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Abstract

The gravitational redshift forms the central part of the onigy of the
classical tests for the general theory of relativity. It ldbbhe successfully
checked even in laboratory experiments on the earth’sceirfBhe standard
derivation of this effect is based on the distortion of thealostructure of
spacetime induced by large masses. The resulting gravitdtiime-dilation
near these masses gives rise to a frequency change of amgipgoro-
cess, including electromagnetic oscillations as the wawpagates across
the gravitational field. This phenomenon can be tackled eldbsical elec-
trodynamics assuming a curved spacetime background and/dliscequa-
tions in a generally covariant form. In the present papersiav that in a
classical field-theoretical context the gravitationalstatt can be interpreted
as the propagation of electromagnetic waves in a mediumaeitiespond-
ing conductivityc = g/(uoc®), whereg is the gravitational acceleration
and g is the vacuum magnetic permeability. Moreover, the enegqsity
of the wave remains proportional to its frequency in agregmdth Planck’s
postulate.

*Corresponding author e-mail: luiacrod@imm.upv.es



1 Introduction

The first classical test of the general theory of relativityai terrestrial environ-
ment was devised and carried out by Robert Pound and Glen BkaRdr., in
1959 [1]. The idea of this experiment is quite simple: An atwiniron-57 emits
by radioactive decay a gamma photon with an energi4dteV. Such a photon
travels upward (in this case from the basement of Jeffersdbotatory at Har-
vard’s University) until it reaches a certain heightin the original experiment at
the attic of the building it wag = 22.5 m) where its energy has changed to

Ey = Eq <1—i—?), (1)

where g denotes the strength of the gravitational field, being exjainvt to the
acceleration of objects under its influence. The interpiceiaof the redshift in a
static gravitational field is not as simple as it appearsafdetailed discussion see
Ref. [2].

At the maximum height of its trajectory, the redshifted girotan no more be
absorbed by the irof7 atoms in the receiver. In a moment of inspiration, Pound
and Rebka realised that the gravitational redshift of thetq can be cancelled
out by an artificially created Doppler blueshift equivalemt downward motion
towards the basement:

EQ:E1(1+9):E0<1+9—%+0(c—3)). 2)

C C C

As can be clearly seen, the cancellation with ~ £, takes place if we choose
the velocityv = gh/c. However, the fractional energy change, — Ey)/Ey =
2.5 x 107° is so small that the experiment would be contaminated by am
coiling. Fortunately, just a year before, Rudolf L. MOsskathad discovered
that atoms belonging to a solid lattice share the recoilimgn@antum and, con-
sequently, the associated energy and velocity change igyidg [3]. By us-
ing Mossbauer spectroscopy, Pound and Rebka were thenahbtedsure the
velocity necessary to counteract the gravitational reétiblgithe Doppler effect,
v = gh/c ~ 7.5 x 107 mm/s. These very small velocities were obtained by
placing the sample on a conical speaker membrane reprapadow-frequency
sound between0 and 50 Hz. Note that as a sequel to this initial experiment,
many higher-precision tests were addedy.in 1980 by means of a space-borne
hydrogen maser [4].



From a historical point of view, already in 1784, John Mid¢hah English
philosopher and geologist, anticipated the gravitatisredkening of starlightin a
letter to Henry Cavendish [5]. Michell’s calculations wéresed on the Newtonian
corpuscular theory of light which was later on rejectedréafie arrival of the wave
theory in the early XIXth century.

The objective of this paper is to analyse the propagatiomgbf in a gravita-
tional field by means of the covariant Maxwell equations witturved spacetime
background. We will consider a uniform gravitational fieltdaa uniform accel-
erating frame as proposed by Desloge [6] and assume thafolidine element:

d32 = —a2<2) C2dt2 -+ dl’z + dy2 + dZ27 (3)

where time-dilation is included either by considering aform gravitational field
or by a uniform accelerating frame along theaxis:

e97/¢* uniform gravitational field (UGF)
(2) = L 97 . L (4)
+ = uniform accelerating rigid frame (UAF)
C

The UGF metric is a straightforward solution of the conditibat the initial local
acceleration of a particle must have the same value at altpimi order to describe
a uniform field. The corresponding differential equatioertfore is:

lda g .

