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A Brauer’s theorem and related results

R. Bru∗ R. Cantó∗ R. L. Soto† A.M. Urbano∗

Abstract

Given a square matrix A, a Brauer’s theorem [Limits for the char-
acteristic roots of matrices IV: Applications to stochastic matrices, Duke
Math. J. 19 (1952), 75-91] shows how to modify one single eigenvalue of A
via a rank-one perturbation without changing any of the remaining eigen-
values. Older and newer results can be considered in the framework of the
above theorem. In this paper, we present its application to stabilization
of control systems, including the case when the system is noncontrollable.
Other applications presented are related to the Jordan form of A and
Wielandt’s and Hotelling’s deflations. An extension of aforementioned
Brauer’s result, Rado’s theorem, shows how to modify r eigenvalues of A
at the same time via a rank-r perturbation without changing any of the
remaining eigenvalues. The same results considered by blocks can be put
into the block version framework of the above theorem.

Keywords: eigenvalues, pole assignment problem, controllability, low rank perturbation,

deflation techniques.

MSC: 15A18, 93D15.

1 Brauer’s theorem

The relationship among the eigenvalues of an arbitrary matrix and the updated
matrix by a rank-one additive perturbation was established by A. Brauer [1].
We will refer to this result as Brauer’s Theorem. It turns out that this result is
related to older and well-known results on Wielandt’s and Hotelling’s deflations
techniques [10]. Brauer’s Theorem finds its application also in the eigenvalue
localization problem of control theory (see [5]) and in stabilization of control
systems. Perfect [7] applied an extension of Brauer’s result, Rado’s theorem, to
construct nonnegative matrices with a prescribed spectrum.

In the first part of the paper (Sections 1 and 2), we give results that can be
considered in a common framework of Brauer’s Theorem as applications of it.
A good introduction on the Brauer result and its application to the nonnegative
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inverse eigenvalue problem can be followed in [9] where Rado’s theorem is given.
Rado’s theorem is considered in the second part of this paper (Sections 3 and
4) and applied to obtain a block version of deflation results.

Throughout the paper, we assume that all sets of eigenvalues of a matrix
are feasible in the corresponding field (i.e., closed under complex conjugation in
the real field).

Theorem 1 ([7, 9, Brauer’s Theorem]) Let A be an arbitrary n×n matrix
with eigenvalues σ(A) = {λ1, λ2, . . . , λn}. Let xk be an eigenvector of A asso-
ciated with the eigenvalue λk, and let q be any n-dimensional vector. Then the
matrix A + xkqT has eigenvalues {λ1, . . . , λk−1, λk + xT

k q, λk+1, . . . , λn}.

Let λk be an eigenvalue of A with a Jordan chain of length 1 and let q be a
vector orthogonal to the remaining eigenvectors of A. Then, it can be seen that
the Jordan structures of A and A + xkqT are the same.

The relationships among the right eigenvectors of A and A+xkqT are given
in the following result [8].

Proposition 1 Let A be an arbitrary n×n matrix with eigenvalues σ(A) = {λ1,
λ2, . . . , λn}. Let xi be an eigenvector of A associated with the eigenvalue λi,
1 ≤ i ≤ n. Let q be any n-dimensional vector and let µk = λk + xT

k q, with
µk 6= λi, i = 1, 2, . . . , n. Then, xk is an eigenvector of the matrix A + xkqT

associated with the eigenvalue µk = λk +xT
k q, and the eigenvectors of A+xkqT

associated with λi, i 6= k, are:

wi = xi −
qT xi

µk − λi
xk.

However, the changes of the left eigenvectors of A and A + xkqT are inverse
as we can see in the next result for a diagonalizable matrix A.

