Document downloaded from:

http://hdl.handle.net/10251/51844

This paper must be cited as:

Garcia Marques, ME.; Miles, S.; Luck, M.; Giret Boggino, AS. (2014). Evaluating how agent
methodologies support the specification of the normative environment through the
development process. Autonomous Agents and Multi-Agent Systems. 1-20.
doi:10.1007/s10458-014-9275-z.

The final publication is available at

http://dx.doi.org/10.1007/s10458-014-9275-z

Copyright
Pyng Springer Verlag (Germany)

Autonomous Agents and Multi-Agent Systems manuscript No.
(will be inserted by the editor)

Evaluating how agent methodologies support the
specification of the normative environment through
the development process

Emilia Garcia - Simon Miles - Michael
Luck - Adriana Giret -

Received: date / Accepted: date

Abstract Due to the increase in collaborative work and the decentralization
of processes in many domains, there is an expanding demand for large-scale,
flexible and adaptive software systems to support the interactions of people
and institutions distributed in heterogeneous environments. Commonly, these
software applications should follow specific regulations meaning the actors us-
ing them are bound by rights, duties and restrictions. Since this normative
environment determines the final design of the software system, it should be
considered as an important issue during the design of the system. Some agent-
oriented software engineering methodologies deal with the development of nor-
mative systems (systems that have a normative environment) by integrating
the analysis of the normative environment of a system in the development
process. This paper analyses to what extent these methodologies support the
analysis and formalisation of the normative environment and highlights some
open issues of the topic.

Keywords Multi-agent systems - Normative systems - Agent methodologies

1 Introduction

Currently many domains, such as health and commerce, demand complex, dy-
namic and decentralised systems in which different entities and institutions
interact and interchange services in order to achieve their objectives. Since
these stakeholders are usually heterogeneous and autonomous, there is no cen-
tral authority that designs or ensures their behaviour. Although neither of

E. Garcia, A. Giret
Universitat Politecnica de Valencia, Spain
E-mail: {mgarcia,agiret}@dsic.upv.es

S. Miles, M. Luck
King’s College London, UK
E-mail: {simon.miles,michael.luck}@kecl.ac.uk

2 Emilia Garcia et al.

them have power or authority to control the behaviour of the others, the ex-
pected behaviour of each stakeholder should be known in order to ensure the
stability of the system and to achieve the success of the interchanges between
entities.

Moreover, these domains are usually regulated by governmental legislation
and the internal regulations of each institution involved in the system. The
behaviour of each entity is bound by rights, duties and restrictions derived
from the global legislation, the requirements of the system and the specific
regulations of each institution. One example of application is the software
supporting the collaboration between health clinics and research institutions
in order to allow researchers to find eligible patients to their clinical trials [35].
Each stakeholder involved in the collaboration must follow different regula-
tions. Each clinic must follow their internal regulations and the governmental
regulations attached to the management of clinical data. Researchers must
follow the regulations of their own research institution and the governmen-
tal regulations about clinical trials. Moreover, clinics and research institutions
software may have been developed by different stakeholders using different
technologies. Therefore, in such domains, it is necessary to develop systems
where the desired and forbidden behaviour of each entity is formally specified.
Any undesired behaviour can compromise the stability of the system, avoid
the correct communication between parties or violate a legal restriction.

In the literature, regulated systems that deal with dynamic regulations in
a social environment are called normative systems [48]. The advantage of a
norm-based design approach is that there is a ready way for developers to
specify these regulations explicitly in the development process, such that they
become part of the design. Implementing the system in a norm-aware platform
can ensure their fulfilment, even if the system has been externally implemented
by different providers.

The analysis and design of systems of this kind are complex tasks. Gov-
ernmental legislation and the specific legislation of each institution and entity
involved in the system should be considered, bringing a need to integrate dif-
ferent normative environments. Since these restrictions on the behaviour of the
entities may determine the final design of the system, they must be identified
and analysed in the early phases of the development process. In this paper, we
consider the normative environment of a system to be the set of norms that
regulate the behaviour of each entity and the set of contracts that formalise
the relationships between these entities. The normative environment of each
entity is specified by the set of norms that directly affect the behaviour of this
entity. The normative context of an organisation' is the set of norms that only
affect the entities that are part of this organisation.

Over the last decade, multi-agent technology has been used for the im-
plementation of academic and industrial applications, and there are currently
several agent methodologies that deal with the development of normative sys-

I In this paper the term organisation is considered a synonym of institution.

Title Suppressed Due to Excessive Length 3

tems [23,26]. In this paper, we wish to answer the following question: To what
extent do agent methodologies support the development of normative systems?.

In this paper the term ”methodology” is understood as a framework that
offers a set of design abstractions and guidelines that guides the process of
developing a system by offering: (1) mechanisms to specify the design of the
system, (2) a set of tasks that must be performed in order to develop the
system, (3) and advice about when and how these tasks must be executed.

First, we analyse the methodological requirements for developing normative
systems (Section 2). These requirements are specified in Section 3 as a set of
questions that help to evaluate to what extent agent methodologies support the
analysis and design of normative systems. Section 3 presents an overview of the
state of the art and selects four agent methodologies, taking into account their
support for analysing and designing normative systems. These methodologies
are analysed in more detail in Section 4. Section 5 presents an analysis of some
open issues in this context.

In order to illustrate some common characteristics of normative systems
the following subsection presents a case study based on a virtual water market.
This normative system will be used through the paper as running example.

1.1 Running example: mWater case study

mWater is an institutional, decentralised framework where users with water
rights are allowed to voluntarily trade their rights with other users, in exchange
for some compensation, economic or otherwise, but always fulfilling some pre-
established rules [11,37].

The whole system is regulated by the National Hydrological Plan of the
country that establishes the creation of one basin institution for each water
basin. These institutions are responsible for monitoring the quality and level
of the basin’s water and for controlling the transfer of water rights within
their basin. Each basin institution is an autonomous organisation. In addition
to the National Hydrological Plan, these institutions must follow the specific
regulations of their region. Basin institutions have the autonomy to decide
whether to participate in the virtual market and they are able to abandon the
system at any time. Each basin institution offers a set of software services and
resources to its members. These applications have been developed by different
developers using different technology. Therefore, the mWater virtual market
system should be able to integrate the different basin institutions and to allow
communication and service interchanges between them. In order to participate
in the system each basin institution must fulfil a set of requirements: (1)
Every basin internal structure should have a notary who will be responsible
for validating each water interchange performed inside the basin institution.
It also should have a jury who will solve the conflicts among the members of
the basin. (2) Every basin should provide specific services to the government
authority. (3) Every basin should specify internal regulations that must be
coherent with the current governmental legislation.

4 Emilia Garcia et al.

The government authority is the person or group of persons that represent
the government in the system. This authority can revoke any agreement es-
tablished in the system and is responsible for verifying that the governmental
legislation is fulfilled in every basin institution.

