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Abstract

In this paper seasonal epidemiological processes are considered and a strategy
of periodic vaccination is proposed. The invariant formulations associated with
an - periodic system and the reproduction numbers associated with them are
considered. New measures to study the stability of the system are introduced.
Moreover, these new reproduction numbers help us to establish conditions on the
periodic vaccination rates in the vaccination program. Finally, an SIR model
is showed and a comparison between the results obtained using constant or
periodic vaccination program is analyzed.
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1. Introduction

The mathematical representation of an epidemiological process or a popula-
tion growth process by means of a continuous-time or a discrete-time dynamic
system has long been considered by many researchers, see [1, 2, 3]. In the study
of these processes plays an important role the concept of basic reproduction
number. This concept is defined as the spectral radius of a matrix or a linear
operator constructed from the coefficient of the system, see [4, 5]. The basic
reproduction number is not just a measure or indicator to know whether the
disease will be disappear altogether, but it is also a key to establish a threshold
vaccination rate necessary to eradicate the disease, see for instance [6, 7).

Many epidemiological processes present seasonality. For example, rates of
recovered individuals or of infected individuals may change with periodic behav-
ior, according to the external conditions that affect the process. In this case, in
the mathematical model appears periodic functions or matrices which hamper
the analysis of the problem. The basic reproduction number associated with a
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model with periodic coefficients of period N has been defined by different au-
thors, see [8, 9, 10, 11, 12, 13]. In particular, in [8, 9] this concept is introduced
as the spectral radius of a matrix which contains all the information for a period
N and in [13] the authors define N reproduction numbers associated with the
system.

The most common vaccination program is to vaccinate all individuals with
a constant rate, see [8]. Perhaps it is the most direct method, but it is not
the most effective. Some studies have considered specific cases of type SEIR or
SEIRS continuous-time and they have done studies with pulse vaccination, see
[14, 15].

Since it is important to take into account the periodicity of the process in
the vaccination program, in this paper we consider seasonal epidemiological
processes and we propose a strategy of periodic vaccination. Theory of linear
dynamical systems in discrete-time and theory of nonnegative matrices and M-
matrices are the support of the theoretical development of this study. We intro-
duce new measures or indicators to study the stability of the system. Finally,
these new reproduction numbers help us to establish conditions on the periodic
vaccination rates.

2. Preliminaries and statement of work
Consider an invariant system
x(k+1)=Fxz(k), E=T+F, k>0 (1)

where the vector z(k) represents the infected individuals at time k, the nonneg-
ative matrices T' > O and F > O are the transition matrix and the infection
matrix, respectively.

The basic reproduction number, R, quantifies the transmission potential of
the disease and it gives information on transmissibility and contact rates. This
indicator is defined by Rg = p(F(I —T)™1), see [4]. Considering that the initial
system without new infections is asymptotically stable p(T') < 1, it is known
(see [16]) that if Ry < 1 then the system (1) is asymptotically stable, that is,
p(E) = p(T+F) < 1. Moreover, if Ry > 1, the system (1) is not asymptotically
stable p(E) = p(T + F) > 1.

The basic reproduction number is used to find the threshold value of the
vaccination rate, denoted by v, in order to obtain the eradication of the disease.
If the matrix F' acts on the unvaccinated population then the vaccination model
is given by

x(k+1)=E2(k), EY=T+F(1—v), k>0.

Now, the new basic reproduction number is given by Rf = (1 — v)Ry and
1— 7% is the threshold value for v such that the model of Vaccination becomes
asymptotically stable p(EV) < 1, see [7]. That is, if v > 1 — - then Rf < 1.