Proposition 2 Let A be a diagonalizable n×n matrix with eigenvalues σ(A) =
{λ1, λ2, . . . , λn}. Let lTi be a left eigenvector of A corresponding to λi, 1 ≤
i ≤ n. Let q be any n-dimensional vector and let µk = λk + xT

k q, with µk 6= λi,
i = 1, 2, . . . , n. Then, the left eigenvectors of A + xkqT corresponding to λi,
i 6= k, are rT

i = lTi , and the left eigenvector of A + xkqT corresponding to µk is:

rT
k = lTk +

n∑
i = 1
i 6= k

qT xi

µk − λi
lTi .

Proof: Since lTi , i 6= k, is a left eigenvector of A corresponding to λi, we
have lTi (A− λiI) = 0, i 6= k. So, 〈li, xk〉 = 0, for all i 6= k, and

lTi (A + xkqT − λiI) = lTi (A− λiI) + lTi (xkqT ) = 0 + (lTi xk)qT = 〈li, xk〉qT = 0.
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Hence lTi , i 6= k, is a left eigenvector of A + xkqT corresponding to λi: rT
i = lTi ,

i 6= k. SincelTk +
n∑

i = 1
i 6= k

qT xi

µk − λi
lTi

 (A + xkqT )

= lTk A + lTk xkqT +
n∑

i = 1
i 6= k

qT xi

µk − λi
lTi A +

n∑
i = 1
i 6= k

qT xi

µk − λi
lTi xkqT

= λklTk + qT +
n∑

i = 1
i 6= k

qT xi

µk − λi
λil

T
i

= λklTk +
n∑

i = 1
i 6= k

qT xi

µk − λi
λil

T
i + qT (x1l

T
1 + x2l

T
2 + · · ·+ xnlTn︸ ︷︷ ︸

I

)

= (λk + qT xk︸ ︷︷ ︸
µk−λk

)lTk +
n∑

i = 1
i 6= k

(
qT xi

µk − λi
λi + qT xi

)
lTi

= µklTk +
n∑

i = 1
i 6= k

qT xi

µk − λi
µklTi = µk

lTk +
n∑

i = 1
i 6= k

qT xi

µk − λi
lTi

 = µkrT
k ,

rT
k = lTk +

n∑
i = 1
i 6= k

qT xi

µk − λi
lTi .

. �

2 Related results

In this section we show that Brauer’s Theorem [1] can be used to prove different
results. For instance, to examine existence and convergence of the Page Rank
Power Method, a stochastic matrix is updated by a rank-one matrix to construct
the Google matrix. The relationship between the spectrum of both matrices is
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given in [6, Theorem 5.1]. The same result can be obtained as a corollary of
Brauer’s Theorem 1 applied to the matrix αA and the vector q = (1− α)v.

2.1 Deflation techniques

In 1944 Wielandt presented a deflation method for general matrices shifting one
eigenvalue to zero (see [10]). Application of Brauer’s Theorem 1 with a vector
q such that qT xk = −λk immediately gives this result.

Corollary 1 (Wielandt’s deflation) Let assumptions of Theorem 1 hold with
q being any vector such that qT xk = −λk, then the matrix A + xkqT has the
eigenvalues {λ1, . . . , λk−1, 0, λk+1, . . . , λn}.

Remark 1 If A is symmetric, then A is diagonalizable and we can choose an
orthogonal matrix X = [x1 x2 . . . xn] made of the eigenvectors of A. In this
case the matrix B = A + (µk − λk)xkxT

k is symmetric (diagonalizable) and it
can be verified that the eigenvectors of B associated with λi, i 6= k, are the
eigenvectors of A associated with λi, i 6= k.

The above result contains an older technique due to Hotelling, established in
1933, for symmetric matrices that can be extended to nonsymmetric matrices.

Corollary 2 (Hotelling’s deflation) Let assumptions of Theorem 1 hold.
(i) (Symmetric case.) Let A be symmetric. Then the symmetric matrix A −
λkxkxT

k has the eigenvalues {λ1, λ2, . . . , λk−1, 0, λk+1, . . . , λn}, provided that
xT

k xk = 1.
(ii) (Nonsymmetric case.) Let lk be the left eigenvector of A, with lTk xk = 1.
Then the matrix A−λkxklTk has the eigenvalues {λ1, . . . , λk−1, 0, λk+1, . . . , λn}.

