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Abstract

Let A = (a;;) € R™™ be a totally nonpositive matrix with rank(A4) = r <
min{n,m} and a1; = 0. In this paper we obtain a characterization in terms
of the full rank factorization in quasi-LDU form, that is, A = LDU where
L € R™ " is a block lower echelon matrix, U € R™™ is a unit upper echelon
totally positive matrix and D € R"*" is a diagonal matrix, with rank(L) =
rank(U) = rank(D) = r. We use this quasi-LDU decomposition to construct
the quasi-bidiagonal factorization of A. Moreover, some properties about these
matrices are studied.
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1. Introduction

A matrix is called totally nonpositive (negative) if all its minors are nonpo-
sitive (negative) and it is abbreviated as t.n.p. (t.n.) see, for instance, [3, 4, 6, 8,
14, 15, 18]. These matrices can be considered as a generalization of the partially
negative matrices, that is, matrices with all its principal minors negative. The
partially negative matrices are called N-matrices in economic models [2, 16]. If,
instead, all minors of a matrix are nonnegative (positive) the matrix is called
totally nonnegative (totally positive) and it is abbreviated as TN (TP). These
classes of matrices have been studied by several authors [1, 5, 7, 9, 10, 11, 13, 17]
obtaining properties, the Jordan structure and characterizations by applying the
Gaussian or Neville elimination.

The nonsingular t.n.p. matrices with a negative (1,1) entry have been
characterized in terms of the factors of their LDU factorization in [3]. This
factorization provides a criteria to determine if a matrix is t.n.p. and allows us
to reduce the number of minors to be checked to decide the total nonpositivity
of a nonsingular matrix with a negative (1,1) entry. When the (1,1) entry is
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equal to zero but the (n,n) entry is negative we can obtain a UDL factoriza-
tion of this nonsingular t.n.p. matrix by permutation similarity. Then, we have
studied in [4] the extension of the same characterization to rectangular t.n.p.
matrices, obtaining a full rank LDU factorization in echelon form of this class
of matrices and other characterization by means of its thin QR factorization.
This QR characterization is similar to the one obtained in [5] for rectangular
TN matrices and it is an extension of the result for square TN matrices given
in [10].

When the nonsingular t.n.p. matrix has the (1,1) and (n, n) entries equal to
zero a characterization, in terms of the signs of minors with consecutive initial
rows or consecutive initial columns, is obtained in [14]. Furthermore, in [6] the
authors characterize the nonsingular t.n.p. matrices with the (1,1) entry equal
to zero in terms of a quasi-LDU factorization, that is, a LDU factorization,
where L is a block lower triangular matrix, U is a unit upper triangular TN
matrix and D is a diagonal matrix. This result holds when the (n,n) entry is
equal to zero or when it is negative but the permutation similarity is not used.

The main goal of this paper is to conclude the characterization of any t.n.p.
matrix A by using a LDU factorization of A or a quasi-LDU factorization in
the cases when the (1,1) entry of A is equal to zero. To finish this process,
we need to characterize the rectangular t.n.p. matrices with the (1,1) entry
equal to zero in terms of a LDU full rank factorization, where L is a block
lower echelon matrix, U is a unit upper echelon TN matrix and D is a diagonal
matrix (see Theorem 4 when A has full row rank, and Theorem 7 when A
has arbitrary rank). This quasi-LDU factorization will be used to construct a
quasi-bidiagonal factorization of this class of matrices.

We recall that a matrix is an upper echelon matrix if the first nonzero entry
in each row (leading entry) is to the right of all leading entry in the row above
it and all zero rows are at the bottom. If, in addition, each leading entry is
the only nonzero entry in its column it is called upper reduced echelon matrix.
A matrix is a lower (lower reduced) echelon matrix if its transpose is an upper
(upper reduced) echelon matrix. When all of the leading entries are equal to 1,
this matrix is called unit upper (lower) echelon matriz if it is in echelon form,
or unit upper (lower) reduced echelon matriz if it is in reduced echelon form.

We follow the notation given in [1]. For k,n € N, 1 <k <n, Qk,, denotes
the set of all increasing sequences of k natural numbers less than or equal to n.
If Ais an n x m matrix, « = (a1, 2, ...,a;) € Ok, and 3 = (81, B2,...,Bk) €
Qk.m, Ala|f] denotes the k x k submatrix of A lying in rows a; and columns
Bi,i=1,2,..., k. The principal submatrix A[a|a] is abbreviated as A[a]. Note
that, an n x m matrix A is a t.n.p. matrix if det A[a|8] < 0, Va € Qy,, and
VB € Qpm, with k =1,2,...,n. Moreover, we represent by A;, j =1,2,...,m,
its jth-column and by A® i =1,2,... n, its ith-row and we denote by E;(z)
and F;(x) bidiagonal matrices which differ from the identity matrix only in its
(i,2—1) and (i — 1,7) entry z, respectively.

We denote by Féjl’jz’”"jk} (C’ijl’h’”"j’“}) the matrix obtained from the n xn
identity matrix by deleting the columns (rows) ji, ja, - .., jx [4]. These matrices



allow us to suppose, without loss of generality, that A € R™*™ has nonzero
rows or columns. In other case, if A has the ji,jo, - ,js zero rows and the
11,92, 4 zero columns, 1 < s < n, 1 < r < m, with Fé”’”’”"“} and
C{%l’lz’m 2} we obtain

A= FT{leyjz,'“ 7js}SC7{ni1,i2,“' Jip}

where S € R(®=%)*(m=P) has nonzero rows or columns. If rank(S) = r and S
has a quasi full rank factorization in echelon form S = LgDgUg, then A has
the following quasi full rank factorization in echelon form

A= {Fymzw- ﬂ‘s}is} Ds {USC,{,L }} — LU

where L € R™*" is a block lower echelon matrix, D € R™*" is a nonsingular diag-
onal matrix, U € R"*™ is an upper echelon matrix and rank(L) = rank(U) = r.
Therefore, from now on and without loss of generality, we work with matrices

which have nonzero rows and nonzero columns.

