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On a new generalized inverse for matrices of

an arbitrary index

Saroj B. Malik∗ Néstor Thome†

Abstract

The purpose of this paper is to introduce a new generalized inverse,
called DMP inverse, associated with a square complex matrix using its
Drazin and Moore-Penrose inverses. DMP inverse extends the notion
of core inverse, introduced by O.M. Baksalary and G. Trenkler for
matrices of index at most 1 in [Core inverse of matrices, Linear and
Multilinear Algebra, 2010, 681–697] to matrices of an arbitrary index.
DMP inverses are analyzed from both algebraic as well as geometrical
approaches establishing the equivalence between them.
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1 Introduction and background

The symbol C
m×n stands for the set of m×n complex matrices. The symbols

A∗, C(A) and N (A) will denote the conjugate transpose, column space and
null space of a matrix A ∈ C

m×n, respectively. Moreover, In will refer to the
identity matrix of order n. If S and T are two complementary subspaces in
C

n×1 (that is, if C
n×1 is direct sum of S and T ) then the oblique projector

onto S along T will be indicated by PS,T . For a given matrix A ∈ C
n×n,
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this notation will be reduced to PA when S = C(A) and T is the subspace
orthogonal to S.

Let A ∈ C
m×n. The symbol A† stands for the Moore-Penrose inverse of

A, i.e., the unique matrix satisfying the following four Penrose conditions:
AA†A = A, A†AA† = A†, AA† = (AA†)∗, A†A = (A†A)∗. A matrix X that
satisfies the equality AXA = A is called a g-inverse of A and if X satisfies
XAX = X it is called an outer inverse of A.

For a given matrix A ∈ C
n×n, recall that the smallest nonnegative integer

m such that rank(Am) = rank(Am+1) is called the index of A and is denoted
by ind(A). The Drazin inverse of A ∈ C

n×n is the unique matrix Ad ∈ C
n×n

such that AdAAd = Ad, AAd = AdA, Am+1Ad = Am, where m = ind(A).
If A ∈ C

n×n satisfies ind(A) ≤ 1, then the Drazin inverse of A is called the
group inverse of A and is denoted by A]. When it exists, A] is characterized
as the unique matrix satisfying the conditions: AA]A = A, A]AA] = A],
AA] = A]A. For a given matrix A ∈ C

n×n, the symbol dCA denotes its
core-part, that is, dCA = AAdA [4]. The core-part of a matrix A does not
reveal any interesting information when ind(A) ≤ 1 because in this case it
coincides with A.

We also recall that a square matrix A is called EP if AA† = A†A. Clearly,
A is EP if and only if A] = A†, that is EP matrices have index at most 1
[5].

The core inverse of a matrix A ∈ C
n×n is the unique matrix AΘ such that

AAΘ = PA and C(AΘ) ⊆ C(A) [2, 9].
While the Moore-Penrose and Drazin inverses of a matrix always exist,

the group inverse as well as the core inverse of a square matrix A exist if and
only if A and A2 have the same rank, i.e., A is of index at most 1.

Some properties for all these generalized inverses can be found in [2, 3,
4, 7, 8]. All of these generalized inverses are known to be used in important
applications. For example, the Moore-Penrose inverse is used to solve the
least-squares problem, the group inverse has applications in Markov chain
theory, the Drazin inverse gives the solution of a singular linear control system
and the core inverse has applications in partial order theory (see for example
[2, 3, 4, 6]). As the core inverse is the unique least squares g-inverse, it may
also be used in some least-squares problems and since the core inverse is also
a ρ-inverse, it can be used in solving some difference equations.