—— ==, with =1.

adz 2’ a(0)
On the other hand, the UAF metric for a uniformly acceletiigid frame in
field-free space assumes an underlying flat space, whiattsytieé following sim-
ple differential equation and boundary conditions:

d*a da g
=0 —O)=5 a0

It is not difficult to see that the particular expressionsd¢t) in Eq. (4) are just
the exact solutions of these two differential systems,esponding to the UGF
and UAF case, respectively.

The UAF metric describes an underlying flat spacetime, wadsettee UGF met-
ric represents curved spacetime as expected. So in penth@ two approaches
of EQ. (4) are fundamentally different and were used by DOpslm explicitly
show that the observations made in a UGF are not strictlytickno those of
a UAF. Here, the statement of the principle of equivalende/een acceleration
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and gravity is only valid as a heuristic approximation. listbontext, the two
different metrics also allowed to analyse and discuss tatiwnal redshift effects
in a straightforward manner.

In our opinion, it would be pedagogical and helpful to gainvriasights if
this approach were also extended to include the effectsaditgtional redshift
from the point of view of classical electrodynamics in condiion with general
relativity. Classical references on the subject arrivbaiovariant formulation of
Maxwell’'s equations and stop there. Only in some of the mduaaced textbooks
particular solutions are fully discussed. We will show tBasloge’s metric is an
excellent testing ground by obtaining explicit solutioridvaxwell equations for
electromagnetic waves in a curved spacetime backgroundhdfmore, we will
see how the conceptual transition from classical electradycs to its extension
in general relativity is minimised in this approach.

The paper is organised as follows: In Section 2 we first sehepMaxwell
equations for the UGF and UAF metrics. In particular, we wgtilnd electrostatic
field of an infinite and uniformly charged plate in a unifornagtational field and
derive its solution. Next, in Section 3, the electromagnetive equation is for-
mulated for a general UGF frame. An approximate analytickitgon of the wave
equation is also calculated and expressed in terms of thértearly independent
solutionsAi(z) andBi(z) of the Airy equationy”(xz) — zy = 0 extended to the
complex plane by analytic continuation. It can be shown thatrelation among
the energy density of the wave and its frequency satisfiesxcREpostulate. Sec-
tion 4 concludes the paper with some final remarks and obsenga

2 Covariant Maxwell Equations in a Uniform Grav-
itational Field

In 4-dimensional spacetime, the Faraday tensor, or covafliectremagnetic field
tensor, allows the physical laws which govern electromtgmpdienomena to be
written in a very concise form. For an underlying metric vétgnaturd —, +, +, +),
it is defined by

0 —E,/Jc —E,/Jc —E./c

E,/c 0 B, -B
F, = O 5
" Ey/C _Bz 0 Bq: ( )
Ez/c B, —B, 0



where as usual the electromagnetic field is decomposedietiseid vector& =
(E., B, E,) andB = (B,, B,, B,) as seen in a frame of a particular observer.
Using Desloge’s approach, the inverserf, with the metric of Eq. (3) is given
in contravariant form by

0 E,/ca?(z) E,/ca?(z) E./ca?(z)
wy —Ex/Caz(Z) 0 Bz —By
T B B 0 B ©
—E./ca?(2) B, —B, 0

Maxwell's equations can then be recast in covariant form:. this purpose the
source equations of the electric and magnetic fields are suised in a single
relation containing the covariant derivative of the elestagnetic field tensor:

FW/;V = MO.juu (7)

where the semicolon denotes the covariant derivative jéne= (cp, j., jy, Jj-)
is the current four-vector. The rotational equation for éhectric field and the
divergence-free condition of the magnetic field are incoaipex in the cyclic equa-
tion for £}, :