When this procedure is applied to a seasonality process the difficulty of the
problem increase. This seasonality leads to the periodicity of the coefficient



matrices of the model. In this case the process is represented by an N-periodic
system given by

w(k+1) = E(k)x(k), E(k)=T(k)+F(k), k>0, 2)

where the matrices are N-periodic matrices, that is, T(k+N) = T'(k) > O, and
F(k+N)=F(k) >0, ke

In the literature, the N-periodic systems have been studied using the follow-
ing two invariant formulations:

e NIS: A collection of N invariant systems (see [17]), given by
xs(k+1) = Esxs(k), Es=Ts+ BsFs, k>0,

where

zs(k) = x(kN +5), Bs=row|[®r(s+ N,s+1 +j)]§-V:7017

T, =Pr(s+ N,s) F;s :col[F(s—|—j)<I>E(s—|—j,s)];-V:_Ol,
H;:_Slo T(so+s—1—1), s> sp
(I)T(S,S()) =
I,, s=sg

fors=0,1,...,N — 1.
e ICAS: An invariant system called Invariant Cyclically Augmented System,
that recollect all the information of a period (see [18]) which state is

2 (k)= MF13(k), % (k) =col[z(k+ )] "

=0
o Iin—vy; |
M; = [ I 0 ,3>0.

This invariant system is given by
2(k+1)=F.2(k), Ec=T.+F,, k>0
where T, and F, have the following structure

_ 0 M (0)
Me_(diag(M(l)mM(Nl)) o) )

using the corresponding N-periodic collection of matrices.

It is known that the NN-periodic system is asymptotically stable if and only
p(Ts) < 1 or equivalently p(TN) < 1, since TN = diag(Ty Tz -+ Tn_1 Tp)-

Given an N-periodic system, a first approach of concept of basic reproduc-
tion number leads us to define this measure as the basic reproduction number
of its ICAS, that is, R = p(F.(I —T.)™1), see [8, 9]. Another way is to define it
using its NIS formulation, that is, R = p(BsFs(I — Ts)™ 1), s =0,1,... N — 1,
see [13].



In order to get the eradication of the disease we can plan different ways
of actuation. If we consider a constant vaccination program, that is, if we
consider in all seasons the infection matrix at time &k equal to (1 — v)F(k), for
all k=0,1,..., N — 1, the vaccination model is given by

2(k+1) = E°(K)a(k), EU(k) =T(k)+ (1 — v)F(k), k> 0.

In this case, the new reproduction number using the ICAS formulation is R’ =
p(F*(I-T.) ') = (1-v)R§ since F¥ = (1—v)F,.. Then, the threshold value for
v such that the model of vaccination becomes asymptotically stable is 1 —
see [9)].

If we consider the NIS formulation, then the reproduction numbers are
RV = p(BsFY(I —Ts)71), s=0,1,... N — 1, being

1
RS

F? = col[FY(s)Pgv(s+j — 1,5)];\[:1

It is not straightforward to obtain a relation between R{” and Rf, s =0,1,... N—
1.

Note that considering v at all time we are forgetting the seasonality of the
process. It seems logical to think that the vaccinated population rate in each
stage or season must be related to the changing conditions affecting that season.
That is, the periodic variation of the characteristics of the process should influ-
ence the rate of population to be vaccinated at each step. Thus, if we consider
the rate vg vaccination in step s, s =0,1,..., N — 1, the model is given by

z(k+1) = E*(K)z(k), E°(k)=Tk) + (1 —v)F(k), k>0.  (3)

Now, the ICAS formulation does not provide a direct way to find the threshold
values of vg, s =0,1,..., N — 1. We focus our attention on this problem. Our
goal is to find conditions on the collection in order to improve the threshold
value obtained when the rate of vaccinated population is the same at all steps.
For this, in the Section 3 we introduce new measures or indicators associated
with the N-periodic system and we study the stability of the system from these
indicators. In Section 4, we give conditions on the collection of vaccination rates
vs, s =0,1,..., N—1in order to the vaccination model becomes asymptotically
stable. Finally, in the Section 5, we consider an SIR model and we compare
between the results obtained using constant or periodic vaccination strategy.

3. Reduced reproduction numbers.

Consider the N-periodic system given in (2) and the coefficient matrices of
the ICAS and NIS formulations. Then, we establish the following result which
proof is straightforward using the definition of the involved matrices.

Proposition 1.
(i) Forj=0,...,N—1

TIF.E! = diag(®r(s + N, s+ 1+ ) F(s + j)®r(s+j,8) Y.



ii) Denoting Bo = (TN TN-1 ... I) and F, = col[F.EJ N=1 we have
( ) g e e elj=0
diag(B,Fo(I — T,) YN, = B.F.(I - TN)=".

