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Smart video sensors for 3D scene reconstruction
of large infrastructures

Oscar Ripolles · José E. Simó ·Gines Benet ·Roberto Vivó

Abstract This paper introduces a new 3D-based surveillance solution for large
infrastructures. Our proposal is based on an accurate 3D reconstruction using the
rich information obtained from a network of intelligent video-processing nodes. In
this manner, if the scenario to cover is modeled in 3D with high precision, it will
be possible to locate the detected objects in the virtual representation. Moreover,
as an improvement over previous 2D solutions, having the possibility of modifying
the view point enables the application to choose the perspective that better suits
the current state of the scenario. In this sense, the contextualization of the events
detected in a 3D environment can offer a much better understanding of what is
happening in the real world and where it is exactly happening. Details of the video
processing nodes are given, as well as of the 3D reconstruction tasks performed
afterwards. The possibilities of such a system are described and the performance
obtained is analyzed.
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1 Introduction

Surveillance solutions commonly resort to simple client applications to present the
obtained images. Advanced solutions are capable of offering images from multiple
cameras at the same time, so that one single application can offer images from a
large number of cameras. The main problem appears as the average attention span
of a person under these circumstances is very limited. In this sense, psychological
research has demonstrated that attention deteriorates markedly after 15–20 min [9].

The use of intelligent vision systems where image analysis is performed can
reduce human effort. Thus, visual or sonour stimuli can be used to focus the staff
attention to a specific camera which, for any reason, requires supervision. Previous
solutions based on image analysis were also capable of detecting different types of
event and alert the surveillance staff accordingly. Nevertheless, a 3D context can be
used to construct a world view with the captured data and extend it with distances,
perspective correction, or other features. This richer context model is subsequently
applied to derive a more accurate analysis about the events that happen. Thus,
having a 3D reconstruction can improve the context model and apply more reliable
filtering, segmentation or occlusion handling. Having 3D feedback can improve the
context modeling as it would be possible to find interpretation errors and impossible
situations that, without 3D information, would not be possible to detect.

In this paper we present a multi-camera control and surveillance system which
can reconstruct the events that happen in a large infrastructure. The data is pre-
sented through a 3D visualization platform where all the information collected from
the different cameras can be displayed at the same time, offering new means to
interact with the data. The 3D environment has been modeled with high accuracy
to assure a correct simulation of the scenario. The 3D reconstruction is feasible
thanks to specifically-designed cameras which offer the necessary metadata in an
efficient manner. The embedded software of these cameras includes acquisition,
segmentation, labeling, tracking and low-level classification, as well as extraction of
additional features for each detected object. Figure 1 presents an overview of the
system, composed of a set of smart nodes distributed over a larger infrastructure.

Fig. 1 Overview of the proposed solution



These nodes provide metadata to the main computer which is in charge of the
3D reconstruction. As the load of performing the visual analysis is done on each
camera, we can see this system as a distributed systemwhere the 3D reconstruction is
performed on the end-user machine. In addition, managing the 3D context simplifies
camera deployment as the registration within the system is fast and simple. Once the
camera is correctly located on the scenario, the correlation between the cameras is
automatically calculated.

Our aim is to exploit distributed embedded processing to improve the quality
of the information displayed and of the Human-Machine Interface (HMI) itself.
Collecting all the information coming from a network of smart cameras in one single
3D view can open new possibilities for surveillance. Each camera in our system is not
regarded as an independent observer, but the assembly of cameras in a 3D simulation
acts as an omni-directional vision sensor. This allows, for example, for automatic
point of view selection (e.g. activated by activity or movement). This mixed reality
simulation is useful to represent many images in a single one with indications of
what is happening and where it is happening. Thus, the system could track a suspect
automatically among different cameras or offer a bird’s-eye view of the scenario
to show all the events that are happening in a single view. Nevertheless, this 3D
representation is not intended to be a substitute of the real video sources but to serve
as a tool to simplify surveillance tasks. In this sense, automatic video production is
one of the applications of our proposed solution. Thus, as an example, having a 3D
simulation can allow the system to choose the better series of real cameras to follow a
person. Other possible benefits could be: filtering erroneous data, filtering erroneous
orientation information, predicting the trajectory of a detected object, showing non-
visible objects, controlling a perimeter or performing multi-camera tracking without
the limitations of vision-based approaches. In Section 3 we will address how these
potential improvements can be obtained with our proposal.