Proof: Apply Brauer’s Theorem 1 with a vector q = −λkxk in the symmetric
case and q = −λklk in the nonsymmetric case.

2.2 Pole assignment of SISO systems

Another application Brauer’s Theorem 1 finds for single-input single-output
(SISO) linear time invariant control systems when the system given by a pair
(A, b) is not completely controllable. Given a SISO system we use a state feed-
back to place the poles of the closed-loop system at specified points in the
complex plane. More precisely, the pole placement problem states as follows:

Consider a pair (A, b). Let σ(A) = {λ1, λ2, . . . , λn} and let µk be a
number. Under what conditions on (A, b) does there exist a vector f
such that the spectrum of the closed-loop system A+bfT , σ(A+bfT ),
is {λ1, . . . , λk−1, µk, λk+1, . . . , λn}?

The following result answers this question.
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Proposition 3 Consider a pair (A, b), let σ(A) = {λ1, λ2, . . . , λn} and let xk

be an eigenvector of AT associated with λk. If bT xk 6= 0, then there exists a
vector f such that σ(A + bfT ) = {λ1, . . . , λk−1, µk, λk+1, . . . , λn}.

Proof: As σ(AT ) = σ(A), by Brauer’s Theorem 1 applied to AT , the matrix
AT +xkqT has eigenvalues λ1, . . . , λk−1, λk+qT xk, λk+1, . . . , λn, where q is any
n-dimensional vector. It is clear that σ(A + qxT

k ) = {λ1, . . . , λk−1, λk + qT xk,
λk+1, . . . , λn}.

Consider q = b and f = xk. If bT xk 6= 0, we have:

λk + qT xk = λk + bT xk = µk =⇒ bT xk = µk − λk,

then σ(A + bfT ) = {λ1, . . . , λk−1, λk + qT xk, λk+1, . . . , λn}. �

Remark 2 (a) Note that the assumption of bT xk 6= 0 is needed only to assure
the change of the eigenvalue λk. Otherwise no eigenvalue changes.

(b) By this result we can say that the pole assignment problem has a solution
if xk is not orthogonal to the vector b (that is, bT xk 6= 0) (see [2]). When
this condition holds for all eigenvectors of AT , then the pair (A, b) is called
completely controllable, in this case the solution is unique [3].

(c) According to Proposition 1 the eigenvector of AT associated with λk and
the eigenvectors of AT corresponding to λi, i 6= k, such that bT xi = 0
remain unchanged.

(d) If λi 6= λj for each i 6= j, and bT xi 6= 0, then on can show that bT wi 6= 0,
where wi is defined in Proposition 1.

Example 1 Consider the pair (A, b):

A =


−2 −3 −2 0

2 3 2 0
3 3 3 0
0 1 −2 2

 , b =


0
0
1
1

 .

This pair (A, b) is not completely controllable since the rank of the controllability
matrix

C(A, b) = [b Ab A2b A3b] =


0 −2 −8 −26
0 2 8 −26
1 3 9 27
1 0 −4 −18


is 3. Note that σ(A) = σ(AT ) = {0, 1, 2, 3} and the eigenvectors of AT are:

xT
λ=0 = (α1,−α1, 0, 0) ∀α1 6= 0 =⇒ bT xλ=0 = 0

xT
λ=1 = (α2, 0, α2, 0) ∀α2 6= 0 =⇒ bT xλ=1 = α2

xT
λ=2 = (α3, 2α3, 0, α3) ∀α3 6= 0 =⇒ bT xλ=2 = α3

xT
λ=3 = (α4, α4, α4, 0) ∀α4 6= 0 =⇒ bT xλ=3 = α4
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Although the system is not completely controllable, we can change all the eigen-
values of A, but λ = 0. For instance, if we change λ = 3 to µ = 0.7 and consider
the eigenvector of AT associated with λ = 3, we obtain

bT xλ=3 = α4 = 0.7− 3 = −2.3 =⇒ α4 = −2.3.

