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A Brauer’s theorem and related results

R. Bru* R. Canto* R. L. Sotof A .M. Urbano*

Abstract

Given a square matrix A, a Brauer’s theorem [Limits for the char-
acteristic roots of matrices IV: Applications to stochastic matrices, Duke
Math. J. 19 (1952), 75-91] shows how to modify one single eigenvalue of A
via a rank-one perturbation without changing any of the remaining eigen-
values. Older and newer results can be considered in the framework of the
above theorem. In this paper, we present its application to stabilization
of control systems, including the case when the system is noncontrollable.
Other applications presented are related to the Jordan form of A and
Wielandt’s and Hotelling’s deflations. An extension of aforementioned
Brauer’s result, Rado’s theorem, shows how to modify r eigenvalues of A
at the same time via a rank-r perturbation without changing any of the
remaining eigenvalues. The same results considered by blocks can be put
into the block version framework of the above theorem.

Keywords: eigenvalues, pole assignment problem, controllability, low rank perturbation,

deflation techniques.

MSC: 15A18, 93D15.

1 Brauer’s theorem

The relationship among the eigenvalues of an arbitrary matrix and the updated
matrix by a rank-one additive perturbation was established by A. Brauer [1].
We will refer to this result as Brauer’s Theorem. It turns out that this result is
related to older and well-known results on Wielandt’s and Hotelling’s deflations
techniques [10]. Brauer’s Theorem finds its application also in the eigenvalue
localization problem of control theory (see [5]) and in stabilization of control
systems. Perfect [7] applied an extension of Brauer’s result, Rado’s theorem, to
construct nonnegative matrices with a prescribed spectrum.

In the first part of the paper (Sections 1 and 2), we give results that can be
considered in a common framework of Brauer’s Theorem as applications of it.
A good introduction on the Brauer result and its application to the nonnegative
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inverse eigenvalue problem can be followed in [9] where Rado’s theorem is given.
Rado’s theorem is considered in the second part of this paper (Sections 3 and
4) and applied to obtain a block version of deflation results.

Throughout the paper, we assume that all sets of eigenvalues of a matrix
are feasible in the corresponding field (i.e., closed under complex conjugation in
the real field).

Theorem 1 ([7, 9, Brauer’s Theorem]) Let A be an arbitrary n X n matriz
with eigenvalues o(A) = {A1, Ao, ..., \n}. Let xy, be an eigenvector of A asso-
ciated with the eigenvalue \i, and let ¢ be any n-dimensional vector. Then the
matriz A+ xrq? has eigenvalues {1, ..., Ae—1, Mg + TLQ A1y - s An -

Let Ax be an eigenvalue of A with a Jordan chain of length 1 and let ¢ be a
vector orthogonal to the remaining eigenvectors of A. Then, it can be seen that
the Jordan structures of A and A + z1q” are the same.

The relationships among the right eigenvectors of A and A + x,q” are given
in the following result [8].

Proposition 1 Let A be an arbitrary nxn matriz with eigenvalues o(A) = {1,

A2, ooy An}. Let x; be an eigenvector of A associated with the eigenvalue \;,
1 < ¢ < n. Let g be any n-dimensional vector and let puy = A\ + :cgq, with
pr # i, i = 1,2,...,n. Then, xy is an eigenvector of the matriz A + xpq”

associated with the eigenvalue py = Mg + mgq, and the eigenvectors of A+ x,q"
associated with \;, i # k, are:

qsz‘
e — A

W; = Ty — Tk.

However, the changes of the left eigenvectors of A and A + x1,q” are inverse
as we can see in the next result for a diagonalizable matrix A.

Proposition 2 Let A be a diagonalizable n x n matriz with eigenvalues o(A) =
{1, A2y ooy An}. Let 1T be a left eigenvector of A corresponding to \;, 1 <
1 < n. Let g be any n-dimensional vector and let puix = A\, + x{q, with pg # i,
i =1,2,...,n. Then, the left eigenvectors of A + xqT corresponding to \;,
i #k, arer] =1F, and the left eigenvector of A+ xrq” corresponding to puy is:

70
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Tk:lk+ Z ﬂk—All
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Proof: Since [T, i # k, is a left eigenvector of A corresponding to \;, we

7 7

have [T (A —NI) =0, i # k. So, (l;,xx) =0, for all i # k, and

IT(A+ 2pq" — NI =15 (A = NI) + 17 (21q") = 0+ (1F2) " = (s, 21)q" = 0.