In this virtual market based environment, different autonomous entities,
representing individuals, groups of irrigators, industries, or other water users,
get in contact in order to buy and sell water rights. They are able to negoti-
ate the terms and conditions of the transfer agreement following the specific
regulations of the basins involved. In order to perform an inter-basin transfer,
the agreement should be authorised by the government of the country.

This case study was implemented using the Electronic Institutions frame-
work [29,31] as a testbed for agreement technologies [20]. During its analysis,
design, implementation and maintenance we have had to deal with some of the
most common issues related to normative open systems. We found the analysis
and design of the normative environment particularly challenging because of
the complexity explained above. We therefore believe this to be a good run-
ning example to be used throughout the paper to illustrate some features and
attributes. However, it must be noted that this paper does not analyse the
specific implementation of the case study with Electronic Institutions; such an
analysis is out of the scope of the paper. Instead, the paper’s main goal is to
analyse the support offered by agent methodologies for analysis and design of
the normative environment of a system. The case study is only used to give an
example of some common features of normative systems that would be difficult
to understand without concrete examples.

In addition, it is important to state that the requirements and criteria pre-
sented in the following sections are not only based on the mWater case study,
but on the broader literature concerning normative systems, and also on our
experience designing normative multiagent systems applications in different
domains, such as health [36].

2 Requirements for designing the normative environment

This section describes the requirements at design time for developing norma-
tive systems. In this paper, we consider normative systems as systems where
the entities’ behaviour and relationships are restricted by a set of norms [7].
Now, in the literature there is no consensus about the terminology that must
be used to specify normative systems [30,39]. Therefore, in this section we
analyse the requirements for designing normative systems from a semantic
perspective and associate these semantics to specific terms in order to reuse
them in the following sections. The specific terms are highlighted in bold.
The rest of the section is organised as follows: First, Section 2.1 analyses
the metamodel constructions that are necessary to represent the normative
environments of a system. Second, Section 2.2 analyses the support during
the development process that is necessary in order to completely analyse and

Title Suppressed Due to Excessive Length 5

formalise these normative environments. Finally, Section 2.3 analyses how the
final design of the system should be validated.

2.1 Design abstractions

Due to the increase in collaborative work and the decentralisation of processes
in many domains, there is an expanding demand for large-scale, flexible and
adaptive software systems to support the interactions of people and institu-
tions distributed in heterogeneous environments [50]. Each one of these insti-
tutions may have specific legislation and internal regulations associated with
them, meaning that the actors inside them are bound by rights, duties and
restrictions [33]. In this paper, the norms that regulate the behaviour inside a
specific institution, or group of entities, are called institutional norms. The
interaction of several institutions and the integration of different subsystems
into a common one brings a need to specify different normative environments
inside the same system. Therefore, the design architecture should allow the
definition of several normative environments inside a system. Here, the
normative environment of a system is considered to be the set of norms that
regulate the behaviour of each entity and the set of contracts that formalise the
relationships between entities and institutions. The normative environment of
each entity and institution is thus specified by the set of norms that directly
affect the behaviour of this entity or institution.

For example, in the mWater case study each basin institution and irrigator
community has its own regulations, i.e. its own normative environment. These
normative environments can have associated with them different and even con-
tradictory norms, but all these normative environments should be compliant
with the National Hydrological Plan. When there is an interbasin interchange
of water the regulations of all the institutions involved should be fulfilled.

In the agent literature the functionality of the system is usually divided
between different roles [1,2]. Any entity that tries to participate in the system
should play at least one of these roles, and any agent that plays a specific role
acquires a set of rights, duties and restrictions related to this role. Therefore,
it is necessary that the design architecture allows the definition of the set of
rights, duties and restrictions associated with each specific role. In this paper,
these types of norms are called role norms.

Moreover, many current developments are supposed to be open. In this con-
text, the term open means that external entities can interact and become part
of the system at runtime [25]. As a consequence, any external entity that wants
to enter in the system must acquire a specific role of the system. These external
entities can be heterogeneous and can be developed outside the scope of the
system. However, once a stakeholder enters a normative system its behaviour
is restricted by the rights and duties of the roles that it is playing. Contracts
have been used in many domains in order to formalise these restrictions with-
out compromising the autonomy of the entities [21]. This is because contracts
are expressive and flexible. They allow agents to operate with expectations of

6 Emilia Garcia et al.

the behaviour of other agents based on high-level behavioural commitments,
and they provide flexibility in how the autonomous agents fulfill their own
obligations [60]. Contracts also allow the negotiation of specific terms of the
engagement between a stakeholder and a role. Although contracts should be
specified and negotiated at runtime, at design time contract templates should
be defined in order to specify contract patterns that any contract of this type
should fulfil [34]. In this paper, the contract templates that establish the terms
under which an entity can play a role are called play role contracts.

For example, in the mWater case study basin institutions can participate
in the system and leave it at any time. When a basin institution enters the
system it acquires a set of rights and duties. Every basin institution is obliged
by its play role contract to provide a set of services to the government author-
ity. However, if the contract is not established how should such services be
implemented. In this sense, the general behaviour of each basin institution is
known but these institutions keep their autonomy regarding how to implement
it.

Most normative systems involve a complex social structure. The use of
norms to specify the structure allows the entities to reason about the structure
of their system, and allows the structure to be updated dynamically at runtime.
Such a social structure implies a set of rights and duties between the entities of
the system [44]. In this paper, the norms that define the structure of the system
are called structural norms. The structure of a system is usually specified
by the relationships between the organisations within it (if we are dealing with
an organisational system), and the roles of the system. Therefore, structural
norms apply to organisations, roles, and the agents playing a role.

The description of system architectures imply the specification of the re-
lationship between several entities of the system [47]. In dynamic and flexible
systems the specific terms of the social relationship between entities can be
negotiated between the entities involved. The use of contract templates to
specify these relationships provides flexible architectures and maintains the
autonomy of the system about how to implement their commitments [57]. In
this paper these kinds of contracts are called social relationship contracts.
For example, in the mWater case study each basin institution is under the
supervision of the government authority, but the specific terms of this super-
vision can be negotiated for each basin institution. Without the specification of
such a contract the relationship between these entities would be fixed at design
time and it would not be possible to specify different agreements regarding the
individual features of each basin institution.

Also, each individual entity may have special rights or restrictions associ-
ated to its own design and implementation. These norms are not related to the
general structure of the system or the roles that this entity plays, but to the
specific features of each individual entity. For example, although water users
are allowed to trade with all their water rights, a specific implementation of a
water user can restrict the quantity of water rights that this agent is allowed
to trade. In this paper these kinds of norms are called agent norms.

Title Suppressed Due to Excessive Length 7

Interchanges of services and resources are formalised at runtime [27], but in
regulated systems, it may be necessary to specify at design time which kind of
relationships are allowed and under which terms. Therefore, it is necessary to
specify contract templates that formalise these restrictions and maybe estab-
lish the interaction protocols that should be executed in order to negotiate,
execute and resolve conflicts related to these contracts. In this paper these
types of contract templates are called contractual agreements.