Then, fT = (−2.3,−2.3,−2.3, 0) and

A + bfT =


−2 −3 −2 0

2 3 2 0
0.7 0.7 0.7 0

−2.3 −1.3 −4.3 2

 with σ(A + bfT ) = {0, 0.7, 1, 2}.

Consider a SISO discrete-time (or continuous-time) invariant linear system
given by the pair (AT , b). Let σ(AT ) = {λ1, λ2, . . . , λn}. The system is asymp-
totically stable if all eigenvalues λi of AT satisfy |λi| < 1 (or Re(λi) < 0), see
for instance [3, 5]. Applying Proposition 3 to an unstable pair (A, b) we can
obtain the closed-loop system A + bfT with the feedback vector f equal to the
eigenvector associated with the eigenvalue λk such that |λk| ≥ 1 (or Re(λk) ≥ 0).

The following algorithm gives a verification of stabilization of the SISO sys-
tem (AT , b) with application of Proposition 3 and the Power Method [8] assum-
ing that AT has a dominant eigenvalue. The advantage of the proposed method
is that we do not need the system to be completely controllable.

Algorithm Input: (AT , b).

Step 1. Set A0 = A1 = A, i = 1 and f0 the zero vector.

Step 2. Apply the Power Method to Ai, and obtain the dominant eigenvalue λi

and the corresponding eigenvector xi.

Step 3. If |λi| < 1, then the pair (Ai, b) is asymptotically stable, where Ai =
Ai−1 + fi−1b

T . END.

Otherwise,

Step 4. If < xi, b >= 0, then the pair (Ai, b) cannot be stabilized (Proposition 3)
END.

Otherwise,

Step 5. Choose a scalar αi such that the new eigenvalue µi = λi +(αix
T
i )b satisfies

|µi| < 1. Let fi = fi−1 + αixi.

Step 6. Let Ai+1 = Ai + αixib
T . Note that σ(Ai+1) = {λ1, . . . , λi−1, µi, λi+1,

. . . , λn} with |µi| < 1. Let i = i + 1, GOTO Step 2.
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3 Rado’s theorem

Perfect [7] in 1955 presented the following result, due to R. Rado, which shows
how to modify, in only one step, r eigenvalues of an arbitrary matrix A without
changing any of the remaining n−r eigenvalues. Rado’s Theorem is an extension
of Brauer’s Theorem and it has been applied to generate sufficient conditions
for the construction of nonnegative matrices with prescribed spectrum [7, 9].
As in the previous case, the immediate consequences of this result are the block
deflation methods and the pole assignment problem when the MIMO linear
control system is not completely controllable.

Theorem 2 [9, Brauer’s Extended Theorem, Theorem 5] Let A be an arbitrary
n × n matrix with eigenvalues {λ1, λ2, . . . , λn}. Let X = [x1 x2 . . . xr] be an
n × r matrix such that rank(X) = r and Axi = λixi, i = 1, 2, . . . , r, r ≤ n.
Let C be an arbitrary r × n matrix. Then the matrix A + XC has eigenvalues
{µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn}, where µ1, µ2, . . . , µr are eigenvalues of
the matrix Ω + CX with Ω = diag(λ1, λ2, . . . , λr).

Theorem 2 shows how to change r eigenvalues of A in only one step. In
general, the eigenvector xi associated with λi of A, i = 1, 2, . . . , r, is not the
eigenvector associated with the new eigenvalue µi of A + XC. If the matrix
Ω + CX is diagonalizable the way in which xi changes is described below.

Proposition 4 Let A be an arbitrary n × n matrix with eigenvalues {λ1, λ2,
. . . , λn}. Let X = [x1 x2 . . . xr] be an n×r matrix which column vectors satisfy
Axi = λixi, i = 1, 2, . . . , r, r ≤ n. Let C be an arbitrary r × n matrix and let
Ω = diag(λ1, λ2, . . . , λr).

