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Abstract

In this paper, a family of Steffensen type methods of fourth-order convergence for
solving nonlinear smooth equations is suggested. In the proposed methods, a linear
combination of divided diferences is used to get a better approximation to the
derivative of the given function. Each derivative-free member of the family requires
only three evaluations of the given function per iteration. Therefore, this class of
methods has efficiency index equal to 1.587. Kung and Traub conjectured that the
order of convergence of any multipoint method without memory cannot exceed the
bound 2d−1, where d is the number of functional evaluations per step. The new class
of methods agrees with this conjecture for the case d = 3. Numerical examples are
made to show the performance of the presented methods, on smooth and nonsmooth
equations, and to compare with other ones.
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1 Introduction

Solving nonlinear equations is a classical problem which has interesting ap-
plications in various branches of science and engineering. In this study, we
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describe new iterative methods to find a simple root x∗ of a nonlinear equa-
tion f(x) = 0, where f : I ⊂ R → R is a scalar function on an open interval
I. The known Newton’s method for finding x∗ uses the iterative expression

xk+1 = xk − f(xk)

f ′(xk)
, k = 0, 1, . . .

which converges quadratically in some neighborhood of x∗. If the derivative
f ′(xk) is replaced by the forward-difference approximation

f ′(xk) ≈ f(xk + f(xk))− f(xk)

f(xk)
,

the Newton’s method becomes

xk+1 = xk − (f(xk))
2

f(xk + f(xk))− f(xk)
,

which is the known Steffensen’s method (SM), (see [1]). This scheme is a
tough competitor of Newton’s method. Both methods are of second order,
both require two functional evaluations per step, but in contrast to Newton’s
method, Steffensen’s method is derivative-free.

To improve the convergence properties, many variants of Steffensen’s method
has been proposed in the last years. Some of these methods use forward or
central divided differences for approximating the derivatives. For example,
Jain in [2] proposed a Steffensen-secant method (SSM) deformed from Newton-
secant as follows:

xk+1 = xk − (f(xk))
3

[f(xk + f(xk))− f(xk)][f(xk)− f(yk)]
, (1)

where yk is the kth iteration of the Steffensen’s method. This method only
uses three functional evaluations per step and arrives third-order convergence.

Dehghan and Hajarian [3] proposed a variant of Steffensen’s method (DHM),
which is written as

xk+1 = xk − 2f(xk)[f(zk+1)− f(xk)]

f(xk + f(xk))− f(xk − f(xk))
, (2)

where zk+1 = xk− 2(f(xk))2

f(xk+f(xk))−f(xk−f(xk))
. The method is obtained by replacing

the forward-difference approximation in Steffensen’s method by the central-
difference approximation. However, it is still a method of third order and
requires four functional evaluations per iteration.

Recently, Ren et al. derive in [4] a one-parameter class of fourth-order meth-
ods (RM) with three functional evaluations per step. In these methods, an
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interpolation polynomial of order three is used to get a better approximation
to the derivative of the given function. The iterative expression is:

xk+1 = yk − f(yk)

f [xk, yk] + f [yk, zk]− f [xk, zk] + a(yk − xk)(yk − zk)
, (3)

where yk is the approximation of the Steffensen’s method and f [·, ·] is the
divided difference of order one. Other Steffensen type methods and their ap-
plications are also discussed by Zheng et al. in [5] and by Feng and He in
[6].

To improve the local order of convergence, a known technique consist of the
composition of two iterative methods of order p and q, respectively, to obtain
a method of order pq (see [1]). As the order of an iterative method increases,
so does the number of functional evaluations per step. The efficiency index
(see [7]) gives a measure of the balance between those quantities, according
to the formula p1/d, where p is the order of convergence of the method and d
the number of functional evaluations per step. Kung and Traub conjectured in
[8] that the order of convergence of any multipoint method cannot exceed the
bound 2d−1, (called the optimal order). Thus, the optimal order for a method
with 3 functional evaluations per step would be 4. The methods (RM) are
some of optimal fourth order methods.

