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Abstract

This is the second paper of a series devoted to provide theoretical and practical

results and new algorithms for the selection of the number of Principal Components

(PCs) in Principal Component Analysis (PCA) using cross-validation. The study

is especially focused on the element-wise k -fold (ekf ), which is among the most

used algorithms for that purpose. In this paper, a taxonomy of PCA applications is

proposed and it is argued that cross-validatory algorithms computing the prediction

error in observable variables, like ekf, are only suited for a class of applications. A

number of cross-validation methods, several of which are original, are compared

in two applications of this class: missing data imputation and compression. The

results show that the ekf is especially suited for missing data applications while other

traditional cross-validation methods, those by Wold and Eastment and Krzanowski,

are not found to provide useful outcomes in any of the two application. These

results are of special value considering that the methods investigated are computed
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in the main commercial software packets for chemometrics. Finally, the choice of

the missing data algorithm within ekf is also investigated.

Key words: Principal Component Analysis, number of components,

cross-validation, missing data, compression.

1 Introduction

Principal Component Analysis (PCA) is a multivariate tool with application

to different objectives: data understanding, anomalies detection, missing data

estimation, compression, and others. To build a PCA model from a data set,

one needs to select the number of Principal Components (PCs). There are

plenty of methods to select this number, see the first paper of this series [1]

for a review. Wold firstly proposed cross-validation for that purpose [2].

In the forest of methods to select the number of PCs, an important issue

is forgotten: what is the PCA model going to be used for? PCA is a very

versatile tool and depending on the application at hand, the determination

of the appropriate number of PCs may be addressed in a different way. In

a more theoretical perspective, the number of PCs is selected to maximize a

given optimization function. That way, the chosen number can be said to be

optimum for the application at hand. Different applications imply different

optimization functions. Thus, using the same calibration data set, different

number of PCs may be optimal for process monitoring and compression, for

instance. Therefore, seeking a single approach to select the number of PCs in

PCA for a general perspective [3] is an ill-defined goal.

Email address: josecamacho@ugr.es (José Camacho).
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In this paper, a taxonomy of PCA applications is proposed. It is argued that

the cross-validation approaches defined in the literature are only suited to

determine the number of PCs in a specific category of applications: those

where the focus is on the observable variables. Two important applications

within that category are missing data estimation and compression. In this

paper, the performance of several cross-validation approaches is assessed in

these two application.

The paper is organized as follows: Section 2 introduces the state of the art in

PCA cross-validation. In Section 3, a taxonomy of PCA applications is pro-

vided. Section 4 presents the simulation strategy for the generation of the data

used in the comparisons and a real data set. Section 5 focuses on missing data

applications whereas Section 6 is focused on compression. Section 7 illustrates

the behavior of the cross-validation approaches in the real data set. Finally,

Section 8 draws some concluding remarks.

2 Cross-validation in PCA

PCA follows the expression:

X = TA · (PA)t + EA, (1)

where X is a N ×M matrix of data, TA is the N ×A score matrix containing

the projection of the objects onto the A principal components (PCs) sub-

space, PA is the M × A loading matrix containing the linear combination of

the variables represented in each of the PCs, and EA is the N ×M matrix of

residuals.

3
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The simplest cross-validation method is the row-wise k -fold cross-validation

or rkf ([4], through [5]). A detailed description of the algorithms can be found

in [1]. In the rkf, the groups are arranged object-wise. Each time, a model is

calibrated from the whole data-set but a group of objects. Using the model,

the scores of the objects from that group are computed and their data are

re-estimated using scores and loadings. Subtracting actual data from the es-

timates, the sum-of-squares of prediction error (PRESS) is computed. The

PRESS associated to a variable m for A PCs is computed according to the

following expressions:

PRESSA
m =

N∑
n=1

(rAn,m)
2, (2)

rAn,m = xn,m − x̂n,m, (3)

where N is the number of objects used to compute the PRESS, x̂n,m is the

estimate of xn,m and rAn,m is the reconstruction error.

The rkf method yields strictly decreasing curves of PRESS in terms of A,

since the error computed within the algorithm is the reconstruction error [1].

To determine the number of PCs, a threshold can be applied. Thus, if the

decrease of PRESS when adding the a-th PC is lower than the threshold, the

PC is discarded and the model selected contains a − 1 PCs. Also, the curve

can be corrected with the degrees of freedom consumed [3].

The rkf has been criticized because the PCA estimates are computed using the

actual values as input [3]. Since there is not independence between actual val-

ues and estimates, the modelling error computed in rkf cannot be considered

purely prediction error. Although it is not clear whether this issue has some-

thing to do with the ability of determining A, a number of cross-validatory ap-

4
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proaches that satisfy–to a certain degree–the independence between estimates

and actual values have been derived. The corresponding PRESS is obtained

from the error computed between estimates and actual values following the

equivalent expression to (2). Among the several cross-validatory algorithms

proposed [6,3], those by Wold [2] and Eastment and Krzanowski [7] are the

most cited and influent ones.

The proposal by Wold is based on the iterative computation of PCs in the

NIPALS procedure [8]. Wold suggested to include PCs to the model until the

following index exceeds a value of 1:

RA =
PRESSA

SSEA−1
(4)

where PRESSA is the PRESS computed for A PCs, and SSEA−1 is the Sum of

Square Residuals after A−1 PCs have been extracted. The difference between

PRESS and SSE is that the former is computed by cross-validation whereas

the latter is computed at once from the entire data set.

Eastment and Krzanowski [7] proposed an alternative scheme based on the

singular value decomposition (SVD) algorithm. To select the number of sig-

nificative PCs, they propose the addition of the PCs up to the last one for

which the following index exceeds the unity:

WA =
(PRESSA−1 − PRESSA)/DFA

PRESSA/DFA
rem

(5)

where DFA is the number of degrees-of-freedom (DFs) used to fit the A-th

PC and DFA
rem is the remaining DFs after the A-th PC has been added to the

model.

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Wold [2] also suggested a possible alternative for those for which the NIPALS

procedure is not available–something very unlikely nowadays. Wold did not

pay very much attention to this alternative. Nonetheless, it presents an attrac-

tive feature: the PRESS curve obtained typically shows a valley-like shape [1],

where the minimum of the curve signals the optimum number of PCs. This is,

in principle, a logical behavior for the prediction error: decrease as the addition

of PCs improves the prediction performance of the model and increase when

this addition is noisy. It is also conveniently similar to the PRESS curve ob-

tained when cross-validating regression models -e.g. for Partial Least Squares

(PLS) models. This method is referred here as the the element-wise k -fold

(ekf ) method.

Bro et al. [3] compared most of the cross-validation methods which are cur-

rently used with spectral-type data. They concluded that the ekf generally

outperforms the other methods studied. Because of this result, the first paper

of this series [1] performed a detailed theoretical study entirely focused on

this method. The original ekf proposal by Wold was the cross-validation al-

gorithm in the first releases of the PLS Toolbox [9]. This algorithm was based

on the simplest missing data imputation method: the trimmed score imputa-

tion (TRI). The algorithm studied by Bro et al. [3] and the one found in new

releases of the PLS Toolbox are based on a slightly more complex imputa-

tion method: projection to the model plane (PMP) [10]. In the present paper,

several ekf variants with different missing data methods, including TRI and

PMP, will be studied.

6
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3 PCA applications

There are at least three categories of applications of PCA which should be

distinguished:

a) When the interest is in the observable variables–that is the original

variables in matrix X in eq. (1). One would like to select the number of PCs,

A, so that the estimation of the variables with PCA is the most accurate.

