ensure guaranteed
performance for the same decays (i.e., rows 2 to 5). Hence, the theoretical solutions
of the SOS strategy dominate linear and TS ones in the Pareto sense, as intuitively
expected.

Based on the above considerations, the best chosen design will be the fuzzy polynomial
model and SOS observer design approach (Table 2, SOS-2G). The theoretical results
must, however, be confronted to actual experimental performance, as done next.

5.2. Experimental evaluation of final design

Considering the above compromises, this section presents the final chosen observer
striking a good performance/robustness balance for this application and evaluates it on
the experimental platform.
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5.2.1. Data generation.

With the objective of validating the SOS proposed approach, the system has been
subjected to an excitation achieving large enough angular speeds for the nonlinear terms
to be significant. Hence, a sinusoidal excitation was introduced in ψ from second 5 till
60 and a reference in θ and φ changes every 30 seconds from 10 to −10 degrees to an
underlying low-gain stabilizing PI controller, providing excitation in these degrees of
freedom. The collected input-output data appear in Figure 4.

The initial conditions were close to the linearization point, and in the first 5 seconds
no input excitation has been applied. The set of data has been obtained during a device
maneuver using a direct low-noise encoder. This data confirms that the system states
satisfy the bounds from Section 2.

The objective is to check performance of observer designs in a demanding environment
(otherwise, everything works perfectly if sensors are very good). In order to do that, the
encoder signals have been intentionally corrupted with random noise (variance 0.001 rad)
plus a chirp sinusoidal signal (amplitude 8 ·10−4 rad and frequency varying between 0.01
and 10 Hz in cycles of 5 sec) simulating a deterministic decalibration.

5.2.2. Evaluation of observer performance

Given the Pareto-front designs on Table 2, the problem now is selecting one of them
as the chosen design for the application. Let us follow the methodology in Section 4. In
order to evaluate observer performance, a “precise” state trajectory is required. With
that trajectory, actual observer performance will be evaluated in terms of integral square
error (ISE).

The direct low-noise encoder measurements have been used for that task. The position
estimates are precise, but, as there is no direct access to the speed state variables, a
noncausal zero-phase filter (filtfilt in MATLABr with 0.5/(1 − 0.5z−1) in forward
and reverse time, plus further noncausal numerical differentiation (z− z−1)/(2Ts) in the
speed coordinates) has been used to compute [18] (off-line) a target “actual” value of
speeds from clean position measurements (data in Figure 4). The resulting data have
been assumed to be the “true” speeds to which observers should converge (note that
observers are under the constraints of dealing with noise and being causal).

Evaluating the observer ISE, we finally selected the options with decay rate of α = 18:
it offered a good enough response from tracking point of view and a reduced ISE compared
to other Pareto-front candidate solutions.

5.2.3. Adopted solution

Let us compare the LM-A option (designed with linearised model) which, in theory,
gives guaranteed performance (α = 18,H∞ = 33.07), with the fuzzy TS single-gain design
TS-1GA (α = 18,H∞ = 65.65) and the polynomial SOS-2G design (α = 18,H∞ =
24.264). Note that, thanks to the polynomial techniques, the SOS designs are more
robust than the linear or TS ones from a theoretical point of view (lower H∞ bound
for the same decay rate). The selected observer designs are tested and compared on the
quadrotor. The obtained gains are:
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Figure 4: Collected data
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LLM−A =











0.713 0 0
11.253 0 0

0 0.713 0
0 11.253 0
0 0 0.713
0 0 11.253











LTS−1GA =











1.163 0 0
52.013 0 0

0 1.163 0
0 52.013 0
0 0 1.191
0 0 53.61











L1SOS−2G
=











0.73 −0.062 0
12.51 −0.889 0
0.062 0.73 0
0.889 12.51 0
0 0 0.82
0 0 14.238











L2SOS−2G
=











0.73 0.062 0
12.51 0.889 0
−0.062 0.73 0
−0.889 12.51 0

0 0 0.82
0 0 14.238











The following evaluates how the theoretical advantage translates into experimental
behaviour.

The accumulated integral square errors (ISE) are shown in Figure 5. The LM-A
and TS-1GA observers have the same decay rate performance as the optimal SOS-2G.
However, the improvement of the SOS polynomial design with respect to the alternatives
is confirmed in this experiment (12.5% less ISE than LM-A and, roughly, less than half
than TS-1GA). Note that the non-measurable premise TS-1GA setup (σ = 0.003) results
in an overly conservative setup whose theoretical performance and experimental ISE is
far higher than the other setups8.

In summary, the results show that:

• The polynomial methodology clearly outperforms the TS design with unmeasurable
premises TS-1GA.

• The polynomial setup obtains the best theoretically guaranteed worst-case H∞

bound (both in the a priori formal design and in the a posteriori stability analysis
step), see Table 2.