2. Properties of the t.n.p. matrices

In this section we study some properties of the row and column entries of
any rectangular t.n.p. matrix without zero rows and columns.

Proposition 1. Let A = (a;;) € R™™ be a t.n.p. matric with nonzero rows
or columns and a11 = 0.

1. If a1, 2 < r < m, is the first nonzero entry in the first row of A then,
Aj = ajAy, with a; >0, for j =2,3,...,r—1.

2. If ar1, 2 <r < m, is the first nonzero entry in the first column of A, then
AW = 3, AN with B; > 0, fori=2,3,...,r—1.

Proof. 1. Let aj,, r > 2, be the first nonzero entry in the first row. Since
A has nonzero columns, let a;1, 2 < i < n be the first nonzero entry in the first
column. If ¢ > 2, for j=2,3,...,1—1,and s =2,3,...,r — 1, we have that

0 0 a1y
det A[1,j,i|]l,s,7] =det | 0 ajs aj | =—a1,ra;5a;1 >0,
aj1 Qis  Qgp
so, ajs =0,for j=2,3,...,1—1,and s =2,3,...,7 — 1.

Fori>2,t=i+1,i+2,...,n,and s =2,3,...,r — 1, it is satisfied that

0 0 a1y
det A[1,4,t|1,s,r] =det | a;1 a;s air | = aq,det Afi,t]1,s] >0,
at1  Gts  Qir

which implies that det A[,t|1,s] = 0, for t = i+ 1,4+ 2,...,n and s =
2,3,...,r—1. That is, Ay = azA;, for s =2,3,...,r — 1.



2. The result is obtained working with the transpose of A. 0

Taking into account the definition of t.n.p. matrices it is easy to prove the
following properties.

Proposition 2. Let A = (a;;) € R™™ be a t.n.p. matric with nonzero rows
or columns. The following statements are verified.

1. If a12 <0, then a1; <0 for j =3,4,...,m.

2. If agy <0, then a;1 <0 fori=3,4,...,n.

3. If anm < 0, then ap < 0 and any; < 0, for i = 1,2,...,n -1, j =
1,2,...,m—1.

Proposition 3. Let A = (a;;) € R™™ be a t.n.p. matriz with nonzero rows
or columns. The following statements are verified.

1. If there exists an index r, 1 < r < m, such that an, = 0, then an; = 0
forj =7+ 1r+2,...,m. Moreover, A; = oA, with aj > 0, for
j=r+1r+2,...,m.

2. If there exists an index s, 1 < s < n, such that asy,, = 0, then a;y, = 0
fori=s+1,5+2,...,n. Moreover, A = B;A®) with B; > 0, for
t=s+1,s+2,...,n.

Proof. 1. Suppose that a,, = 0, with 1 < r < m. Since A has nonzero
columns, let ¢ be the first index such that a;- < 0, 1 < i < n — 1. Then, for
j=r+1,r+2,...,m, we have that

Qi Qg

det A[i,n|r,j] = det{ 0 apn,

:| :airanjzo
= ap;=0,7=r+1Lr+2,...,m.

Analogously, ifi <n—1,forg=1+1,i+2,...,nand j=r+1,r+2,...,m,
we have that
Qi Ay

det A[i, q|r, j] = det { 0 ay

:| = QjrQgq; >0 = Qgj = 0.
Moreover, since A has nonzero rows there exists an entry a,; < 0, with
1 <t <r. Therefore, for j=r+1,r+2,...,mand s=1,2,...,n— 1,

Gst  QAgsr Agy
det Als,i,nlt,r,j] =det | aw air aij | = anedet Als,i|r,j] >0,
Ant 0 0

from which we deduce that det Afs, i|r, j] = 0. So, A; = a;A,, with a; > 0, for

j=r+1Lr+2,....,m.

2. The result is obtained working with the transpose of A. O
Consequently, from now on, by the previous propositions we can consider

a t.n.p. matrix A = (a;;) € R™™ with a;; < 0, for i = 1,2,...,n and j =

1,2,...,m, except for a;; = 0 and an, < 0. Furthermore, we can consider
n < m, because otherwise we work with the transpose matrix.



3. Matrices with full row rank

In this section we characterize the rectangular t.n.p. matrices with the (1,1)
entry equal to zero and full row rank in terms of their quasi-LDU factoriza-
tion. This characterization is an extension of the decomposition obtained for
nonsingular t.n.p. matrices [6].

Theorem 1. Let A be an n X m t.n.p. matriz with negative entries except for
a1 = 0 and apm < 0, and full row rank. Then, A has a unique factoriza-
tion LDU, where U € R™ ™ is a unit upper echelon TN matriz with positive
entries from the leading entry in each row and the two first columns linearly
independent, D = diag(—dy, —da,ds, . ..,d,) with d; >0, fori=1,2,...,n and
L € R™™ is a block lower triangular matriz

. L, O - 01
L: ~ ~ L =
l:Lgl L22 5 with 11 1 0 s

where the entries in the first column of Loy are positive and in the second one
nonpositive, Los is a unit lower triangular TN matriz with positive entries under
the main diagonal, and such that

det L[a]1,2,...,k] <0, Ya € Qun, k=2,3,...,n.