Hence I7', i # k, is a left eigenvector of A + zxq” corresponding to \;: rl =11,
1 # k. Since
qmz T T
I+ l Atz
k Z i — A ( kG )
27§k
_ T qasl T4 T
= TA+ e + Z A Z i g
r— N\
i=1
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2 Related results

In this section we show that Brauer’s Theorem [1] can be used to prove different
results. For instance, to examine existence and convergence of the Page Rank
Power Method, a stochastic matrix is updated by a rank-one matrix to construct
the Google matrix. The relationship between the spectrum of both matrices is



given in [6, Theorem 5.1]. The same result can be obtained as a corollary of
Brauer’s Theorem 1 applied to the matrix aA and the vector ¢ = (1 — a)v.

2.1 Deflation techniques

In 1944 Wielandt presented a deflation method for general matrices shifting one
eigenvalue to zero (see [10]). Application of Brauer’s Theorem 1 with a vector
g such that ¢”x, = —\, immediately gives this result.

Corollary 1 (Wielandt’s deflation) Let assumptions of Theorem 1 hold with
q being any vector such that qTx, = —\i, then the matriz A + x1q” has the
eigenvalues {1, ..., Ap—1,0, Aer1, .- s Ant-

Remark 1 If A is symmetric, then A is diagonalizable and we can choose an
orthogonal matrix X = [z z3 ... z,] made of the eigenvectors of A. In this
case the matrix B = A + (ux — A\i)zpx} is symmetric (diagonalizable) and it
can be verified that the eigenvectors of B associated with \;, i # k, are the
eigenvectors of A associated with \;, i # k.

The above result contains an older technique due to Hotelling, established in
1933, for symmetric matrices that can be extended to nonsymmetric matrices.

Corollary 2 (Hotelling’s deflation) Let assumptions of Theorem 1 hold.
(i) (Symmetric case.) Let A be symmetric. Then the symmetric matric A —

MeTrTi has the eigenvalues {A1,Aay. .., Ak—1,0, \gy1, .-+, An}, provided that
T
T T = 1.

(ii) (Nonsymmetric case.) Let I be the left eigenvector of A, with lFx), = 1.
Then the matriz Af)\kxklkT has the eigenvalues {A1, ..., Ag—1, 0, Agt1,y -5 An}e

Proof: Apply Brauer’s Theorem 1 with a vector ¢ = — Az in the symmetric
case and ¢ = —\ilg in the nonsymmetric case.

2.2 Pole assignment of SISO systems

Another application Brauer’s Theorem 1 finds for single-input single-output
(SISO) linear time invariant control systems when the system given by a pair
(A, b) is not completely controllable. Given a SISO system we use a state feed-
back to place the poles of the closed-loop system at specified points in the
complex plane. More precisely, the pole placement problem states as follows:

Consider a pair (A,b). Let 0(A) = {A1, A2, ..., \n} and let py be a
number. Under what conditions on (A,b) does there exist a vector f
such that the spectrum of the closed-loop system A+bfT, o(A+bfT),

1S {)\b-~-,>\k—17ﬂka>\k+la~~7>\n}?

The following result answers this question.



Proposition 3 Consider a pair (A,b), let o(A) = {1, A\a,..., s} and let xy,
be an eigenvector of AT associated with \i. If bTx), # 0, then there exists a
vector f such that o(A+bfT) = {1, s M1, M, Mt 15 - -5 An }-

Proof: As o(AT) = o(A), by Brauer’s Theorem 1 applied to AT, the matrix

AT 42,97 has eigenvalues A1, ..., Ag—1, Mo +¢7 g, Ak+1, - - -, An, Where ¢ is any
n-dimensional vector. It is clear that o(A + gzl) = {\1, ..., Me—1, M + T,
Akt1s -5 At

Consider ¢ = b and f = z. If b2y, # 0, we have:
Ak + qu’k =A; + le’k = UL = bTIk = g — A,
then O'(A + bfT) = {)\1, ey A1, Akt qT.’L'k7 Akt1y -+ -y )\n} O

Remark 2 (a) Note that the assumption of b7 x), # 0 is needed only to assure
the change of the eigenvalue A;. Otherwise no eigenvalue changes.