The objective is by itself a definition of how the number of PCs should be

determined: A is selected so that the error computed by subtracting the ac-

tual value of the data from that estimated with PCA is minimum. Two types

of applications within this category are possible, depending on whether the

actual values that are estimated are available or not. For instance, when the

objective is data compression or dimensionality reduction [11–14], probably

the most frequent PCA application, the actual values are available and their

estimates by PCA are employed as compressed data. On the other hand,

when the data of the object is incomplete due to any problem during data

collection, the actual values to estimate are not available and PCA is used to

infer them [15–19]. In the following, this sort of applications will be termed

Missing Data (MD) applications. Take for instance a number of tempera-

ture sensors in a chemical process. Typically, the readings of these sensors

are fairly correlated and PCA can be used to develop a soft-sensor including

all physical sensors. This soft-sensor may be robust to sensor failures. Thus,

if one sensor breaks down during actual application, the missing reading

can be recovered from the other readings. Obviously, the missing element

is not used in its own estimation as it happens in compression. Notice that

although the model may be built to be applied to incoming (future) data,

7
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the number of PCs is decided during model calibration with the data set

at hand. During calibration, actual values are available to compute the es-

timation error in both compression and MD applications.

b) When the interest is in the latent variables. This would be the case

when the objective is to interpret the model to gain data understanding

[20–23]. For this purpose, it is necessary to have in mind the limitations of

PCA itself. The PCA model in its traditional form can only model linear

relationships 1 . Besides, systematic information does not necessarily have

larger variance than the noise. In many cases, data understanding is gained

by assessing the PCA models for several numbers of PCs instead of ana-

lyzing a single model. This was the approach of [21], where cross-validation

by rkf was combined with other sources of information in the Structural

and Variance Information (SVI) plots. On the other hand, there are other

2-way (Multivariate Curve Resolution) methods which are often aimed at

obtaining pure components, which reflect the real underlying relationships

in certain types of data. In these cases, the number of components is often

known a-priori.

c) When the interest is in the distributions in latent variables and

residuals. For most applications, matrix PA in (1) is understood as the

PCA model itself. This is because it is the only matrix applied to incoming

(future) objects. Nonetheless, in statistical monitoring [24,25], matrices TA

and EA in (1) are used to develop control limits for incoming data. There-

1 Non-linearity may be an important issue also for a) and c), as well, but it is

particularly problematic when meaningful interpretations are sought.
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fore, TA, EA and the limits themselves are also part of the model of the

data. This should be taken into account to select A. In this type of applica-

tions, the goal is to select A so that the statistical distributions of TA and

EA defined from the calibration data are representative of the distributions

in incoming data, provided the process under analysis remains in control.

Some guidelines to select A for monitoring by assessing the stability of PA

with rkf (and therefore indirectly the stability of TA and EA) were sug-

gested in [21], but it remains as an open issue. On the other hand, the PCA

model may be developed for variability reduction (phase I) in a process us-

ing Multivariate Statistical Process Control (MSPC) techniques, which is a

different objective to actual monitoring (phase II in MSPC) [26,25].

Cross-validation approaches, exception made on the rkf, are based on the

prediction error in the sense that a specific piece of data is not used to compute

its prediction. The prediction error computed by these methods is suited to

select the number of PCs in the first category of applications (a)). Nonetheless,

it should not be used for categories b) and c). This prediction error measures

to what extent the model is able to recover missing elements, a completely

different goal to data exploration, where we want to learn from the data,

or monitoring, where stable loadings and residuals distributions are desired.

Furthermore, as it was shown in the first paper of this series [1], the prediction

based on the estimation of missing values present some features, for instance

the directional dependence, which may be a problem for these applications.

Reference [21] discusses some examples in which the number of PCs selected

using the PRESS by cross-validation (ekf ) is not the adequate one for data

understanding (b)) and process monitoring (c)). In the remainder, the paper

will focus on applications in category a) to study the performance of several

9
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cross-validatory approaches.

Category a) applications typically–although not always–follow two stages:

model building and model exploitation. In model building, a set of calibration

data is used to fit the parameters of the PCA model, with special empha-

sis on the matrix of loadings PA. This matrix is applied during the model

exploitation to incoming objects, independent to the calibration data.

4 Data sets

Two different experiments have been performed for the study presented in this

paper. Firstly, a set of data matrices obtained by simulation are analyzed. The

optimum number of PCs are known a priori and the data matrices are contam-

inated with measurement noise of different magnitudes. Secondly, a real data

set used in both the original papers by Wold [2] and Eastment and Krzanowski

[7] is analyzed. The data set corresponds to the gas chromatography retention

index matrix published by McReynolds [27].

4.1 Data generation for the simulation study

Four simulated data matrices will be used for comparison in this paper. Differ-

ently to the approach of [3], here it was preferred to handle a limited number

of data sets in order to be able to interpret the results from their specific

features. In all the cases, a number of latent variables (LVs) are simulated

and from them a set of observable variables (OVs) are computed. These OVs

represent the registered variables in a practical application. Thus, only the

OVs can be used to determine the number of PCs.

10
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The four data sets have a very different nature, with different number of LVs

and OVs. The LVs are generated independently at random following a normal

distribution with zero mean and unit variance. Each OV is obtained from

one LV or as a linear combination of several LVs. For simplicity, all OVs are

computed so that they have zero mean and unit variance.

The noise-free variables in the four data sets are generated according to Ta-

ble 1. All data sets contain 100 objects. The four data set are examples of

different correlation structures. Thus, for instance, the first data set may be

similar to typical data sets composed of process variables (such as tempera-

tures, pressures, etc.) while the fourth data set resembles spectral-like data

sets.

Measurement noise is generated independently for each OV and at random,

following a normal distribution with zero mean. The standard deviation used

depends on the percentage of noise chosen to be added to the data sets:

x′
i = (xi + (

√
σn) · n)/(

√
1 + σn)

where x′
i is the contaminated OV, xi the noise-free OV, σn the standard de-

viation of the noise and n the noise generated. The data sets are corrupted

with noise for 5%, 10%, 15%, 20% and 25% noise percentages, where percent-

ages are computed so that the lowest standard deviation of a LV is the 100%.

Thus, σn equals 0.05, 0.1, 0.15, 0.2 and 0.25, respectively.

A simple initial analysis can be performed to assess how the PCA subspace is

affected by the addition of noise in the simulated data. In the first data set, a

4 PCs model is computed for each of the data sets corrupted with noise from

5% to 25%, obtaining loadings matrices {P5...P25}. A 4 PCs model is also

11
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First Data Set

xi = (
√

i/5) · lv1 + (
√

1− i/5) · lv2, iϵ{1, .., 5}

xi = (
√
0.5) · lv1 + (

√
i/10− 0.5) · lv2 + (

√
1− i/10) · lv3, iϵ{6, .., 9}

x10 = ((
√
0.01) · lv1 + (

√
0.01) · lv2 + (

√
0.01) · lv3 + lv4)/

√
1.03

Second Data Set

xi = (
√
0.5) · lvj + (

√
0.5) · lvk, iϵ{1, .., 6}, j ̸= kϵ{1, .., 4}

xi = (
√
0.5) · lvj + (

√
0.5) · lvk, iϵ{7, 8, 9}, j ̸= kϵ{5, 6, 7}

x10 = lv8

Third Data Set

xi = lvi, iϵ{1, .., 12}

xi = (
√
0.5) · lvj + (

√
0.5) · lvk, iϵ{13, .., 27}, j ̸= kϵ{1, .., 6}

Fourth Data Set

xi = (
√
0.5) · lvj + (

√
0.5) · lvk, iϵ{1, .., 45}, j ̸= kϵ{1, .., 10}

x46 = lv11, x47 = lv12

x48 = (
√
0.5) · lv11 + (

√
0.5) · lv13

x49 = (
√
0.5) · lv12 + (

√
0.5) · lv14

x50 = lv15

Table 1

Generation of the observable variables in the data sets. xi stands for the i-th ob-

servable variable and lvj stands for the j-th latent variable.