Some normative systems allow their entities to violate the norms and con-
tracts of the system (enforcement). Other normative systems do not allow
any entities to perform an action that is not permitted (regimentation). The
methodology should thus offer some guidelines to help designers to decide
which option is best suited to their particular system context. Moreover, in
the case of enforcement, the methodology should provide a design abstraction
that allows specification of the consequences of violating a norm. We refer to
such a design abstraction in this paper as norm violation.

2.2 Support during the development process

In the previous subsection a set of different types of norms that should be
formalised at design time were presented. As shown in the literature [54,45, 6]
and in many studied case studies such as [36], these restrictions can be derived
from: (1) the specific requirements of the system (e.g. a system in which the
main goal is to increase productivity during a specific period would forbid any
entity from taking a holiday in this period); (2) legal documents that formalise
governmental law or internal regulations of each institution (e.g. the National
Hydrological Plan, the governmental law about water right interchanges); and
(3) design decisions. The identification of the normative environment of a
system is not trivial because: (1) the descriptions of the requirements of the
system provided by domain experts might be incomplete; (2) individual entities
might have their own goals that conflict with the goals of the system; (3) in
systems composed of different institutions, each could have its own normative
environment that needs to be integrated into an overall system; and (4) legal
documents are written in plain text, which means that the terminology of the
domain expert and these legal documents could be different.

A poor or incomplete specification of the normative environment can pro-
duce a lack of trustworthiness and robustness in the system [55]. In open
systems in which each entity could be developed by a different institution, if
the rights and duties are not formally specified, an entity that tries to join a
system would not know how to behave. Entities could perform actions that
harm the stability of the system (e.g. in a non-monopoly system, a client could
buy all the resources of one type).

Therefore, methodologies should include in their analysis and design phases
guidelines to identify and formalise these restrictions in order to be sure that
the normative environment is completely specified.

8 Emilia Garcia et al.

First, specific guidelines should be added to the requirements analysis
stage in order to identify and formalise the norms that are directly related
to the requirements of the system [6,54]. Also, specific guidelines for identi-
fying the norms that should be implemented in a system, derived from the
legal documents associated with the system, should be provided. This iden-
tification is a complex process because such documents are usually written in
plain text and the semantic meaning of the concepts described in the legal
documents and in the system design can be inconsistent.

Obviously, the norms derived from the requirements analysis and those as-
sociated with legal documents may determine the final design of the system
[13]. Therefore, these norms should be analysed before the design of the system
is performed and they should be taken into account during the process. Once a
specific design is determined, in order to ensure that this design is implemented
properly, the structure of the system and the relationship between the
roles and entities of the system should be formalised by means of norms
and contracts. So, the methodology should provide specific guidelines for iden-
tifying institutional, role and agent norms, as well as guidelines to formalise
play role and social relationship contracts.

The identification of when two entities must collaborate and the formali-
sation of these interchanges can be a complex task. So, it is necessary to offer
specific guidelines for the identification and formalisation of contractual
agreements.

Furthermore, methodologies should offer guidelines that help the designer
to select the most appropriate negotiation, execution and conflict res-
olution protocol for each specific contract regarding its requirements. The
restrictions to consider a protocol as an appropriate one are: (1) to allow
achieving the objectives of the interaction, (2)to respect the norms of the sys-
tem. One metric that could be used to evaluate which protocol is more appro-
priate than another is the number of interactions that this protocol includes.
However each methodology would specify its own metrics.

2.3 Evaluation of the final design

Developing normative systems is a very complex task because it requires spec-
ification of the global behaviour of the system, the individual behaviour of
each agent, the legal context of each entity, and the social and contractual in-
teractions [45]. Also, many conflicts can arise from the potential combination
of institutional norms and the specific restrictions of each agent derived from
the commitments of their signed contracts [42]. It is necessary to ensure that
each single normative environment has no conflicts, and also that the compo-
sition of all the normative environments is itself conflict-free. As is presented
in [32], conflicts in norms arise for four different reasons: (1) the obligation
and prohibition to perform the same action; (2) the permission and prohibi-
tion to perform the same action; (3) obligations of contradictory actions; (4)
permissions and obligations of contradictory actions. Therefore, guidelines for

Title Suppressed Due to Excessive Length 9

verifying the coherence of the normative environment should be offered
by the methodology and integrated into the development process.

Requirements traceability is an important feature in any kind of system
[63], and refers to the ability to describe and follow the life of a requirement,
in both forward and backward directions. Traceability improves the quality
of software systems [46], and facilitates verification and validation analysis,
control of changes, as well as reuse of software systems components and so
on. The ability to follow the life of a requirement associated with a norm is
even more important due to the dynamism of the normative environments of
a system. For example, in the mWater case study, the whole system should
follow the National Hydrological Plan legislation. Without traceability, any
change in this law would imply the revision of the whole system. However,
if it would be possible to trace each norm individually, only the norms that
had changed should be revised and only the parts of the system affected by
these norms should be redesigned. Therefore, traceability of the normative
environment is a desired feature in a methodology for developing normative
systems.

3 Evaluation criteria

Due to the differences in the terminology and semantics of each methodology,
the evaluation and comparison of methodologies is a complex task. In this
section, a set of questions guiding the evaluation and comparison of agent
methodologies is presented. These questions are focused on the evaluation of
the extent to which agent methodologies support the analysis and design of
normative systems. These questions are based on the requirements identified in
the previous section, and the criteria divided into three categories: (1) design
abstractions, (2) support during the development process, (3) evaluation of the
final design. A general overview of the state of the art of agent methodologies
regarding these criteria is also presented.

10 Emilia Garcia et al.

3.1 Regarding the design abstractions

- Institutional norms: Does the methodology support the specification of norms that only
affect the scope of a specific institution?

- Normative environments: Does the methodology support the specification of different
normative environments in the system?

- Role norms: Does the methodology support the specification of the norms that are asso-
ciated with a specific role?

- Agent norms: Does the methodology support the specification of the norms that are
associated with a specific agent?

- Play role contract: Does the methodology support the formalisation of the rights and duties
that an agent acquires when playing a specific role in the system by means of contracts?

- Structural norms: Does the methodology support the formalisation of the structure of the
system by means of norms?

- Social relationship contract: Does the methodology support the formalisation of the struc-
ture of the system by means of contracts?

- Contractual agreements: Does the methodology support the formalisation of the inter-
change of resources and services between different actors of the system?

Currently, many agent methodologies integrate norms into their metamodels
in order to formalise the restrictions on the behaviour of the actors within
systems [9,22,28,3]. Most offer formalisations of norms that allow the specifi-
cation of the consequences of violating a norm. However, in these approaches
it is the designer who decides, without any guideline, whether the normative
system is to be enforced or regimented. This decision depends on the system
requirements and also on the functionality offered by the execution platform
on which the system will run.