In this paper, we derive a one-parameter family of fourth-order methods for
solving nonlinear equations. In the proposed methods, we compose Steffensen
and Newton’s methods and we use a linear combination of two divided dif-
ferences of order one to get a better approximation to the derivative of the
given function. Each member of the family requires three evaluations of the
function f(x), therefore this class of methods has efficiency index 41/3 ≈ 1.587,
which is higher than 21/2 ≈ 1.414 of Steffensen method, 31/3 ≈ 1.442 of Jain’s
method (1) and 31/4 ≈ 1.316 of Dehghan and Hajarian’s method (2). The new
family of methods reaches the optimal order of convergence four, conjectured
by Kung and Traub.

The rest of the paper is organized as follows: in Section 2 we describe our
family of methods and we show the order of convergence of it. In Section 3,
different numerical test confirm the theoretical results and allow us to compare
this family with other known methods mentioned in this section.

2 The methods and analysis of convergence

It is easy to see that the following Steffensen-Newton scheme
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yk = xk − (f(xk))
2

f(zk)− f(xk)
,

(4)

xk+1 = yk − f(yk)

f ′(yk)
,

where zk = xk + f(xk), is of fourth-order. In order to avoid the evaluation
of the first derivative, we consider different approximations of it. Firstly, we
replace f ′(yk) by the divided difference of order one

f ′(yk) ≈ af(yk)− bf(zk)

yk − zk

,

where a, b ∈ R are parameters. It can be shown that for any values of a and b
the described method has an order of convergence less than or equal to three.
So, in order to preserve the order of convergence of (4) we replace f ′(yk) by a
linear combination of two divided difference

f ′(yk) ≈ af(yk)− bf(zk)

yk − zk

+
cf(yk)− df(xk)

yk − xk

, (5)

where a, b, c, d ∈ R are parameters. We are going to prove that for some values
of the parameters the family of methods described by

yk = xk − (f(xk))
2

f(zk)− f(xk)
,

(6)

xk+1 = yk − f(yk)
af(yk)−bf(zk)

yk−zk
+ cf(yk)−df(xk)

yk−xk

,

is of fourth-order and we will denote it by Op4.

Theorem 1 Let x∗ ∈ I be a simple zero of a sufficiently differentiable function
f : I ⊆ R −→ R in an open interval I. If x0 is sufficiently close to x∗, then
the iterative method defined by (6) has optimal fourth convergence order for
a = c = 1 and b + d = 1, and satisfies the error equation

ek+1 = (1 + f ′(x∗))2c2(c
2
2 − c3)e

4
k + O(e5

k),

where ek = xk − x∗ and ck = 1
k!

f (k)(x∗)
f ′(x∗) , k = 2, 3, . . .

Proof: By using Taylor’s expansion around x = x∗, noting that ek = xk − x∗

and f(x∗) = 0, we have

f(xk) = f ′(x∗)
[
ek + c2e

2
k + c3e

3
k + c4e

4
k

]
+ O(e5

k) (7)
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and

zk − x∗ = (1 + f ′(x∗))ek + f ′(x∗)c2e
2
k + f ′(x∗)c3e

3
k + f ′(x∗)c4e

4
k + O(e5

k), (8)

then

f(zk) = f ′(x∗)(1 + f ′(x∗))ek + f ′(x∗)(f ′(x∗) + (1 + f ′(x∗))2)c2e
2
k+

+ f ′(x∗) [2f ′(x∗)(1 + f ′(x∗))c2
2 + f ′(x∗)c3 + (1 + f ′(x∗))3c3] e

3
k+

+ f ′(x∗) [f ′(x∗)2c3
2 + f ′(x∗)(5 + 8f ′(x∗) + 3f ′(x∗)2)c2c3+

+ (1 + 5f ′(x∗) + 6f ′(x∗)2 + 4f ′(x∗)3 + f ′(x∗)4)c4] e
4
k + O(e5

k).

