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Please find enclosed the manuscript entitled: “Removal of neonicotinoid insecticides by 

carbonate radicals”. The present manuscript gives an insight into the reaction 

mechanisms and kinetics of carbonate radicals with neonicotinoid insecticides, namely 

imidacloprid, thiacloprid and acetamiprid.  
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Abstract  16 

The reaction of three chloronicotinoid insecticides, namely Imidacloprid (IMD), Thiacloprid 17 

(THIA) and Acetamiprid (ACT), with carbonate radicals (CO3
-) was investigated. The second 18 

order rate constants (4 ± 1)×106, (2.8 ± 0.5)×105, and (1.5 ± 1)×105 M-1s-1 were determined 19 

for IMD, THIA and ACT, respectively. The absorption spectra of the organic intermediates 20 

formed after CO3
- attack to IMD is in line with those reported for -aminoalkyl radicals. A 21 

reaction mechanism involving an initial charge transfer from the amidine nitrogen of the 22 

insecticides to CO3
- is proposed and further supported by the identified reaction products. 23 

The pyridine moiety of the insecticides remains unaffected until nicotinic acid is formed. 24 
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CO3
- radical reactivity towards IMD, ACT, and THIA is low compared to that of HO radicals, 25 

excited triplet states, and 1O2, and is therefore little effective in depleting neonicotinoid 26 

insecticides.  27 

Keywords: carbonate radicals, neonicotinoid insecticides, Imidacloprid, Thiacloprid, 28 

Acetamiprid, -aminoalkyl radical. 29 

1. Introduction 30 

Carbonate radical (CO3
•-) is a selective one-electron oxidant, E0 (CO3

-/CO3
2-) = 1.78 V vs. 31 

NHE, capable of initiating the oxidation of many organic compounds. Carbonate radical 32 

reactivity is high for electron rich N-containing chemicals such as heterocycles, fenuron, 33 

carbendazim and phenylurea herbicides (Busset et al., 2007, Mazellier et al., 2007). It is also 34 

reactive with sulfur-containing compounds such as thioanisole, dibenzothiophene, fenthion, 35 

and S-triazine (Canonica et al.,2005; Mazellier et al., 2002; Huang and Mabury, 2000b) with 36 

reaction rate constants k ranging from 106 to 108 M-1 s-1. Aliphatic alcohols are among the 37 

least reactive with k in the range from 103 to 105 M-1 s-1 (Clifton and Huie, 1993; Neta et al., 38 

1988). 39 

Carbonate radicals in natural waters are mainly formed by the reactions of carbonate 40 

/bicarbonate ions with either hydroxyl radicals or aromatic-ketones triplet excited states as 41 

those contained in dissolved organic matter, DOM (Canonica et al., 2005; Huang and 42 

Mabury,2000; Lam et al., 2003; Vione 2009, Wu and Linden, 2010). The steady state 43 

concentration of 10-13-10-15 M found in natural waters supports the increasing evidence 44 

reported in the literature for their important role in the self-cleaning of the hydrosphere 45 

basins. Mazellier and coworkers suggested that the degradation of the fungicide 46 

carbendazim by CO3
•- in natural waters and carbonate-contaminated effluents cannot be 47 

neglected compared to that initiated by hydroxyl radicals [Mazellier et al., 2002]. Also, Huang 48 

and Mabury confirmed that CO3
•- contribute to the photodegradation of sulfur-containing 49 

xenobiotics in natural and artificial waters [Huang and Mabury, 2000a]. Despite the long 50 
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regarded importance of CO3
•- in the water environment, studies discussing its reaction 51 

mechanisms towards organic contaminants are scarce. 52 

Neonicotinoid insecticides are among the most important commercial insecticides used 53 

worldwide owing to their high insecticidal activity, broad insecticidal spectra, good systemic 54 

properties, and suitable field stability [Zabar et al., 2011]. Their photodegradation in aquatic 55 

media [Moza et al., 1998; Redlich, et al., 2007; Wamhoff and Schneider, 1999], and in 56 

advanced oxidation procedures technologies such as solar photo-Fenton and TiO2 57 

photocatalysis have been reported in the literature [Malato et al., 2001, Cernigoj et al., 2007]. 58 

In the last years, the reactivity, mechanisms, and primary degradation products of 59 

Imidacloprid (IMD), Thiacloprid (THIA) and Acetamiprid (ACT) (Scheme 1) with hydroxyl 60 

radical (Dell´Arciprete et al., 2009], singlet oxygen, and excited triplet states have been 61 

investigated (Dell´Arciprete et al., 2010]. Here, kinetic and mechanistic studies on CO3
•- 62 

oxidation of the insecticides IMD, THIA and ACT are reported, and the importance of these 63 

reactions in the self cleansing of natural waters is discussed. 64 
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Scheme 1. Chemical structures of the insecticides (from left to right) Acetamiprid, 67 

Thiacloprid, and Imidacloprid. 68 

2. Materials and methods  69 

2.1. Chemicals 70 

Imidacloprid, Acetamiprid, and Thiacloprid were obtained from Aldrich and used as received. 71 