If µ1, µ2, . . . , µr are eigenvalues of the diagonalizable matrix Ω + CX and T
is the transition matrix to its Jordan form, then the column vectors of the matrix
product XT are the eigenvectors of A + XC associated with µ1, µ2, . . . , µr.

Proof: Since T is the transition matrix, we have

(A + XC)X = X(Ω + CX) = XT diag(µ1, µ2, . . . , µr)T−1.

Hence (A + XC)XT = XT diag(µ1, µ2, . . . , µr) and the result follows. �

Remark 3 If we take an arbitrary matrix C such that

CX = diag(µ1 − λ1, µ2 − λ2, . . . , µr − λr),

then Ω + CX = diag(µ1, µ2, . . . , µr), and the matrix T , of Proposition 4, is
equal to the identity matrix. Therefore, the eigenvector xi associated with λi

of A, i = 1, 2, . . . , r, is the eigenvector associated with the new eigenvalue µi of
A + XC.

In this case, the eigenvectors associated with the eigenvalues λr+1, . . . , λn change
in the following way.
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Proposition 5 Assume the assumptions of Theorem 2 and Remark 3 hold. Let
xi be the eigenvector of A associated with the eigenvalue λi, r+1 ≤ i ≤ n. Then,
the eigenvector of A + XC associated with λi is given by:

wi = xi −
r∑

j=1

cjxi

µj − λi
xj , r + 1 ≤ i ≤ n,

where cj is the jth row of the matrix C.

Proof: For xi, r + 1 ≤ i ≤ n, we have

(A + XC)(xi −
r∑

j=1

cjxi

µj − λi
xj) = Axi + XCxi −

r∑
j=1

(A + XC)
cjxi

µj − λi
xj

= λixi +
r∑

j=1

(cjxi)xj −
r∑

j=1

cjxi

µj − λi
µjxj

= λixi −
r∑

j=1

(
−(cjxi) +

cjxi

µj − λi
µj

)
xj

= λi

xi −
r∑

j=1

cjxi

µj − λi

 xj .

�

4 Applications of Rado’s Theorem

In this section we give applications of Rado’s Theorem to deflation techniques
and to the pole assignment problem for MIMO systems.

4.1 Block deflation techniques

Now using Rado’s Theorem 2 we can obtain a block version of the deflation
results working with particular matrices C. A direct application of Rado’s
Theorem gives

Corollary 3 (Wielandt’s deflation) Assume assumptions of Theorem 2 hold.
Let C be a matrix such that Ω+CX has all the eigenvalues zero. Then the matrix
B = A + XC has eigenvalues {0, 0, . . . , 0, λr+1, λr+2, . . . , λn}.

Remark 4 If A is symmetric, then it is diagonalizable and we can choose an
orthogonal matrix X = [x1 . . . xr xr+1 . . . xn] = [Xr Xn−r] made of eigenvec-
tors of A. Consider Θ = diag(µ1 − λ1, µ2 − λ2, . . . , µr − λr), then the matrix
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B = A + XrΘXT
r is symmetric (diagonalizable) and it can be verified that its

eigenvectors associated with the eigenvalues λr+1, . . . , λn are the eigenvectors
of A.

Corollary 4 (Hotelling’s deflation) Assume assumptions of Theorem 2 hold.
(i) (Symmetric case.) Let A be symmetric. Then the symmetric matrix A −
XΩXT has the eigenvalues {0, 0, . . . , 0, λr+1, λr+2, . . . , λn}, provided that
XT X = Ir.
(ii) (Nonsymmetric case.) Let L = [l1, l2, . . . , lr] be an n × r matrix such that
rank(L) = r, lTi A = λil

T
i and LT X = I. Then the matrix B = A − XΩLT has

eigenvalues {0, 0, . . . , 0, λr+1, λr+2, . . . , λn}.

Proof: Apply Rado’s Theorem with C = −ΩXT for the symmetric case
and with C = −ΩLT for the nonsymmetric case.