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

computed for the noise-free original data representing the true LVs. Then,

each of the eigenvectors corresponding to the LVs are projected onto matrices

{P5...P25} and the percentage of sum-of-squares captured by the subspace is

computed, so that 100% means perfect matching, that is the LV is within

the subspace of the PCA model from corrupted data, and 0% means non-

correlation at all, i.e. the LV is orthogonal to the subspace. The results are

shown in Table 2. The PCs subspace remains almost unaltered for all noise

percentages, since the biggest amount of variance lost in a LV is lower than a

7%. This experiment was repeated for the other data sets. In the second and

the third data sets (numerical results not shown), the amount of lost variance

per LV is also low (less than a 4% and a 10%, respectively). Nonetheless, as

shown in Table 3, in the fourth data set the amount of variance lost in some

LVs is high and it is specially important for the last LV.

Table 2

Percentage of sum-of-squares of the eigenvectors corresponding to the true 4 latent

variables captured by the first 4 PCs for different percentages of noise in the first

simulated data set.

Eigenvalues 5% 10% 15% 20% 25%

lv1 732.7 99.9383 99.9447 99.8751 99.6825 99.8124

lv2 101.7 99.9635 99.8324 98.3473 98.9402 98.5995

lv3 64.8 99.7517 99.6387 98.0639 93.2534 94.4690

lv4 41.9 99.0927 97.6381 95.0962 94.8524 97.1282

4.2 McReynolds Data Set

The data set used here is the same of [7]. It contains 225 objects with 10

variables each. One of the 226 original objects presented in [27] was elimi-
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Table 3

Percentage of sum-of-squares of the eigenvectors corresponding to the true 15 latent

variables captured by the first 15 PCs for different percentages of noise in the fourth

simulated data set. Cases with more than a 10% of lost variance in bold.

Eigenvalues 5% 10% 15% 20% 25%

lv1 932.7 99.8655 99.4436 99.3449 99.3505 98.8665

lv2 686.9 99.7152 99.5208 99.0184 98.9959 99.0173

lv3 566.4 99.8139 99.3512 99.2420 98.7584 97.6257

lv4 537.1 99.5989 99.4411 98.7374 98.7159 97.2403

lv5 384.0 99.5886 98.9522 99.0641 97.9361 96.9172

lv6 324.4 99.6424 98.8730 98.3711 98.2257 97.3564

lv7 302.3 99.1420 98.2568 97.6809 98.3862 97.5041

lv8 280.8 99.4415 98.7593 98.0924 97.5675 96.7161

lv9 259.8 99.4100 98.7776 97.4315 96.9258 94.9566

lv10 208.0 99.1831 98.3904 98.0796 95.9656 96.8327

lv11 132.9 98.9694 97.2807 94.5677 92.8286 92.3113

lv12 106.0 98.0947 96.0115 95.2737 92.0951 93.6385

lv13 77.0 97.2661 95.4972 90.0593 86.3426 93.2747

lv14 27.8 94.3743 81.9770 77.0285 69.3470 72.3900

lv15 18.2 90.9541 78.5135 82.0575 29.4430 47.3982

nated from the data due to incompleteness. As in [2] and [7], the data was

analyzed with and without outliers (a total of 13 outliers are found by Wold

and Andersson [29]).
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5 Missing data (MD) applications

When the PCAmodel is going to be used for the estimation of missing values in

incoming data, cross-validation provides an estimate of the optimum number

of components A and of the expected estimation error. As already commented,

there are several cross-validation algorithms, among which the ekf and the

approaches by Wold [2] and Eastment and Krzanowski [7] were previously

highlighted. Figure 1 compares the estimation error computed by these three

methods with the true estimation error at model exploitation in the simulated

data. The latter is computed for each of the four simulated data sets as follows.

Firstly, a PCA model is built using the calibration data, with 100 observations.

Then, a new data set with 1000 observations, representing data during model

exploitation, is generated according to Table 1. Finally, a 10% of missing

values is introduced and recovered using the PCA models. From the actual

and estimated values, the estimation error is computed. All the plots in Figure

1 show the PRESS normalized by the number of missing elements estimated,

specified as Mean Squared Error (MSE):

MSEA =
1

Nm

·
Nm∑
n=1

(eAn )
2, (6)

where Nm is the number of missing elements considered and eAn is the estima-

tion error.

Figure 1 shows that the ekf provides a very accurate prediction of the estima-

tion error at model exploitation in a MD application, clearly outperforming the

other two approaches (Wold [2] and Eastment and Krzanowski [7]). This result

is expectable since the ekf algorithm, detailed in the first paper of this series

[1], perfectly resembles the two steps procedure of model building and model

15
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Fig. 1. Mean Squared Error by Cross-validation (MSECV) and for incoming data

(MSE) in the data sets of Table 1. Data are corrupted with 5% (dashdot line), 10%

(dotted line), 15% (dashed line), 20% (solid line) and 25% (solid line with circles)

of measurement noise. The first three rows show the MSECV computed with the

cross-validation by Wold [2] (first row), Eastment and Krzanowski [7] (second row)

and ekf (third row). The fourth row presents the MSE at model exploitation.

exploitation. The algorithm presents three nested loops to iterate through the

PCs, the observations and the variables. On the one hand, the second nested

loop performing row-wise cross-validation resembles the fact that the missing

data estimation will be carried out for objects during model exploitation, dif-

ferent to those used in model calibration. On the other hand, the inner loop

performing variable-wise cross-validation resembles the fact that the objects

during model exploitation will be incomplete and some variables will need to
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be estimated from the others. The approaches by Wold [2] and Eastment and

Krzanowski [7] do not resemble the logical procedure in MD applications and

because of that they do not provide good estimations of the error in model

exploitation. As a consequence, they are not suited to select the number of

PCs in MD applications.

5.1 MD methods within the ekf

The ekf method makes use of the missing data method referred here as direct

estimation (see the first paper of this series [1]). This was also the method to

estimate the missing elements employed at model exploitation in the results

shown in Figure 1. Direct estimation is well known to provide a sub-optimal

estimation solution, as shown in [18] where it is referred as trimmed score

imputation (TRI). Since other missing data estimation methods provide more

accurate estimates than direct estimation, it is sensible to use these approaches

instead of direct estimation in MD applications. As it was previously shown,

the cross-validation method should resemble the procedure followed in MD

applications to provide adequate estimations of the error during model ex-

ploitation. Therefore, if a different estimation method is used during model

exploitation, the ekf needs to be modified accordingly. In this paper, the ex-

tension of ekf to three MD methods is considered: iterative imputation [28],

Projection to Model Plane (PMP) [15] and Trimmed Score Regression (TSR)

[18]. The last method is representative of regression-based imputation methods

[19], some of which were also presented in [15].