Sodium peroxodisulphate, NaOH, and HClO4 from Merck, were used without further 72 
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purification. Distilled water was passed through a Millipore system (>18M cm, < 20 ppb of 73 

organic carbon). The pH of the solutions was adjusted to 7.7 ± 0.5 with a HCO3
-/H2CO3 74 

buffer by addition of HClO4 and measured with a Consort pH-meter model C832.  75 

Carbonate radicals are generated in situ by reaction of bi/carbonate ions with sulphate 76 

radicals. Photolysis of aqueous solutions of S2O8
2- with excitation wavelengths exc< 300 77 

nm, reaction (1) in Table 1, is a clean source of sulphate radical ions, SO4
•-. The latter 78 

radicals are scavenged by excess Na2CO3, reaction (2), with rate constant k2= 3106 M-1s-1 79 

(Huie, 1991]. Carbonate radicals are expected to be the main oxidizing species in solution if 80 

[CO3
2-] ~ 1 M and [insecticides] < 10-4 M.  81 

2.2. Time resolved experiments 82 

Flash-photolysis experiments were carried out using a conventional flash apparatus, Xenon 83 

Co. model 720C with modified optics and electronics. Two collinear quartz Xenon high-84 

intensity pulsed flash tubes, Xenon Corp. P/N 890-1128 (FWHM  20 s), with a continuous 85 

spectral distribution ranging from 200 to 600 nm and maximum around 450 nm were used. 86 

The analysis source was a high pressure mercury lamp (Osram HBO-100 W). The optical 87 

path length of the 1 cm internal diameter quartz sample cell was 10 cm. The monochromator 88 

collecting the analysis beam (Bausch & Lomb, high intensity) was directly coupled to a 89 

photomultiplier (RCA 1P28), which output was fed into a digital oscilloscope (HP 54600B). 90 

Digital data were stored in a personal computer. The emission of the flash lamps was filtered 91 

with an aqueous concentrated solution of the corresponding insecticide in order to avoid 92 

photolysis of the substrate. The temperature (25  3 oC) was measured inside the reaction 93 

cell with a calibrated Digital Celsius Pt-100  thermometer. Freshly prepared solutions were 94 

used in order to avoid possible thermal reactions of peroxodisulphate with the substrates. 95 

2.3. Chemical analyses 96 
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Samples for product detection were obtained from 254 nm -irradiated oxygen-saturated 97 

solutions containing 80 mg/L of the insecticides, 0.025 M of Na2S2O8
 and 1M of HNaCO3. 98 

To that purpose, a 1 liter capacity cylindrical glass reactor continuously bubbled with O2 was 99 

used. The reactor was equipped with an axial immersion lamp Heraeus TNN 15/35 (low 100 

pressure Hg covered with commercial quartz), which emits nearly monochromatic radiation 101 

at 254 nm. Periodically, samples were taken for analyses. Reaction products were analyzed 102 

by GC-MS (GCMS-QP2010S, Shimadzu, equipped with a quadrupole mass analyser). To 103 

that purpose, 100 mL of the samples were flown through a LiChrolut EN 200 mg cartridge 104 

(Merck). The organics were recovered with 3 mL of methanol and the extracts injected in 105 

the GC-MS chromatograph. The GC temperature program increased from 60ºC to 250ºC 106 

with a 5ºC/min rate. A Meta X5 Teknokroma column was used. The injection volume was 10 107 

μL.  108 

Under the experimental conditions used for the detection of products, photolysis of THIA, 109 

and ACT is of little significance (< 20 % of the insecticides may be photodegraded at 254 nm 110 

after 30 minutes irradiation). On the other hand, despite quantum depletion efficiencies of 111 

IMD due to 254 nm photolysis are nine fold times higher those of ACT and THIA, less than 112 

35% of the 254 nm light is absorbed by IMD (S.I. Figure 1). Therefore, IMD photolysis is also 113 

expected to be of little significance, as supported by the experimental observation that the 114 

photolysis products 1-[(6-chloro-3-pyridi-nyl)methyl]-N-nitroso-2-imidazolidinimine and (1-(6-115 

chloro-3-pyridyl-methyl)imidazolidin-2-one) were not among the detected products 116 

(Dell´Arciprete et al., 2009).  117 

2.4 Bilinear regression analysis 118 

For each experimental condition, several absorbance decay profiles at different detection 119 

wavelengths were taken. Absorbance is thus a function of wavelength and time. Taking 120 

advantage of the linearity of the absorbance with both concentrations and absorption 121 

coefficients, a bilinear regression analysis was applied to the experimental absorption matrix 122 
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in order to retrieve information on the minimum number of species and on their relative 123 

concentration profiles and absorption spectra (San Román and Gonzalez, 1989]. 124 