F[)\u;u] =0 or F)\,u;y + F;w;)\ + FV)\;;L = 07 (8)

where the cyclic permutations of the indices may be abbtediny the common
bracket notation. This implies that in all terms the covair@erivatives, which in-
clude Christoffel symbols, cancel out, and we can replagetariant derivatives
by ordinary derivatives obtaining

F[)\u,u] =0 or F)\u,l/ + Ful/)\ + FV)\,},L = 07 (9)

where the comma denotes now conventional partial deresitiAfter expanding
the covariant derivative in Eqg. (7), we also find

(V=9),
V=9
where we have taken into account that the contraction ofyiimergetric Christoffel

symbols with the antisymmetric electromagnetic tensoei® zn the absence of
torsion, namelwgﬁFaﬁ = 0. In Desloge’s approach, the metric tensor is given

L+ P = g, (10)



by

—a?(z) 000
0 1 00
v — y 11
I 0 010 1D
0 0 01
and consequentlylet (g,,) = —a?(z). From Egs. (6) and (10) we arrive after
some simplification at the following conditions for the dtecfield
V-E- 28 =220, (12)
Q o
and similarly for the magnetic field
.« - 1 OE
VXB—NOJ‘FEBXI{—F@E, (13)

wherek, as usual, denotes the unit vectorzilirection. In an analogous way,
from Eq. (8) we may derive the two remaining Maxwell equagion

0B
VxE = —E, (14)

V-B = 0. (15)

Before starting to find the full electromagnetic wave salntof this system, it
is useful to study the simpler electrostatic case. For thip@se, consider in a
particular UGF frame an infinite metallic plate which is wnihly charged and is
perpendicular to the-axis. From Egs. (12) and (14) we find that the electric field
is irrotational and satisfies

V-E-— %EZ =0, (outside the charged plate (16)

C

which indicates that the translational Poincaré symmedgtieen broken by grav-

itation. As the electric field is aligned in thedirection, in the vacuum Egs. (12)
and (16) reduce to

OF: 9p _ 0, (UGF) (17)
0z c?
OF, g/c?

% T+ gs /C2EZ = 0, (UAF) (18)
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which can be readily integrated to yield
E.(z) = Eye”'*, (UGF) (19)
z
E.(z) = FE (HZ)‘ (UAF) (20)

Here L = ¢?/g is a characteristic length scale associated with the gtawital
field. For weak gravitational fields this scale is very largssuming, for exam-
ple, a uniform gravitational field with an acceleration esponding to the local
acceleration at the surface of the earth, nangely 9.8 m/s?, produces the scale
value L =~ 0.97lyr. The length scale in general also provides for an esenat
which domain the UGF and UAF descriptions agree or diffehigirtpredictions.

In the domainz < L expression Eg. (19) converges to Eq. (20), so that both
results agree to first order:

E.(2) = B [1+%+0<(%)2)]. (1)

As it has been shown for other phenomena, a uniformly acelérigid frame
and a uniform gravitational field are not strictly equivadlen larger scales, al-
though the equivalence principle, which guided Einsteiariséically towards a
formulation of general relativity, is still valid locallyof weak fields and small
accelerations [6, 7].

It is worthwhile to note that the gravitational acceleraticorresponding to
Egs. (19) and (20) are not exactly realised in nature. In thetdiscrepancy be-
tween the two alternatives (UGF or UAF) occurs outside thesigal domain. The
physical domain is fixed by the scale= ¢*/g such thatz| < L, since the space-
time metric of the UAF description strictly applies only imetlimit gz/c? < 1,
and furthermore the UGF approach becomes problematic isutfieiently large-

z domain. In any case, the full analytical treatment of thesterably more
complicated case with a black-hole background spacetinmchamepresents a
physical and very strong gravitational field in its vicinideserves special atten-
tion and is planned in a future work. Nevertheless, the clapproach serves as a
viable and instructive guide to explore wave-like solut@f Maxwell’'s solutions
and their energy content for uniformly accelerating frames



3 Electromagnetic waves in a uniform gravitational
field

Considering Desloge’s UGF metric of Eq. (4), which impliesraform gravita-
tional acceleration along theaxis, Maxwell equations in vacuum take the fol-
lowing form:

9

V' -E = gEZ, (22a)
OB

VxE = —= (22b)

V-B = 0, (22c)

VxB = 23><12+1 ~292/? OF (22d)
c? c? ot~

In order to derive the wave equation, we apply the standalfthique in classical
electrodynamics by taking the curl of Eq. (22b) and therditpaio

VX(VXE):V(V-E)—VzE:—%VXB (23)
By direct substitution of the expressions for the divergeatthe electric field,

Eq. (22a), and the curl of the magnetic field, Eq. (22d), wdlfirget

2 90 LB gop
V°E 2 8tB x k — 2 pTe 02VEZ = 0. (24)
Proceeding in a similar way, we take the curl of the curl ofrtregnetic field and

simplify by using the remaining Maxwell equations to arrate
g@B 2g 0 1 _,.,20°B

T Exk— e 2~ 25
20z T A 2 T = (25)
Equations (23) and (25) are apparently quite different ftbenwell-known wave
equations. In order to explain the behaviour of electroneignvaves in the UGF
system, we make some simplifying assumptions:

V°B +

(i) The wave travels upwards or downwards, parallel tozHais.

(i) The are no longitudinal electromagnetic componets= 0, B, = 0.



(iii) The electric, magnetic and propagation vector sgtisfe standard right-
hand-rule which implie¥ = ¢B x k andB = —E x k/c.

With these conditions, Eq. (24) becomes

2 _26_E_l —2gz/c* 7 = _

V°E S 2t o 0. (26)
Except for the additional factor of the second-order timavagve, this equa-
tion coincides with the telegraph equation for the propagadf electromagnetic
waves in a conducting medium [8]. As in the telegraph equatiee identify in
Eq. (26) the coefficient of the first time derivative wjtho, so that the conductiv-
ity of the gravitational field can be taken as= g/(uoc®). We now propose the
following general solution for the complex electric field:

E = Eje®) 7!, (27)

wherei is the imaginary unitw is the frequency of the wave,is the coordinate
time, andy(z) is a function still to be determined. Observe that, if we userdi-
nate time instead of local time at a fixed spatial positioa,ftequency measured
is constant. By inserting Eq. (27) into Eq. (26) we obtain

d*y dy\?  w? . qw
ﬁ + <E) + 0—26 + Z? = 0, (28)

whereq = g/c? is the inverse of the characteristic length of the graotei

field. Equation (26) is a second-order non-linear diffeedr@quation which, for-
tunately, can be linearised by the variable changg = In (z + A(z)), with the

new unknown function4(z). It then follows that

d*A

2
-+ (i e it ) (A+2) =0. (29)

This differential equation foid(z) is non-homogeneous, however one of its par-
ticular solutions is simplyd,(z) = —z. The general solution of the homogeneous
equation,A;(z), can be expressed in terms of Bessel functions with complex i
dex and the gamma function with complex argument [9, p. 447]:

.Ah(2> = Iiljl,eam'/zi (yze—z*/ﬂ) T (1 + 637”'/4]/)

| (30)
+ 52J vedmi/a (VQQ_Z*/V2> T (1 . 637”/4]/) )
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0 50 100 150 200

Figure 1: Electric field amplitude as a function of scaledyhgiz,, for an elec-
tromagnetic wave in a strong uniform gravitational fieldtwit= 15. The coeffi-
cients of A, (z) arex; = 103 andky = 0.

Here we have abbreviated= /w/qc andz, = wz/c. The parameter is usually
very large for typical frequencies and gravitational aecaions. The electric field
of the wave is then given by

E(z,t) = Eg (An(2) + A, (2) + 2) e ™" = EgAp(2) e ™", (31)

because the particular solution of the non-homogenoustiequal,(z) cancels
out. In Fig. 1 we have plotted the electric field amplitudejchihis obtained from
the real part of Eq. (31) after substituting Eq. (30). The stinal parameters are
choserv = 15, k1 = 10'3, andk, = 0.