The extension to incorporate iterative imputation to the inner loop of the

ekf algorithm is presented in Algorithm 1. The basic idea is to iterate the

17
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For each PC (A = 1...Amax)

For each group of objects (g = 1...G)

Form X∗ with data from all groups but g

Form X# with data from g

Fit a PCA model from X∗, obtaining PA
∗ and TA

∗

For each group of variables (h = 1...H)

Set X#,h = 0

Repeat until X#,h converges

TA
# = X# ·PA

∗

X̂# = TA
# · (PA

∗ )
t

X#,h = X̂#,h

end

Restore its actual value to X#,h

EA
g,h = X#,h − X̂#,h

end

end

Combine matrices EA
g,h in EA

PRESSA =
∑N

n=1

∑M
m=1(e

A
n,m)2

end

Algorithm 1

Element-wise k -fold (ekf ) algorithm based on iterative imputation.

estimation until convergence in the core of the algorithm. A discussion on the

differences between direct and iterative estimation, geometric interpretation,

and the proof of convergence is presented in the Appendix. It is interesting

to note that the incorporation of the iterative estimation in ekf solves the
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Fig. 2. Mean Squared Error by Cross-validation (MSECV) and for incoming data

(MSE) in data set 1 of Table 1. Data are corrupted with 5% (dashdot line), 10%

(dotted line), 15% (dashed line), 20% (solid line) and 25% (solid line with circles)

of measurement noise.

problem of inconsistency reported in the first paper of this series [1]. This is

also further developed in the Appendix. Similarly as in Algorithm 1, the PMP

and TSR estimation methods were introduced in the core of ekf algorithm

(not shown).

In Figure 2, the MSE obtained in the estimation of missing elements by direct

estimation, iterative estimation, PMP and TSR during model exploitation in

the first simulated data set is compared to the MSE by ekf cross-validation

using the corresponding missing data method in the core. The figures shows

that the ekf yields good estimations for different missing data methods pro-

vided the corresponding method is employed in the core of the algorithm.

Furthermore, the ekf algorithm may be useful to select, during model cali-

bration, the best missing data method for the given correlation structure in

a data set. Thus, according to the results of the ekf in Figure 2, it may be

concluded that TSR is the preferred method for the first simulation data set.

In TSR, if the number of PCs is overestimated, the imputation of missing
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data is not worsened in an important degree. Therefore, this overestimation

is not an issue when TSR is used. This is a desirable feature since the use of

an inadequate (too high) number of PCs may not affect dramatically the esti-

mation in MD applications. The other approaches do not present such a nice

feature, and the PRESS tends to increase fast for too high number of PCs.

Thus, the model with 1 PC would be appropriate for a MD application based

on any of the estimation methods, attaining a similar estimation error. The

model with 4 PCs is only appropriate if direct estimation or TSR are used. If

higher numbers of PCs are used in the model, only TSR is appropriate. The

fact that direct estimation and especially TSR can be used for higher numbers

of PCs shows that these estimation methods are less affected by the presence

of noise than the other considered.

Let us further investigate the performance of the missing data methods. In

Table 4, the minimum PRESS attained by ekf with the different imputation

methods (direct, iterative, PMP and TSR) is shown. The best approach (low-

est PRESS) for each case is highlighted in bold numbers. According to the

results, the iterative estimation does not generally outperform direct estima-

tion in the simulation examples, but rather tends to inflate the error. Iterative

estimation and PMP are numerically equivalent except in specific cases (see

the Appendix), as happens in the example in Figure 2. In those cases the error

by PMP is highly inflated. TSR yields the best outcomes in Table 4, and also

the best suited PRESS curve as shown before (Figure 2(d)).

The PRESS curves by ekf using direct estimation, iterative estimation, PMP

and TSR are compared for the real data set in Figure 3 and the minimum

PRESS values are listed in Table 5. The data set with and without outliers

gives very similar results in all the approaches. In this case, the iterative esti-
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Table 4

Minimum PRESS in the imputation of missing data for different approaches. The

number of true latent and observed variables of the simulated data sets in paren-

thesis.

Noise First data set (4/10) Second data set (8/10)

5%

10%

15%

20%

25%

Direct Iterative PMP TSR

262 186 291 185

313 297 329 256

328 346 346 294

375 383 383 355

401 400 400 382

Direct Iterative PMP TSR

654 492 793 440

688 710 829 537

675 810 810 564

665 794 794 566

701 867 867 645

Noise Third data set (12/27) Fourth data set (15/50)

5%

10%

15%

20%

25%

Direct Iterative PMP TSR

884 878 878 873

1.017 1.037 1.037 1.030

1.111 1.147 1.147 1.138

1.264 1.355 1.355 1.310

1.314 1.461 1.461 1.408

Direct Iterative PMP TSR

814 784 784 692

1.083 1.076 1.076 981

1.351 1.356 1.356 1.297

1.590 1.653 1.653 1.574

1.756 1.835 1.835 1.760

mation and PMP yield a better missing data estimation performance than the

direct estimation. PMP shows instability at the ninth PC, but the iterative

estimation does not. In this data set, TSR shows the same good performance

than in the first simulated data set: the overestimation of the number of PCs

has no impact on the estimation performance and the minimum PRESS at-

tained is lower than that of the other approaches.

Concluding, the ekf algorithm is suggested for the choice of the MD algorithm,
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Fig. 3. PRESS curves in the McReynolds data set (1970): complete data set (solid

line) and reduced data set (solid line with circles).

Table 5

Minimum PRESS in the imputation of missing data for different approaches.

Data set Results

Complete

Without outliers

Direct Iterative PMP TSR

3.47× 106 1.39× 106 1.40× 106 0.77× 106

2.38× 106 0.37× 105 0.37× 106 0.30× 106

the number of PCs, and to estimate the MSE error of data during model

exploitation. Iterative estimation and PMP are numerically equivalent except

in specific cases where PMP tends to become unstable. Therefore, the PMP

imputation is not suggested for MD applications. TSR gave very good results

in both simulated and real data.

6 Compression

Outside the chemometrics field, PCA has been mainly employed in data com-

pression [11–14]. Typically, PCA is applied as a preprocessing step for dimen-

sion reduction prior to other costly computations. The aim in PCA is to max-

imize the amount of useful information captured by a reduced number of PCs,

and again this number needs to be selected. Also, if possible, any type of noise
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should be left in the residuals and discarded. As it was already commented,

compression is different to MD applications in the fact that the objects are,

in principle, complete at both model building and model exploitation.

In the first paper of this series [1], the valley shape of the PRESS curve

by ekf was rationalized from the content of redundant, i.e. shared, informa-

tion and non-redundant information in the variables. The influence of non-

redundant information in the PRESS curve is three-fold: a) the total amount

of non-redundant information establishes a minimum for the PRESS, b) non-

redundant information captured by the model from variables with a (previ-

ously captured) portion of redundant information make the PRESS to increase

and c) non-redundant information in variables with no content of redundant

information barely affects the PRESS curve. As discussed in [1], effect b) has

the nice consequence that the independent measurement noise tends to cause

an increment of PRESS. This is because measurement noise usually presents

less variance than structured information and so the latter is incorporated first

into the model. Unfortunately, due to effect c), the PRESS curve by ekf is

barely influenced by variables solely composed of non-redundant information.

Thus if ekf is used to determine the number of PCs in the model for com-

pression, there is a potential risk of losing the information in non-redundant

variables. Notice that one of these variables may be relevant for the final

application for which data is compressed (for instance, classification). This

limitation of ekf is shared by all cross-validation methods based on the esti-

mation of prediction error, including all the modified versions of ekf studied

in the previous section and the approaches of [2] and [7].