Proof. Let A= A[1,2,...,n|1,2,s3,...,5,] € R"™™ be the matrix formed
by the n first linearly independent columns of A. Then, there exists a unique unit
upper reduced echelon matrix C' such that A = AC. Since A is a nonsingular
t.n.p. matrix with the (1,1) entry equal to zero, by [6, Theorem 1] it admits
the unique quasi-LDU factorization A = L iD 41Uz, where L 4 is a block lower
triangular matrix, with lin > 0 for i = 3,4,...,n and

det Lz[a[1,2,...,k] <0, Ya & Qpn, k=2,3,...,n.

D; = diag(—dy, —da,ds,...,d,) with d; > 0, for i = 1,2,...,n, and Uz is a
unit upper triangular TN matrix, with positive entries above the main diagonal.
Then, A admits the unique quasi-LDU factorization

A=AC = (EADAUA) C =L;D;(UsC) = LDU,
where L = Lz, D = Dz and by [5, Proposition 2] U = UzC' is a unit upper
echelon TN matrix with positive entries from the leading entry in each row. [J
The converse of Theorem 1 is not true in general, as the next example shows.

Example 1. The matriz

i 0 1 07][-10 07t 111
A=LDU = [1 0 0 0 -2 0[[01 23
2 -3 1 0 1loo 14

= -10 -10 —-10 -10
-20 -14 -7 2

0
2
0
0 -2 -4 —6]



s not a t.n.p. matriz although the matrices L, D andU satisfy the conditions
of Theorem 1.

Now, we study necessary conditions for a product LDU to be a t.n.p. matrix.
Suppose that A = (a;;) = LDU € R™™ with L, D and U verifying the
conditions of Theorem 1. In order to apply the results for square matrices given
in [6], we construct from L = PL € R"*"_where P is the permutation matrix
P=1[2,1,3,...,n], D€ R"™ and U € R"*™, square matrices L(§) € R™>*™
D(6) € R™*™ and U(§) € R™*™ satisfying the conditions of [6, Theorem
2], and such that the (m,m) entry of matrix B(d) = L(6)D(6)U(J) is non
positive and B = B(0)[1,2,...,n|1,2,...,m]. Then, by [6, Theorem 2| the
matrix A(§) = PB(6) is t.n.p. and A = PB(4)[1,2,...,n|1,2,...,m] is also
t.n.p.

First, for all 6 > 0 we extend the diagonal matrix D € R™*" in the following
way

D(6) = diag(—di,—da,ds,. .., dn, 6% 8% ... 6™ ")
D o)
_ ERmX"L.
[O D(5)22}

The next procedures show how to construct the matrices L(d) and U(d). We
begin extending the unit lower triangular matrix L = PL.

Procedure 1. Let L € R™ "™ be a unit lower triangular matrix

I, O
L =
{ Loy Lo ]

where the entries in the first column of Loy are positive, in the second one are
nonpositive, Los is a unit lower triangular TN matriz with positive entries under
the main diagonal, and for all o = (o1, v, ..., ;) € Qrp, k=2,3,...,n,

>0 i _ _
detL[a|1,2,...,k]{0 if ar=1,a,=2

<0 i lor2¢a.

This procedure allows us to construct an m X m, unit lower triangular matriz
L(9) such that

L O
L) = e R(r+(m=n))x(n+(m—n))
©) [ L(6)21 L(0)22 }
where the entries [(§);1 and 1(0);2, for i = 3,4,...,m, are positive and nonpo-
sitive, respectively, and the submatriz L(0)[3,4, ..., m] is a unit lower triangular

TN matriz with positive entries under the main diagonal.
The matrix L can be written as

| —1
L= E(1)E(2) ...E(nfl),



where E(;)l = Ep(mn)En_1(mp_14) ... Biyr1(mig1,), for i = 2,3,...,n — 1,
with m;; the multipliers of the Neville elimination of L. For i =1

Ea; = En(mn1)En_1(mMp_11) ... E3(mz.1),

where the multiplier mg ; is the (3,1) entry of E;5.

For:=1,2,...,n— 1, we construct
[ Eq O O -+ O O]
o -~ =51 0 --- 0 O
o .- 0O|-6 1 -~ 0 O . E.: 0O
Eq(©0) =1 . : Co D ’E(i)[ Oz Im—n:|'
0o .- 0 o o0 --- 1 0
L0 - 0 0 0 -+ =0 1 |

From these matrices and for all 6 we compute the m X m unit lower triangular
matrix
—1/ 5y -1 1
L) = E(1) (5)E(2) .”E(nfl)
L @)
L(6)21 L(6)22

By construction it is not difficult to see that

€ ROvH(m—m) X (n+(m—n))

L(d)or = LO)n+1,n+2,...,m|l1,2,... n]
lnl(s ln26 T lnnfl(S 0
1,162 1,262 Lyn—162 52
lnl(smfn ln26m7n . lnnfl(smin gm—n
where [l,1ln2 ... lun—1 1] is the last row of L, and

1 0 -+ 00
1) 1 -+ 00
L(§)oe =L(6)In+1,n+2,...,m] = : : :
5m7n72 5m7n73 .. 1 0
5m7n71 5m7n72 . 5 1

Moreover, for all § > 0, the entries 1(§);1 and 1(6);2, for i« = 3,4,...,m, are
positive and nonpositive, respectively, and the submatrix L(6)[3,4,...,m] is a
unit lower triangular TN matrix with positive entries under the main diagonal.