Remark 5 It is easy to check that the matrices A and A + XC have the same
eigenvectors and the same Jordan structure associated with the eigenvalues
λr+1, λr+2, . . . , λn.

4.2 Pole assignment of MIMO systems

An immediate application of Rado’s Theorem 2 to control theory in multi-
input, multi-output (MIMO) systems defined by the pair (A,B) is the following
problem, where we assume that the new eigenvalues µi are different from the
eigenvalues to be changed λj , 1 ≤ i, j ≤ r.

Consider a pair (A,B) with A and B n×n and n×m matrices and
the set of numbers {µ1, µ2, . . . , µr}, and let σ(A) = {λ1, λ2, . . . , λn}.
What are the conditions on (A,B) so that the spectrum of the closed
loop matrix A+BFT , σ(A+BFT ), coincides with the set {µ1, µ2, . . . ,
µr, λr+1, λr+2, . . . , λn}, for some matrix F?

The following result answers this question.

Proposition 6 Consider a pair (A,B), with A and B n×n and n×m matrices.
Let σ(A) = {λ1, λ2, . . . , λn}. Let X = [x1 x2 . . . xr] be an n × r matrix such
that rank(X) = r and AT xi = λixi, i = 1, 2, . . . , r, r ≤ n. If there is a column
bji

of the matrix B such that bT
ji

xi 6= 0, for all i = 1, 2, . . . , r, then there exists
a matrix F such that σ(A + BFT ) = {µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn}.

Proof: As σ(AT ) = σ(A), by Rado’s Theorem 2 applied to AT , we have that
σ(AT + XC) = {µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn}, where {µ1, µ2, . . . , µr} are
the eigenvalues of Ω+CX, with Ω = diag(λ1, λ2, . . . , λr). Then, σ(A+CT XT ) =
{µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn}.

Let CT = [bj1 bj2 . . . bjr
], where bT

ji
xi 6= 0 for i = 1, 2, . . . , r. Then

A + CT XT = A + [bj1 bj2 . . . bjr ]X
T = A + B[ej1 ej2 . . . ejr ]X

T ,

9



where the matrix [ej1 ej2 . . . ejr
] is made of the corresponding unit vectors.

Setting FT = [ej1 ej2 . . . ejr
]XT , we have

σ(A + CT XT ) = σ(A + BFT ) = {µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn},

where {µ1, µ2, . . . , µr} are the eigenvalues of Ω + [ej1 ej2 . . . ejr
]T BT X, with

Ω = diag(λ1, λ2, . . . , λr). �

Remark 6 (a) Note that the assumption of existence of a column bji
of the

matrix B such that bT
ji

xi 6= 0, for i = 1, 2, . . . , r, is needed only to assure
the change of the eigenvalue λi. Otherwise no eigenvalue changes.

(b) In the MIMO systems the solution of the pole assignment is not unique as
we can see in the next example. Further, note that Proposition 6 indicates
that we can allocate poles even in the case of uncontrollable systems.

Example 2 Consider the pair (A,B):

A =


−2 −3 −2 0

2 3 2 0
3 3 3 0
0 1 −2 2

 , B =


0 0
0 0
1 1
1 1

 .

Note that this pair is not completely controlable since the rank of the matrix

C(A,B) = [B AB A2B A3B] =


0 0 −2 −2 −8 −8 −26 −26
0 0 2 2 8 8 −26 −26
1 1 3 3 9 9 27 27
1 1 0 0 −4 −4 −18 −18


is 3. The spectral computation gives σ(A) = σ(AT ) = {0, 1, 2, 3} and the
eigenvectors of AT are:

xT
λ=0 = (α1,−α1, 0, 0) ∀α1 6= 0 =⇒ BT xλ=0 =

[
0
0

]
xT

λ=1 = (α2, 0, α2, 0) ∀α2 6= 0 =⇒ BT xλ=1 =
[

α2

α2

]
xT

λ=2 = (α3, 2α3, 0, α3) ∀α3 6= 0 =⇒ BT xλ=2 =
[

α3

α3

]
xT

λ=3 = (α4, α4, α4, 0) ∀α4 6= 0 =⇒ BT xλ=3 =
[

α4

α4

]
Since the above products are different from zero for the eigenvalues λ = 1, λ = 2
and λ = 3, we consider three cases according to the number of eigenvalues we
want to change and the number of columns of the matrix B.
Case 1. Suppose we want to change the eigenvalues λ = 2 and λ = 3 to µ = 0.5
and µ = 0.7, respectively. Then, r = m. Since bT