This paper is organized as follows. In Section 2 the embedded architecture is
presented and some of its main features are discussed. In Section 3 we describe the
3D reconstruction process for luggage, people and groups. In Section 4 the presented
framework is analyzed and the obtained results are discussed. Finally, Section 5
concludes our work and outlines future work.

2 Smart nodes description

In this section we will detail the hardware and software included in the smart cameras
that our proposed framework uses. These smart nodes have been developed as
part of the SENSE research project [13]. A SENSE node can be understood as an
embedded video subsystem, which acquires and processes video images extracting
features in a modal way.

The video board has been developed using two Blackfin DSP processors (a BF561
and a BF537processor) for videoprocessing tasks and a Spartan III FPGA, which
provides a way of configuring hardware outline. Blackfin core modules provides a
PPI (Parallel Peripheral Interface) port to connect digital cameras following YUV,
YCbCr and RGB standards. The camera programming can be done through I2C
interface using the Serial Camera Control Bus (SCCB) standard. The current choice
for the camera is to use an Omnivision OV7660 VGA because image processing for



higher resolution than VGA is too heavy for these Blackfin DSP processors. One
constraint for this system is that it works with a YUV 422 interface, which affects
segmentation process.

The architecture has been designed so that the main image analysis tasks are
performed in the BF561 processor. The BF537 processor has two main tasks in-
volving the video node: compressing the incoming frames into JPEG format and
encoding the information given by the BF561 processor to obtain XML messages.
The preliminary designs for this system included FIFO buffers to store intermediate
data. This approach had the advantage of being very easy to implement. However,
there were two main disadvantages on this system:

1. High latency. When a phase runs faster than the following one, the interconnec-
tion buffer gets full and the data has to wait for longer queues.

2. Data destruction. The last phases need data stored on the first phases. However,
due to the large number of intermediate processes, when the last phases access
the data stored on the first ones this data has been replaced.

To manage information sharing among phases, a structure has been created to
store the information relative to a single frame that is collected through the different
steps. In the current implementation of the SENSE nodes there are three parallel
execution units that cover all the processing steps. In this way, at most, we must keep
in memory information regarding three different frames.

The reader is referred to [14] for more information on the hardware and software
characteristics of the SENSE nodes. In the rest of this Section we will describe the
different image-based processes performed in the BF561 processor. Figure 2 displays
the main steps, including some sample images that can clarify each of the tasks.

Fig. 2 Diagram and sample results of the main image analysis steps



2.1 Image acquisition

To acquire an image from the camera we just need a function to trigger the DMA
receive operation. In order to simplify the system design, the FPGA attaches the
time stamp1 of each frame as a watermark on the first bytes of each image. This way,
both processors receive exactly the same information from each frame, so there is no
need to perform additional synchronization processes.

2.2 Motion segmentation and background update

From a general perspective, objects in a captured frame are detected by comparing
the incoming images with an empty scene model known as background model. This
model represents the scene without any foreground object. For each pixel on the
image, the YUV color space is used to implement a very efficient color segmentation
process.

The process of creating the backgroundmodel consists in acquiring several images
and performing a median operation for each pixel array to get the most probable
value. As there are limited memory resources we have an upper bound for the
number of images that we can store and, thus, a stationary foreground object could
interfere the environment model. The solution that we have adopted has been
twofold. On the one hand, we expand the acquisition of the images over time by
including a stride parameter on the background creation algorithm. On the other
hand, the image is divided into several blocks, so that only one block is updated at
the same system cycle.

2.3 Image labeling

The image labeling phase recovers the binary image created by the segmentation
process and produces the first high level data of the scene. Foreground objects are
found, labeled, and some features are obtained. In addition, to improve the quality
of the labeling process, Gaussian noise is filtered as well as objects that do not reach
an established size threshold. The algorithm that we have used is a modified version
of the one presented by Chang and Cheng [3]. This algorithm is based on the contour
tracing technique and allows us to obtain the perimeter, bounding box, area and
centroid of the objects while doing the labeling process.

2.4 Local object tracking

The tracking algorithm is based on the superposition method: bounding boxes of the
objects from current scene are compared with the boxes from the previous scene. If
the boxes are overlapped, a relationship between the objects is considered. This is a
low level method and it is not intended for performing complex tracking of people.