2.5 Computer simulations: The kinetic model for computer simulation is based on 125 

component balances and equilibrium equations formulated in terms of a differential 126 

algebraic equations system which is solved by Gear’s Stiff method and a least squares 127 

estimation criterion as described elsewhere (Alegre et al.,2000, Gear, 1971). 128 

3. Results  129 

3.1. Reactions of CO3
- radicals with chloronicotinoid insecticides 130 

Photolysis of air-saturated solutions of pH 7.7 containing 0.025 M S2O8
2- and 1 M HCO3

- 131 

showed the formation of a transient species absorbing in the wavelength range from 400 to 132 

670 nm whose spectrum taken immediately after the flash of light is in agreement with that 133 

reported for CO3
•− (Behar et al., 1970; Busset et al., 2007). Photolysis of the latter solutions 134 

in the presence of [insecticides] < 1×10-4 M showed absorbance traces in the same 135 

wavelength range with decay rates increasing with the insecticide concentration, as shown 136 

in Figure 1. The spectrum of the observed transient also agrees with that for CO3
•-. The 137 

decay of the absorbance traces, A(, t), at a given detection wavelength could be well fitted 138 

to a mixed first- and second- order decay law given by equation 1.  139 

 
 

app
A( ,t)= +d( )      eq. (1)

b( )×exp(a×t)-c( )

k

 

140 

Where kapp is the rate constant for the first order decay, d(λ) corresponds to the absorbance 141 

of a long living species, c(λ) is the second order decay rate constant, b(λ) = (kapp/A0) + c(λ), 142 

and A0 is the absorbance change immediately after the flash of light.  143 

The rate constant for the bimolecular recombination of CO3
•- radicals, reaction 3 in Table 1, 144 

may be obtained from the relation c(λ)= 2k3/εl. Taking c(λ) values obtained from the fitting of 145 

the traces at 600 nm to eq. (1) and considering ε600(CO3
•−

) = 2000 ± 100 M-1 cm-1, it results 146 
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that 2k3 = (1.1  0.1)107 M-1 s-1 for a reactive mixture of 1.08 ionic strength. The obtained 147 

value agrees with that reported for k3 in solution of ionic strength = 1.5 (Czapski 1994, Zuo 148 

and col., 1999). Values of kapp obtained from the fitting to eq. (1) are independent of the 149 

detection wavelength  and linearly increase with the analytical concentration of the 150 

insecticide, [Ins]0, as shown in Figure 1 inset for THIA and ACT. The slope of these straight 151 

lines yield the bimolecular rate constants k4 for reaction (4), depicted in Table 1. 152 

Figure 1 about here 153 

Table 1 about here 154 

The reaction rates obtained for the chloronicotinoid insecticides are on the same order of 155 

those reported for the herbicides atrazine (1-chloro-3-ethylamine-5-isopropylamine-2,4,6-156 

tryacine) (Huang and Mabury, 2000b) and fenuron (1,1-dimetyl-3-phenylurea) (Mazellier et 157 

al; 2007), and the fungicide carbendazim (metylbenzimidazol-2-yl-carbamate) (Mazellier et 158 

al., 2002).  159 

To evaluate the possible attack of CO3
•− to the pyridine moiety, kinetic experiments were 160 

performed with 3-methylpyridine (3-MePy) and 3-chloropyridine (3-ClPy) as models for the 161 

estimation of the reactivity of the pyridine moiety in the insecticides. To these purposes, 162 

photolysis of air-saturated 0.025 M S2O8
2- solutions of pH 7.7 containing 1 M HCO3

- and 163 

pyridine derivatives in concentrations < 1×10-4 M, were performed. The rate constants for the 164 

reactions of 3-MePy and 3-ClPy with CO3
•− radicals are k3-MePy = (3.4 ± 0.2)x105 and k3-ClPy = 165 

(2.2 ± 0.1)x104, respectively. Therefore, a low reactivity of the pyridine moiety of the 166 

insecticides with CO3
•− radicals is expected. However, as ACT and THIA also show a low 167 

reactivity towards CO3
•−, an attack to the pyridine moiety of the pyridines may only be 168 

discarded upon an exhaustive product determination. On the other hand, CO3
•− attack on the 169 

pyridine moiety of IMD is expected to be of little significance.  170 

3.2 Stable products identification  171 
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Insecticide degradation products were identified after 15 and 30 minutes continuous UV 172 

irradiation (254 nm) of O2-saturated aqueous solutions of pH 7.7 containing 80 mg/L of the 173 

insecticides, 0.025 M of Na2S2O8
 and 1M of HNaCO3. Table 2 shows the identified products 174 

and their mass spectrum (MS). 175 

3.3. Computer simulation of the experiments. 176 

Since CO3
•- radicals are formed from the reaction of the strong oxidizing SO4

•- radicals with 177 

excess carbonate ions, there was concern on the possibility that the oxidation of the 178 

insecticides could also be initiated by SO4
•-, reaction (5), and that the organic radicals thus 179 

formed further contribute to the depletion of CO3
•-. To probe that such reactions were of little 180 

significance under the experimental conditions used for the determination of the rate 181 

constants, a computer program was built to simulate the experimental absorbance profiles of 182 