The damping of the wave is associated with the gravitaticedshift of pho-
tons as discussed below. Notice that the wavelength is atgeasing and, re-
ciprocally, the frequency is decreasing as the wave trayagards through the
uniform gravitational field. The coefficiemt, must be zero, because the second
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term in Eqg. (30) corresponds to an amplification of the waw @avels upwards
and, consequently, is unphysical.

On the other hand, as discussed in Sec. 1, gravitationahifedsould be
successfully detected even for weak gravitational fieldshsas the local field
at the surface of the earth. This justifies to also study thpEag@mation of the
general solution Eq. (30) for the case of weak fields, withlimés ¢ — 0 or
v — oo. If we try to accomplish this task directly from Eq. (30), wdlace
some technical difficulties because of the imaginary indékR@Bessel functions.
Moreover, the method of the stationary phase is also difftouhpply because
appears also as an argument of the Bessel functions. It imde& convenient to
start with the differential equation fod(z), given by Eqg. (29), and carry out the
expansion for = g/c? < 1:

d’A w? qw
e + (;(1 —2¢z) + Z?) (A+2)=0. (32)
An explicit solution of the homogeneous equation, Eq. (B)pw found in terms
of the Airy functions

2z, — 1/

. —1 2z, — 12—
Ah(Z) = K1 Al <W) + Ko Bi <W) y (33)

wherez, = wz/c andv = /wc/g, as before. Again, out of physical grounds,
one has to take, = 0. Moreover, it can then be seen that only the imaginary part
of the Airy function of the first kind in Eq. (33) is physicaligeaningful, because
it corresponds to the damping of the wave travelling alorey:tlaxis in positive
direction. The result is shown in Fig. 2 for= 20.

A further simplification may be obtained for — oo by using the following
asymptotic expansion of the Airy function for largg with ¢ € C, see Ref. [9,
p. 448, eq. 10.4.59]:

00 —k
A(Q) = 5m I S0 (562) L (ued<m) (34)
k=0

wherecy = 1 andc;, = I'(3k + 1/2)/(54*kI T (k + 1/2)).

As we are interested in recovering the classical result favitational red-
shifts in a weak gravitational field, we can safely ignore dlgebraic prefactors
in EQ. (34). The reason for this simplification is as followise vertical distance
between the emission point of the photon and the receivePioLend-Rebka type
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Figure 2: Electric field amplitude as a function of scaledjhgiz,, for an electro-
magnetic wave in a strong uniform gravitational field with= 20. We have used
the approximation in Eq. (33) with; = 1 andx, = 0.

12



experiment is much smaller than the characteristic lenggb@ated with the ap-
proximately uniform field,L = c¢*/g > z. This implies thatz, < »?, and
consequently

2z, — V2 — 1 22, 1 VA3 VA3 7 9
T T <7‘1_ﬁ) wm —pp |\ ORI )

The terms0(z, /%) can then be regarded as the prefactors multiplying the expo-
nential term in Eq. (34).

Ignoring all -dependent factors which later on can be absorbed into the de
inition of E, and taking both possible roots in the exponential, Eq. (88uces
to

Ah(Z) -~ ei%u2[1+(i—2z*)/u2]3/2 ~ e:l:%VQ[1+%(i—2z*)/1/2+g(i—2z*)2/1/4+0(1/*6)]

3/2

(35)
where we have expanded the exponent as a series of powers op to second
order. Finally, after choosing the negative sign and stlistg 2, /v? = gz/c?,

Eq. (31) gives the following result for a damped wave
E = Eoe—gz/2026iw(z/c—t)‘ (36)

Notice thatt is the coordinate time as introduced in Eq. (27). Here we hgagn
included all remaining terms containimg(but not in combination with, /2?) in
the amplitudeE,. A similar expression may be derived for the magnetic field.
This solution represents a damped electromagnetic waveanducting medium
with conductivityo = ¢/(c?uy), as could have been anticipated by inspection of
Eq. (26). Due to the facter29#/<* in the second-order time derivative in Eq. (26),
the second-order approximation contains a variable frecyue.