• In actual-case performance the linear-only and polynomial observer setups achieve
similar performance, beating the TS observer9. Note also that this experiment is
likely not the “worst case” situation.

After the above confirmation that fuzzy polynomial techniques outperform TS and
linear results, a detail of the time response with the finally chosen solution is shown
in Figure 6, where roll dynamics has been omitted because there exist symmetry with
pitch and, therefore, results are similar. The temporal evolution shows that the SOS-2G
observer design can follow the real states without a high noise amplitude.

8Note, however, that TS-1GA and the SOS-2G are able to ensure validity of the design a priori :
the underlying assumptions in the linear case do not actually hold in the experimental setting and its
validity must be proved a posteriori (LM-A), as discussed before, so linearised theoretical and actual
performance are a matter of ”pure chance”.

9In [8] the TS σ = 0.003 observer outperformed the linear observer; however, that was due to the
fact that the actual implementation of the observer used the linear model both in the ”prediction” step
xk+1 = Axk+Buk and in the correction one L[yk−Cx̂k]. In the work presented here, the full nonlinear
model xk+1 = f(xk , uk) has been used in the prediction step, avoiding the unnecessary introduction of
such linearization error. This produces, a more accurate linear observer performance than in [8].
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Figure 5: Experimental ISE computation

6. Conclusions

In this paper, a discrete-time polynomial observer design for state estimation of an
electromechanical plant with fuzzy polynomial model is presented. The design setting is
multiobjective: both decay rate and H∞ conditions are used. Fuzzy TS designs (and,
of course, linearized time invariant ones) can be considered as particular cases of the
proposed methodology.

The obtained observer has been implemented and checked in an experimental quadro-
tor platform, comparing with the fuzzy TS and classical linear designs. The results clearly
show that a mixed H∞/decay design is needed, in order to achieve observers which are
both fast and have reasonable worst-case attenuation guarantees. Furthermore, it is
shown that linear and TS approaches have worse theoretical performance guarantees in
a polynomial system. Obviously, the possible improvements of polynomial approaches
need a model accurate enough so that the linearization errors (which polynomials avoid)
contribute significantly to the overall uncertainty.

In actual experimental data, polynomial-based designs achieved a similar behaviour
to linear ones when close to the linearization point and a 12% lower integral square error
when operating in high-speed trajectories away from it. However, the amount of conser-
vatism introduced in the TS design with non-measurable premises makes its performance
decrease, being even worse than the obtained by the linear observer. Importantly, the
proposed techniques allow for theoretical guarantee of performance, which is not the case
in the naive extrapolation of linearised designs far from the equilibrium point.
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Appendix A. Nonlinear model

The non-linear model of platform (1) is presented in [11] with the variables and
parameters shown in Table A.3.

Sym Meaning Type Unit

φ Roll angle Measured rad

φ̇ Roll angular velocity Estimated rad/s
θ Pitch angle Measured rad

θ̇ Pitch angular velocity Estimated rad/s
ψ Yaw angle Measured rad

ψ̇ Yaw angular velocity Estimated rad/s
Vi Voltage to propeller i Input V
Kv Transformation constant 54.945 rad s/V
Jr Rotators inertia 6 · 10−5 kgm2

Ixx Inertia X-axis 0.0552 kgm2

Iyy Inertia Y-axis 0.0552 kgm2

Izz Inertia Z-axis 0.1104 kgm2

b Thrust coefficient 3.9351 · 10−6 N/Volt
d Drag coefficient 1.1925 · 10−7 Nm/Volt
l Distance pivot-motor 0.1969 m
m Mass 2.85 kg

g Gravity acceleration 9.81 m/s2

Ts Sampling time 0.005 s

Table A.3: Quadrotor variables and parameters

The terms Jr θ̇
Ixx

Kv(V1+V3−V2−V4) and Jrφ̇
Ixx

Kv(−V1−V3+V2+V4) denote gyroscopic
effects. The terms

Iyy−Izz
Ixx

θ̇ψ̇, Izz−Ixx

Iyy
ψ̇φ̇,

Ixx−Iyy
Izz

θ̇φ̇, denote Coriolis effects.
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The linearized model of the quadrotor around x = 0, discretized by Euler method (as
the nonlinear model) for Ts = 5 ms, is:

xk+1 = Axk + Buk + TsQwk

yk = Cxk +Rνk (A.1)

where, using Matlab syntax, A =[1 0.005 0 0 0 0;0 1 0 0 0 0;0 0 1 0.005 0 0;0 0 0 1 0 0;0
0 0 0 1 0.005;0 0 0 0 0 1], B =[0 0 0;0.005 0 0;0 0 0;0 0.005 0;0 0 0;0 0 0.005] and C =[1
0 0 0 0 0;0 0 0 0 0 0;0 0 1 0 0 0;0 0 0 0 0 0;0 0 0 0 1 0;0 0 0 0 0 0].