Lemma 1. For all 6 > 0, a € Qp,, and k = 2,3,...,n, the matriz L(5) €
R™>™ from Procedure 1 verifies that

>0 if ai=1as=2

detL(5)[O¢|1,2»~-ak]:{§0 if lor2¢a



Proof. By construction of the matrix L(d) and by [6, Remark 1] the result
is straightforward. O

Example 2. Consider the unit lower triangular matriz
| Iz O
Loy Lo |-

By Procedure 1 we construct a 6 X 6 unit lower triangular matriz.

First, we factorize L as

T 10 o0 071" 10 007"
i 01 00 lo 1 0o
L=BEnEgEy = | 99 10| W |90 10

00 -3 1 00 -2 1

1.0 0 0 100 0

010 0 010 0

201 0 00 1 0

6 0 3 1 00 2 1

Then, for § and ¢ = 1,2,3, we construct the matrices

[ 1.0 0 0| 0 0
01 0 0] 00
-2 0 1 0] 00 .
E(l) (6) = 0 0 -3 1 0 0 3 E(2) = 167
00 0 -6 1 0
. 00 0 0]|-51
1 0 0 0]0 0
01 00]0 0
. 00 1 0/0 0
B = 00 —2 1]/0 0
00 O0O0]1 0O
(00 0 0[]0 1

Finally, from these matrices we compute the 6 x 6 unit lower triangular matrix

—1/5\ -1 -1
L(6) = E(1)<5)E(2) (3)
10 0 0|00
0 1. 0 000
_ 2 0 1 0]0 0
N 6 0 5 1]0 0
66 0 50 6|1 0
662 0 552 62|46 1




Let us now extend the matrix U. For that, it is necessary to consider two
cases.

CASE 1. The n first columns of the matrix U are linearly independent.

Procedure 2. Let U = [Uyy Upp] € R Hm=1)) be g ynit upper echelon TN
matriz, with positive entries from the leading entry in each row and where Uy1 is
a unit upper triangular matriz. This Procedure constructs from U a unit upper
triangular TN matrix U € R™™ with the following structure

~ | Ui Une (nt(m—n))xn+(m—n))
U= [ O U } eR

where Usy is a unit upper triangular TN matriz.
Matrix U can be factorized as follows
—1p—1 -1
U =[Inxn Onx(m—n) ]F(n)F(n_l) . ~-F(1)7
where, for i =1,2,...,n,
F(;)l = Fip1(mi i) Fiva(Maiv2) - .. Fr(Mim),

with m;; the multipliers of the Neville elimination of U.
We construct the unit upper triangular matrix U € R™*"™ by the product
7 =11 -1
U= F(n)F(n_l) . F(1) .

Note that by construction,

o Unn Ure (n4+(m—n))xn+(m—n))
U= [ O U } eR

is a TN matrix.

Example 3. Consider the unit upper echelon TN matriz

11111
U=1]0 1 1 1 1 |=[Uy Up]eR¥>*C+),
001 11

By Procedure 2 we construct a 5 X 5 unit upper triangular TN matriz U.

The matrix U can be written as

1111 1
10000 01 1 11
—1p—1pp—-1
U = Isxs Osx |F5 Fp) Fyp = | 0 1.0 0 0 001 1 1]/,
00100 00011
00001
-l

(1)



with F (5)1 = F(g)l = I5x5. By Procedure 2, the unit upper triangular TN matrix
U is

U = Flr2IE7)

_ - Unn Ui (342)x5
@ @) T —[ 7 ]ER :

O U

SO OO
SO O~
O O ==
O =
e

From the previous procedures we obtain the following result.

Theorem 2. Let A= LDU € R™™ be an n x m matriz, with negative entries
except for a;1 = 0 and apy, < 0. Consider that U = [Uyy Uis] € R7* (n+(m—n))
is an upper echelon TN matriz with positive entries above the main diagonal

and Uy is a unit upper triangular matriz, D = diag(—dy, —da, ds, ..., dy,) with
d; >0,i=1,2,...,n and L € R"*" is a unit lower triangular matriz
~ L, O IR 0 1
L=\ = ~ th Ly =
[Lm L22:|’ o H [1 O}

where the entries in the first column of Loy are positive, in the second one are
nonpositive, Lao is unit lower triangular TN matriz with positive entries under
the main diagonal, and such that

det L[e|1,2,...,k] <0, Vo € Qpp, k=2,3,...,7.
Then, A is a t.n.p. matriz.

Proof. First of all suppose that a,,, < 0. Consider the matrix B = PA =
PLDU = LDU, where the lower triangular matrix L satisfies the conditions of
Lemma 1.

Consider the mxm matrices L(0) obtained by Procedure 1, D(d) = diag(—dj,
—dy,ds, ..., dy,8%,6%, ...,6™ " 2) and U obtained by Procedure 2.

From these matrices we construct

L O }[D @) }{Un U:12:|

3(5) = L((S)D((S)U:|:L(5)21 L(5)22 [0) D(6)22 O Uy

N |: LDU11 LDU12
L(0)21DU1  L(0)21DUs2 + L(0)22D(6)22U22 |~
Note that,
B(8)(m,m) = apm 6™ " + k™2 k> 0.
Then, since an,, < 0, there exists 6o > 0 such that B(d)(m,m) < 0 for all

§ < &g. Hence, by the permutation matrix P = [2, 1, 3, ..., m| we obtain
A(8) = PB(6) = (PL(6))D(8)U
.Z/DUH I~/DU12

L(8)21 DUy L(6)21 DUy + L(6)29D(8) 29U |’

10



which is a t.n.p. matrix by [6, Theorem 2]. Thus, A = A(§)[1,2,...,n|1,2,...,m]
is t.n.p.