SO4
•- and CO3

•-. To this purpose, reactions (1) to (5) along with the reactions of SO4
•- with 183 

water and peroxodisulphate ions (reactions (6) and (7), respectively), and SO4
•- bimolecular 184 

recombination (reaction (8)), were taken into account. The reaction rate constants used are 185 

those depicted in Table 1. The flash emission was considered a delta function producing 186 

SO4
•- radicals. Initial SO4

•- radical concentration taken as an input parameter, was estimated 187 

from experiments under identical conditions but in the absence of carbonate ions, taking 450 188 

(SO4
•-) = 1600 M-1 cm-1 (McElroy, 1990). Only for IMD, a 20 - 30% inner filter effect due to 189 

the insecticide absorption of the polychromatic light emitted by the flash lamps was taken 190 

into account (see S.I Figure 1). Simulated concentration profiles for these transients were 191 

converted into the corresponding absorbance curves and compared to the experimental data 192 

to fit the set of experiments. A good agreement between experimental and simulated profiles 193 

for CO3
•- traces was observed in the absence and presence of the insecticides, as depicted 194 

for IMD by the dotted and dashed lines in Figure 1. Therefore, experimental CO3
•- decay 195 

rates give confident information on the k4 values depicted in Table 1. 196 
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Since high concentrations of the insecticides were used in the continuous irradiation 197 

experiments of section 3.2 to determine the products of reaction (4), the generation of 198 

detectable concentrations of products due to the reaction between the insecticides and SO4
•- 199 

radicals cannot be neglected. In fact, under the experimental conditions used, the relations 200 

k5,THIA[THIA]/k2[CO3
2-] > 0.05 and k5,ACT[ACT]/k2[CO3

2-] > 0.05 apply, strongly suggesting 201 

that the competition of THIA (and that of ACT) with CO3
2- anions for SO4

•- radicals is not 202 

negligible. To evaluate the magnitude of this contribution, computer simulations were also 203 

performed setting as initial parameters the reactant concentrations used in these 204 

experiments and considering continuous irradiation conditions. To this purpose, SO4
•- 205 

radicals were assumed to be formed at a rate of 510-6 M s-1 as expected for the irradiation 206 

with a 15 W low-pressure Hg lamp (incident photonic flux at 254 nm = 6.1×10-6 E s-1) of a 207 

0.025 M S2O8
-2 solution (S2O8

-2 photodissociation quantum yield in the range from 0.5 to 0.7, 208 

Criquet et al., 2009) contained in a 2.5 cm optical pathway reactor. The stacked bar plot in 209 

S. I. Figure 2, shows the percentage of products due to reactions (4) and (5) formed after the 210 

quantitative depletion of the insecticides, as retrieved from the computer simulations. From 211 

the comparison of the bars it results that the generation of products from reaction (5) is of 212 

little significance only for IMD. However, almost 60 and 70 % contribution of the products of 213 

reaction (5) is expected for ACT and THIA, respectively. 214 

3.4. Organic radical intermediates. 215 

To obtain information on the nature of the organic transients formed after reaction (4), flash 216 

photolysis of argon- or air-saturated solutions of pH 7.7 containing 0.025 M S2O8
2-, 1 M 217 

HCO3
- and 2x10-4 M of the insecticides were performed. For each insecticide, several decay 218 

profiles were obtained at different wavelengths in the range from 300 to 650 nm. A bilinear 219 

regression analysis was applied to each absorbance matrix to gain information on the 220 

minimum number of transients formed.  221 

IMD radical intermediates: For experiments with IMD, the bilinear analysis indicates that the 222 

data obtained may be described by two transient species with spectra and decay profiles 223 
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shown in Figure 2. The transient formed immediately after the flash of light shows absorption 224 

spectrum coincident with that of CO3
•- (see grey lines in Figure 2, obtained from experiments 225 

in the absence of insecticide). The half life of 2 ms observed for this transient is on the order 226 

expected for the reaction of CO3
•- with 2x10-4 M IMD under the experimental conditions used. 227 

The transient formed after the decay of CO3
•- shows an absorption maximum at 300 – 330 228 

nm (full circles in Figure 2) and is assigned to the organic transient formed after reaction (4). 229 