Next, we define the new collection of measures, which will help us in the
study of a threshold property associated with the stability of the system.
Definition 1. For each j, j =0,1,...,N — 1, we define

(i) the s-basic reproduction number at time j as R;(s) = p(M;(s)), s =
0,1,...,N — 1 with

M;(s) = Y;(s)(I — X;(s))~", where

j—1

Xj(s)=Te+ > Yi(s)if j=1,...,N =1, and Xo(s) = Ts,
=0

Yi(s) =Pr(s+N,s+1+j)F(s+7)Pr(s+7,9).

And, from the periodicity of matrices of the system, R;(k+ N) = R;(k),
keZ.
(ii) the reduced reproduction number at time j of the system (2) as

RS = p(MF) = max{R;(s), s =0,1,...,N —1}

j—1

being M{ = TIF.EI(I — XJ)™' with X! = T. + Y TIF.E. if j =
=0

1,....,N—1, and X0 =T..

Since the eradication of the disease is obtained when the system is asymp-
totically stable, in the following result we give conditions on the above collection
of reproduction numbers {R;, j=0,1,...,N — 1} in order to get the stability
of the system.

Proposition 2.

(i) Let j be such that R§ < 1. If p(X;(s)) < 1 then p(X;(s) +Yj(s)) < 1.
(1) If RG_; < 1 and p(Xn_1(s)) < 1, then the N-periodic system (2) is
asymptotically stable.
(iii) If there exists j and s such that Rj(s) > 1 and p(X;(s)) < 1 then the
N -periodic system (2) is not asymptotically stable.

Proof.

(i) Suppose that R§ < 1, then R;(s) = p(M;(s)) <1foralls=0,1,...,N—1.
From p(X;(s)) < 1, taking into account I — Mj;(s) is an M-matrix nonsingular
and 1~ M;(s) = I — Yy(s)(I — X;()) " = (I — X;(s) — Y;(s)(I - X; (s)) ",
then I — X;(s) — Y;(s) is nonsingular and its inverse matrix is nonnegative

(1= X;(s) = Y;()) ™" = (I = X, ()" (I = My (s)) ™" > 0.



Thus, we can ensure that —(X;(s)+Y;(s)) is an M-matrix nonsingular. Hence,
p(X;(5) + Y, (s)) < L

(#1) In the above result when j = N—1 we have Xny_1(s)+Yn_1(s) = Ts+ B, F,
then p(Ts + BsFs) < 1 and the N-periodic system (2) is asymptotically stable.
(111) If there exists j and s such that R;(s) > 1, then p(X;(s) + Y;(s)) > 1.
In order to know if the N-periodic system is stable or unstable, we use its
NIS formulation where Fy, = Ts + BsFs > O. By construction of matrices
X,(s) and Yj(s), we have E; = T, + B,Fs > X,(s) + Y;(s), and so, p(Es) >
p(X;(s)+Y;(s)) > 1, since they are nonnegative matrices. Then, the N-periodic
system is not asymptotically stable and the proof is finished.

To clarify the above concepts we show the different reproduction numbers
associated with a 2-periodic system given by E(k) = A(k) + F(k), E(k + 2) =
E(k), k € Z. By definition of the ICAS formulation and NIS formulation we
have

RE = p(F.(I-T.) ") = (( F?l) Fé()) ) ( —7{(1) _7;(0) >_1>

RY = p(BoFo(I —To)~") = p((T(1)F(0) + F(1)E(0))(I — To)™")
Ry = p(BiFi(I =Th)™") = p((T(0)F(1) + F(O)E(1))(I —T1)™")

and by Definition 1 we have the new measures

j=0 Ro(0)=p(Mo(0)) = p(T(1)F(0)(I —To)")
Ro(1) = p(Mo(1)) = p(T(0)F(1)(I —T1)~")

j=1 Ri(0) = p(M(0)) = p(F(1)E(0)(I — T — T(1)F(0))~")
R1(1) = p(M1(1)) = p(F(0)E(1)(I = T1 = T(0)F(1))~")

4. Vaccination models

We are going to discuss the basic reproduction number and the impact on
the vaccination programs in the infectious diseases. In this section, the focus is
in the dynamic changes and we will analyze the critical vaccination proportion
needed to eradicate the disease.