Suppose now that a,,, = 0, and consider

—dy
—ds

B, =1L ds U,

dy, —x

where its (n,m) entry is —z. Therefore, for 0 < z < d,, we can apply the
results obtained when a,,, < 0.
Nevertheless, if A, = PB, we have, for all 0 < = < d,, that

det Ay [a|f] = sapx +tap <0, Yo € Qkn, BE Qpm, k=1,2,...,n,

where

Sa,3 =det Ala|B] Yo € Qkn, BE Qpm, k=1,2,...,n.

If to, 35 = 0 then det A[a|5] < 0. Otherwise, i.e. to g # 0, since det Az[e|5] <0
for all positive z < d, by continuity s, s = det A[e|3] < 0. Thus, A is t.n.p. O

CASE 2. The n first columns of U are not linearly independent. Remind that
since a1s < 0, the first and second columns are linearly independent.

Procedure 3. Let U € R™™™ be a unit upper echelon TN matriz, with positive
entries from the leading entry in each row and with the first and second columns
linearly independent. This Procedure constructs for all § > 0 an upper echelon
TN matriz U(5) € R™ ™ with its n first columns linearly independent and
lim5_>0 U((S) =U.

Consider the matrix Q = UT € R™*" and suppose that we can apply it the
Neville elimination process with no pivoting until the kth iteration. Then,

I, O
EwyEg-1)---E2)Eq)Q = Qr = [ O Qk,y } 7

where the first nonzero entry in its (k+ 1)st column is below the main diagonal.
Now, before applying the (k+ 1)st iteration of Neville elimination to matrix Q,
we replace in its (k+ 1) column the zero entries from the (k+ 1,k + 1) position
to the first nonzero entry by §7~%, where j is the row index of this nonzero entry
and s = k+ 1,k +2,...,7 — 1. We call the new matrix Q(8) and apply the
Neville elimination process with no pivoting to obtain E(k+1)@k(5) = Qr+1(0).
From Q+1(0) we construct, if it is necessary and in a similar way, the matrix
Qk+1(5), and apply Neville to obtain Q42(d) and so on to matrix @, (d). Then,

Q) = EG By - By By (0 Bty (0) - B} (0)Qn(8) € R™™

11



is a lower echelon TN matrix with the n first rows linearly independent for all
6 >0, and

0 00 0

0 0[]0 0
QW =Q+| 00

. . pU((S)

0 0

where p;;(0) are polynomials in § with nonnegative coefficients and satisfying
lim p;; () = lim Q(5) = Q.
lmpi;(9) =0 = lmQ0)=0Q

Therefore, U(5) = Q(5)T is an upper echelon TN matrix with the n first columns
linearly independent for all 6 > 0.

Example 4. Consider the following upper echelon TN matriz

oo o
(=il
=Nl -
SO~
O ==
e

By Procedure 3 we construct an upper echelon TN matriz of size 4 x 6, U(9),
with its four first columns linearly independent.

Applying Procedure 3 to matrix Q = U7 we obtain,

1000 1000
1100 01 0 0
1100 Ea o0 0 0| EBe-t
Q=111 0 o0 4Q1*0000H
1110 00 1 0
112 1 00 1 1
(1.0 0 0] 10 0 0
010 0 01 0 0
|0 0 00 column 3 = {00 6 0 E3)(5)
Q=109 0 0 @EO=19 9 5 o
001 0 00 1 0
00 1 1 00 1 1

12



10 0 O 10 0 O
01 0 0 01 0 O
100 52 0 column 4 &~ 100 2 0 E(4)(8)
00 0 0 00 0 ¢
00 0 1 00 0 1
10 0 0
01 0 0
00 8 0
00 0 O
00 0 0
The lower echelon TN matrix Q(d) is
Q) = Eq Ey Eq (0)EqL (6)Qa(d) (1)
1 0 0 0
1 1 0 0
B 1 1 52 0
- 11 5495 52
1 1 82+6+1  62+26
|1 1 0°+6+2 2+40+1
1 0 0 0 0 0 0 0
1100 0 0 0 0
B L 100} 100 52 0
- 1100 0 0|6&6%2+56 52
1 110 0 0[6%+6 62+20
|11 2 1 0 0[6+45 62440
N—— —
Q

Then, the upper echelon TN matrix with its four first columns linearly in-
dependent is

1 1 1 1
1 1 1 1

1
1
0162 2+6 62+06+1 82+6+2

1
U©) =Q0)" = |
0 0f0 4 62426 °+40+1

From Procedure 3 and Theorem 2 the following result is deduced.

Theorem 3. Consider A = LDU € R"™ ™ with negative entries except for
a11 =0 and apm < 0, where U € R™ ™ s a unit upper echelon TN matrixz with
positive entries from the leading entry in each row and with the first and second
columns linearly independent, D = diag(—dy,—ds,ds,...,d,) with d; > 0, i =

1,2,...,n and L € R™" is a block lower triangular matriz
. Lu O oz 0 1

L= = = th Ly =
[ Loy Lon |7 ™ 171 0

13



where the entries in the first column of Loy are positive, in the second one are
nonpositive, Los is a unit lower triangular TN matriz with positive entries under
the main diagonal, and such that

det L[a|1,2,...,k] <0, Va € Qpn, k=2,3,...,n.
Then, A is a t.n.p. matric.