Figure 2 about here 230 

An electron transfer reaction from aminic nitrogen to carbonate radical was proposed for 231 

aliphatic amines (Elango et al., 1985), anilines (Elango et al., 1984) and guanine (Shafirovih 232 

et al., 2001). Two different mechanisms were proposed for the attack of CO3
•- radicals to 233 

aliphatic amines (Elango and co-workers). The electron transfer from the N atom to CO3
•- 234 

yielding an amine radical cation followed by proton elimination and -aminoalkyl radical 235 

formation seems to be the favored mechanism for tertiary amines. For primary amines, a 236 

direct - hydrogen abstraction to yield an -aminoalkyl radical seems to take place. Both 237 

mechanisms may be competitive in secondary amines. Considering that IMD has a tertiary 238 

amine group, the electron transfer mechanism might apply. The electron transfer Gibbs 239 

energy from insecticides to CO3
•-, ETG

0, can be calculated using equation (2). 240 

      0 0 2 0

3 3[ ( / ) ( / )]       eq.(2)ETG F E CO CO E Ins Ins  241 

Considering E0(Ins.+ /Ins) < 1.2 V for the reduction potentials of the chloronicotinoid 242 

insecticides (Dell’Arciprete et al., 2010) and E0(CO3
•- / CO3

2-) = 1,78 V, the value ETG
0 < -56 243 

kJ/mol is estimated. Consequently, the electron transfer reactions are thermodynamically 244 

allowed and the observed organic transient is suspected to be either an amine radical cation 245 

or an -aminoalkyl radical. As, discussed earlier, CO3
- radical addition to the pyridine moiety 246 

of IMD is of no significance, as also supported by the nature of the observed reaction 247 

products which maintain the pyridine ring even after prolonged irradiation. 248 
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To identify the organic radical formed after reaction (4), the transient spectrum is compared 249 

to those obtained by DFT calculations of the IMD radical cation (IMDRC) and -aminoalkyl 250 

radicals published in the literature (Dell Arciprete et al., 2011). The theoretically obtained 251 

spectrum of IMDRC evidences an absorption maximum at 300 nm and a less intense band 252 

at 410 nm. The -aminoalkyl radical in the heterocycle (IMDRH) presents an absorption 253 

maximum at 310 nm and a shoulder at 450 nm while that of the -aminoalkyl radical at the 254 

methylene bridge (IMDRM) exhibits a maximum around 330 nm. The sum of the spectrum of 255 

the two -aminoalkyl radicals in a 1:1.2 IMDRM: IMDRH ratio shows a good agreement with 256 

the organic radical of IMD (see dashed-grey line in Figure 2), and is therefore assigned to 257 

these species.  258 

THIA and ACT radical intermediates: Independent irradiation experiments performed with 259 

ACT and THIA show the formation of mainly one transient in the wavelength range from 400 260 

to 750 nm with absorption maximum at 600 nm, as shown in Figures S.I.3 and S.I.4 for THIA 261 

and ACT, respectively. The transient spectrum is coincident with that of CO3
•- and its ~ 20 262 

ms half life is on the order expected for the reaction of CO3
•- with ACT or THIA under the 263 

experiment conditions. Therefore, the transient absorbing at  > 400 nm is assigned to CO3
•- 264 

radicals. 265 

Due to the slow reaction between CO3
•- and either ACT or THIA, it may be expected that the 266 

organic radical intermediates formed from these reactions are present in very low 267 

concentrations if their depletion rates are fast. In fact, considering an initial electron transfer 268 

from these insecticides to CO3
•-, -aminoalkyl radicals from THIA and ACT are expected to 269 

be formed which are reported to decay in the ms time range (Dell´Arciprete et al., 2011). The 270 

resolution of the differential mass equations for an intermediate species involved in pseudo-271 

first order consecutive reactions shown in eq. (3), where IR stands for the -aminoalkyl 272 

radicals of either THIA or ACT and kd is the corresponding intermediate depletion rate 273 

constant, leads to equation (4). The subscript “o” indicates initial concentrations taken 274 

immediately after the flash of light. 275 
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 276 

 277 

 278 

Under the conditions kd > k4[Ins], the value of kd is reflected in the short rising portion of the 279 

intermediate concentration profile; at longer times, [IR] depletion is dominated by the 280 

exponential term exp(-k4[Ins]). In fact, the small absorbance traces obtained below 400 nm 281 

in experiments with THIA show ~ 1 ms rise time and a 20 ms decay, in agreement with the 282 

previous discussion (see Figure S.I.5). Traces obtained at  > 400 nm due to CO3
•- show rise 283 

times in the s time range, within the duration of the flash of light. Therefore, the absorption 284 

traces obtained in the 350 – 400 nm wavelength range in experiments with THIA may be due 285 

to -aminoalkyl radicals, in coincidence with the reported absorption spectrum for these 286 

radicals (Dell’Arciprete et al., 2011).  287 

3.5. Reaction pathways 288 

Based on the detected intermediates and the observed reaction products, a pathway for the 289 

primary steps of the CO3
•- oxidation of IMD may be proposed, as shown in Scheme 2. An 290 

electron transfer pathway from IMD to CO3
- yields CO3

2- anions and the radical cation 291 

IMDRC (reaction path a). Further H+ elimination from IMDRC leads to the -aminoalkyl 292 

radicals IMDRH, reaction path b, and IMDRM, reaction path c. The -aminoalkylradicals are 293 

able to reduce O2 to superoxide (Baciocchi et al., 2004; Hiller and Asmus, 1983; Lalevée et 294 

al., 2007) and upon further addition of water cleave to yield 6-chloronicotinaldehyde (reaction 295 

path d). Molecular oxygen addition to IMDRH and the further disproportionation of the 296 

resulting peroxyl radical yields the hydroxyl and the keto-derivative of IMD (reaction path e). 297 