Many of methodologies also allow the specification of organisational sys-
tems. These agent methodologies are able to describe different normative envi-
ronments by means of specifying norms whose scope is limited to one particular
organisation of the system [59,27,16].

Almost every agent methodology uses the concept of role to specify the
different functionalities that an actor can have in the system. Therefore, the
use of role norms is common and well supported by most methodologies for
normative systems.

Some organisational methodologies, like OperA [26], do not support the
specification of individual agents. However, those that support the design of
individual agents usually allow the specification of agent norms [4].

Over the last few years, the integration of electronic contracts in multi-
agent systems (MAS) has become increasingly more important to system ar-
chitectures for agent behaviour regulation [51,16,38].

Title Suppressed Due to Excessive Length 11

3.2 Regarding the support during the development process

- Requirement norms: Does the methodology provide any guideline to identify and formalise
the norms of the system during the requirements analysis?

Does the methodology provide any guideline to identify which requirements should be spec-
ified as norms?

- Legal documents: Does the methodology provide any guideline to identify and formalise the
norms that should be implemented in the system derived from legal documents associated
with the system?

- System design: Does the methodology consider the normative environment of the system
as an important factor in the design of the system?

- Structure considers morms: Is the normative environment of the system analysed before
specifying its structure? Is this normative environment integrated into the guideline to define
the structure of the system?

- Contract protocols: Does the methodology provide any guideline to formalise the negoti-
ation, execution or conflict resolution protocol associated with each contract regarding its
requirements?

Although some methodologies include in their metamodel and development
process the description of the normative environment of a system, only a few
provide guidelines to actually identify the normative environment of the sys-
tem. Work by Boella and Rotolo et al. [6,54] offers several guidelines that focus
the attention of the system designer on important issues when developing a
normative system, but they cannot be used as an artefact for designers to
identify the norms that regulate the system. Kollingbaum et al. [41] present
a framework called Requirement-driven Contracting (RdC), for automatically
deriving executable norms from requirements and associated relevant informa-
tion, but this framework only derives system norms from the description of
the goals of the system. A more complete guideline that includes the analysis
of each entity’s goals, and the resources and the relationships between entities
is still needed.

Breaux et al. [12,14] present a methodology for extracting and prioritising
rights and obligations from regulations. They show how semantic models can
be used to clarify ambiguities through focused elicitation, thereby balancing
rights with obligations. [13] continues this work, investigating legal ambiguity
and what constitutes reasonable security. This methodology identifies obliga-
tions and restrictions derived from the analysis of the complaints, agreements
and judgments of the system. It seems to address existing systems and needs
runtime information to derive the norms. The methodology is not, however,
focused on the analysis and design of multiagent systems, although some of
these guidelines could be combined with an agent methodology to adapt the
system at runtime and increase its security.

Siena et al. [56] study the problem of generating a set of requirements,
which comply with a given law, for a new system. They propose a systematic
process for generating law-compliant requirements by using a taxonomy of le-
gal concepts and a set of primitives to describe stakeholders and their strategic

12 Emilia Garcia et al.

goals. This process must be combined with an agent methodology in order to
completely design the system.

Saeki and Kaiya [55] propose a technique to elicit regulation-compliant re-
quirements. In this technique, the regulations are semantically checked against
requirements sentences to detect the missing obligation acts and prohibition
acts in the requirements.

3.3 Regarding the evaluation of the final design

- Coherence of the normative environment: Does the methodology offer guidelines to verify
the coherence of the normative environment?

Does the methodology offer guidelines to verify the coherence between the system and agent’s
goals and the normative environment?

- Traceability: Does the methodology support traceability of the normative environment?

Regarding the verification of the models and the consistency and coherence of
norms and contracts inside an organisation, some work has been done but it
is still an open problem. Most work here is focused on offline verification of
norms by means of model checking [61].

The application of model-checking techniques to the verification of contract-
based systems is an open research topic. Some work like [58] models contracts
as finite automata that model the behaviour of the contract signatories, while
other work represents them as Petri nets [40]. These representations are useful
to verify safety and liveness properties. However, adding deontic clauses to
a contract allows conditional obligations, permissions, and prohibitions to be
written explicitly [54]. In [53] and [32] a deontic view of contracts is specified
using the CL language, while the work in [53] uses model-checking techniques
to verify the correctness of the contract and to ensure that certain properties
hold. The work in [32] presents a finite trace semantics for CL that is aug-
mented with deontic information as well as a process for automatic contract
analysis for conflict discovery. In the context of Service-Oriented Architectures,
model checkers have recently been used to verify compliance of web-service
composition. In [43] a technique based on model checking is presented for the
verification of contract-service compositions.

In the context of verification techniques for MAS, there are some impor-
tant achievements using model checking. In [62], the SPIN model checker is
used to verify agent dialogues and to prove properties of specific agent proto-
cols, such as termination, liveness, and correctness. In [10] a framework for the
verification of agent programs is introduced, that translates MAS that are pro-
grammed in the logic-based agent-oriented programming language AgentSpeak
into either PROMELA or Java. It then uses the SPIN and JPF model check-
ers to verify the resulting systems. In [64], a similar approach is presented but
it is applied to an imperative programming language called MABLE. In [52],

Title Suppressed Due to Excessive Length 13

the compatibility of interaction protocols and agents’ deontic constraints is
verified. However none of these approaches considers organisational concepts.

There are only some efforts that deal with the verification of systems that
integrate organisational concepts, contracts, and normative environments. The
most developed approach is presented in the context of the IST-CONTRACT
project [51], which offers contract formalisation and a complete architecture,
and uses the MCMAS model checker to verify contracts. However, as far as we
know, it does not define the organisational normative environment or verify
the coherence of this context with the contracts.

Little work ensures traceability of requirements [17] and none of them is
focused on the traceability of the normative environment attributes.

4 Related work: AOSE methodologies

The general study of the state of the art presented in the previous section
provides an overview of which methodologies provide extensive support for
developing normative systems. In this section we have selected four in order
to analyse and compare them (OperA, O-MaSE, Tropos and GORMAS).

It is important to note that there are other approaches like Electronic
Institutions [29,8] or InstAL [19,42] that also support the development of
normative systems, but their support is less complete than those selected in
terms of the detail of specification of the phases of the methodology and the
guidelines that they provide for analysing and designing these kinds of systems.

4.1 OperA

Organisations per Agents (OperA) [26] is a framework for the specification of
normative open MAS that includes a formal metamodel, a methodology and
a CASE tool.