1Despite using the term time stamp, it is not intended for timing purposes, but only for aligning
features with its corresponding compressed image.



It has been implemented to solve segmentation errors and enrich the results of the
object classification phase. Four situations can occur:

– an object from the previous scene matches an object from the current scene. In
these cases we just spread all the information of the previous object to the current
one.

– an object from the previous scene matches several objects from the current one.
This situation can be produced by a real segregation of objects or by a bad
segmentation.We have introduced an inertia period in order to have information
from more frames to decide whether it is a real segmentation or an error.

– several objects from the previous scene match a single object from the current
scene. This situation can occur either when several objects merge into a group
or, again, when segmentation was not correctly solved. In either case, the system
will never consider the bad segmentation case and it will create a grouped object.

– several objects from the previous scene match several objects from the current
scene. This is the most complex situation. The system simply merges all the
objects involved in the multiple match.

As a final consideration, we must assume that the segmentation is not going to
perform perfectly on any situation. The system has to be able to reduce the impact
of wrong segmentations. Consequently, we must keep in mind that merging objects
is always preferable to keeping them split up.

2.5 Object classification

In the current software of the SENSE nodes, objects are classified asGroup, Person
or Luggage. A study based on nearly 3,000 objects was performed in order to obtain
the statistical distributions of the features of the objects. From this study, it was
concluded that the features that best distinguish the three classes are:

– the dispersion, known as dispersedness [8]. It relates the square of the perimeter
with the area of the object, so that the bigger the dispersedness of a blob, the
more dispersed (and less compact) its pixels are.

– the extent or filling factor, which is the relationship between the area of the object
and the area of its bounding box. This value gives a measure of how filled is the
area of the bounding box of the object. Luggage usually has bigger extent values
than people because of its physical properties.

– the number of heads, considering each maximum of the upper silhouette to be
a head. To improve results, a low-pass filter is used although there are some
errors (like raised arms) which cannot be filtered out. For this reason, the vertical
projection is used, which represents the number of pixels of a column. Thus, only
those maximums which have a sufficiently large vertical projection (compared to
the height of the silhouette) are considered to be heads.

The number of heads has proved to be very efficient to discriminate in a first step
between Group of people from a single Person or Luggage. If the object has more
than one head, then it is considered to be aGroup. If we find only one head, then the
statistical distributions are used to distinguish between Person and Luggage. More



precisely, for one headed objects, the mean of the membership results given by the
extent and dispersedness features is obtained.

3 3D scene reconstruction

It is possible to find in the literature some proposals for 3D reconstruction based
on computer graphics techniques [11, 12], vanishing points [6, 15] or trained systems
[17]. In our case, our approach uses computer graphics techniques which, following
the same basic ideas as previous works, improve the obtained results by using the
information from the intelligent nodes to obtain a better reconstruction if compared
with previous solutions.

Our proposal uses the rich XML generated by the SENSE node to populate a
3D environment. The 3D HMI application receives images and features from the
BF537 processor via its Ethernet device. In our current framework the images are
discarded. We must underline that, for the correct performance of our proposal,
the only requisites affect 3D modeling. We must have a very precise model of the
scenario and we must also know the position and orientation of the cameras with a
very accurate precision.

As indicated before, the 3D reconstruction using 2D information is done by means
of computer graphics techniques using a 3D rendering engine. The idea is to estimate
the position of the objects using collisions information. The process is very simple,
although the results obtained will not be correct if cameras are not located and
oriented properly. As an example, Fig. 3 presents a diagram of how this process
works. While visualizing the 3D scenario, the synthetic camera is located at point A,
while the image plane that matches the perspective view from the synthetic camera
is located at point B. On this plane we display the real-world video sequence and
the information obtained from the smart nodes. Thus, to locate the object in the
3D scenario we simply trace a ray that starts at A, goes through B and collides
on the 3D scenario. We then can locate a 3D model representing the object at
point C.