(9)

By substituting (7) and (9) in the expression of yk in (6), we obtain

yk − x∗ = (1 + f ′(x∗))c2e
2
k + [−(2 + 2f ′(x∗) + f ′(x∗)2)c2

2 + (2 + 3f ′(x∗) + f ′(x∗)2)c3] e
3
k+

+ [(4 + 5f ′(x∗) + 3f ′(x∗)2 + f ′(x∗)3)c3
2 − (7 + 10f ′(x∗) + 7f ′(x∗)2 + 2f ′(x∗)3)c2c3+

+ (3 + 6f ′(x∗) + 4f ′(x∗)2 + f ′(x∗)3)c4] e
4
k + O(e5

k)

and using again Taylor’s expansion

f(yk) = f ′(x∗)(1 + f ′(x∗))c2e
2
k+

+ f ′(x∗) [−(2 + 2f ′(x∗) + f ′(x∗)2)c2
2 + (2 + 3f ′(x∗) + f ′(x∗)2)c3] e

3
k+

+ f ′(x∗) [(5 + 7f ′(x∗) + 4f ′(x∗)2 + f ′(x∗)3)c3
2−

− (7 + 10f ′(x∗) + 7f ′(x∗)2 + 2f ′(x∗)3)c2c3+

+ (3 + 6f ′(x∗) + 4f ′(x∗)2 + f ′(x∗)3)c4] e
4
k + O(e5

k).

Now, the quotient Q = f(yk)
af(yk)−bf(zk)

yk−zk
+

cf(yk)−df(xk)

yk−xk

can be written as

Q = (b + d)f ′(x∗) + f ′(x∗)(−a− c + 2d− cf ′(x∗) + df ′(x∗) + b(2 + f ′(x∗)))c2ek+

+ f ′(x∗) [(c + (b + d)f ′(x∗) + a(1 + f ′(x∗))c2
2)+

+ (−2c + 3d− 3cf ′(x∗) + 3df ′(x∗)− cf ′(x∗)2 + df ′(x∗)2 − a(2 + f ′(x∗)+

+ b(3 + 3f ′(x∗) + f ′(x∗)2))c3)] e
2
k + O(e3

k).

So,

ek+1 =
(−1 + b + d)(1 + f ′(x∗))c2

b + d
e2

k + O(e3
k).

In order to get order three, we need that b + d = 1. Assuming this condition,
the error expression becomes

ek+1 = −(1 + f ′(x∗))(−2 + a + c− f ′(x∗) + cf ′(x∗))c2
2e

3
k + O(e4

k).
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Now, we choose c = 1 to remove the term f ′(x∗) of the coefficient of e3
k, and

the expression of the error is

ek+1 = −(1− a)(1 + f ′(x∗))c2
2e

3
k + O(e4

k).

Then, taking a = 1 we obtain a family of methods whose convergence order is
four and its error expression is

ek+1 = (1 + f ′(x∗))2c2(c
2
2 − c3)e

4
k + O(e5

k).

2

Let us remark that, in terms of computational cost, the developed methods
require only three functional evaluations per step. So, they have efficiency
indices 41/3 = 1.587, that is, the new family of methods reaches the optimal
order of convergence four, conjectured by Kung and Traub.

Steffensen-type methods are specially useful in real problems where the deriva-
tive can not be calculated. This is the case of nonsmooth functions; Amat and
Busquier in [9] presented an strategy to control the approximation of the
derivative and the stability of the iteration. They applied this idea on Stef-
fensen’s method (STM):

xk+1 = xk − f(xk)

[f(xk + αk|f(xk)|f(xk))− f(xk)]/αk|f(xk)|f(xk)
, (10)

where the parameters αk ∈ R will allow to control the approximation of the
derivative. This procedure can be applied to any other derivative-free scheme.
The authors showed in [9] the second-order convergence for nonsmooth func-
tions of (10) and mentioned that, in order to control the stability in practice,
the parameters αk can be computed such that:

tolc ¿ |αk|f(xk)|f(xk)| ≤ tolu,

where tolc is related to the computer precision and tolu is a user’s free param-
eter. This strategy is a good alternative to the proposed by Potra et al. in
[10], in which the authors consider αk = ε, 0 < ε ≤ 1 fix for all k.