4.1.1 Design abstractions

The OperA model describes a MAS as an organisational structure regulated by
norms and contracts, where norms specify obligations, permissions and prohi-
bitions of the roles of the system. The OperA model uses the concept of group
to specify different normative environments inside a system. Here, groups are
used to collectively refer to a set of roles and to specify norms that hold only
for all roles in the group. OperA does not include the design of the individual
agents, but it assumes that agents can understand the society ontology and
communicative acts, and are able to communicate with the society.

OperA defines two types of contracts: social contracts and interaction con-
tracts. These abstractions respectively match with the play contract and con-
tractual agreement concepts detailed in Section 2.1. Social contracts establish
an agreement between the agent and the organisation model and define the

14 Emilia Garcia et al.

way in which the agent will fulfil its roles. In this sense, the structure of the
society is defined by the social contracts specified in the system. Interaction
contracts establish an agreement between agents, i.e., they define agent part-
nerships, and fix the way a specific interaction scene is to be played.

A contract definition includes its parties (the agents involved), the clauses
(described as norms), and the communication protocol to be followed. The
clauses of each contract specify the rights, duties and restrictions that the
agents acquire when signing the contract.

4.1.2 Support during the development process

The OperA methodology is structured in three steps, as follows.

— Organisational model design: This phase specifies the OperA Organisa-
tional Model for an agent society. This model is composed of three levels:
(1) Coordination Level: Specifies how the structure of the society is de-
termined. (2) Environment Level: The society model determined in the
previous step is further refined with the specification of its social structure
in terms of roles, global requirements and domain ontology. (3) Behaviour
Level: The organisational model of an agent society is completed with the
specification of its interaction structure, which results from the analysis
of the interaction patterns and processes of the domain. This process is
supported by a library of interaction patterns.

— Social model design: This phase describes the agent population in the Social
Model that will enact the roles described in the structure. It describes the
roles specified in the previous phase, the role negotiation scenes and the
characteristics of the agents that apply for society roles. In other words,
during this phase the social contracts that define the structure of the system
are detailed.

— Interaction model design: This phase describes the concrete interaction
scenes between agents. Interaction contracts are used to formalise these
interaction scenes.

As can be seen, the OperA methodology integrates in the development
process the specification of the contracts and norms that regulate the system
and its entities. OperA offers guidelines to select the most appropriate organ-
isational structure and to specify interaction protocols by means of patterns.
However, this methodology does not offer guidelines to capture the clauses
(norms) that each contract should contain.

4.1.8 Evaluation of the final design

OperA models can be implemented using the Operetta tool [49]. Although
OperA methodology does not integrate the verification of the system as a step
of the methodology, the Operetta tool integrates model checking techniques in
order to verify the coherence of the system design. This verification includes
the validation of the coherence of the normative environment of the system.

Title Suppressed Due to Excessive Length 15

4.2 O-MaSE

O-MaSE [23] provides a customisable agent-oriented methodology based on
a metamodel, a set of methods fragments and a set of method construction
guidelines. It also offers a CASE tool [24].

4.2.1 Design abstractions

The O-MaSE metamodel covers most basic MAS concepts such as agents, roles,
organisations, and interactions. The normative environment of the system is
represented by means of a set of norms called policies in this metamodel. These
policies describe how an organisation, role or agent may or may not behave in
particular situations. The organisational structure allows creation of different
normative environments inside the same system.

The O-MaSE metamodel supports the development of open systems. Roles
define positions within an organisation whose behaviour is expected to achieve
a set of goals, but this metamodel does not integrate the concept of contract.
Therefore, any agent that would like to play a specific role would have to revise
the description of the role and search in the set of policies for those that would
affect the agent if it played this role.

Interactions between agents are represented by means of protocols, but
these interactions are not formalised with contracts. This means that agents
interacting with other agents in the system should know in advance the inter-
action protocols and the policies of the system in order to know the expected
behaviour of the others.

4.2.2 Support during the development process

The O-MaSE methodology explicitly defines activities and tasks but does not
define specific phases. O-MaSE provides a set of guidelines to organise these
activities in different ways based on project need. These activities include the
analysis of the requirements; the design of the system by means of organi-
sations and roles; the architecture design by means of defining agent classes,
protocols and policies; the low level design in which specific plans, capabilities
and actions are described; and the code generation.

Although the methodology includes a specific task where the policies of the
system are formalised, there is no guideline that helps the designer to identify
these policies from the requirements of the system, and this identification relies
on designer expertise.

4.2.8 Evaluation of the final design

The O-MaSE methodology framework is supported by the aT? integrated de-
velopment environment, which supports method creation and maintenance,
model creation and verification, and code generation and maintenance. The
aT? verification framework allows selection from a set of predefined rules those

16 Emilia Garcia et al.

that should be checked against the model. This allows one to verify specific
properties of the model and process consistency. However, as far as we know,
there is no tool for verifying the coherence of the normative environment.

4.3 Tropos

The initial version of the Tropos methodology was focused on supporting the
agent paradigm and its associated mentalistic notions throughout the entire
software development life cycle from requirements analysis to implementation
[15]. This version of the methodology does not support the concepts of norms or
contracts. However, Telang at al. [59] enhance Tropos with commitments, and
propose a metamodel based on commitments and a methodology for specifying
a business model.

4.3.1 Design abstractions

None of these versions of Tropos include norms in their metamodel. In Telang
at al. [59] commitments represent contracts between entities. However, these
contracts only represent duties that the entities acquire. They do not establish
limits on the behaviour of the entities.

4.8.2 Support during the development process

In Telang at al. [59] a methodology is proposed in order to analyse and design
the system. One of the steps of the methodology consists in the identifica-
tion of the commitment. However, no guideline is specified to identify these
commitments and the restrictions on the behaviour are not considered.

4.3.8 Evaluation of the final design

Chopra et al. [18] propose a technique to verify that an agent can potentially
achieve its objectives playing a specific role, and that an agent is potentially
able to honour its commitments. However, they do not provide any guideline
or technique to verify the coherence of the normative system.

Tropos offers support for requirements traceability but does not consider
the normative environment.

4.4 GORMAS

GORMAS (Guidelines for ORganisational Multi-Agent Systems) [5] defines a
set of activities for the analysis and design of organisational systems, including
the design of the norms that restrict the behaviour of the entities of the system.

Title Suppressed Due to Excessive Length 17

4.4.1 Design abstractions

The GORMAS metamodel describes a MAS as an organisational structure
regulated by norms and whose functionality is expressed by means of services.
GORMAS allows the specification of institutional, role, agent and structural
norms. Entities interact using standard services and following the restrictions
of the system. However, GORMAS does not include the abstraction of con-
tract.

4.4.2 Support during the development process

The GORMAS methodology is focused on the analysis and design processes,
and is composed of four phases covering the analysis and design of a MAS:
the first phase is mission analysis, which involves the analysis of the system
requirements, the use cases, the stakeholders and the global goals of the system;
the service analysis phase specifies the services offered by the organisation to
its clients, as well as its behaviour, and the relationships between these services;
the organisational design phase defines the social structure of the system,
establishing the relationships and restrictions that exist in the system; and
finally, at the organisation dynamics design phase, communicative processes
between agents are established, as well as processes that control the acquisition
of roles along with processes that enable control of the flow of agents entering
and leaving the organisation. Additionally, some norms that are used to control
the system are defined. Finally, the organisation dynamics design phase is
responsible for designing guides that establish a suitable reward system for
the organisation.