The described particular behavior of the PRESS by ekf is related to the fact

that the estimation error depends on structural parameters of the model. Since
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the error depends on these parameters, the same distribution of the scores may

lead to different PRESS curves for different directions of the PCs. This was

referred to as the directional dependence problem of ekf in [1]. It was also

shown that the directional dependence problem can be solved by using rkf

instead of ekf and this may be a valid alternative for compression. Nonethe-

less, as discussed in the previous paragraph, the directional dependence has

the consequence that the independent measurement noise does not affect the

PRESS, which results in a better selection ability of the number of PCs in the

presence of noise. Therefore, it would be interesting to define a modification

of the ekf algorithm that considers variables composed of non-redundant in-

formation, avoiding effect c) in the previous paragraph, while maintaining the

capability of measurement noise detection, effect b). Although this seems to

be contradictory, it is possible to a certain degree by augmenting the matrix

of data X with redundant information. However, the direct duplication of the

data in matrix in Xaug = [X,X] also duplicates the measurement noise, re-

ducing the ability of ekf to filter it out in the PRESS curve. An alternative

and very promising approach is to use the information of the PCA model it-

self (the scores) in the duplication. This information has been filtered with

the PCA model, so that most of the noise has been subtracted from the data

when the model has only significant PCs. For A PCs, the matrix of data can

be augmented in two similar ways:

XA
aug = [X,TA] (7)

XA
aug = [X,TA · (PA)t] (8)

The first approach adds A columns to the data matrix to obtain the PRESS

for A PCs. Thus, an additional column is added to the augmented matrix
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every time a new PC is added to the model. The second approach doubles

the size of the data matrix. Although not exactly equal, these are very similar

approaches, being the first one preferred because the total number of variables

inXaug is lower and so it is the processing time. It should be taken into account

that if X is scaled inside the cross-validation procedure and (7) is used, TA

must not be scaled. This is because the scale in TA is proportional to the

relevance of the PCs in terms of variance and so this information must be

preserved.

The idea of using an augmented matrix of data and the ekf cross-validation

procedure has been implemented in the corrected element-wise k-fold (cekf )

algorithm in Algorithm 2. Following the same procedure explained in [1], an

efficient version of the cekf algorithm can be derived. Due to data duplication,

there is only redundant information in the data for the cekf algorithm when

considering a PCA model with full rank. This has relevant consequences with

respect to the properties of ekf introduced in the first paper of this series [1].

First, Property 2 states that the estimation error in ekf of a variable not in the

span of the other variables for a PCA model with full rank is equal to the error

in the initial estimation. This property does not hold for cekf, because there is

no variable out of the span of the rest in the augmented matrix. Also, Property

3 states that the PRESS of a variable according to ekf is lower bounded by the

sum of squares of the non-redundant information in that variable. Thus, there

is always a minimum attainable for the PRESS by ekf. On the contrary, the

minimum PRESS attainable by cekf is 0, since all non-redundant information

is transformed to redundant. In Figure 4, a hypothetical example of PRESS

curve by ekf is compared with its counterpart by cekf. The non-redundant

significative information in the PCA model can be effectively detected by
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For each PC (A = 1...Amax)

For each group of objects (g = 1...G)

Form X∗ with data from all groups but g

Form X# with data from g

Fit a PCA model from X∗, obtaining PA
∗ and TA

∗

TA
# = X# ·PA

∗

XA
∗,aug = [X∗,T

A
∗ ], remember not to scale TA

∗

Fit a PCA model from XA
∗,aug, obtaining PA

∗,aug and

TA
∗,aug

For ēach group of variables (h = 1...H)

Set X#,h = 0

XA
#,aug = [X#,T

A
#]

TA
#,aug = XA

#,aug ·PA
∗,aug

X̂A
#,aug = TA

#,aug · (PA
∗,aug)

t

Restore its actual value to X#,h

EA
g,h = X#,h − X̂#,h

end

end

Combine matrices EA
g,h in EA

PRESSA =
∑N

n=1

∑M
m=1(e

A
n,m)2

end

Algorithm 2

Corrected element-wise k -fold (cekf ) algorithm.

cekf. The adequate number of PCs is underestimated by ekf because the non-

redundant variables are not taken into account. It should be noted that cekf
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Amount of non-redundant information

# PCs

P
R

E
SS

ekf

PRESS of initial estimation (0 PCs)

cekf

True optimum #PCs rank

Fig. 4. Example of PRESS computed by ekf and cekf. The #PCs of minimum

PRESS change since cekf takes into account the non-redundant information.

is suited for compression but not for MD applications.

6.1 Simulated data sets

Now let us compare some of the cross-validation methods in the determination

of the number of PCs for compression. The simulation data sets generated

according to Table 1 will be used in the comparison. The goal is to capture

the main part of the structural data, leaving as much noise as possible in the

residuals. Therefore, it will be assumed that the optimum number of PCs for

compression is the number of LVs used in the data generation of the data sets

(in Table 1).

In Figure 5, the outcomes of the different approaches considered, namely the

R-statistic by Wold [2], the W -statistic by Eastment and Krzanowski [7] and

the PRESS by ekf, cekf and rkf, are shown. The R-statistic and W -statistic

are very irregular. This irregularity often causes the methods to arrive to the

stopping rule for a number of PCs lower than the appropriate one. The PRESS

by ekf reflects a steady behavior when the sources of variability captured in

the PCs are not shared by several variables (i.e. they do not contain redundant
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Fig. 5. Different approaches for the selection of the number of PCs in the data sets of

Table 1. Data are corrupted with 5% (dashdot line), 10% (dotted line), 15% (dashed

line), 20% (solid line) and 25% (solid line with circles) of measurement noise. The

different methods are the R-statistic by Wold [2] (first row), the W -statistic by

Eastment and Krzanowski [7] (second row) and the PRESS by ekf (third row), cekf

(fourth row) and rkf (fifth row).

information). This is mainly observed in the PRESS curves for the first three

data sets. This is solved in cekf at the expense of reducing the increasing

tendency of the PRESS in the lasts PCs. The minimum of the PRESS by

cekf detects the true number of latent variables in most of the cases. Finally,
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the PRESS curves by rkf are also reflecting the true number of PCs. This is

visually apparent at least for the first and the third data sets.

Table 5

Number of PCs detected by different approaches. The number of true latent and

observed variables of the simulated data sets in parenthesis.

Noise First data set (4/10) Second data set (8/10)

5%

10%

15%

20%

25%

R W ekf cekf

1 4 4 4

1 4 3 4

1 1 3 4

1 1 3 4

1 1 1 4

R W ekf cekf

2 1 7 8

2 1 7 8

2 1 6 8

2 0 6 8

1 0 6 8

Noise Third data set (12/27) Fourth data set (15/50)

5%

10%

15%

20%

25%

R W ekf cekf

6 6 12 12

6 6 12 12

6 6 12 12

6 6 12 12

6 6 12 12

R W ekf cekf

10 12 13 15

10 12 13 15

10 12 13 16

10 12 13 16

10 12 13 17

In Table 5, the number of PCs estimated by the different approaches consid-

ered, except for rkf 2 , is shown. The correct estimations are highlighted in bold

numbers. The proposed method cekf outperforms the other approaches, esti-

2 The number of PCs selected by rkf is not included in Table 5 since a decision rule

(a threshold) needs to be defined and this would dramatically affect the performance

of the method and compromise the objectivity of the comparison.
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mating the true number of components even for high noise percentages. The

other approaches tend to underestimate the number of PCs. For the fourth

data set, cekf overestimates the number of PCs for noise percentages larger

than 10%. Nonetheless, Table 3 shows that for those noise percentages, there

are latent variables with a high portion of their variance in the residuals. It

is therefore difficult to state whether the true number of PCs should be 15 or

else more components are necessary.