Knowing the explicit form of the electric and magnetic fiefug us in the po-
sition to be able to calculate the energy density of the wavet@mporal average
over the coordinate time:

1 2 B* 1 2 B(Z) —gz/c? 2 —gz/c?
p(z) = = (eoB? + — ) = = [ eoEf + =2 | 79/ (cos® (w(z/c — t))) = poe 97/

2 Ho 2 Ho

(37)

Obviously the choice of time variable (coordinate or prapee) for the temporal
average in Eq. (37) can not influence the result for the ersggity. If7” denotes
the wave period by a static clock in the coordinate framen the proper wave
period in the UGF frame i§ = \/—gg 7. It is then easy to see that the average
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in both frames for one wave peridd or 7, respectively, yields the same factor
1/2.

Note that the same exponential factor also appears in thessipn for the
frequency due to standard gravitational redshift

w(z) =

0 woe_gz/c2
vV —900 ’
where we have used the metric Eq. (11) in the UGF system ddfirteg. (4).

Therefore, Eqgs. (37) and (38) demonstrate that the ratio@fgy density and
frequency of the wave travelling through the uniform gratrdnal field is always
constant, regardless of its heighs measured by a static receiver at this position.
If n is the average number of photons per unit volume, their spoeding energy
density isp = nhiw according to Planck’s fundamental postulate of quantum me-
chanics. Itis then clear that

(38)

P _ Po

w Wy
Hence, we observe that general relativity is compatibld Witanck’s postulate
concerning the interpretation of the redshift in a stronarm gravitational field
from the point of view of the covariant Maxwell equations inwaved spacetime.

= nh. (39)

4 Conclusions and Remarks

In this paper we have studied the solutions of Maxwell equtin a uniform
gravitational background field or, alternatively, in a anifi accelerating rigid
frame. We have shown that explicit solutions can be founekectrostatic fields
produced by an evenly charged metallic plate and for the abslkectromagnetic
waves in the vacuum. The wave equation in a gravitational fsshnalogous to the
telegraph equation obtained in classical electrodynamvtosn electromagnetic
waves propagate in a conducting media. However, the cowdyct = g/(joc?)
of such a medium, caused for example by the gravitational tél typical ce-
lestial body, is extremely small. For any feasible test dietryw of light, this
corresponds to a very large penetration depth of the assdosectromagnetic
waves.

Moreover, we must recognise that uniform gravitationatilBedre an idealised
case and as such not found in nature. The Schwarzschildowedtld be the
adequate framework to study realistic gravitational fieevertheless, even as a
local approximation for the field near the surface of thetedhte solutions found
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provide a useful insight into the behaviour of electromagngaves and photons
in a gravitational field. In particular, we could show tha #tmplitude is described
in terms of the Airy function depending on height.

The ratio among the energy density of the electromagnetiewaad its fre-
guency is fixed to a constant as the wave travels across thigagi@nal field. This
constant is proportional to Planck’s constant, which ise@kpected by compati-
bility with Planck’s fundamental postulate. Any other ri¢suould pose a serious
contradiction between the general theory of relativity guéntum mechanics.
A similar coherence between both theories is also foundHferGompton and
Doppler effect in special relativity as studied from a kiratio point of view (tak-
ing into account the recoil of a massive body which emits phs} [10, pp. 194].

The relation among quantum phenomena and gravitation th-eaund ex-
periments goes beyond mere academic or pedagogical int€msexample, the
recent proposal for a probabilistic description of gravitye so-called entropic
theory of gravity [11], has been argued to fail for the dgstasn of the aforemen-
tioned experimental results for quantum states of ultchoeltrons in the earth’s
gravitational field [12]. For these reasons, it would bereséing to analyse the be-
haviour of experimentally viable quantum states with backgd Schwarzschild
or Kerr metrics as a way to unveil or predict some further,dfolby surprising,
connections between classical gravity and the microscepitd. Apart from
employing Maxwell’s covariant equations, it would also h&eresting to analyse
predictions of quantum field theory on a fixed background. \TH€B approxi-
mation would be applied to obtain results in a general metffork along these
lines is in progress.
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