As we have already mentioned in Section 2, in a seasonal epidemiologic
process, the usual vaccination program so far has been based on the use of
ICAS formulation. Thus, it has been used a constant rate of vaccination, v,
the same in all steps. The threshold value of v such that the model becomes
asymptotically stable vaccination is 1 — =

RE"

Our proposal is to achieve the eradicatoion of disease using vaccination such
that the rate of the vaccinated population depends on each step or season. For
that, we consider the new infection matrix at time s is F¥(s) = (1 — vs)F'
for every s = 0,1,..., N — 1, and the vaccination model is represented by the
system given in (3). To find the threshold values of the rates of {vs, 0 < vs <
1, s=0,1,..., N —1} analyze the stability measures introduced in the previous
section. For each j, 7 =0,1,..., N—1, the s-basic reproduction numbers at time



j of the vaccinated model are going to be RY(s) = p(M}(s)), s =0,1,...,N—1
with

MY (s) =Y (s)(I — X} (s))"", where

J

X0(s) =T+ Y1 Y0 (s)if j=1,...,N =1, and X{(s) = Ty,

Yj”(s) =Pr(s+N,s+14+j)F(s+ j)Pgv(s+74,9).

And, the reduced reproduction number at time j of the vaccinated model is
R;" = max{Rj(s), s =0,1,...,N —1}.

In the following result we give conditions on a collection of values {v,, s =
0,1,..., N —1} in order to get eradicate the disease in a seasonal model.

Proposition 3. Consider a not asymptotically stable N -periodic system given
by (2). If there exists a collection {vs, 0 <wvs <1, s =0,1,..., N—1} satisfying

1
l—ve; < =——, 0<j<N-—1,

Ry(s)

with RY(s) = p(®r(s + N,s + 1+ j)FOpo(s + j,s)(I — XV(s))~1), then, the
vaccination model given by (3) is asymptotically stable.

Proof. Since system (2) is not asymptotically stable, p(EN) > 1, then, for
some j, R§ > 1. We suppose jo such that R < 1 for all j < jo and Rj > 1.
By definition of R , there exists almost s such that R, (s) > 1. Without loss of
generality we consider jo = 0. Then, we consider a periodic vaccination program
such that

Ri(s) = (1 —v5)Ro(s) <1, s=0,1,...,N—1.

Thus, if the collection {vs, 0 < v, <1, s=0,1,..., N — 1} satisfies the above
condition, then R§” < 1. Moreover, to control the disease it is necessary that
R;” <1,forall0<j< N —1. Hence

Ry(s) = p(V(s)(I = X3(s))~1) =
= p(@r(s+ N,s+ 1+ ) F(s+ ) g (s + 4, )T = X2(5)) 1) = (1 = var)RY(s).
Then, the conditions

1
].—'Us+j<~7, ]0<]§N_1,

Ry(s)

established in the statement are hold.
Note that from the periodicity, the above conditions are equivalent to the
collection {vs, 0 <wvs <1, s=0,1,..., N — 1} satisfies the following condition

{ 1 1 1 }
1—v, < = , = N .
Ri(s) Ri(s—1) RY_1(s = (N —1))



When N = 2 the above conditions are

where
§=0 RE0)=p(TA)F(I - Ty)~*) = Ro(0)
Ry(1) = p(T(O)F(I — T1)~) = Ro(1) )
j=1 RY0)=p(F(E(O)I—Ty—T1)F(1 - w))"")
RY(1) = p(FE*(1)(I — Ty — T(0)F(1 — v1))™")

with E¥(s) =T(s) + (1 —vs)F, s =0,1.

In the following section we introduce a seasonality SIR model and we study
the vaccination programs comparing between the obtained results, using the
same or different rate of vaccination at all season.