It should be noted that all the simulated data sets present a favorable situation,

in which the percentage of measurement noise in each variable is lower than a

25% of the minimum amount of variability of a latent variable. Nonetheless, in

real data sets, true latent variables may be masked by a higher level of noise

or, more often, variables may not be related in a perfectly linear way. There-

fore, we can always find situations in which PCA may not separate so nicely

structural information from noise, and ekf or even cekf do not provide an

adequate number of PCs. Still, in these situations, the number of PCs may be

selected according to practical considerations. For instance, imagine we apply

PCA for dimension reduction prior to a non-linear modelling task, e.g. using a

support vector machine (SVM). The number of PCs may be selected as a com-

promise solution between the reduction of PRESS and the added complexity

to the SVM when including an additional PC. For such an application, the

PRESS curves by ekf or cekf may be misleading, since they are the result of a

complex combination of structural information and variance captured by the

model. Thus, a simpler PRESS curve, like that provided by the rkf method, is

suggested. The PRESS by rkf is easier to understand than the PRESS by the

other methods, and rkf is not directional dependent [1]. In rkf, the PRESS is

only reflecting the amount of variance the model will capture in future objects
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and this idea can be easily combined with other considerations. For instance,

the PRESS by ekf may be misleading if a practical consideration is to capture

a certain percentage of information of each variable, whereas this is straight-

forward with rkf. Eventually, the number of PCs in compression should also

be decided upon the final goal of the application. For instance, if the SVM

is trained as a classifier, the classification figures of merit, computed in a rkf

cross-validatory fashion, are used to determine the number of PCs.

Let us return to the McReynolds data set. The results regarding the selection

of the number of PCs are presented in Figure 6 and Table 6. Some small

differences in the R-statistics presented here with those published by Wold

are observed, probably caused by differences in the selection of the groups of

the cross-validation and in the treatment of the data used. Nonetheless, note

that the differences are negligible and that the number of PCs in Table 6 are

the published ones.

Table 6

Number of PCs detected by different approaches in the McReynolds data set (1970).

R W ekf cekf

Full data 2 2 1 1

Reduced data 5 3 1 1

Figure 6 shows that the R and W statistics are affected by the presence of the

13 outliers. The shape of both statistics is different when computed with and

without outliers. This was commented in the original papers. Whereas Wold

stated that the optimum number of PCs was masked because of the outliers,

Eastment and Krzanowski stated that in both cases the same number of PCs

would be determined with their approach.
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Fig. 6. Different approaches for the selection of the number of PCs in the

McReynolds data set (1970): complete data set (solid line) and reduced data set

(solid line with circles).

In the case of the ekf, cekf and rkf the elimination of the outliers did not

lead to a significative change in the shape of PRESS. At least not for the only

one significant PC found. The minimum value of W also points out one PC.

Although 1 PC seems to be an adequate choice, care should be taken since real

data do not necessary have to meet PCA modelling assumptions -i.e., that the

information is hidden in the form of latent, linear combinations of variables-

as simulated data was imposed to.

7 Conclusion

This is the second paper of a series devoted to provide theoretical results and

new algorithms for the selection of the number of Principal Components (PCs)
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in Principal Component Analysis (PCA) using cross-validation. The first paper

of this series [1] was focused on the theoretical study of the element-wise k -fold

(ekf ) cross-validation, which is among the most used algorithms to select the

number of PCs in PCA and is included in a widely used commercial software

packet: the PLS Toolbox. Theoretical results showed that the use of ekf is a

bad practice from a general perspective.

In the present paper, it is argued that the appropriate number of PCs for the

same calibration data should be selected differently depending on the appli-

cation the PCA is used for. A taxonomy with three categories of applications

of PCA is proposed: those focused a) on the observable variables, b) on the

latent variables and c) on the distributions of latent variables and residuals.

Cross-validatory algorithms computing the prediction error in observable vari-

ables, like ekf, are only suited for the first category. Two applications within

category a), missing data estimation and compression, are considered in this

paper. A number of cross-validation methods, several of which are original,

are compared using simulated data.

The results show that the ekf is suited for missing data applications. The origi-

nal ekf proposal and the cross-validation in the first releases of the PLS Toolbox

were based on the simplest missing data imputation method: the trimmed

score regression. In this paper, the ekf algorithm is also extended to other

missing data methods, namely iterative estimation, Projection to Model Plane

(PMP) and Trimmed Score Regression, the latter being preferred. The algo-

rithm included in the new releases of the PLS Toolbox is based on PMP.

Practical and theoretical results presented here show that this choice is not

adequate.
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Regarding data compression, a new proposed algorithm (corrected ekf ) is

introduced to improve the ekf performance. The row-wise k -fold (rkf ) method,

the simplest PCA cross-validation method, shows up as an appropriate tool

for compression despite of its numerous detractors.

Traditional cross-validation methods, such as the approaches by Wold [2] and

Eastment and Krzanowski [7] were not found to be useful in the PCA appli-

cations considered.

A side but relevant contribution of this series of papers is the theoretical

study of three types of error in PCA models: the reconstruction error, the

error of direct estimation and the error of iterative estimation. Although this

study was necessary for the understanding of cross-validation in general and

for the design the new cross-validation algorithms, the theoretical findings

may have a broader applicability, since these types of errors are used in many

chemometric applications and contexts. The reconstruction error and the error

of direct estimation were studied in the first paper of the series. The error of

iterative estimation is studied in the Appendix of the present paper.
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A Iterative estimation

A.1 Notation

Scalars are specified with lower case letters, column (by default) vectors with

bold lower case letters and matrices with bold upper case letters. Constants

are specified with upper case letters.

Equations presenting matrix and vectorial products and sums of scalars are

used indistinctly throughout the paper for the sake of easy understanding.

Without loss of generality, an explicit ordering of the variablesm ∈ {1, ...,M},

the observations n ∈ {1, ..., N} and the loading vectors of the PCs a ∈

{1, ..., A} is assumed in the sums.

A sum including all variables but m is represented by:
∑

v ̸= m

A sum including all variables in a group h is represented by:
∑

v ∈ h

A sum including all variables in a group h except variable m is represented

by:

∑
v ̸= m

v ∈ h
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A.2 Direct estimation vs iterative estimation

The estimation with PCA of a data element follows [1]:

x̂A
n,m = xn,m · αA

m +
∑
v ̸=m

xn,v · βA
v,m. (A.1)

In practice, xn,m takes part in its own estimation with weight αA
m and the rest

of values xn,v with weight βA
v,m. Now, consider the following definition:

QA = PA · (PA)t. (A.2)

Matrix QA is a M × M symmetric matrix where αA
m is the element in the

diagonal for row (or column) m and βA
v,m is the element out of the diagonal for

row v and column m. QA has A eigenvalues equal to 1 and M −A eigenvalues

equal to 0 [21].