As we indicated before, some authors have previously used similar techniques,
although they commonly use very rough 3D scenarios and create a simple textured

Fig. 3 Object location by casting a ray from A (optical center) through B (object location on the
image plane) which intersects the floor in C (calculated position on the 3D scenario)



polygon at point C to represent the object with an image from the video source
[5, 11, 12]. The main difference with previous approaches is the fact that we do not
only use a point of the bounding box to locate the objects, but richer information to
obtain a much better approximation of the objects. From the information that the
smart camera outputs, our 3D reconstruction approach uses:

– the classification percentages
– the location and size of the bounding box
– the heads information
– the contour points of the object
– the velocity from the tracking algorithm, which indicates moving direction

Thus, although based on the idea presented in Fig. 3, a more complex process is
performed to simulate the objects detected by the SENSE cameras: luggage, people
and groups. The classification information of the SENSE node is used to choose
which reconstruction process to apply.

Figure 4 presents an example of the described process performed when modeling
a piece of luggage, illustrating the three main steps. Firstly, we start by casting a

(a) Image with the bounding box highlighted. (b) Calculating the location of the piece of
luggage.

(c) Calculating the height of the piece of
luggage.

(d) Final appearance.

Fig. 4 Example of reconstruction of a piece of luggage



ray towards the scenario through the center of the bottom line of the bounding box.
The collision gives us the location of the object within the scenario. Secondly, to
assess the size of the suitcase, we create a box centered at the collision point and
oriented toward the camera. The size of this box is slightly bigger than a regular
suitcase to avoid errors in the following step. The third step consists in casting
another ray through the center of the top line of the bounding box. This collision
indicates the height of the piece of luggage. The width and length of the object are
given proportionally.

The reconstruction of a single person follows a process similar to that described
above. Nevertheless, reconstructing a group of people entails a much more complex
process. The main problem of a group is that each person might be at a different
distance from the camera and, thus, using the information on the bounding box is not
sufficient for approximating their actual position and size. The algorithm followed in
this case is based on correctly locating the head and feet of each person on the input
image. The head of each person is given in the XML offered by the SENSE camera.
For obtaining the feet position, we simply use the head and the silhouette information
included in the XML, so that we just find which point of the lower silhouette belongs
to the column where the head is located.

Once we have the head and the feet position of each person, we firstly cast a
ray through the feet to locate the people on the scenario. Then, as we did with the
luggage, we create a box on each collision and trace new rays toward the heads. The
collisions obtained with these new rays indicate the height of each person. Then, we
can locate the 3Dmodel on the scenario and give it the correct height. This process is
depicted in Fig. 5. Finally, we must mention that the orientation of the people in our
3D simulation is obtained with the velocity parameter that the tracking algorithm of
the SENSE node outputs within the XML information.

The main advantage of the method that we have described is the fact that it
is camera-independent. Once the camera has been correctly located on our 3D
scenario, the process to infer the object size or position is the same for every camera.
It is true that some authors propose different techniques to infer these values using
2D information only, but they entail some manual calibration that can be very
complex. In this sense, we underline that in our proposed framework we just need to
know the real position of the camera to successfully locate it on the 3D scenario and
start processing the XMLs.

The presented 3D framework is very promising and presents new possibilities
for the interaction with data coming from surveillance cameras. As indicated in the
Introduction Section, the detailed solution can be suitable for:

– filtering erroneous data. As we are capable of knowing the height and width of
the objects in the real world, we can discard any object that exceeds some values.
Moreover, in the results Section we will see how the classification results of the
SENSE nodes can be improved.

– filtering erroneous orientation information. The SENSE nodes provide velocity
information which is used to infer the orientation. As in our simulation we can
know the actual position of the objects, we can adjust the orientation to what is
actually happening in the scenario.

– predicting the trajectory of a detected object, so that the system can maintain the
animation between the reception of the XML of two consecutive frames or even
when there is a delay of several seconds.



(a) Image with the bounding box, heads and
feet highlighted.

(b) Calculating the location of each person of
the group.

(c) Calculating the height of each person of
the group.

(d) Final appearance.

Fig. 5 Example of reconstruction of a group of people

– showing non-visible objects. Our system would be capable of displaying objects
that are not visible from the cameras, using the aforementioned trajectory
prediction. In this sense, we could display information even where there is no
camera covering the area or when an object is occluded.

– following an object among the cameras, simplifying the task to the surveillance
staff. This automatic production of the scene visualization can choose the better
view-point according to the current situation.

– controlling a perimeter, knowing when and where an object entered a delimited
area. We could also define where a person can access/leave the area in order to
detect anomalous behaviour.