5. Application to a seasonality SIR model

The SIR model is one of the basic compartmental models in infections dis-
ease epidemiology, which is widely used and well suited to model many viral
infectious in childhood. Let us consider a transmission model consisting of three
compartments: susceptible (S), infected (I), and immune or recovered (R). An
underlying assumption of this STR model is that individuals are born into the
susceptible class. After infection, the individuals transfer to the infected class
and after clearing the infection individuals are transferred to the recovered class.
It is assumed that, after recovery, individuals gain lifelong immunity and there-
fore do not take part in the transmission process other than that they represent
the complement of those that do (i.e., the more immune people, the fewer there
can be infectious and susceptible people in the population).

If 8 denotes the births added to S state and p, g, a and r are the survival
rate of the S, I, S-I and R individuals, respectively, and ~y(k) denotes the rate
of infectious individual becoming removed individual, we can modelled the STR
model using the following discrete-time system

Stk+1) = pS(k)—aS(k)I(k)+ AN (k)

I(k+1) al (k) + aS(k)I(k) — v(k)I(k)
R(k+1) rR(k) +~v(k)I(k), N(k) = S(k) + I(k) + R(k),

Note that y(k + N) = y(k), with N = 2, is a periodical varying parameter
in this model. This means that we have considered seasonality in the removed
individuals.



This model is more realistic because usually some diseases are more easily
recovered in summer that in winter, in dependence of the weather.

Then, we linearize around the disease-free equilibrium point obtaining the
following linear system

S(k+1) = pS(k) — hI(k) + BN (k)
I(k+1) = ( (1 —~(k)) +W)I(k) (6)
R(k+1) = qy(k)I(k) + rR(F)

where h is the rate of susceptible individuals becoming infectious individual.

The evolution of the disease state is given by infected individuals, and hence
we can reduce this model to the infected linear model. Moreover, we consider
an example where the influence of the diseases differs according to the case
of juvenile individuals or adults individuals. Then, the infected population is
divided into two classes: I(k) = (I;(k) I,(k))". Denoting

e h;/hg the rate of individuals becoming infectious juvenile/adult individ-
uals,

® ¢;/q, the survival rate of the class I;/I,,

o v;(k)/va(k) the rate of infectious individual becoming removed individual
at time k, £k = 0,1,

e s the rate of infected juvenile individuals becoming infected adult individ-
uals.

we have the following 2-periodic system

I(k+1) = (T(k) + F)I(k) =
_ (< qj(l_gjék) =) ” _O%(kD >+< %j ]?a >> .

In order to apply control to this problem, firstly we consider the vaccination
of the population at a fixed rate v. If a proportion v of the individuals is
vaccinated successfully, then these individuals are assumed to become immune
and they are removed from the original class. These assumptions lead to the
following equation:

I(k+1) = (T(k) + (1 — v)F)I(k).

If R§ < 1 no vaccination is required in order to maintain a disease free popula—
tion, while for R§ >

to ensure that R§” < 1 Likewise, we analyze the stablhty using NIS formula—
tion and the reproduction numbers R and Rj.

The idea of using constant vaccination rate is not very realistic. In practice,
population groups are vaccinated during very short time intervals for logistic
reasons. This means that impulse control is better control model than the con-
stant vaccination rate model. Then, when the population have been vaccinated



in this way, the new matrices F'’(s) depend on the rate of the vaccination, vg
and vy. Thus, F¥(0) = F(1—vg) and F?(1) = F(1—v1). In this case, by means
of the reproduction numbers associated with the ICAS or NIS formulation it
is difficult to obtain the threshold values to vy and v;. This motivates the use
of the s-basic reproduction number at time j, R;(s) = p(M;(s)), s = 0,1,,
7=0,1.

In the following example we apply the proposed approach and we compare
it with the case where it is considered the constant rate of vaccination.

Example 1. We consider the following dates:

qg; =0.9, ¢ =0.7, h; =0.7, hy =0.3, s=0.1
7;(0) = 0.1, 7,(0) = 0.5, v;(1) = 0.5, v4(1) =0.8.
Then, the 2-periodic system is not asymptotically stable, since p(Es) = 1.5.

Moreover the reproduction number associated with the ICAS and N IS formula-
tions are greater than 1:

R = p(B.Fo(I — T.)") = 1.47
Rg = p(BoFo(I — T())_1> =1.68 = R(l) = p(BlFl(I — Tl)_l).