(b) By this result we can say that the pole assignment problem has a solution
if 2j, is not orthogonal to the vector b (that is, bTzy # 0) (see [2]). When
this condition holds for all eigenvectors of AT, then the pair (A, b) is called
completely controllable, in this case the solution is unique [3].

(c) According to Proposition 1 the eigenvector of AT associated with \;, and
the eigenvectors of A7 corresponding to \;, i # k, such that bTx; = 0
remain unchanged.

(d) If \; # \; for each i # j, and bTz; # 0, then on can show that b w; # 0,
where w; is defined in Proposition 1.

Example 1 Consider the pair (A, b):

-2 =3 -2 0 0

2 3 20 0

A= 3 3 3 0} b= 1
0 1 -2 2 1

This pair (A, b) is not completely controllable since the rank of the controllability
matrix

0 —2 -8 —26
cab =DA% am=| 2 5 X
10 —4 —18

is 3. Note that 0(A) = o(AT) = {0,1,2,3} and the eigenvectors of AT are:

21, = (a1,—1,0,0) Va1 #0 = bla\g=0
i = (a2,0,02,0) Vas#0 = blay_1 =0
vi_, = (a3,203,0,a3) Vaz#0 = blay_o=o03
i_s = (aa,04,04,0) Yoy #0 = blay_z =0y



Although the system is not completely controllable, we can change all the eigen-
values of A, but A = 0. For instance, if we change A = 3 to u = 0.7 and consider
the eigenvector of AT associated with A = 3, we obtain

blays=as=07—-3=-23 = a4=-223.

Then, f7 = (-2.3,-2.3,-2.3,0) and
-2 -3 =2
2 3 2

0.7 0.7 0.7
-23 -13 —-43

A+bfT = with (A +bfT) = {0,0.7,1,2}.

N O OO

Consider a SISO discrete-time (or continuous-time) invariant linear system
given by the pair (AT,b). Let 0(AT) = {\1, Aa,..., A\, }. The system is asymp-
totically stable if all eigenvalues \; of AT satisfy |A\;| < 1 (or Re(\;) < 0), see
for instance [3, 5]. Applying Proposition 3 to an unstable pair (A,b) we can
obtain the closed-loop system A + bf” with the feedback vector f equal to the
eigenvector associated with the eigenvalue A such that |A;| > 1 (or Re(Ax) > 0).

The following algorithm gives a verification of stabilization of the SISO sys-
tem (AT, b) with application of Proposition 3 and the Power Method [8] assum-
ing that A7 has a dominant eigenvalue. The advantage of the proposed method
is that we do not need the system to be completely controllable.

Algorithm Input: (AT,b).
Step 1. Set Ag = A1 = A, i =1 and f; the zero vector.

Step 2. Apply the Power Method to A;, and obtain the dominant eigenvalue \;
and the corresponding eigenvector x;.

Step 3. If |A\;| < 1, then the pair (A;,b) is asymptotically stable, where A; =
A1 + fi_1bT. END.

Otherwise,

Step 4. If < z;,b >= 0, then the pair (A;,b) cannot be stabilized (Proposition 3)
END.

Otherwise,

Step 5. Choose a scalar «; such that the new eigenvalue p; = A\; + (aiziT)b satisfies
lpwil < 1. Let fi = fi—1 + aux;.

Step 6. Let Ai+1 = Al + aixibT. Note that J(Ai+1) = {/\1, ey )\ifl, iy )\i+1;
ooy An} with ;] < 1. Let i =i + 1, GOTO Step 2.