The aim of this paper is to introduce and analyze a new generalized in-
verse, namely the DMP inverse, for a square matrix A of an arbitrary index
m using the Drazin Ad and the Moore-Penrose A† inverses of A. First, a
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canonical form for the DMP inverse is established and we conclude that our
generalized inverse extends the core inverse introduced in 2010 by O.M. Bak-
salary and G. Trenkler in [2] in the sense that, while they necessarily require
m ≤ 1, in our case is not necessary. Furthermore, the equivalence of the
algebraic definition (Definition 2.3) and the geometrical approach (Theorem
2.13) has been stated. We finally give some of the properties that this new
generalized inverse possesses.

2 A new generalized inverse

We start this section by defining a new generalized inverse of a square matrix
of an arbitrary index. In order to do this, we use the Drazin inverse (D) and
the Moore-Penrose (MP) inverse and therefore we name this new generalized
inverse as DMP inverse.

Let A ∈ C
n×n have index m and consider the system of equations

XAX = X, XA = AdA, AmX = AmA†. (1)

Theorem 2.1. If system (1) has a solution then it is unique.

Proof. Assume that X1 and X2 satisfy (1), that is X1AX1 = X1, X1A = AdA,
AmX1 = AmA†, X2AX2 = X2, X2A = AdA and AmX2 = AmA†. Then, using
that AdA is a projector and AAd = AdA we get

X1 = X1AX1 = AdAX1 = (AdA)mX1 = (Ad)mAmX1 = (Ad)mAmA†

= (Ad)mAmX2 = (AdA)mX2 = AdAX2 = X2AX2 = X2.

Theorem 2.2. The system of equations (1) is consistent and has a unique
solution: X = AdAA†.

Proof. It is easy to see that AdAA† satisfies the three equations in system
(1). Now, Theorem 2.1 gives the uniqueness.

Thus, for a given square matrix A, the matrix AdAA† is the unique matrix
satisfying system of equations (1).

Definition 2.3. Let A ∈ C
n×n be a matrix of index m (not necessarily ≤ 1).

The DMP inverse of A, denoted by Ad,†, is defined to be the matrix

Ad,† = AdAA†.
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Remark 2.4. Note that the new generalized inverse Ad,† can be firstly seen
as an extension of that introduced in [9, p. 97] for matrices of index m ≤ 1.
In Remark 2.9 we will present Ad,† as an extension of the core inverse.

We now give the canonical form for the DMP inverse of a square matrix
A using the Hartwig-Spindelböck decomposition [5, 1]. For any matrix A ∈
C

n×n of rank r > 0 the Hartwig-Spindelböck decomposition is given by

A = U

(

ΣK ΣL
0 0

)

U∗, (2)

where U ∈ C
n×n is unitary, Σ = diag(σ1Ir1

, σ2Ir2
, . . . , σtIrt

) is a diagonal
matrix, the diagonal entries σi being singular values of A, σ1 > σ2 > . . . >
σt > 0, r1+r2+. . .+rt = r and K ∈ C

r×r, L ∈ C
r×(n−r) satisfy KK∗+LL∗ =

Ir. Using this fact we compute the Drazin inverse of A of index m as follows:
Let

X = U

(

X1 X2

X3 X4

)

U∗ (3)

be the Drazin inverse of A partitioned conformable to A. Then X satisfies
XAX = X,AX = XA and Am+1X = Am. The equation XAX = X implies

X1ΣKX1 + X1ΣLX3 = X1, (4)

X3ΣKX1 + X3ΣLX3 = X3, (5)

X1ΣKX2 + X1ΣLX4 = X2, (6)

X3ΣKX2 + X3ΣLX4 = X4. (7)

From AX = XA we have

X1ΣK = ΣKX1 + ΣLX3, (8)

X1ΣL = ΣKX2 + ΣLX4, (9)

X3ΣK = 0, (10)

X3ΣL = 0, (11)

and the equality Am+1X = Am implies

(ΣK)m+1X1 + (ΣK)mΣLX3 = (ΣK)m, (12)

(ΣK)m+1X2 + (ΣK)mΣLX4 = (ΣK)m−1ΣL. (13)
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Using equations (4)-(13), we have X3 = 0 and X4 = 0. Also, X1ΣKX1 =
X1, X1ΣKX2 = X2, X1ΣK = ΣKX1, X1ΣL = ΣKX2 and

(ΣK)m+1X1 = (ΣK)m,

(ΣK)m+1X2 = (ΣK)m−1ΣL.