In the following section, we will apply this strategy on our proposed method,
Op4, obtained a modified scheme that will be denoted as Op4mod. Then, we
will analyze how its behavior improves in nonsmooth cases, although the order
of convergence on singular points slows down to two.
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3 Numerical results

We have divided the section in two parts: firstly, we check the described meth-
ods by using smooth equations and, secondly, we analyze the performance of
the methods on nonsmooth ones.

In the first part of this section, we test the effectiveness of the new optimal
fourth-order family of methods (6), taking a = b = c = 1 and d = 0; this is
compared with the classical Steffensen’s method, SM, the Jain’s method SSM,
the method DHM presented by Dehghan and Hajarian in [3] and the optimal
fourth-order method, RM, with a = 0. These methods are employed to solve
some nonlinear equations. Specifically, we use the following functions:

(a) f(x) = sin2 x− x2 + 1, x∗ ≈ 1.404492,
(b) f(x) = x2 − ex − 3x + 2, x∗ ≈ 0.257530,
(c) f(x) = cos x− x, x∗ ≈ 0.739085,
(d) f(x) = (x− 1)3 − 1, x∗ = 2,
(e) f(x) = x3 − 10, x∗ ≈ 2.154435,
(f) f(x) = cos(x)− xex + x2, x∗ ≈ 0.639154,
(g) f(x) = ex − 1.5− arctan(x), x∗ ≈ 0.767653,
(h) f(x) = x3 + 4x2 − 10, x∗ ≈ 1.365230,
(i) f(x) = 8x− cos(x)− 2x2, x∗ ≈ 0.128077,
(j) f(x) = arctan(x), x∗ = 0,

Numerical computations have been carried out using variable precision arith-
metic, with 256 digits, in MATLAB 7.1. The stopping criterion used is |xk+1 − xk|+
|f(xk)| < 10−100, therefore, we check that the iterates succession converge to
an approximation to the solution of the nonlinear equation. For every method,
we count the number of iterations needed to reach the wished tolerance and
estimate the computational order of convergence (ACOC), defined by the au-
thors in [11]:

ρ =
ln(|xk+1 − xk| / |xk − xk−1|)

ln(|xk − xk−1| / |xk−1 − xk−2|) . (11)

Table 1 shows the number of iterations required to satisfy the stopping cri-
terion (if the method does not converge, it will be denoted by ”nc”) and the
approximated computational order of convergence ρ. The value of ρ that ap-
pears in this table is the last coordinate of vector ρ when the variation between
its values is small.

On the other hand, in Table 2 the mean elapsed time, after 1000 performances
of the program, appears.

7



f(x) x0 Iterations ρ

SM SSM DHM RM Op4 SM SSM DHM RM Op4

a) 1 9 6 7 5 5 2.00 3.00 3.00 4.00 4.00

b) 0.7 8 6 7 5 5 2.00 3.00 3.00 4.00 4.00

c) 1 8 5 6 5 5 2.00 3.00 3.00 4.00 4.00

d) 1.5 nc 12 9 8 8 - 3.00 3.00 4.00 4.00

e) 2 15 6 7 6 6 2.00 3.00 3.00 4.00 4.00

f) 1 10 6 8 5 5 2.00 3.00 3.00 4.00 4.00

g) 1 10 6 6 5 5 2.00 3.00 3.00 4.00 4.00

h) 1.5 11 6 7 5 5 2.00 3.00 3.00 4.00 4.00

i) 1 15 7 7 8 8 2.00 3.00 2.59 4.00 4.00

j) 0.5 7 5 5 5 5 3.00 5.00 5.00 5.00 5.00

Table 1
Numerical results for nonlinear equations from (a) to (j)