The latter substances were not observed among the identified products; however, product 2 298 

CO3
•-   +    Insecticide (excess)        IR         Products eq. (3) 

-
 eq. (4) 
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may only be formed from the sequential oxidation of these compounds by CO3
-, reaction 299 

path f. 300 

Scheme 2. Reaction mechanism of IMD with carbonate radical. The species in brackets are 301 

proposed, but not detected. 302 
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Formation of THIA -aminoalkyl radicals and of products 1 and 2 in experiments with THIA 304 

may be explained by an initial electron transfer pathway as also suggested for IMD. Briefly, 305 

an initial electron transfer from the aminic N of THIA to CO3
•- yields the radical cation of the 306 

insecticide, THIARC and CO3
2- anions (reaction path g in Scheme 3). Further H+ elimination 307 

at vicinal C leads to the formation of -aminoalkylradicals in the heterocycle ring, THIARH 308 

(reaction path h) and from the methylene bridge, THIARM (reaction pathway i). Reaction of 309 
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THIARH with O2 and sequential oxidation initiated by CO3
•.- leads to the formation of 310 

compound 2, reaction pathway j. THIARM addition of O2, elimination of superoxide and 311 

water addition leads to the formation of 6-chloronicotinaldehyde, reaction pathway k.  312 

Scheme 3. Mechanism for the reaction of THIA with carbonate radical anions. Sulphate 313 

radical attack to THIA is also shown. Transients and stable products in brackets are 314 

proposed, but not detected.  315 
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Formation of products 1 and 3 in experiments with ACT may also be explained by an initial 317 

electron transfer pathway from ACT to CO3
•- yielding the radical cation ACTRC and CO3

2- 318 

anions (reaction path l in Scheme 4), as suggested for IMD and THIA. Further H+ elimination 319 

leads to the formation of -aminoalkylradicals in the methylene bridge, ACTRM (pathway 320 
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m). ACTRM addition of O2 and water leads to the formation of 6-chloronicotinic aldehyde 321 

and the imine product 3, reaction path n.  322 

Scheme 4. Proposed reaction mechanism for the reaction of ACT with carbonate radical 323 

anions. Sulphate radical attack to ACT is also shown. Transients and stable compounds in 324 

brackets are proposed, but not detected.  325 
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The computer simulations shown in Figure 2 predict that only around 40% (30%) of the 328 

formed primary products are due to the reaction of ACT (THIA) with CO3
•-; the remaining 329 
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percentage is due to the insecticides reaction with SO4
•- radicals. The reported reaction 330 

pathway of SO4
•- radical attack to the insecticides (Dell´Arciprete et al., 2011) is coincident 331 

with that proposed here for CO3
•; therefore, the same primary products are formed from 332 

reactions (4) and (5), as is the case of products 1 and 3. Product 2 is formed from the 333 

primary products successive oxidation by CO3
•-, as they were only observed in experiments 334 

in the presence of CO3
2- anions. Therefore, Schemes 3 and 4, also include SO4

•- radical 335 

attack to THIA and ACT, reaction paths g´´ and l´´, respectively. 336 

4. Discussion 337 

Large amounts of the neonicotinoid insecticides reach the natural aqueous systems where 338 

they may be degraded by biotic and abiotic pathways. Natural reservoirs show low 339 

concentrations of oxidizing radicals (see Table 3), such as hydroxyl (HO•) and CO3
•- radicals, 340 

singlet oxygen (1O2), and excited triplet states of dissolved organic matter, 3DOM, which are 341 

capable of initiating the oxidation of the pesticides. To evaluate the detoxifying capacity of 342 

natural water towards the different insecticides, a minimum reaction mechanism is 343 

considered which consists of the reactions of the insecticides with CO3
•- and HO• radicals, 344 

1O2, and 3DOM, reactions (4), (9), (10) and (11), respectively, in Table 4. The absorption of 345 

355 nm light by DOM produces 3DOM of 160 kJ mol-1 energy (Bruccoleri et al., 1990, 346 

Bruccoleri et al., 1990), of the order of Rose Bengal triplet. Therefore, k11 is assumed to be 347 

of the order of that reported for the reaction of the insecticides with Rose Bengal triplet 348 

(Dell´Arciprete et al., 2010). Table 3 shows the steady-state concentrations of reactive 349 

oxidants reported for natural waters, also containing dissolved O2, DOM, carbonates, etc. 350 

Scavenging of these oxidants by the natural water matrix components is already accounted 351 

for in the reported values. Therefore, the solution of the mass differential equations built for 352 

the latter set of reactions considering the steady-state concentrations of the reactive 353 

oxidants depicted in Table 3 yields information on the expected lifetime of the insecticides 354 

and on the amount of insecticide depleted due to the different reactive intermediates in 355 

natural waters. The obtained relations are shown in S.I.6. 356 
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Table 3 about here 357 