– performing multi-camera tracking without the limitations of vision-based ap-
proaches. Tracking across non-overlapping views is really difficult as the ap-
pearance of an object can be very different in each view. Moreover, object
observations can be widely separated in time and space [7]. A 3D simulation can
greatly reduce the problems posed by this kind of systems. We do not require
overlapped views of the scenario; with just the exact position and orientation of
the cameras we are capable of inferring the rest of information.



4 Experimental results obtained

The HMI we propose is based on the OpenSceneGraph (OSG) rendering engine
[10], which includes some interesting features for visualizing 3D information and also
for detecting and managing collisions. The human models are rendered using Cal3D,
which is a skeletal based 3D character animation library written in C++ [2]. The
implementation of Cal3D within OSG is available through the OSGCal extension.
Finally, it is worth mentioning that all this software is open source.

In this section we present some results that have been obtained using Windows
7 on a PC with a 2.8 GHz. processor, 4 GB RAM and an nVidia GeForce GTX
260 graphics card with 1 GB RAM. In these experiments, the BF561 processor was
configured to run at a 600 Mhz. clock frequency and the camera was configured to
provide 640 × 480 images at 4 frames per second. Throughout the rest of this section
we will use recording data from the Polytechnical City of Innovation on the Campus
of the Universidad Politécnica de Valencia in Spain. This large infrastructure has
been chosen for testing purposes. A 3D model has been developed by profes-
sional modelers using all the CAD information available and photographs from the
buildings.

4.1 3D reconstruction performance

We want to analyze the performance of our 3D reconstruction proposal from two
different perspectives. On the one hand, Figs. 6 and 7 offer some visual results of our
3D reconstruction approach. In Fig. 6 we present two snapshots obtained from two
cameras that we have deployed on our scenario. The real images shown in Fig. 6a
and b are simulated in Fig. 6c and d. In addition, Fig. 6e presents a different point of
view where the 4 persons detected in the cameras are depicted in a single view. As
commented before, contextualizing the events detected can help surveillance staff.
We also want to comment again that our framework is capable of reconstructing
the scenario despite not having overlapped views. Regarding Fig. 7, the trajectories
followed by two different people are depicted. In this figure we want to underline
how it is possible to visualize in a simple way trajectories followed by persons at
different heights within the building.

On the other hand, we have tested the performance of the 3D reconstruction and
the visualization platform. The amount of cameras is simulated, ranging from 10 to
80 cameras and, to consider a case with high computational cost, we have decided
that each camera was detecting and tracking 5 different objects (2 people, 2 pieces of
luggage and 1 group of 2 people).

Table 1 presents the temporal costs of the 3D representation considering sepa-
rately the time needed for XML parsing, scene update and visualization. From these
results we can conclude that the scene reconstruction is a costly process, as we must
perform several ray-casting operations per object. Nevertheless, in this test we have
considered a very crowded scenario where all the areas covered by the cameras have
a dense population. Thus, even for the worst scenario where 400 objects are detected,
processed and depicted, the system is capable of working at 9 frames per second.
This value is greater than the throughput offered by the SENSE cameras which was
limited to 4 frames per second.



(a) Snapshot from camera 1. (b) Snapshot from camera 2.

(c) Reconstruction of the scene in camera 1. (d) Reconstruction of the scene in camera 2.

(e) Bird’s-eye view of the whole scenario.

Fig. 6 Original images and synthetic reconstructions

Fig. 7 Trajectories detected
and visualized in our synthetic
environment



Table 1 Performance obtained with our 3D simulation framework (in seconds)

# of cameras 10 20 30 40 50 60 70 80
# of objects detected 50 100 150 200 250 300 350 400
XML parsing 0.005 0.009 0.014 0.019 0.024 0.029 0.033 0.038
Scene reconstruction 0.008 0.017 0.024 0.032 0.042 0.049 0.058 0.066
Visualization 0.010 0.010 0.011 0.011 0.011 0.011 0.012 0.012
Total 0.023 0.037 0.0409 0.061 0.077 0.090 0.103 0.116

4.2 SENSE classification accuracy

In a previous article, the SENSE classification accuracy was tested [1]. Using a
real sequence of 3,000 frames a total of 643 persons, 202 groups and 390 pieces of
luggage were detected and classified. The classifications results obtained have been
summarised in Table 2.