f(x) x0 SM SSM DHM RM Op4

a) 1 0.1477 0.1523 0.2262 0.1422 0.1380

b) 0.7 0.1390 0.1560 0.2335 0.1495 0.1456

c) 1 0.0887 0.0883 0.1290 0.0963 0.0963

d) 1.5 nc 0.2356 0.2201 0.1763 0.1763

e) 2 0.1502 0.0958 0.1354 0.1140 0.1140

f) 1 0.1764 0.1646 0.2890 0.1494 0.1494

g) 1 0.1580 0.1464 0.1904 0.1341 0.1341

h) 1.5 0.1758 0.1496 0.2170 0.1370 0.1370

i) 1 0.2717 0.1894 0.2390 0.2355 0.2355

j) 0.5 0.0791 0.0871 0.1072 0.0990 0.0990

Table 2
Mean e-time in 1000 performances of the program

Numerical results are in concordance with the theory developed in this paper.
In both tables we can observe that the results obtained with our new method
are better, not only than the obtained by the methods SM, SSM and DHM,
but also improve the results from the other fourth-order optimal scheme RM,
in some cases.

Now, we are going to make some numerical simulations in order to test how
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the methods SM and Op4 behave in nonsmooth cases. Moreover, we ap-
ply the αk-procedure on both methods to avoid some stability problems. In
these cases, numerical computations have been carried out using simple pre-
cision arithmetic, so tolc = 10−16, and the stopping criterion used has been
|xk+1 − xk| < tolu = 10−8. From a sufficiently small α0, we use the following
algorithm to compute de different αk:

αk+1 =





α2
k, if |α2

k|f(xk)|f(xk)| ≥ tolc,

tolc/||f(xk)|f(xk)|, elsewhere.

The first test has been made on the function:

f(x) =





x(x + 1), if x < 0,

−2x(x− 1), if x ≥ 0,
(12)

that can be found in [12]. We use three initial estimations in order to ap-
proximate the three different roots of the equation {0, 1,−1}. In Table 3 we
show for each initial estimations and every method, the exact absolute error at
first and last iterations, the absolute difference between the two last iterations
(denoted by incr) and the ACOC. Let us note that when the approximated
convergence order is not stable, we will denote it by ’-’. From Table 3 can be
inferred that the order of convergence of Op4 method slows down to two when
it is applied on nonsmooth equations. Nevertheless, it usually performs better
or equal than Steffensen’s method and its modifications by the αk procedure.
Indeed, when this strategy is applied on the fourth-order method (Op4mod),
the stability of the method is improved and it results in more precise estima-
tions with lower number of iterations. Moreover, the ACOC is also stabilized
in ρ ≈ 4, except in the singular case: around x∗ = 0, the convergence is still
quadratic.

Let us now make a chance for the following nonsmooth function, that can be
found in [9]:

f(x) =





10(x4 + x), if x < 0,

−10(x3 + x), if x ≥ 0.
(13)

The numerical experiments made on (13) are summarized in Table 4. In this
case, the advantages of the modified methods over original Steffensen’s method
are more evident when the initial estimation is far from the zero of the function.
As x∗ = 0 is a multiple root of (13), the estimated order of convergence is
around 3, when is stable. When the initial estimation is good enough, it is
clear that the behavior of Op4 and Op4mod improves lower-order methods,
in terms of precision and number of iterations.
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SM ε = 10−8 STM (tolu = 10−8) Op4 Op4mod

x0 = 0.1 iter error iter error iter error iter error iter error

1 4.52e-2 1 1.25e-2 1 1.25e-2 1 1.93e-2 1 5.74e-3

2 4.60e-3 2 1.60e-4 2 1.60e-4 2 6.95e-4 2 3.25e-5

x∗ = 0
...