The reconstruction of xn,m from a PCA model can be expressed as:

xn,m = xn,m · αA
m +

∑
v ̸=m

xn,v · βA
v,m + rAn,m, (A.3)

being rAn,m = xn,m − x̂A
n,m the reconstruction error of xn,m with A PCs and

x̂A
n,m its estimation from (A.1). Let us imagine the actual value xn,m cannot

be used in its own estimation. Then, xn,m can be estimated substituting its

value in equation (A.1) by a certain value x̂(0)
n,m. The estimation follows:

x̂(1)
n,m = x̂(0)

n,m · αA
m +

∑
v ̸=m

xn,v · βA
v,m. (A.4)

This will be termed here as direct imputation. For x̂(0)
n,m = 0, it has been

referred by [18] as trimmed score (TRI) imputation. The direct imputation
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can be extended to the more general case when the values of several variables

are missing at the same time:

x̂(1)
n,m = x̂(0)

n,m · αA
m +

∑
v ̸= m

v ∈ hm

x̂(0)
n,v · βA

v,m +
∑
v ̸∈hm

xn,v · βA
v,m, (A.5)

where hm is a group of variables which are estimated at the same time than

variable m. Equation (A.5) can be iteratively evaluated until the estimation

converges:

x̂(i)
n,m = x̂(i−1)

n,m · αA
m +

∑
v ̸= m

v ∈ hm

x̂(i−1)
n,v · βA

v,m +
∑
v ̸∈hm

xn,v · βA
v,m, (A.6)

where x̂(i)
n,m is the estimate obtained when i iterations have been computed.

This has been referred by [18] as iterative imputation. Notice in (A.6) the

estimate of the value of a variable x̂(i)
n,m is obtained according to the PCA model

(loadings in αA
m and βA

v,m), and from: a) the estimate of the same variable in

the previous iteration x̂(i−1)
n,m , b) the estimates in the previous iteration of the

others variables in the group hm, x̂
(i−1)
n,v for v ∈ hm, and c) the actual values

of the variables out of the group hm, xn,v for v ̸∈ hm.

Figure A.1 illustrates the geometry of both direct imputation (TRI) and it-

erative imputation. The case for 2 original variables and 1 PC is presented.

In the example, two observations with the same value in variable 1 but very

different values in variable 2 are shown. The value corresponding to variable 2

is eventually missing in the observations. It is interesting to note that the val-

ues of variable 2 for the two original observations will be equally estimated by
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Var 1

Var 2

PC

Original observation

Var2 set to 0

Estimate Direct Imp.

Estimate Iterative Imp.

Fig. A.1. Geometric illustration of TRI and iterative imputation with 1 PC of two

original samples in a 2-dimensional space.

the imputation methods, since these estimates start form the common value

of variable 1. Assume the variable 2 is initially set to zero, i.e. x̂
(0)
n,V ar2 = 0.

Then, the two original observations are transformed into the point represented

by the square. This point is projected on the PC and the resulting point (the

trimmed score) is projected on ’Var2’. The TRI estimate of the original obser-

vations is represented by the circle. If this operation is repeated successively

till convergence, the iterative estimate is found. The iterative estimate of the

original observations is represented by the circle inside the square.

The quality of estimation of a variable with PCA can be assessed with the

sum of squares of estimation errors (SSE). The SSE associated to a variable

m for A PCs is computed according to the following expressions:

SSEA
m =

Nt∑
n=1

(eAn,m)
2, (A.7)

eAn,m = xn,m − x̂(i)
n,m, (A.8)

where Nt is the number of objects used to compute the SSE, x̂(i)
n,m is the es-

timate of xn,m and eAn,m is the estimation error. The difference between the

reconstruction error rAn,m and the estimation error eAn,m in (A.8) is that in the
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latter, the estimate x̂(i)
n,m is computed without using the actual value xn,m.

On the contrary, to obtain rAn,m, xn,m is used. Notice that the meaning of

the terms reconstruction error and estimation error may be different in other

documents of the literature. Also, when the estimation errors correspond to

objects which were not used in the calibration of the PCA model, the SSE is

commonly termed prediction error sum-of-squares (PRESS).

Theorem The estimation of the iterative algorithm converges.

Proof: The convergence in the iterative algorithm can be studied as the one

of the multivariate discrete series from equation (A.6). The estimation at the

i-th loop can be arranged in matrix form as follows:

x̂
(i)
n,hm

= Ωhm · x̂(i−1)
n,hm

+Θhm ,̸hm · xn,̸hm , (A.9)

where xn,hm and xn,̸hm are column vectors containing the values of variables

in hm and out of hm, respectively, for object n; and Ωhm and Θhm ,̸hm are

sub-matrices of QA (A.2) so that:

Ωhm = PA,hm ·Pt
A,hm

, (A.10)

Θhm, ̸hm = PA,hm ·Pt
A,̸hm

, (A.11)

where PA,hm is the sub-matrix of PA containing the rows corresponding to the

variables in hm, andPA,̸hm is the sub-matrix ofPA with the rows corresponding

to variables out of hm.

It is well known that the discrete series (A.9) converges if and only if the

eigenvalues of Ωhm are inside the complex unit circle. Since Ωhm is symmet-
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ric its eigenvalues are real. According to the Cauchy’s interlace theorem, if a

row-column pair is deleted from a real symmetric matrix, then the eigenvalues

of the resulting matrix interlace those of the original one [30]. That is, each

eigenvalue of the resulting matrix will be between two eigenvalues of the orig-

inal matrix. According to this, the eigenvalues of Ωhm interlace those of QA

and so they lie in the interval [0,1]. Therefore, the series (A.9) converges.

A.3 Characterization of the error by iterative estimation

Let us particularize (A.6) for the imputation of one variable at a time:

x̂(i)
n,m = x̂(i−1)

n,m · αA
m +

∑
v ̸=m

xn,v · βA
v,m. (A.12)

This estimation can be re-expressed as a function of the initial estimation

x̂(0)
n,m:

x̂(i)
n,m = (αA

m)
i · x̂(0)

n,m +

i−1∑
j=0

(αA
m)

j

 ·
∑
v ̸=m

xn,v · βA
v,m. (A.13)

For αA
m < 1, the value to which x̂(i)

n,m converges does not depend on the initial

estimation since limi→∞(αA
m)

i = 0. Furthermore, we know that the geometric

series
∑i−1

j=0(α
A
m)

j converges to 1
1−αA

m
for 0 < αA

m < 1. Therefore:

lim
i→∞

x̂(i)
n,m =

1

1− αA
m

·
∑
v ̸=m

xn,v · βA
v,m, αA

m < 1. (A.14)

This equation provides an explicit formulae to compute the value to which the

iterative algorithm converges when one variable at a time is being imputed.

This can be used except for the specific case αA
m = 1 (i.e., m not in the span

of the other variables and A = Rank(X)). In that case, according to [21] it

40



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

holds that βA
v,m = 0, ∀v ̸= m ∈ {1, ...,M}. Thus, from (A.6) x̂(i)

n,m = x̂(0)
n,m, ∀i =

{0, ...,∞}. If xn,m is available (for instance, this is the case in cross-validation),

(A.14) can be computed in an efficient way using (A.3):

lim
i→∞

x̂(i)
n,m = xn,m −

rAn,m
1− αA

m

, αA
m < 1. (A.15)

From (A.8), (A.3) and (A.14), the error of estimation in convergence is:

eAn,m = xn,m · αA
m + rAn,m − αA

m

1− αA
m

·
∑
v ̸=m

xn,v · βA
v,m, αA

m < 1. (A.16)

From (A.15) a computationally efficient form of (A.16) is:

eAn,m =
rAn,m

1− αA
m

, αA
m < 1 (A.17)

,

Again, this holds except for the case αA
m = 1. In that case, (A.17) presents

indeterminate form and x̂(i)
n,m = x̂(0)

n,m, ∀i = {0, ...,∞}, as already discussed.