By Definition 1 we have the new measures

j=0 TRo(0)=0.34
Ro(1) = 0.68
j=1 Ry(0)=2.03
R1(1) = 3.13.

Hence, the reduced reproduction number at time 0 is R§ = 0.68 and at time 1
is R =3.13 > 1.
By definitions of R} (s) given in (5) we have

§=0 RE0)=Re(0) =0.34
RY(1) = Ro(1) = 0.68
~ 7(0.7240.7(1 — 951 — 0.042(1 —
i qu(o):m(m +0.7(1 — v9))(0.95 020 (1= 1))
0.44 + 0.250¢ + 0.0102
- 0.7(0.36 + 0.7(1 — v1))(0.95 — 0.1(1 — v1))
Rl(l) =

0.2 + 0.45v; + 0.050F ’

and from Proposition 3 and the conditions given in (4) we have that {vg, v1}
have to satisfy

R 0.2 + 0.450; + 0.0502
00034 0.7(0:36 + 0.7(1 — v1))(0.95 — 0.1(1 — vy))

1 < 1 0.44 + 0.24v + 0.01v3
—v .
! 0.68" 0.7(0.72 + 0.7(1 — v9))(0.951 — 0.042(1 — vy))
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On the other hand, if we consider constant rate of vaccination v and consider
the ICAS formulation

Re" = p(F(I —T.)™) = (1 - v)R§ = 147(1 - v),

with FY = (1—v)F.. The threshold value forv such that the model of vaccination
becomes asymptotically stable is 1 — R%c) =0.32.

The evolution of the disease is measure from the spectral radius of the matriz
E? =T, + F? of ICAS formulation or EY =Ts+ F? of NIS formulation of the
vaccination model.

In this example, it is necessary a higher level of vaccination in the constant
vaccination program than in the periodic vaccination program to obtain a similar
evolution in the dynamics of the infected population from constant or periodic
vaccination strategy. For example, for the vaccination model to be asymptotically
stable with p(EY) = 0.81 < 1, in the constant strategy we have to vaccinate 46%
of the population during the two steps while in the periodic vaccination strategy
will only have to vaccinate 70% of the population in one of the steps. Moreover,
a constant vaccination equal to 85% leads to p(EY) = 0.95 < 1. In this case the
eradication of the disease is slower than vaccinating only at odd steps with 70%.

In the NIS formulation of the infected model, the states are given by I (k) =
Ii(kN+s) and I (k) = I,(kN+s) and they represent the juvenile/adult infected
population at time kN + s.

In the Figure 1 we show the evolution of the juvenile/adult infected population
before of the vaccination and after of a periodic vaccination program. And, the
Figure 2 show this evolution after of two different constant vaccination programs.

100000 /

80000

60000 '/

40000 //
P

20000 ~

5 10 15 20

(a) Without vaccination (b) Periodic vaccination vo=0, v;=0.7

Figure 1: Ewvolution of infected individuals H(k) and I1%(k): (a) Before of any vaccination

program. (b) After of the periodic vaccination program, vo = 0 and vi = 0.7.
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Figure 2: FEvolution of infected individuals IZ(k) and I%(k): (a) After of the constant

vaccination program, v = 0.46. (b) After of the constant vaccination program, v = 0.35.

6. Conclusions

Seasonal epidemiological processes represented by N-periodic systems are
considered join with its ICAS and NIS formulations. Different basic reproduc-
tion number approaches are introduced to analyze the eradication of the disease.
Using theory of linear dynamical systems in discrete-time and theory of non-
negative matrices and M- matrices a property about the asymptotic stability of
the system is established. Motivate by the importance of the periodic property
of the process a periodic vaccination program is studied. Conditions on the vac-
cination rates in this program are given in terms of the new basic reproduction
numbers.

The results presented herein are applied to a seasonal epidemiological model
with two compartments in the infected individuals. This analysis is focus on a
comparison between the behaviour of the infected population using constant or
periodic vaccination program. A higher level of vaccination in the constant vac-
cination program than in the periodic vaccination program is needed to obtain
a similar evolution in the dynamics of the infected population.
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