Norms are present from the early beginning of the development process,
but GORMAS does not offer any specific guideline to identify the norms that
restrict the system. Their identification rests on the expertise of the designer.

GORMAS also does not offer any guideline for specifying the most appro-
priate interaction protocol regarding the specific requirements.

4.4.3 Evaluation of the final design

GORMAS does not offer any tool for the verification of the coherence of the
system or the traceability of the normative environment.

5 Discussion: Gap analysis

This section presents a gap analysis of the state of the art of agent method-
ologies supporting the analysis and design of normative systems. As presented
in Section 3, some approaches offer partial solutions to the problem. However,
the combination of these partial solutions in order to obtain a complete devel-
opment methodology that developers can follow is not an easy task because

18 Emilia Garcia et al.
Comparative
FEATURES [OMASE [OPERA [TROPOS [GORMAS
Design abstractions:
Institutional Supported Supported Not supported Supported
norms
Normative con- Supported Supported Not supported Supported
texts
Role norms Supported Supported Not supported Supported
Agent norms Supported Not supported Not supported Supported
Structural Not supported Supported Not supported Supported
norms
Play Role con- Not supported Supported Partially sup- Not supported
tracts ported
Social relation- Not supported Supported Partially sup- Not supported
ship contracts ported
Contractual Not supported Supported Partially sup- Not supported
agreements ported
Support during the development process:

Identification: Partially pro- | Partially = pro- | Not provided Partially pro-
Requirement vided vided vided
norms
Identification: Not provided Not provided Not provided Not provided
Legal docu-
ments
Structure con- Partially pro- Partially pro- Not provided Not provided
sider norms vided vided
System design Considered Considered Not considered Considered
Structure con- Part of the nor- Part of the nor- Not considered Partially sup-
siders norms mative system is | mative system is ported

analysed before
but it is not in-
tegrated in the
guideline.

analysed before
but it is not in-
tegrated in the
guideline.

Contract proto-
cols

Not provided

Partially. It of-
fers a library of
patterns for in-
teraction proto-
cols.

Not provided

Not supported

Evaluation of the final design:

Coherence

Partial verifica-
tion in the case
tool

Partial verifica-
tion in the case
tool

Not supported

Not supported

Traceability

Not supported

Not supported

Not supported

Not supported

Table 1 Comparative methodologies

each approach uses different terminology, semantics and metamodel construc-
tions. Section 4 analyses some of the most complete agent methodologies for
developing normative systems. Table 1 summarises this analysis in terms of
the evaluation criteria presented in Section 3.

The results of the analysis of the state of the art can be summarised as

follows.

— Most well-known agent methodologies integrate into their metamodels the
concepts of organisations and norms. This allows designers to specify and
formalise institutional, role and agent norms, as well as to specify different
normative environments inside the same system.

— Only a few methodologies integrate the concept of contracts into their
metamodel. Some methodologies integrate into their metamodel the spec-
ification of contractual agreements, but the use of structural norms and

Title Suppressed Due to Excessive Length 19

contracts to define the structure of the system is only supported by a small
subset of methodologies.

— Most methodologies provide specific guidelines for selecting the most suit-
able organisational typology and for distributing the functionality of the
system in the most appropriate way between the parties involved. However,
only a small subset consider the normative environment when selecting the
organisational structure.

— No methodology integrates into the development process guidelines that
completely support the identification of norms from the analysis of the
requirements, nor from legal texts.

— Although there is some work related to validation and verification of the
designed models, it is still an open problem. Verification using any de-
velopment approach is important, but in normative open systems is even
more so due to the high risk of incoherence resulting from interference be-
tween different normative environments, and between the global goals of
the system and the individual goals of each party.

— Traceability of norms from requirements is not well supported by current
methodologies.

In what follows, we consider the effects of designing a normative system
with a methodology that does not include the abstractions and guidelines
analysed above. The mWater case study presented in Section 1.1 is used to
illustrate some of these effects.

— If the methodology does not specify norms, the restrictions on the be-
haviour of the entities of the system should have been internally specified
in the implementation of each entity. Therefore, the integration of enti-
ties that had been implemented outside the scope of the system would not
be secure. For example, the Basin institutions software, which was used
before implementation of the mWater system, should have been revised
and reimplemented before allowing entities to be integrated in the system.
Moreover, any change in the norms of the system (e.g. new legislation of
the National Hydrological Plan) would require the system to be stopped
and reimplemented before restarting it again.

— If the methodology does not specify contracts, the water users, basin in-
stitutions and all the entities of the system should know in advance the
rights, duties and restrictions that they acquire when enter the system. In
this case, it is not possible to negotiate specific conditions for each entity.
Moreover, the relationships between entities are not formalised, which im-
plies that there are no negotiations over the terms, and that no specific
norm could be attached to any specific interaction.

— Many normative systems have a complex normative environment derived
from several legal documents and the internal legislation of the institutions
participating in the system. Developing such a system without a complete
development process and without guidelines that help designers to identify
and formalise the normative environments of the system requires significant

20 Emilia Garcia et al.

expertise on the part of the designer. Even for an expert designer it is easy
to miss a set of norms that could be critical for the system.

— If the methodology does not include methods to verify the coherence of
the different norms of the system, the designer must verify them manually.
However this is a complex task because of the huge number of norms that
must be taken into account. For example, in the mWater system the verifi-
cation of the normative environment must consider the internal regulation
of each basin institution and check that all of them are coherent with the
Hydrological National Plan.

Although, as explained previously, the analysis of the mWater implemen-
tation is outside the scope of this paper, we consider it important to clarify
that Electronic Institutions do provide the necessary design abstractions to
develop a normative system. However, it lacks detailed development process
guidelines such as those for identifying the normative environment of a system.

6 Conclusions

The novelty of our work, as described in this paper, is an examination of
the extent to which agent methodologies support the analysis and design of
normative systems from a software engineering perspective. This paper has
identified a set of specific requirements for systems of this kind, and these
requirements have been translated into a set of evaluation criteria that can
be used as guidelines to evaluate the support that agent methodologies offer
for the design of such systems. These criteria have been used to analyse four
agent methodologies.

Although the analysis of the state of the art shows that there are few very
mature agent methodologies that can be used to develop normative systems,
there are still open issues on the topic. Section 5 summarises the main con-
clusions relating to the state of the art on this topic. As future work we plan
to develop a methodology for normative open systems that deals with the
open issues identified in this paper. We are also working on the specification
and evaluation of quantitative metrics to compare methodologies, about which
there is as yet no consensus.