Therefore, eAn,m = ϵ(0)n,m as it happens in direct imputation [1]. From (A.17) the

SSE can be computed:

SSEA
m =

1

(1− αA
m)

2
·

Nt∑
n=1

(rAn,m)
2, αA

m < 1, (A.18)

which can be used except for the case αA
m = 1. As it happens with the direct

imputation [1], we can assume by convention that SSE0
m =

∑Nt
n=1(ϵ

(0)
n,m)

2. For

full rank, (A.18) applies except for αA
m = 1, and SSERank(X)

m = 0. For αA
m =

1 (i.e., full rank and m not in the span of the other variables) there is no

prediction power for m and: SSERank(X)
m =

∑Nt
n=1(ϵ

(0)
n,m)

2 = SSE0
m.
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According to the previous discussion, the error of estimation in the iterative

algorithm of a variable which belongs to the span of other variables in a PCA

model with A = Rank(X) is equal to 0. This does not happen when using

the direct imputation (see Property 1 in [1]). To extend this property to the

general case where several variables are imputed at the same time, hm should

be carefully chosen so that Ωhm in (A.9) does not have any eigenvalue equal to

1. To see this, let us follow the same procedure of the preceding demonstration.

Let x̂
(i)
n,hm

in (A.9) be re-expressed as a function of the initial estimation x̂
(0)
n,hm

:

x̂
(i)
n,hm

= Ωi
hm

· x̂(0)
n,hm

+

i−1∑
j=0

Ωj
hm

 ·Θhm ,̸hm · xn,̸hm , (A.19)

where the power of a matrix M is defined as Mi = Πi
j=1M. Since Ωhm is a

symmetric matrix, we know that:

Ωhm = O ·D ·Ot, (A.20)

where O is an orthonormal matrix and D is a diagonal matrix containing the

eigenvalues of Ωhm . Then, the following holds:

Ω2
hm

= Ωhm ·Ωhm = O ·D ·Ot ·O ·D ·Ot = O ·D ·D ·Ot, (A.21)

and in general:

Ωi
hm

= O ·Di ·Ot. (A.22)

For the algorithm to converge to a x̂
(i)
n,hm

value which is independent of the

initial estimation:

lim
i→∞

Ωi
hm

= 0, (A.23)
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which from (A.22) is equivalent to:

lim
i→∞

Di = 0. (A.24)

As it was proved before, the eigenvalues of Ωhm in the diagonal of D are real

values which lie in the interval [0,1]. In particular, (A.24) will be true if all the

eigenvalues of Ωhm are lower than 1. For the eigenvalues of Ωhm lower than 1

it also holds:

∞∑
j=0

Ωj
hm

= (I −Ωhm)
−1. (A.25)

Therefore, from (A.19):

lim
i→∞

x̂
(i)
n,hm

= (I−Ωhm)
−1 ·Θhm ,̸hm · xn,̸hm , eig(Ωhm) < 1. (A.26)

Equation (A.26) provides an explicit formulae to compute the value to which

the iterative imputation of multiple variables converges. This can be used if

all the eigenvalues of Ωhm are lower than 1. This, in turn, can be assured by

properly selecting the groups of variables left out at the same time except for

the specific case αA
m = 1 (i.e., m not in the span of the other variables and full

rank).

On the other hand, from (A.3) we know that:

(1− αA
m) · xn,m −

∑
v ̸= m

v ∈ hm

xn,v · βA
v,m =

∑
v ̸∈hm

xn,v · βA
v,m + rAn,m, (A.27)

re-arranged in matrix form:

(I−Ωhm) · xn,hm = Θhm ,̸hm · xn,̸hm + rAn,hm
, (A.28)
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then:

xn,hm = (I−Ωhm)
−1 ·Θhm ,̸hm · xn,̸hm + (I−Ωhm)

−1 · rAn,hm
, (A.29)

thus, from (A.26) and (A.29), the error of estimation for each group of variables

hm:

eAn,hm
= (I−Ωhm)

−1 · rAn,hm
, eig(Ωhm) < 1, (A.30)

so that in particular for full rank (rAn,hm
= 0):

lim
i→∞

x̂
(i)
n,hm

= xn,hm , A = Rank(X), eig(Ωhm) < 1. (A.31)

Therefore, the error of estimation in the iterative algorithm of a variable which

can be expressed as a linear combination of the other variables in a PCA model

with A = Rank(X) is equal to 0, provided the groups of variables left out at

the same time are selected so that all the eigenvalues of Ωhm are lower than 1.

This result means that the inconsistency problem in direct imputation found

in the first paper of this series [1] is solved by iteration. This will be further

studied in the next section.

A.4 Inconsistency and directional dependence

Let us return to the same example used in [1] to show the inconsistency and

directional dependence problems in direct estimation. The example will be re-

peated to illustrate the absence of the inconsistency problem but the presence

of the directional dependence in iterative estimation.

Consider the hypothetical examples shown in Figure A.2. Let us imagine we
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have already calibrated the PCA model and that we are interested in geo-

metrically characterizing the points in the space in which the estimation error

of each coordinate from the other would be reduced by adding PCs to the

model. For this, a grid on the square area spanned by the coordinates {x, y},

for x ∈ [−10, 10] and y ∈ [−10, 10], was performed. The sum-of-squares of esti-

mation error (SSE) corresponding to each point {x, y} in the grid is computed

as (eAx )
2 + (eAy )

2, where eAx is the estimation error of coordinate x when this

information is missing and eAy is the estimation error of y when it is missing.

In each of the two rows of figures in Figure A.2, the two original variables are

represented by a different pair of PCs. In the first column (Figure A.2(a)), the

directions of the 2 PCs are shown. In the rest of the figures, the SSE ratio of

the missing coordinates in every point is compared for 1 and 2 PCs:

(e2x)
2 + (e2y)

2

(e1x)
2 + (e1y)

2
, (A.32)

This ratio is represented as a color map. The color code shows where there is

an increase or reduction in SSE when the second PC is added to the model.

In the second column of figures, the ratio of reduction of SSE according to

direct estimation is represented. In the third column, the same for iterative

estimation is represented.

In direct imputation, the points with the maximum improvement in prediction

error when adding the second PC coincide with the bisectrices of the quad-

rants instead of with the second PC. This is referred to as the inconsistency

problem of direct imputation in [1]. On the contrary, in iterative estimation

the distribution of the error depends on the specific direction of the PCs. If

the direction of the PC is rotated, the area where there is an improvement of
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Fig. A.2. Geometrical illustration of the ratio of estimation error by TRI (b) and

iterative estimation (c) when a second PC is added to the PCAmodel. Two examples

for different directions of the PCs (a) are shown.

estimation is rotated accordingly. Therefore, the iterative imputation is con-

sistent. However, the area where the SSE is improved is determined by the

original variable which is closest to the PC. Thus, for the second example,

where the first PC is very close to Var 1, the area where the estimation is

improved is very narrow. The fact that the SSE will be determined by the

relationship between original space and latent subspace means that the SSE

by iterative estimation suffers from directional dependence, like happens for

direct estimation. For more details on this example and its discussion, refer to

[1].

A.5 Differences between the iterative imputation and PMP

Strictly speaking, the iterative estimation and PMP are different only when

Ωhm in (A.9) has eigenvalues equal to 1 [18]. Numerically, differences can be

observed when the eigenvalues approach 1. Notice that, for the estimation of

one-variable-at-a-time, the eigenvalues in Ωhm coincide with the parameters

αA
m. If a variable m only composed of non-redundant information is almost
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completely captured by the PCA model, then αA
m will approach 1 and PMP

tends to inflate the estimation error, as shown in the examples in Figure 2.

At the same time, the PRESS curve by iterative estimation and PMP will be

different and so the number of PCs suggested may be also different.
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