Appendix B. Basic results on polynomial systems

A polynomial p(z) is said to be SOS if and only if there exist a vector of monomials
m(z) and a constant positive semidefinite matrix H (“Gram Matrix”) such that p(z) =
m(z)THm(z). In this way, SOS decompositions of polynomials can be found using well-
known SDP software [6, 19] in order to search for such H . Note that all SOS polynomials
are positive, however the reciprocal is not true [13]. For instance, the above software finds
that polynomial p(z) = z41 − 4z31z2 + 2z31 + 4z21z

2
2 − 12z21z2 + z21 + 16z1z

2
2 − 8z1z2 + 16z22

can be written as:

p(z) =





z1
z2

z1z2
z2
1





T 



1 −4 −2 1
−4 16 8 −4
−2 8 4 −2
1 −4 −2 1









z1
z2

z1z2
z2
1





and, as the matrix is positive definite, the Cholesky factor gives the SOS decomposition
p(z) = (z1 − 4z2 − 2z1z2 + z21)

2.
The classical linear matrix inequality framework (positive-definiteness of matrices

with linear expressions as elements [20]) can be also extended to the polynomial-matrix
case:

Proposition 1 ([21]). Let F (x) be an N ×N symmetric polynomial matrix of degree 2d
in x ∈ R

n. F (x) is a matrix SOS polynomial if and only if there exist a constant matrix
Q � 0 satisfying

F (x) = (I ⊗ z(x))TQ(I ⊗ z(x)) ∀x ∈ R
n (B.1)

with z(x(t)) being a column vector whose entries are all monomials in x(t) with degree
no greater than d.

Local analysis. Consider a region Ωz defined by polynomial inequalities Ωz = {z : g1(z) ≥
0, . . . , gnz

(z) ≥ 0}. For instance, in the quadrotor case we have z ≡ x and there is only
one bounding polynomial, g1(x) = R2

max − xTx defining a hyper-sphere.

Lemma 1 ([22]). Consider the region Ωz above. If SOS polynomials si(z) ∈ Σz can be
found fulfilling:

p(z)−
nz
∑

i=1

si(z)gi(z) ∈ Σz (B.2)

then p(z) is locally non-negative in the region Ωz.

Polynomials si are denoted as Positivstellensatz multipliers, analogous to Lagrange-
KKT ones in constrained optimization.
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Appendix C. Proof of Theorem 1

Condition (13) ensures positive-definiteness of the Lyapunov function, which in the
linear LMI case amounts to (20). Under no disturbances, the basic decay-rate discrete
condition ∆V = Vk+1 − exp(−2αTs)Vk < 0 can be expressed as:

−∆V =

2
∑

i=1

µie
T
(

exp(−2αTs)P − (∗)T PP−1P

(

Āi(x, x̂)− Li(x̂, C(x))C̄(x, x̂)
))

e > 0 (C.1)

Then, by using the convex-sum property and adding local information following Lemma
1 in order to make the positiveness condition of (C.1) hold only locally in the required
regions, it leads to

eT
(

exp(−2αTs)P − (∗)T PP−1P
(

Āi(x, x̂)

−Li(x̂, C(x))C̄(x, x̂)
))

e −Ψ2i(x, x̂) > 0 i : 1, 2 (C.2)

being Ψ2i(x, x̂) = s2i(x, x̂)(Rmax − xTx) + q2i(x, x̂)(Rmax − eT e). This is, by Schur
complement, equivalent to the i : 1, 2 convex conditions:

[

exp(−2αTs)P −Ψ2i(x, x̂) (∗)T
PĀi(x, x̂)−Hi(x̂, C(x))C̄(x, x̂) P

]

> 0 (C.3)

Conditions (C.3) are fulfilled by enforcing polynomial matrices to be SOS. This can be
done applying Proposition 1. In this way, (15) is obtained and V is a valid Lyapunov
function ensuring exponential stability of system (6).

In the disturbance case, conditions (14) are obtained by a similar procedure with the
dissipation inequality Vk+1 − Vk + eTkD

TDek − γ2(wTw + vT v) < 0 plus information
about locality in multipliers in Ψ1i (details omitted for brevity). Furthermore, if initial
conditions are x0 = 0 and adding from time zero till time k (and letting later k → ∞)
the above discrete-time inequality results in:

V (ek) + eTkD
TDek − γWT

k Wk < 0 ⇒ ||De||22 < γ||W ||22

Note that Li(x̂, C(x)) is used in decay-rate conditions but Li(x̂, y) in dissipation ones.
This is because decay-rate conditions consider a noise-free dynamics in nonzero initial
conditions, so y = C(x) +Rν applies for the particular case ν = 0.

Finally, the meaning of conditions (16) in the linear case, would be forcing the real
part of the poles to be non-negative (pole-region placement results in [20]), which is
actually (23). See Remark 1 for its interpretation.
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