3 Rado’s theorem

Perfect [7] in 1955 presented the following result, due to R. Rado, which shows
how to modify, in only one step, r eigenvalues of an arbitrary matrix A without
changing any of the remaining n—r eigenvalues. Rado’s Theorem is an extension
of Brauer’s Theorem and it has been applied to generate sufficient conditions
for the construction of nonnegative matrices with prescribed spectrum [7, 9].
As in the previous case, the immediate consequences of this result are the block
deflation methods and the pole assignment problem when the MIMO linear
control system is not completely controllable.

Theorem 2 [9, Brauer’s Extended Theorem, Theorem 5] Let A be an arbitrary
n X n matric with eigenvalues {\1, Aa, ..., Ap}. Let X = [x122 ... 2] be an
n X r matric such that rank(X) = r and Ax; = Niwy, ¢ = 1,2,...,r, r < n.
Let C be an arbitrary v X n matriz. Then the matriz A + XC has eigenvalues
{p1, to, ooy fry A1, Apt2y ooy Ant, where py, pio, ..., ly are eigenvalues of
the matriz Q + CX with Q = diag(A1, A2, ..., Ar).

Theorem 2 shows how to change r eigenvalues of A in only one step. In
general, the eigenvector z; associated with \; of A, ¢ = 1,2,... r, is not the
eigenvector associated with the new eigenvalue p; of A + XC. If the matrix
Q 4+ CX is diagonalizable the way in which z; changes is described below.

Proposition 4 Let A be an arbitrary n X n matriz with eigenvalues {\1, Az,
cos Ant. Let X =[xy @9 ... x| be an n X1 matriz which column vectors satisfy
Ax; = Ny, i=1,2,...,r, r < n. Let C be an arbitrary r X n matriz and let
Q= diag()\h )\2, ey )\r)

If w1, o, - .., ur are eigenvalues of the diagonalizable matriz Q+ CX and T
18 the transition matrix to its Jordan form, then the column vectors of the matriz
product XT are the eigenvectors of A+ XC associated with py, pia, . . -, -

Proof: Since T is the transition matrix, we have
(A4+XCO)X = X(Q + CX) = XTdiag(p1, pra, - - -, o) T
Hence (A+ XC)XT = XT diag(p1, pi2, ..., tr) and the result follows. O
Remark 3 If we take an arbitrary matrix C' such that
CX = diag(p1 — A1, iz — Aoy ooy fir — Ap),

then Q + CX = diag(u1,p2, ..., pr), and the matrix T, of Proposition 4, is
equal to the identity matrix. Therefore, the eigenvector x; associated with \;

of A, i=1,2,...,r,is the eigenvector associated with the new eigenvalue u; of
A+ XC.
In this case, the eigenvectors associated with the eigenvalues A, 41, ..., A, change

in the following way.



Proposition 5 Assume the assumptions of Theorem 2 and Remark 8 hold. Let
x; be the eigenvector of A associated with the eigenvalue \;, r+1 < i < n. Then,
the eigenvector of A+ XC associated with \; is given by:

.
CiT; .
wi:xi—g Ji_xj, r+1<1<n,

where c; is the jth row of the matriz C'.

Proof: For z;, r+1 <1 <n, we have

T

(A+XO)(x; — > %xj) = Az; + XCx; — Z(Aum)%&w
j=1 MJ 7 =1 M] i
r r ity
= Ny (e =y — S M
i=1 g=1 T A

4 Applications of Rado’s Theorem

In this section we give applications of Rado’s Theorem to deflation techniques
and to the pole assignment problem for MIMO systems.

4.1 Block deflation techniques

Now using Rado’s Theorem 2 we can obtain a block version of the deflation
results working with particular matrices C. A direct application of Rado’s
Theorem gives

Corollary 3 (Wielandt’s deflation) Assume assumptions of Theorem 2 hold.
Let C' be a matriz such that Q+C X has all the eigenvalues zero. Then the matriz
B = A+ XC has eigenvalues {0,0,...,0,A\ri1, Adrg2, ..y Ant.