Proof. From U and by applying Procedure 3 we construct an upper echelon
TN matrix, with positive entries above the main diagonal,

0 010 0
0 010 0
v@y=u+|0 0 = [U(8)11 U(6)12],
: Pij(9)
0 0
P(3)

where p;;(6) are polynomials in § with nonnegative coefficients and such that
lims_0 p;j(8) = 0 and U(J)11 is an upper triangular matrix.
Now, we construct

A(8) = LDU(6) = LDU + LDP(5),
whose (n,m) entry is A(d)(n,m) = anm + ps(J), being p,s(d) a polynomial in 6,
of degree s > 1, with nonnegative coefficients and such that lims_,o ps(d) = 0.

If ay,, < 0, then there exists g such that A(d)(n,m) < 0, for all § < §p.
Hence, by Theorem 2, A(d) is a t.n.p. matrix, that is
det A(0)[@]B] <0, Va € Qkm, V0 € Qkm, k=1,2,....n
But, since

det A[a| 3] = 6liglodet AO)[a]f] <0, Yo € Qpny, VB E Qiom, k=1,2,...,n

we have that A is also t.n.p.

On the other hand, when a,,,,, = 0, we can suppose, without loss of generality,
that a,; < 0, Vj < m (otherwise, we know that these columns are linearly
dependent) and proceed as in Theorem 2. d

Combining Theorems 1, 2 and 3 we characterize the rectangular t.n.p. ma-
trices with the (1, 1) entry equal to zero and full row rank.

Theorem 4. Let A be an n X m matriz with negative entries except for a;; = 0
and Gnm < 0, and full row rank. Then, A is a t.n.p. matriz if and only if A
has a unique factorization LDU, where U € R™™ s q unit upper echelon TN
matriz with positive entries from the leading entry in each row and the two first

14



columns linearly independent, D = diag(—dy, —da,ds, ... ,d,) with d; > 0, for

1=1,2,...,n and L € R™ ™ s q block lower triangular matriz
. Ly O s 0 1
L= = = th L1 =
l: L21 L22 ) wi 11 1 O ’

where the entries in the first column of Loy are positive and in the second one
nonpositive, Lao 15 a unit lower triangular TN matrix with positive entries under
the main diagonal, and such that

det L[a]1,2,...,k] <0, Ya € Qpn, k=2,3,...,n.

4. Matrices without full row rank

Now, we extend the results obtained in the previous section for rectangular
t.n.p. matrices with the (1, 1) entry equal to zero and full row rank to matrices
A = (a;;) € R™™ with rank(A) =r <n < m.

Theorem 5. Let A be an n x m t.n.p. matriz with negative entries except
for a1 = 0 and apym < 0, and rank(A) = r < n < m. Then, A has a
unique full rank factorization LDU, where U € R™ ™ is a unit upper eche-
lon TN matrix with positive entries from the leading entry in each row, D =
diag(—dy, —dy, ds, ..., d,) with d; > 0, for i = 1,2,...,r and L € R™™" is a
block lower echelon matrix

. Ly, O = 0 1
L: ~ ~ L =
|:L21 Los |’ with  Liy 1 0|’

where the entries in the first column of Loy are positive and in the second one
nonpositive, Los is a unit lower echelon TN matriz with positive entries under
the leading entry in each column, and such that

det L[a|1,2,...,k] <0, VYa € Qgn, k=2,3,...,7

Proof. Let A1 = A[1,2,i3,...,4r/1,2,...,m] € R™*™ be the matrix formed
by the r first linear independent rows of A. Then, there exists a unique unit
lower echelon matrix F; such that A = FyAy. Since A is a t.n.p. matrix, with
the entry in position (1,1) equal to zero and full row rank, by Theorem 1 it
has a unique full rank factorization f/AlDAlUAl, where Uy, € R™™ is a unit
upper echelon TN matrix, D, = diag(—d;, —da,ds,...,d,) with d; > 0, for
1=1,2,...,r and EAI € R"™ 7 is a block lower triangular matrix

o EAln @ . = 101
LAI_{I:Aln EA122 -t LAIH_ 1o

where the entries in the first column of Ly,  —are positive, in the second one are

nonpositive, L A, 1s a unit lower triangular TN matrix with positive entries
under the main diagonal, and such that

det La,[a]1,2,...,k] <0, Vo€ Qp,, k=2,3,...,7

15



Thereby, A admits the unique full rank factorization
A=FiAy = (FiLa,) DaUa, = LDU,

L, O e 7 0

~ ~ R7x7 th L1 =

Lo1 Lo } © W 1 { 10
echelon matrix, D = Dy, € R™" and U = Ua, € R™™. Since as; < 0 and

a2 < 0, the matrix L satisfies

where L = [ } and Lo is a unit lower

e Fori=3,4,...,n,

a1 = det A[i|]1] = Zn:det L[i|j] det(DU)[j|1] = —d; det L[i|1]

j=1

—diL(i,1) <0 = L(i,1) > 0.

e For all {il,ig} € QQ,na

det Afir,ia]1,2] = Y det Lli1, ia|+] det(DU)[4|1,2]
VyEQa,
= (—dl)(—dg) deti[il,ig‘l,ﬂ S 0
—  det L[i1, i2]1,2] < 0.