Table 4 about here 358 

An average half life (t1/2), as obtained from eq. (5), of 16.0, 4.6 and 4.0 hs is expected for 359 

IMD, ACT, and THIA, respectively, under the experimental conditions of a “natural water” of 360 

the characteristics described before. Figure 3 shows the predicted depletion of 110-8 M 361 

concentration of each of the insecticides after 16 hours in the “natural water”. Singlet 362 

molecular oxygen is the most effective species degrading the insecticides, as it is able to 363 

degrade 46 % IMD, 81 % THIA, and 86 % ACT. Despite HO• radicals show the smallest 364 

steady-state concentration, they are responsible for the depletion of almost 49 % IMD, 16 % 365 

THIA, and 13 % ACT. Despite its higher concentration, carbonate radicals is the least 366 

effective oxidant in depleting the insecticides. 367 

 368 

t1/2 = ln2 / (k(CO3
.-
 + Ins)[CO3

.-
]ss + k(

1
O2+ Ins)[1O2]ss + k(HO

.
+ Ins)[HO

.
]ss + k(

3
DOM+ Ins)[3DOM]ss) 369 

eq. (5) 370 

Figure 3 about here 371 

5. Conclusions 372 

The insecticides IMD, THIA, and ACT chemically react with CO3
•- radical anions with rate 373 

constants of (4 1)106, (2.8  0.5)105, and (1.5  1)105 M-1 s-1, respectively. The amidine 374 

nitrogen of the molecule is the preferred site of attack of the insecticides, as also observed 375 

for SO4
•- radical, singlet oxygen, and the triplet state of Rose Bengal (Dell´Arciprete et al., 376 

2009, 2010 and 2011).  377 

The low reactivity observed for CO3
•- compared to HO• radicals and 1O2 indicates that it is 378 

little effective in depleting neonicotinoid insecticides. It would take around 6.6 months and 379 

7.4 years to degrade IMD and ACT, respectively, in natural waters containing only CO3
•- 380 

radicals as scavengers.  381 
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Adequate Advanced Oxidation Processes (AOP) for treatment of water and wastewaters 382 

contaminated with IMD, ACT, and THIA should be based on the generation of either HO• or 383 

SO4
•- radicals as the main oxidizing species. The presence of CO3

2- / HCO3
- anions in the 384 

water matrix will considerably diminish the efficiency of the process. 385 
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Figure Captions: 517 

Fig.1- Absorbance traces at 600 nm obtained in experiments with solutions containing 0.025 518 

M Na2S2O8 and 1 M Na2CO3 in the presence (grey curve) and absence (black curve) of 519 

110-5 M of IMD. The dotted grey line stands for the computer simulation obtained for CO3
•- 520 

profiles under the experiment conditions in the absence of IMD (see text). The dashed black 521 

line stands for the computer simulation obtained for CO3
•- profiles under the experiment 522 

conditions in the presence of 110-5 M IMD (see text). Inset: Apparent rate constant as a 523 

function of insecticide concentration for (▼) THIA and () ACT. The dashed curves show 524 

the confidence interval at 95 %.  525 

Fig. 2 - Transient spectra retrieved by a bilinear analysis of the absorption matrix obtained 526 

from flash photolysis experiments of air saturated solutions containing 0.025M S2O8
2-; 1 M 527 

HCO3
- and 2x10-4 M IMD. The solid grey line stands for the spectrum of the CO3

•- radical 528 

obtained in experiments under identical conditions but in the absence of the insecticide. The 529 

dashed grey line stands for the 0.46IMDRM + 0.54IMDRH combination of the theoretical 530 

spectrum of IMDRM and IMDRH taken from Dell´Arciprete et al., 2011. Inset: Contribution of 531 

CO3
•- radical (curve a) and the organic transient formed after reaction (4) (curve b) to the 532 

absorbance of the traces at 600 and 330 nm, respectively, for the experiments shown in the 533 

main figure.  534 

Fig. 3 - Expected IMD, THIA and ACT degradation after 16 hs in “artificial natural water” 535 

containing 110-8M initial concentrations of the insecticide, and steady state concentrations 536 

[HO•]ss = 110-16M, [1O2]ss= 1 10-12M, [CO3
•-]ss = [3DOM]ss = 110-14 M. The consumption 537 

due to the different scavengers is depicted as: black: HO•, red: CO3
•-(not visible in the scale), 538 

green: 3DOM and yellow: 1O2, 539 

 540 



Table 1 - Manifold of reactions taking place upon UV-light activation of peroxodisulphate in the 

reaction mixture composed of S2O8
2-, CO3

2-, and the insecticide. The corresponding reaction 

rate constants k at 25 oC are also shown. 