References

1. Handbook on Agent-Oriented Design Processes. Springer, 2014.

2. O. Akbari. A survey of agent-oriented software engineering paradigm: Towards its
industrial acceptance. volume 1, pages 14-28. 2010.

3. E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, and M. Rebollo. An Abstract
Architecture for Virtual Organizations: The THOMAS approach. Knowledge and In-
formation Systems, pages 1-35, 2011.

4. E. Argente, V. Botti, and V. Julian. GORMAS: An Organizational-Oriented Method-
ological Guideline for Open MAS. In Proc. AOSE’09, pages 440-449, 2009.

Title Suppressed Due to Excessive Length 21

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

E. Argente, V. Botti, and V. Julian. Organizational-oriented methodological guidelines
for designing virtual organizations. In Distributed Computing, Artificial Intelligence,
Bioinformatics, Soft Computing, and Ambient Assisted Living, volume 5518 of Lecture
Notes in Computer Science, pages 154—162, 2009.

. G. Boella, G. Pigozzi, and L. van der Torre. Normative systems in computer science -

ten guidelines for normative multiagent systems. In G. Boella, P. Noriega, G. Pigozzi,
and H. Verhagen, editors, Normative Multi-Agent Systems, number 09121 in Dagstuhl
Seminar Proceedings, 2009.

. G. Boella, L. Torre, and H. Verhagen. Introduction to normative multiagent systems.

Computational and Mathematical Organization Theory, 12(2-3):71-79, 2006.

. A. Bogdanovych, M. Esteva, S. Simoff, C. Sierra, and H. Berger. A methodology for

developing multiagent systems as 3d electronic institutions. In M. Luck and L. Padgham,
editors, Agent-Oriented Software Engineering VIII, volume 4951 of Lecture Notes in
Computer Science, pages 103—117. Springer Berlin Heidelberg, 2008.

. O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sichman,

and J. Vazquez-Salceda. Coordination, Organizations, Institutions and Norms in Multi-
Agent Systems, volume 3913 of LNCS (LNAI). 2006.

R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying multi-agent programs
by model checking. In Autonomous Agents and Multi- Agent Systems, volume 12, pages
239-256, Hingham, MA, USA, 2006. Kluwer Academic Publishers.

V. Botti, A. Garrido, A. Giret, and P. Noriega. The Role of MAS as a Decision Support
Tool in a Water-Rights Market. In Post-proceedings workshops AAMAS2011, volume
7068, pages 35—49. Springer, 2011.

T. Breaux. Exercising due diligence in legal requirements acquisition: A tool-supported,
frame-based approach. In Proc. IEEE Int. Requirements Engineering Conference, pages
225-230, 2009.

T. D. Breaux and D. L. Baumer. Legally reasonable security requirements: A 10-year
ftc retrospective. Computers and Security, 30(4):178 — 193, 2011.

T. D. Breaux, M. W. Vail, and A. I. Anton. Towards regulatory compliance: Extracting
rights and obligations to align requirements with regulations. In Proceedings of the
14th IEEE International Requirements Engineering Conference, RE ’06, pages 46—55,
Washington, DC, USA, 2006. IEEE Computer Society.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems, 8(3):203-236, 2004.

H. L. Cardoso and E. Oliveira. A contract model for electronic institutions. In COIN’07:
Proceedings of the 2007 international conference on Coordination, organizations, insti-
tutions, and norms in agent systems III, pages 27-40, 2008.

A. Castor, R. C. Pinto, C. T. L. L. Silva, and J. Castro. Towards requirement traceability
in tropos. In WER, pages 189-200, 2004.

A. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Modeling and reasoning about
service-oriented applications via goals and commitments. ICST Conference on Digital
Business, 2009.

O. Cliffe, M. Vos, and J. Padget. Specifying and analysing agent-based social institutions
using answer set programming. In O. Boissier, J. Padget, V. Dignum, G. Lindemann,
E. Matson, S. Ossowski, J. Sichman, and J. Vzquez-Salceda, editors, Coordination,
Organizations, Institutions, and Norms in Multi-Agent Systems, volume 3913 of Lecture
Notes in Computer Science, pages 99—-113. Springer Berlin Heidelberg, 2006.

N. Criado, E. Argente, A. Garrido, J. A. Gimeno, F. Igual, V. Botti, P. Noriega, and
A. Giret. Norm enforceability in Electronic Institutions? In Coordination, Organi-
zations, Institutions, and Norms in Agent Systems VI, volume 6541, pages 250-267.
Springer, 2011.

C. Dellarocas and M. Klein. Contractual agent societies. In R. Conte and C. Dellarocas,
editors, Social Order in Multiagent Systems, volume 2 of Multiagent Systems, Artificial
Societies, and Simulated Organizations, pages 113-133. Springer US, 2001.

S. A. DeLoach. Developing a multiagent conference management system using the o-
mase process framework. In Proc. Int. Conf. on Agent-oriented software engineering
VIII, pages 168-181, 2008.

22

Emilia Garcia et al.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

S. A. DeLoach and J. C. Garcia-Ojeda. O-mase; a customisable approach to designing
and building complex, adaptive multi-agent systems. Int. J. Agent-Oriented Softw.
Eng., 4(3):244-280, 2010.

S. A. DeLoach, L. Padgham, A. Perini, A. Susi, and J. Thangarajah. Using three aose
toolkits to develop a sample design. In International Journal Agent-Oriented Software
Engineering, volume 3, pages 416476, 2009.

F. Dignum, V. Dignum, J. Thangarajah, L. Padgham, and M. Winikoff. Open agent
systems 7 Eighth International Workshop on Agent Oriented Software Engineering
(AOSE) in AAMASO07, 2007.

V. Dignum. A model for organizational interaction:based on agents, founded in logic.
PhD thesis, Utrecht University, 2003.

V. Dignum, J. Meyer, F. Dignum, and H. Weigand. Formal Specification of Interaction
in Agent Societies. Formal Approaches to Agent-Based Systems, 2699, 2003.

V. Dignum, J. Vazquez-Salceda, and F. Dignum. Omni: Introducing social structure,
norms and ontologies into agent organizations. In R. Bordini, M. Dastani, J. Dix, and
A. Seghrouchni, editors, Programming Multi-Agent Systems, volume 3346 of Lecture
Notes in Computer Science, pages 181-198. Springer Berlin / Heidelberg, 2005.

M. d’Inverno, M. Luck, P. Noriega, J. Rodriguez-Aguilar, and C. Sierra. Communicating
open systems. volume 186, pages 38-94. 2012.

C. Elsenbroich and N. Gilbert. Agent-based modelling. In Modelling Norms, pages
65-84. Springer Netherlands, 2014.

M. Esteva, B. Rosell, J. A. Rodriguez, and J. L. Arcos. AMELI: An agent-based mid-
dleware for electronic institutions. In AAMASO04, pages 236—243, 2004.