In particular, if i; = 2 we have for io = 3,4, ..., n, that

det L[2,i5|1,2] = L(is,2) < 0.

e Since U € R™*" is an upper echelon matrix with rank r, we suppose that
its linear independent columns are {1, 2, js, ja, ..., jr}, with 3 < j3 < js <
... < jr <m. Then, for all @ € Q;, and for 3 < s < r, we have that

det A[a|1,2,js,...,js] = > det Llaly] det(DU)[y]1,2, js, .- ., j]
V'yEQs,r

= (=dy)(—do)ds...dsdet L[a|1,2,3,...,5] <0
— det L[a|1,2,3,...,s] <0.

e The submatrix Loy € R(=2)%(r=2) " with full column rank satisfies Vo €
Opm—2and k=1,2,...,r—2,

detigg[a|1,2,...7k¢] :detigg[ahag,...,ak|172,...J{;]
= —detL[1,2,00 +2,a24+2,...,ar+2|1,2,...,k+2] >0,

which implies that Loy is TN [5]. 0

The converse of Theorem 5 is not true in general, as the next example shows.
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Example 5. The matriz

i ?ég -2 00712111
A=LDU = |, | | 0O -1 0|01 111
5 o 3 0 02][00001

0o -1 -1 -1 -1
-2 -4 -2 -2 =2
-4 -7 -3 -3 -2
-6 —-10 —4 -4 2

is not a t.n.p. matrix although the matrices L, D and U satisfy the conditions
of Theorem 5.

To prove the converse of Theorem 5 we need the following procedure.

Procedure 4. Let Q € R™ " be a unit lower echelon TN matriz, with rank
r < n and the first and second rows linearly independent,

QZl Q22

For all § > 0, this procedure allows us to construct a lower echelon TN matrix
Q(8) of size n x p, r < p < n, such that its p first rows are linearly independent
and

Q= [ Qu O ] c RCHM-2)x(2+(r—2))

lim Q(8) = [Q O] € RM*(r+=—n),
§—0

Applying Procedure 3 to matrix @ we obtain Q,(4). If p > r, matrix Q,41(9) is
made up from @Q,.(6) adding to this matrix a new column which differs from the
zero column only in its (r + 1) entry 6™~ ". If p > r+ 1, we proceed in a similar
way, that is, matrix Q,42(d) is made up from @,1(d) adding to this matrix a
new column which differs from the zero column only in its (r +2) entry §"~"~1,
and so on to arrive to matrix Q,(9).

Then,

Q) = EGLEG) - EG G ) (0BG 5 (0) -~ B} (0)Qu(6) € R™P

is a lower echelon TN matrix with the p first rows linearly independent for all
§ > 0. Moreover, Q(8) = [Q(8)1 Q(0)2] € R™*("+(P=7) satisfies that

0 0]0 0

o oo --- 0
Q@)=+ |00

. . pij((S)

0 0

where p;;(0) are polynomials in § with nonnegative coefficients and satisfying

}%PU@ZO = }%Q(%ZQ
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and

_ 0 (r+(n—r))x (p—)
Q)2 = [ Q(6)a, } eR p

where Q(8)a, = [hi;(8)] € R=)X(P=7) is a lower echelon matrix, with its (n—p)
first rows linearly independent and lims_,q h;;(d) = 0. Therefore,

lim Q(d) = [Q O] € R™*(r+=r)
§—0

Example 6. Consider the following lower echelon TN matriz

1 0 0 0
1100
1100
Q= 11 00
1110
11 2 1

Following Procedure 4 we construct a nonsingular lower triangular TN matriz
Q(9) of size 6 x 6.

In example 4, by applying Procedure 3 to ), we obtained the matrix,

1 0 0 O
01 0 O
0 0 6 0
Q4((5) = E(4) (5)E(3) ((5>E(2)E(1)Q = 00 0 52 c R6X4_
00 0 O
00 0 O
Now, applying Procedure 4 to Q4(d) we have
10 0 0 0 O
01 0 0 0 O
o0 48 0 0 0 6x6
@O)=109 0 0 5 0 o R
00 0 0 46 0
00 0 0 0 ¢
Then,
Q) = By EgEg 0)E;(6)Q6(5)
10 0 0 0 0
1 1 0 0 0 0
. 1 1 52 0 0 0
- 11 52494 52 0 0
1 1 82+46+1 062426 2 0
1 1 6*°40+2 6°+46+1|2682+6 ¢

= [Q(d)1 Q(8)2] € RO*(4+2)
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is a nonsingular lower triangular TN matrix, for all § > 0 and such that
lims _, 0 Q(6) = [Q O] € RE*(4+2)

Note that, Q(d)1, which is equal to the matrix of the equation (1) given in
Example 4, verifies that lims_,o Q(d); = Q. Moreover, the matrix

0 0
0 0
O 0 0
8)s = = c RU+@)x(2)
52 0
26248 4

verifies that lims_,o0 Q(d)2 = O.

Remark 1. Consider the following block lower echelon matriz L € R™*"

- [ Ly O = [0 1
A A R

where the entries in the first column of Loy are positive and in the second one
nonpositive, Los is unit lower echelon TN matrix with positive entries under the
leading entry in each column, and such that

det L[a|1,2,...,k] <0, Ya € Qn, k=2,3,...,7

By applying Procedure 4 to the matriz

= I, O
L=PL=| : ,
[ Loy Lo ]
we can obtain a nonsingular lower triangular matriz L(5) € R™*™ and then the
matriz L(8) = PL(8) = [L(6)1 L(8)a) € R™*+(n=m) with
0
0

0 0 0
0 0 0 -
Py =i4 |0 0 - [ L(0)n, ] € RO+m=r)xr
. . L(6)12
: pi; (6)
0 0
and o
[ — | . (r+(n—m))x(n—r) 7 — [h..
£02=| 15, | R D = [y 9)
Moreover, i(é) [3,4,...,n] is a lower triangular TN matriz with positive entries

under the main diagonal and such that
det L(8)[a[1,2,...,k] <0, Va € Qpn, k=2,3,...,n.
and

lim L(6) = [L O].
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Taking into account Procedure 4 and Remark 1 we give the following result.