The main conclusion of these results is that the accuracy of the classificator was of
92 % for people, 81 % for groups of people and 99 % for pieces of luggage.We must
note that the classification performed by the SENSE nodes is made at a low level due
to its limited computational power. Nevertheless, using our 3D reconstruction and
the wealth of information provided by the cameras we can improve the classification.

Our 3D reconstruction process can detect false classifications automatically by
detecting objects with a size or position that cannot be correct. It is not possible
for the system to correct the classification, but it can depict some information in
order to warn the user about the issue. We have analyzed the frames used in the
aforementioned test and we can conclude that:

– people are commonly mis-classified as a group. This error can be easily solved
by using our approach where heads and feet are employed, as the final height of
the person can be used to filter out mistaken information. In those cases were a
person is classified as luggage, the size can be a hint to discard erroneous values,
although we must consider that it is possible to have large piece of luggage.

– groups are never classified as luggage. Objects belonging to this class are easily
confused with instances of class person, and it is easy to see that, depending on
how people is arranged inside the group (for instance, people in groups may
occlude one to each other and appear as a person), a group of people is quite
similar to a single person. When a group of people is classified as a single person
we can have two situations: (1) the SENSE node may not be able to classify the
rest of people and it considers them noise or (2) the SENSE node may think that
the whole group is a single person, thus resulting in a very large person which
would also be filtered by our system.

Table 2 Classification results
obtained with the
implemented software during
a real experiment

Object class Classified as

Person (%) Group (%) Luggage (%)

Person 91.9 19.3 0.3
Group 6.8 80.7 0.5
Luggage 1.3 0.0 99.2



– luggage classification is very accurate, although sometimes it can be mistaken for
a person or a group. In either case the 3D reconstruction is capable of detecting
the false positives.

As a consequence, we can say that the 3D reconstruction is a very accurate tool for
assessing the classification information. Nevertheless, some erroneous classification
will remain undetected as there are cases in which our idea of what is “normal size”
for people or luggage may be wrong. But it is not the case of the infrastructure that
we consider, and these situations were not detected in the sequence used for the tests.

5 Conclusions

In this paper we have proposed a new solution for the automatic reconstruction of a
scenario by gathering the information coming frommany cameras into one single 3D
view. The visual surveillance system that we propose includes a 3D feedback which
offers a very detailed simulation of the scenario. Nevertheless, the success of the
system completely depends on a correct detection and classification of the objects
on the scenario and, moreover, on a fast performance of these algorithms in order
to assure a real-time simulation of the events that are happening in the real world.
Potential application areas range from home monitoring to security and surveillance
in public or corporate buildings.

We have described the hardware and software of the SENSE vision system. In
addition, the computer graphics techniques that enable the 3D reconstruction have
also been presented. The performance of the whole system has been analyzed so that
it can offer real-time simulations for 400 objects. Moreover, we have also studied
how the 3D reconstruction can help the system filter erroneous classification data. In
this sense, it would be interesting to develop some communication mean between the
camera and the 3D application. If the 3D application could send information to the
smart nodes, it could indicate them when a bad classification has happened or when
an area of the image has a lot of erroneous information and needs a new background
calculation.

It is worth mentioning that the classification routines can be trained to detect
any object type once its main characteristics are extracted. At the moment the
SENSE node was programmed to work in an airport-like scenario, although we
believe that the current classification (person, group and luggage) is very general
and may be applied to different environments. In this sense, people detection is
always interesting and luggage (which can be suitcases, backpacks or simply bags)
can also be interesting as they can pose a threat (a bomb for example) or just as a
matter of managing lost objects. Nevertheless, if necessary, the embedded system can
be re-oriented and adapted to the final scenario. The work presented in this paper
tried to use the embedded nodes as-is to obtain a 3D reconstruction and explore its
possibilities.

Some possible applications of the proposed framework have been presented.
As future work, we would like to develop a reasoning and decision-making unit
that exploits the global knowledge about objects to detect events [16]. If we can
model the different situations to detect, this module could trigger alarms and
select which information is offered to the surveillance staff, in order to avoid



them being overwhelmed with the vast amount of events that can happen at
the same time. From a different perspective, we would also like to test different
visualization platforms such as autostereoscopic display or CAVEs [4]. The main
objective is to study the adequateness of these platforms for the surveillance of large
infrastructures.
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