Remark 4 If A is symmetric, then it is diagonalizable and we can choose an
orthogonal matrix X = [z1 ... &y Zry1 ... Tp] = [ X, X—r] made of eigenvec-
tors of A. Consider © = diag(u1 — A1, 2 — Ao, ..., tir — Ay-), then the matrix



B = A+ X,0XT is symmetric (diagonalizable) and it can be verified that its
eigenvectors associated with the eigenvalues A.y1,..., A, are the eigenvectors
of A.

Corollary 4 (Hotelling’s deflation) Assume assumptions of Theorem 2 hold.
(i) (Symmetric case.) Let A be symmetric. Then the symmetric matric A —

XOQXT has the eigenvalues {0,0,...,0, A\ry1, Ari2, ---5 An}, provided that
XTX =1,
(ii) (Nonsymmetric case.) Let L = [l1,la,...,l.] be an n X r matriz such that

rank(L) = r, I'A = NI and LT X = I. Then the matriz B = A — XQL” has
eigenvalues {0,0,...,0, A1, Apg2y .-y Ant.

Proof:  Apply Rado’s Theorem with C' = —QXT for the symmetric case
and with C = —QL” for the nonsymmetric case.

Remark 5 It is easy to check that the matrices A and A 4+ X C have the same
eigenvectors and the same Jordan structure associated with the eigenvalues

)‘T+1a )‘T+25 B )\n

4.2 Pole assignment of MIMO systems

An immediate application of Rado’s Theorem 2 to control theory in multi-
input, multi-output (MIMO) systems defined by the pair (A, B) is the following
problem, where we assume that the new eigenvalues pu; are different from the
eigenvalues to be changed A\;, 1 <14,5 <.

Consider a pair (A, B) with A and B n xn and n X m matrices and
the set of numbers {1, 2, - .., pr}, and let o(A) = {A1, Aa, ..., An b
What are the conditions on (A, B) so that the spectrum of the closed
loop matriz A+BFT, 0(A+BFT), coincides with the set {1, 12, . . - ,
Hry Argls Arg2, - -y An}, for some matriz F'?

The following result answers this question.

Proposition 6 Consider a pair (A, B), with A and B nxn and nxm matrices.
Let 0(A) = {A1, A2y, A}, Let X = [x122 ... 2] be an n X r matric such
that rank(X) = r and ATx; = Njzy, i =1,2,...,7, r < n. If there is a column
bj, of the matriz B such that b?:xl #£0, foralli =1,2,...,r, then there exists
a matriz F' such that (A + BFT) = {1, ft2, - - 5 fry Art1, Arg2s -5 At

Proof: As 0(AT) = o(A), by Rado’s Theorem 2 applied to AT, we have that

U(AT +XC) = {vaﬂQv s Moy )\’r‘+17 )"r‘+2a AR )\’n}v where {/1417/1'27 ey ,ur} are
the eigenvalues of Q+C X, with Q = diag(\1, A2, ..., Ar). Then, o(A+CTXT) =

{:ula:u27 sy Moy )‘T+17 )‘T+27 sy An}
Let CT = [bj, bj, ... bj,], where bl x; # 0 for i =1,2,...,r. Then

A+OTXT:A+[bj1 bj bjT]XT:A—f—B[Ejl €j2 ejT]XT,



where the matrix [e;, e;, ... e;.] is made of the corresponding unit vectors.
Setting FT = [ej, €j, ... €;.] X7, we have

U(A+CTXT) = J(A+BFT) = {/141»/14%'~';/‘r;)\r+1;)\r+2;~~;)\n};

where {1, 12, ..., .} are the eigenvalues of Q + [e;, ej, ... €;,]T BT X, with
Q = diag(A1, Mgy ey A). 0

Remark 6 (a) Note that the assumption of existence of a column b;, of the
matrix B such that bjTacz #0, fori=1,2,...,r, is needed only to assure
the change of the eigenvalue )\;. Otherwise no eigenvalue changes.

(b) In the MIMO systems the solution of the pole assignment is not unique as
we can see in the next example. Further, note that Proposition 6 indicates
that we can allocate poles even in the case of uncontrollable systems.