These equations show that the Drazin inverse of A is the matrix

Ad = U

(

(ΣK)d ((ΣK)d)2ΣL
0 0

)

U∗. (14)

Also, the Moore-Penrose inverse of A is given as [2]

A† = U

(

K∗Σ−1 0
L∗Σ−1 0

)

U∗. (15)

Now, the DMP inverse of A is

Ad,† = AdAA†

= U

(

(ΣK)d ((ΣK)d)2ΣL
0 0

) (

ΣK ΣL
0 0

)(

K∗Σ−1 0
L∗Σ−1 0

)

U∗

= U

(

(ΣK)d 0
0 0

)

U∗.

We can summarize this reasoning in the following result.

Theorem 2.5. Let A ∈ C
n×n be of the form (2). Then

Ad,† = U

(

(ΣK)d 0
0 0

)

U∗.

Remark 2.6. Notice that in (14) we have provided a representation for the
Drazin inverse of a square matrix A. If we denote

Cm = (ΣK)m−1Σ((ΣK)2mΣ)†(ΣK)m−1Σ,

a well-known similar representation for Ad (see [1, p. 2803]) is

Ad = U

(

CmK CmL
0 0

)

U∗.

We remark that this last formula uses the Moore-Penrose inverse of (ΣK)2mΣ
while the representation (14) involves the Drazin inverse of ΣK.
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Remark 2.7. We can observe that (ΣK)d is p(ΣK) for some polynomial p(x)
(see Theorem 7.5.1 in [4] and Theorem 2.4.30 in [6]). When K is singular, 0
is a root of p. Consequently, Ad,† is the polynomial matrix

Ad,† = Up

((

ΣK 0
0 0

))

U∗ = p

(

U

(

ΣK 0
0 0

)

U∗

)

.

Lemma 2.8. Let A ∈ C
n×n be a matrix of index m written as in (2). Then

ind(ΣK) = m − 1.

Proof. Since

Am = U

(

(ΣK)m−1 O
O O

) (

ΣK ΣL
Y Z

)

U∗

for some Y, Z of adequate sizes such that the matrix

(

ΣK ΣL
Y Z

)

is non-

singular, we have rank(Am) = rank((ΣK)m−1). Similarly, rank(Am+1) =
rank((ΣK)m). From ind(A) = m we get that m − 1 is the smallest nonneg-
ative integer such that rank((ΣK)m−1) = rank((ΣK)m), that is ind(ΣK) =
m − 1.

Remark 2.9. Notice that if A has index 1, the generalized inverse in Defini-
tion 2.3 coincides with the core inverse of A introduced and studied by O.M.
Baksalary and G. Trenkler in [2].

There is another (outer) inverse associated with a square matrix A, namely
A†,d = A†AAd and its canonical form in terms of the Hartwig-Spindelböck
decomposition of A is given by

A†,d = U

(

(K∗K)(ΣK)d (K∗K)((ΣK)d)2ΣL
(L∗K)(ΣK)d (L∗K)((ΣK)d)2ΣL

)

U∗.

It is expected that this will have properties similar to that of Ad,†. The follow-
ing example shows that in general both inverses A†,d and Ad,† are different.

Example 2.10. If A =

(

1 1
0 0

)

then simple computations give

Ad,† =

(

1 0
0 0

)

and A†,d =

(

1/2 1/2
1/2 1/2

)

.
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We know that if Ad = A† then ind(A) ≤ 1. In such a case, clearly, A†,d =
Ad,† = A† = A]. Moreover, if Ad = A then Ad,† = A2A† and A†,d = A†A2. If
A is an EP tripotent matrix then A† = A and so Ad,† = A2Ad = dCA = A†,d.
It may be worth noting that A†,d and Ad,† have always the same core-part
since AAd,†A = AAdA = dCA, AA†,dA = AAdA = dCA.