1 xλ=2 6= 0 and bT
1 xλ=3 6= 0,

CT = [b1 b1] = B

[
1 1
0 0

]
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and the matrix

Ω + CX = Ω +
[

1 0
1 0

]
BT X =

[
2 + α3 α4

α3 3 + α4

]
has the eigenvalues µ1 = 0.5 and µ2 = 0.7 when α3 = 1.95 and α4 = −5.75. So
the feedback matrix F is

FT =
[

1 1
0 0

]
XT =

[
−3.8 −1.85 −5.75 1.95

0 0 0 0

]
.

Then, the closed-loop matrix

A + BFT =


−2 −3 −2 0
2 3 2 0

−0.8 1.15 −2.75 1.95
−3.8 −0.85 −7.75 3.95


has the spectrum σ(A + BFT ) = {0, 0.5, 0.7, 1}.

Note that working with the two column vectors of the matrix B, we obtain
the feedback matrix

FT =
[

1.95 3.9 0 1.95
−5.75 −5.75 −5.75 0

]
.

Case 2. Now, we want to change only the eigenvalue λ = 3 to µ = 0.7, in this
case r < m. Since bT

1 xλ=3 6= 0,

CT = [b1] = B

[
1
0

]
and the matrix Ω + CX = Ω + [1 0]BT X = 3 + α4 has the eigenvalue µ = 0.7
if α4 = −2.3. So the feedback matrix F is

FT =
[

1
0

]
XT =

[
−2.3 −2.3 −2.3 0

0 0 0 0

]
.

Then, the closed-loop matrix is

A + BFT =


−2 −3 −2 0

2 3 2 0
0.7 0.7 0.7 0

−2.3 −1.3 −4.3 2


with the spectrum σ(A + BFT ) = {0, 0.7, 1, 2}.
Case 3. Finally, we want to change the three eigenvalues λ = 1, λ = 2 and
λ = 3 to µ1 = 0.2, µ2 = 0.5 and µ3 = 0.7, respectively. In this case r > m.

Since bT
1 xλ=1 6= 0, bT

1 xλ=2 6= 0 and bT
1 xλ=3 6= 0,

CT = [b1 b1 b1] = B

[
1 1 1
0 0 0

]
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and the matrix

Ω + CX = Ω +

 1 0
1 0
1 0

BT X =

 1 + α2 α3 α4

α2 2 + α3 α4

α2 α3 3 + α4


has eigenvalues µ1 = 0.2, µ2 = 0.5 and µ3 = 0.7 when α2 = −0.06, α3 = 3.51
and α4 = −8.05. So the feedback matrix F is

FT =
[

1 1 1
0 0 0

]
XT =

[
−4.6 −1.03 −8.11 3.51

0 0 0 0

]
.

Then, the closed-loop matrix is

A + BFT =


−2 −3 −2 0

2 3 2 0
−1.6 1.97 −5.11 3.51
−4.6 −0.03 −10.11 5.51


with the spectrum σ(A + BFT ) = {0, 0.2, 0.5, 0.7}.

Remark 7 As before a MIMO discrete-time (or continuous-time) invariant lin-
ear system, given by the pair (AT , B), is asymptotically stable if all eigenvalues
λi of AT satisfy |λi| < 1 (or Re (λi) < 0), see for instance [3, 5]. Applying
Proposition 6 to an unstable pair (AT , B) we can obtain the closed-loop system
A + BFT with the feedback matrix F computed as in the proof of the above
proposition.
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