Example 2 Consider the pair (A, B):

-2 -3 -2 0 0 0

2 3 2 0 0 0

A= 3 3 3 0|’ B= 11
0 1 -2 2 11

Note that this pair is not completely controlable since the rank of the matrix

0 -2 -2 -8 -8 —-26 —-26
2 2 8 8§ —26 —26
3 3 9 9 27 27
0 0 -4 -4 -18 -18

C(A,B) = [B AB A’B A®B] =

= =0 O
== O

is 3. The spectral computation gives o(A) = o(AT) = {0,1,2,3} and the
eigenvectors of AT are:

iy = (a1,-01,0,0) Va1 #0 = Blayo= { 8 }
iy = (02,0,02,0) Vo #0 = BTay= Zz
3y = (a3,203,0,a3) Vaz#0 = Blay_o= _ gi —
i_g = (om,04,04,0) Vas #0 = Blay_s= gi

Since the above products are different from zero for the eigenvalues A = 1, A = 2
and A = 3, we consider three cases according to the number of eigenvalues we
want to change and the number of columns of the matrix B.

Case 1. Suppose we want to change the eigenvalues A =2 and A =3 tou =0.5
and p = 0.7, respectively. Then, 7 = m. Since b xx—o # 0 and b x)—3 # 0,

CT:[blbl]:B[é (1)]

10



and the matrix

Q+OX:Q+“ 8]BTX:[

2+ asg Qy
(e 7} 34+ ay

has the eigenvalues 1 = 0.5 and pe = 0.7 when ag = 1.95 and oy = —5.75. So
the feedback matrix F is

r [1 1]yr [-38 —1.85 —575 195
F {o O}X [ 0 0 0 0o |

Then, the closed-loop matrix

-2 -3 -2 0
2 3 2 0
-0.8 1.15 =275 1.95
-3.8 —0.85 —7.75 3.95

A+ BFT =

has the spectrum o(A + BFT) ={0,0.5,0.7,1}.
Note that working with the two column vectors of the matrix B, we obtain
the feedback matrix

T 1.95 3.9 0 1.95]

~ | =575 —5.75 —5.75 0

Case 2. Now, we want to change only the eigenvalue A = 3 to p = 0.7, in this
case r < m. Since bl zy_3 # 0,

T . 1
C" =[]=8B [ 0
and the matrix Q + CX = Q + [10] BTX = 3 + a4 has the eigenvalue u = 0.7
if ay = —2.3. So the feedback matrix F' is

r [17er [ -23 —23 —23 0
F[o X=l 09 o 0o ol

Then, the closed-loop matrix is

-2 -3 -2
2 3 2
0.7 0.7 0.7
-23 -13 —-43

A+ BFT =

N O OO

with the spectrum (A + BFT) = {0,0.7,1,2}.

Case 3. Finally, we want to change the three eigenvalues A = 1, A = 2 and

A=3to uy =0.2, ue = 0.5 and pz = 0.7, respectively. In this case r > m.
Since b xy=1 # 0, b¥xx—o # 0 and bl zy_3 # 0,

o o111
c —[blblbl]_B{O 0 0}

11



and the matrix

1 0 14 ao asg 0y
Q+CX=Q+ |1 0 |B"X= ay 24+ a3 g
1 0 Qg Qs 34+ ay

has eigenvalues p; = 0.2, o = 0.5 and pu3 = 0.7 when ap = —0.06, azg = 3.51
and oy = —8.05. So the feedback matrix F is

r [1 1 1],7 [ -46 -1.03 —811 351
E _{0 0 O]X _[ 0 0 0 0

Then, the closed-loop matrix is

-2 -3 -2 0
2 3 2 0
—1.6 1.97 =511 3.51
—-4.6 —-0.03 -10.11 5.51

A+ BFT =

with the spectrum (A + BFT) = {0, 0.2, 0.5, 0.7}.

Remark 7 As before a MIMO discrete-time (or continuous-time) invariant lin-
ear system, given by the pair (A7, B), is asymptotically stable if all eigenvalues
A of AT satisfy |A\;] < 1 (or Re (A\;) < 0), see for instance [3, 5]. Applying
Proposition 6 to an unstable pair (AT, B) we can obtain the closed-loop system
A + BFT with the feedback matrix F' computed as in the proof of the above
proposition.
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