S. Fenech, G. J. Pace, and G. Schneider. Automatic conflict detection on contracts. In
Proceedings of the 6th International Colloquium on Theoretical Aspects of Computing,
ICTAC ’09, pages 200-214, 2009.

C. Garbay, F. Badeig, and J. Caelen. Normative multi-agent approach to support
collaborative work in distributed tangible environments. In Proceedings of the ACM
2012 Conference on Computer Supported Cooperative Work Companion, CSCW 12,
pages 83-86, New York, NY, USA, 2012. ACM.

E. Garcia, A. Giret, and V. Botti. Regulated open multi-agent systems based on con-
tracts. In Information Systems Development, pages 243-255, 2011.

E. Garcia, G. Tyson, S. Miles, M. Luck, A. Taweel, T. V. Staa, and B. Delaney. An
Analysis of Agent-Oriented Engineering of e-Health Systems. In 13th International
Workshop on Agent-Oriented Software Engineering (AOSE - AAMAS), 2012.

E. Garcia, G. Tyson, S. Miles, M. Luck, A. Taweel, T. V. Staa, and B. Delaney.
Analysing the Suitability of Multiagent Methodologies for e-Health Systems. In Agent-
Oriented Software Engineering XIII, volume 7852, pages 134-150. Springer-Verlag,
2013.

A. Garrido, A. Giret, V. Botti, and P. Noriega. mWater, a Case Study for Modeling
Virtual Markets. In New Perspectives on Agreement Technologies, volume Law, Gover,
pages 563-579. Springer, 2013.

B. Gteau, O. Boissier, and D. Khadraoui. Multi-agent-based support for electronic
contracting in virtual enterprises. I[FAC Symposium on Information Control Problems
in Manufacturing (INCOM), 150(3):73-91, 2006.

C. D. Hollander and A. S. Wu. The current state of normative agent-based systems.
Journal of Artificial Societies and Social Simulation, 14(2):6, 2011.

F.-S. Hsieh. Automated negotiation based on contract net and petri net. In E-Commerce
and Web Technologies, volume 3590 of Lecture Notes in Computer Science, pages 148—
157. 2005.

M. Kollingbaum, I. J. Jureta, W. Vasconcelos, and K. Sycara. Automated requirements-
driven definition of norms for the regulation of behavior in multi-agent systems. In Pro-
ceedings of the AISB 2008 Workshop on Behaviour Regulation in Multi-Agent Systems,
Aberdeen, Scotland, U.K., April 2008.

T. Li, T. Balke, M. Vos, K. Satoh, and J. Padget. Detecting conflicts in legal systems. In
Y. Motomura, A. Butler, and D. Bekki, editors, New Frontiers in Artificial Intelligence,
volume 7856 of Lecture Notes in Computer Science, pages 174-189. Springer Berlin
Heidelberg, 2013.

Title Suppressed Due to Excessive Length 23

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

A. Lomuscio, H. Qu, and M. Solanki. Towards verifying contract regulated service
composition. Autonomous Agents and Multi-Agent Systems, pages 1-29, 2010.

F. Lopez, M. Luck, and M. d’Inverno. A normative framework for agent-based systems.
In Computational and Mathematical Organization Theory, volume 12, pages 227250,
2006.

F.y. Lpez, M. Luck, and M. dInverno. A normative framework for agent-based systems.
Computational and Mathematical Organization Theory, 12(2-3):227-250, 2006.

P. Mader and A. Egyed. Assessing the effect of requirements traceability for software
maintenance. In Software Maintenance (ICSM), 2012 28th IEEE International Con-
ference on, pages 171-180, Sept 2012.

X. Mao and E. Yu. Organizational and social concepts in agent oriented software
engineering. In AOSE IV, volume 3382 of Lecture Notes in Artificial Intelligence,
pages 184-202, 2005.

J.-J. C. Meyer and R. J. Wieringa, editors. Deontic logic in computer science: normative
system specification. John Wiley and Sons Ltd., Chichester, UK, 1993.

D. Okouya and V. Dignum. Operetta: A prototype tool for the design, analysis and
development of multi-agent organizations (demo paper). In AAMAS, pages 1667-1678,
2008.

M. T. W. S. J. B. Olson, G. M. Coordination theory and collaboration technology.
Mahwah, NJ: Lawrence Erlbaum Associates, 2001.

N. Oren, S. Panagiotidi, J. Vazquez-Salceda, S. Modgil, M. Luck, and S. Miles. Towards
a formalisation of electronic contracting environments. COIN, pages 156—171, 2009.

N. Osman, D. Robertson, and C. Walton. Run-time model checking of interaction
and deontic models for multi-agent systems. In AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents and multiagent systems, pages
238-240, New York, NY, USA, 2006. ACM.

G. Pace, C. Prisacariu, and G. Schneider. Model checking contracts a case study. In
Automated Technology for Verification and Analysis, volume 4762 of Lecture Notes in
Computer Science, pages 82—97. 2007.

A. Rotolo and L. van der Torre. Rules, agents and norms: Guidelines for rule-based
normative multi-agent systems. In RuleML FEurope, volume 6826, pages 52—66, 2011.
M. Saeki and H. Kaiya. Supporting the elicitation of requirements compliant with
regulations. In CAiSE 08, pages 228242, 2008.

A. Siena, J. Mylopoulos, A. Perini, and A. Susi. Designing law-compliant software
requirements. In Proceedings of the 28th International Conference on Conceptual Mod-
eling, ER ’09, pages 472-486, 2009.

M. P. Singh. Commitments in multiagent systems: Some history, some confusions, some
controversies, some prospects.

E. Solaiman, C. Molina-Jimenez, and S. Shrivastav. Model checking correctness prop-
erties of electronic contracts. In Service-Oriented Computing - ICSOC 2003, volume
2910 of Lecture Notes in Computer Science, pages 303—-318. Springer Berlin / Heidel-
berg, 2003.

P. R. Telang and M. P. Singh. Conceptual modeling: Foundations and applications.
chapter Enhancing Tropos with Commitments, pages 417-435. 2009.

J. Vazquez-Salceda, R. Confalonieri, I. Gomez, P. Storms, S. P. Nick Kuijpers, and
S. Alvarez. Modelling contractually-bounded interactions in the car insurance domain.
DIGIBIZ 2009, 2009.

F. Vigano and M. Colombetti. Symbolic model checking of institutions. In ICEC, pages
35-44, 2007.

C. D. Walton. Verifiable agent dialogues. Journal of Applied Logic, 5(2):197 — 213,
2007. Logic-Based Agent Verification.

S. Winkler and J. Pilgrim. A survey of traceability in requirements engineering and
model-driven development. Software and Systems Modeling (SoSyM), 9(4):529-565,
Sept. 2010.

M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model checking multi-agent
systems with mable. In AAMASO02, pages 952-959. ACM, 2002.