 

k / M-1s-1  

S2O8
2- + h  2 SO4

- Iabs(SO4
.-) (a) (1) 

SO4
- + HCO3

-  SO4
2-

 + H+ + CO3
- 4.1106  (b) (2) 

CO3
-  +  CO3

-    C2O6
2- (+ 2H+)     2CO2  +  H2O2 (5.5  0.4)106 (c) (3) 

Insecticide   +   CO3
-       CO3

2-   +   Organic radical k4,IMD = (4  2)106 (d)  (4) 

k4,ACT = (1.5  1)105 (d) 

k4,THIA=(2.8  0.5)105 (d) 

Insecticide   +   SO4
-       SO4

2-    +   Organic radical k5,IMD = (3  1)108 (e) (5) 

k5,ACT = (1.1±0.6)x109 (e) 

k5,THIA = (3±1)x109 (e) 

SO4
-    +    H2O       SO4

2-     
 +    HO    +  H+ (6.6  0.4)102 (f) (6) 

SO4
.-
 + S2O8

2-  S2O8
- + SO4

2-
 (6.3  1.5)105 (f) (7) 

2 SO4
·ˉ  S2O8

2ˉ 5108 (g) (8) 

(a) Iabs is the absorbed photonic flux and (SO4
.-) is the peroxodisulphate photodissociation 

quantum yield. (b) Data obtained from Ref. (Padmaja et al., 1993). (c) This work, for ionic strength 

= 1.08, products from reference (Haygarth et al., 2010). (d) k values from this work. (e) Data 

obtained from Ref. (Dell´Arciprete et al., 2011) (f) Data obtained from Ref. (Herrmann et al., 1995). 

(g) Data obtained from Ref. (Ross et al., 1998) 
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Table 2 - Observed degradation products formed after the reaction of CO3
- radicals with 

the insecticides, see text. GC retention times, Rt, and MS mass to charge ratios m/z, are given, 

together with assigned products.  

 

In
s
e
c
ti
c
id

e
 

15 minutes 
irradiation 

30 minutes 
irradiation 

 

Product assignment  

m/z, Rt in min. m/z, Rt in min 

IM
D

 

140, 112, 85, 76 
Rt= 11.5 

 6-chloronicotinic aldehyde, compound 1 in Sch. 2 

264, 153, 126 
Rt= 37.5 

 (N-(1,1-dihydroxy)methyl)-(N-(1-hydroxy,2,2-
dihydroxy)ethyl)-2-chloro-5-pyridin-5-
ylmethanamine compound 2 in Sch. 2 

T
H

IA
 

140, 112, 85, 76 

Rt= 11. 5 

140, 112, 85, 76 

Rt= 11.5 

6-chloronicotinic aldehyde, compound 1. 

264, 153, 126 
Rt= 37.5 

264, 153, 126 
 Rt= 37.5 

(N-(1,1-dihydroxy)methyl)-(N-(1-hydroxy,2,2-
dihydroxy)ethyl)-2-chloro-5-pyridin-5-
ylmethanamine, compound 2. 

A
C

T
 

97, 82, 67 
 Rt = 18.5 

 N´-cyano-N-methyl acetamidine, compound 3, 
Sch. 4. 

140, 112, 85, 76 
Rt= 11.5 

 6-chloronicotinic aldehyde, compound 1. 

 

  



Table 3 - Natural water abundance of reactive intermediates and corresponding reaction rate 

constants k at 25 oC for IMD, THIA, and ACT. 

Reactive 

Oxidant (RO) 

CO3
- radicals 

1O2 DOM triplet HO radicals 

Natural water 
abundance / M 

10-13-10-15 (a) 10-12 - 10-13  (b) 10-13 - 10-15  (c) 10-17-10-15 (d) 

k(IMD + RO) / M
-1s-1 (4  1)106 (e) (5.5±0.5)×106 (f) (4.8 ± 1)×107 (g) 61010 (h) 

k(THIA + RO) / M
-1s-1 (2.80.5)105 (e) (3.9 ± 1)×107 (f) (1.5 ± 1)×108 (g) 7.51010 (h) 

k(ACT + RO) / M
-1s-1 (1.5  1)105 (e) (3.6 ± 1)×107 (f) (3.6 ± 1)×107 (g) 5.51010 (h) 

 (a) From ref. (Canonica et al., 2005, Lower, 1999). (b) From ref. (Zepp 1997). (c) From ref. 

(Canonica et al.,1995). (d) From ref. (Vione  et al., 2006). (e) This work. (f) From ref. (Dell’ 

Arciprete et al., 2010). (g) From ref. (Dell’ Arciprete et al., 2010). (h) Taken from ref. (Dell’ 

Arciprete  et al., 2009). 

  



Table 4 - Manifold of reactions depleting the neonicotinoid insecticides in natural waters. The 

corresponding rate constants at 25 oC are shown in Table 3. Pi stands for the organic radical of 

reaction i. 

 

 

 

 

 

 

 

Insecticide   +   CO3
-       CO3

2-   +   P4 (4) 

Insecticide   +   HO       SO4
2-    +   P9

 

(9) 

Insecticide   +   1O2       P10 (10) 

Insecticide   +   3DOM       P11 (11) 
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Figure 2 
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Figure 3 
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