In what follows, we shall confine to studying the DMP inverse. The next
result gives some properties of the DMP inverse.

Theorem 2.11. The DMP inverse Ad,† of a square matrix A satisfies the
equations (i) AXA = dCA, and (ii) AX = d,†CAA† (in the unknown X),
where d,†CA = AAd,†A denotes the DMP core-part of A.

Proof. (i) Using the Hartwig-Spindelböck decomposition of A, simple com-
putations show that dCA = AAdA and d,†CA = AAd,†A are given by

dCA = U

(

dCΣK ΣK(ΣK)dΣL
0 0

)

U∗

and

d,†CA = U

(

dCΣK ΣK(ΣK)dΣL
0 0

)

U∗.

Therefore, dCA = d,†CA, i.e., the usual core-part of A is its DMP core-part.
So, Ad,† is a solution of AXA = dCA.

(ii) is easy to prove.

Theorem 2.12. If A ∈ C
n×n has index m then the following statements

hold:

(a) AAd,† is a projector onto C(dCA) along N (AdA†).

(b) Ad,†A = AdA is a projector onto C(Am) along N (Am).

Proof. It is clear that AAd,† is a projector because Ad,† is an outer inverse
of A. Moreover, C(AAd,†) = AAdC(AA†) = AAdC(A) = C(AAdA) = C(dCA)
and N (AAd,†) = N (AAdAA†) = N (AdAA†) = N (AdA†).

Item (b) can be deduced from the properties of the projector AdA [4].

In Definition 2.3 the DMP generalized inverse has been introduced from
an algebraic approach. Next result presents a characterization of the DMP
inverse from a geometrical point of view.
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Theorem 2.13. If A ∈ C
n×n has index m then Ad,† is the unique matrix X

that satisfies

AX = PC(dCA),N (AdA†), C(X) ⊆ C(Am). (16)

Proof. The fact that AAd,† is idempotent follows from Theorem 2.12. More-
over, C(Ad,†) = C(AdAA†) ⊆ C(AdA) = C(Am). It remains to prove that
there is only one X satisfying conditions (16).

Suppose that X1, X2 satisfy (16). Then AX1 = AX2 = PC(dCA),N (AdA†),
C(X1) ⊆ C(Am) and C(X2) ⊆ C(Am). Since A(X1 − X2) = 0, we get C(X1 −
X2) ⊆ N (A). From C(X1) ⊆ C(Am) and C(X2) ⊆ C(Am) we get C(X1−X2) ⊆
C(Am), that is C(X1 − X2) ⊆ N (Am) ∩ C(Am) = {0} since A has index m.
Thus, X1 = X2.

Note that, if A has index at most 1 then PC(dCA),N (AdA†) = PC(A),N (A∗) [2].
We can conclude that Ad,† is the only matrix that satisfies equations

(1) and also Ad,† is the only matrix that satisfies relations (16). So, both
algebraic and geometrical approaches are equivalent.

2.1 Some properties and remarks

DMP inverses provide a new class of generalized inverses because in general
the DMP inverse of a matrix is different from each of its Moore-Penrose
inverse, the group inverse and the Darzin inverse. In fact, in the Example
2.10 we have shown a matrix A of index 1 such that A#, A† and Ad,† are all
different. As another example (when the matrix involved is of index greater
than 1) we can consider the matrix

B =









1 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









.

It is easy to check that ind(B) = 2 and

Bd =









1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, B† =









1/2 0 0 0
1/2 0 0 0
0 0 0 0
0 0 1 0









, Bd,† =









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

8



The matrix B also allows us to confirm that, in general, the inverse Bd,†

is not a g-inverse of B.
Next results state some properties that the DMP inverse inherits from

the core inverse.