...
...

... 3 1.06e-9

4 8.32e-9 4 0 4 0 4 1.86e-12 4 0

5 0 5 NaN 5 0 5 0

incr 8.32e-9 NaN 1.10e-15 1.86e-12 1.06e-9

ρ 2.0919 - 1.9756 2.0000 1.9998

x0 = 3 iter error iter error iter error iter error iter error

1 0.29 1 0.80 1 0.80 1 0.18 1 0.25

2 0.15 2 0.25 2 0.25 2 2.13e-3 2 1.52e-3

x∗ = 1
...

...
... 3 2.09e-11 3 5.37e-12

6 1.00e-14 5 2.32e-6 6 5.35e-12 4 0 4 0

7 0 6 NaN 7 0

incr 6.33e-15 NaN 5.35e-12 2.09e-11 5.37e-12

ρ 2.0008 - 2.0007 - 3.8331

x0 = −10 iter error iter error iter error iter error iter error

1 8.36 1 4.26 1 4.26 1 4.29 1 1.91

2 7.71 2 1.91 2 1.91 2 1.82 2 0.23

x∗ = −1
...

...
...

...
...

13 0 7 1.38e-6 8 1.92e-12 5 1.08e-9 4 1.93e-12

14 0 8 NaN 9 0 6 NaN 5 0

incr 4.66e-15 NaN 1.92e-12 NaN 1.93e-12

ρ - - 2.0010 - 3.8491

Table 3
Numerical results for function (12)

4 Conclusions

We have obtained a new one-parameter fourth-order family of iterative meth-
ods for solving nonlinear equations. Each member of this class requires only
three functional evaluations per step, so its efficiency index is equal to 41/3 =
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SM ε = 10−8 STM (tolu = 10−8) Op4 Op4mod

x0 = 32 iter error iter error iter error iter error iter error

> 104 1 31.97 1 21.33 1 22.0 1 13.56

2 31.95 2 14.21 2 14.56 2 5.71

x∗ = 0
...

...
...

...

149 1.59e-10 13 0 10 2.03e-12 6 4.23e-11

150 4.0e-11 14 0 11 0 7 0

incr 1.99e-10 1.68e-18 2.03e-12 4.23e-11

ρ - 2.9985 - -

x0 = 16 iter error iter error iter error iter error iter error

> 104 1 13.80 1 10.65 1 10.65 1 6.75

2 10.89 2 7.08 2 7.08 2 2.79

x∗ = 0
...

...
...

...

12 1.0 e-10 11 1.2e-13 10 4.0e-14 6 0

13 3.75e-11 12 0 11 0 7 0

incr 6.26e-11 1.16e-13 4.35e-14 7.85e-32

ρ 3.2225 3.0003 - -

x0 = 1 iter error iter error iter error iter error iter error

1 1.0 1 0.5 1 0.5 1 0.49 1 8.33e-2

2 0.99 2 0.14 2 0.14 2 0.11 2 7.71e-6

x∗ = 0
...

...
...

... 3 0

98 3.0e-13 5 3.19e-12 5 0 4 2.3e-13 4 0

99 0 6 NaN 6 0 5 0

incr 3.03e-13 NaN 7.66e-20 2.34e-13 7.87e-32

ρ - - 2.9951 - -

Table 4
Numerical results for function (13)

1.587. Therefore, the family of methods agrees with the conjecture of Kung-
Traub for d = 3. In addition, these methods are derivative-free, which allow
us to apply them also on nonsmooth equations with positive and promising
results. The generalization of these methods to nonlinear systmes F (x) = 0 is
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similar to the classical Steffensen’s method (see [1]:

x̃k = xk + αk‖F (xk)‖F (xk),

xk+1 = xk − [xk, x̃k; F ]−1F (xk)

where [u, v; F ] : Rn → Rn is a linear operator such that [u, v; F ](u − v) =
F (u)− F (v) is called divided difference.
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