Proposition 2.14. Let A ∈ C
n×n be a matrix of index m. Then

(a) Ad,† = AdPA.

(b) Ad,† is an outer inverse of A.

(c) (Ad,†)n =

{

(AdA†)n/2 if n is even
A(AdA†)(n+1)/2 if n is odd

.

(d) (Ad,†)† = ((APA)d)†.

(e) ((Ad,†)d)d = Ad,†.

(f) AAd,† = Ad,†A if and only if N (A†) ⊆ N (Ad).

(g) Ad,† = 0 if and only if A is nilpotent or A = 0.

(h) Ad,† = A if and only if A is EP and tripotent.

Proof. (a) and (b) follow from definition and properties of the Moore-Penrose
and Drazin inverses.

(c) First we compute (Ad,†)1 = AdAA† = AAdA† and also (Ad,†)2 =
AdAA†AdAA† = Ad(AA†A)AdA† = AdAAdA† = AdA†. Now, by induction it
is easy to obtain the general formula.

(d) and (e) follow as an application of Theorem 2.5.
(f) Since I − AA† and AdA are projectors we have that AAd,† = Ad,†A

⇐⇒ AAdAA† = AdA ⇐⇒ AAd(I − AA†) = O ⇐⇒ R(I − AA†) ⊆ N (AdA)
⇐⇒ N (A†) ⊆ N (Ad).

(g) Assume that A 6= 0 and Ad,† = 0. If we write A as in (2) then Ad,†

can expressed as in Theorem 2.5. Now, we split the proof in two cases:

(i) ΣK 6= 0. In this case, from Ad,† = 0 we obtain (ΣK)d = 0. So, ΣK is
nilpotent. Hence, A must be nilpotent.

(ii) ΣK = 0. In this case, the matrix A = U

(

0 ΣL
0 0

)

U∗ is clearly nilpo-

tent.
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The converse is evident because in both A = 0 and A nilpotent cases its
Drazin inverse is the null matrix.

(h) The case A = 0 is trivial. Assume that A 6= 0 and it is represented
as in (2). Then Ad,† can expressed as in Theorem 2.5. Hence, Ad,† = A ⇐⇒
(ΣK)d = ΣK, ΣL = 0 ⇐⇒ (ΣK)3 = ΣK,L = 0 ⇐⇒ A3 = A,A is EP,
where in the last equivalence we have used Lemma 1(v) in [2].

From item (h) in Proposition 2.14 and [2, Theorem 2(v)] we can notice
that Ad,† 6= A when ind(A) > 1.

Proposition 2.15. Let A ∈ C
n×n be a (nonzero) matrix of index m written

as in (2) and Ad,† expressed as in Theorem 2.5. Then

(a) Ad,† is EP if and only if (ΣK)d is EP .

(b) (Ad,†)† = U

(

((ΣK)d)† 0
0 0

)

U∗.

Proof. (a) and (b) follow as an application of Theorem 2.5.

We remark that property (a) in the previous proposition reduces to the
fact that Ad,† is EP when ind(A) ≤ 1.

Finally, it seems to be natural to enquire whether the DMP inverse speci-
fies a matrix partial ordering as the core inverse does (see [2]). This problem
will be addressed in a forthcoming paper.
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of Hartwig and Spindelböck. Linear Algebra and its Applications, 430,
2798–2812, 2009.

[2] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear and Mul-
tilinear Algebra, 58, 6, 681–697, 2010.

10



[3] A. Ben-Israel, T. Greville, Generalized Inverses: Theory and Applica-
tions. John Wiley & Sons, Second Edition, 2003.

[4] S.L. Campbell, C.D. Meyer Jr., Generalized Inverse of Linear Transfor-
mations. Dover, New York, Second Edition, 1991.
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