Theorem 6. Consider A = LDU € R"™ ™ with negative entries except for
a11 = 0 and anm <0, and rank(A) =r < n < m, where D = diag(—dy, —ds, d3,
coydy), di > 0,0 =1,2,....r, U € R"™™™ 4s a unit upper echelon TN matriz
with positive entries from the leading entry in each row and L € R™ " is a unit
lower echelon matriz

. Ly, O s 0 1
L = ~ ~ L ==
[ Loy Lo }  with I [ 10 ] )

where the entries in the first column of Loy are positive, in the second one are
nonpositive, Lo is unit lower echelon TN matrixz with positive entries under the
leading entry in each column and such that

det L[a|1,2,...,k] <0, Va € Qpn, k=2,3,...,r.
and rank(U) = rank(L) = r <n <m. Then, A is a t.n.p. matriz.

Proof. Suppose that a,,, < 0. Following Remark 1 we construct the

nonsingular lower triangular matrix L(6) = [L(8); L(6)g] € R**( (=) ith

0 010 0
0 010 0 -
L@y =L+]|0 0 _ [ Fo } € R(r+n=r))xr
.. 1z
0 0

lower echelon with the r first rows linearly independent and p;;(d) polynomials
in 0 with nonnegative coefficients such that lims_,o p;;(6) = 0, and

L= pgy, | RO, B = e (9)

with lims_,0 hi;(8) = 0 and L(6)[3,4,...,n] lower triangular TN matrix with
positive entries under the main diagonal and

det L(0)[a|1,2,...,k] <0, Ya € Qpn, k=2,3,...,n.

Now, applying Procedure 4 to matrix U? we construct a lower echelon TN
matrix U(6)T € R™ ™, such that its n first rows are linearly independent.
Then

U(5)1 (r+(n—r))xm
U(6) = eR
©) [U<5>2 ]
where
0 0o 0
0 00 0
U@p=u+1{070 = [U()1, U(8)1,] € R™¥r+m=m)

3 :5(9)
00
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is an upper triangular matrix, ¢;;(6) are polynomials in ¢ with nonnegative
coefficients such that lims_,q ¢;;(0) = 0, and

U(8)2 = [0 U(8)s,] € R=T)x(r+(m=r))
with U(d)2, = [gi;(0)] upper echelon TN matrix with its (n — r) first columns

linearly independent and lims_,q g;;(§) = 0.
Consider D(0) = diag(—dy, —do,ds,...,d,,0,0,...,0). Then,

A(8) = L(8)D(5)U(9)
_ {é(é)h 0 HD 0 HU(éhl U(6)12]
L(6)1, L(6)2, O 6I,_, 0] U(6)2,
_ [@(5)11DU(5)11 i L(6)1, DU(0)1, ]
L(8)1,DU(8)1, L(6)1,DU(6)1, + 0L(8)2,U(6)a,

It is not difficult to see that A(0)(n, m) = anm + Hpum(9), with H,,,,,(§) a poly-
nomial in 0 with nonnegative coefficients such that lims_,g H,., (6) = 0. Since
anm < 0, there exists Jp such that A(d)(n,m) < 0 for all 6 < dyp. By Theorem
2, A(9) is t.n.p. for all § < dp, then

det A(0)[a|B] <0 Va € Qip, BE Qim, k=1,2,...,n.

Since det A[a|f] = lims_,o det A()[e|8] < 0 for all @ € Qg py B € Qpm, k =
1,2,...,n, hence A is t.n.p. and obviously with rank(A) = r.

Finally, in the case a,,, = 0, proceeding as in the proof of Theorem 2 we
deduce that A is t.n.p. O

Combining Theorems 5 and 6 we characterize the rectangular t.n.p. matrices
with the (1, 1) entry equal to zero and arbitrary rank.

Theorem 7. Let A be an n X m matriz with negative entries except for a;; =0
and apm < 0, and rank(A) = r <n <m. Then, A is a t.n.p. matriz if and only
if A has a unique full rank factorization LDU, where U € R™ ™ is a unit upper
echelon TN matrixz with positive entries from the leading entry in each row,
D = diag(—dy, —da,ds, ...,d.) with d; > 0, fori=1,2,...,r and L € R™" g
a block lower echelon matrix

. Ly O s 0 1
=] s P =
{ Lo1 Lo ]  with L [ 10 } ’

where the entries in the first column of Loy are positive and in the second one

nonpositive, Lao is a unit lower echelon TN matriz with positive entries under
the leading entry in each column, and such that

det L[a|1,2,...,k] <0, VYo € Qgn, k=2,3,...,7
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5. Quasi-bidiagonal factorization of a t.n.p. matrix

In [6] the authors obtain a unique quasi-LDU factorization of nonsingular
t.n.p. matrices with the (1,1) entry equal to zero. In the previous sections we
have obtained the extension of this factorization for the rectangular case. Now,
from these results we construct a quasi-bidiagonal factorization of nonsingular
and rectangular t.n.p. matrices with the (1, 1) entry equal to zero.

5.1. Nonsingular t.n.p. matrices

Theorem 8. Let A be an n Xn nonsingular matriz with negative entries except
for ai1 =0 and an, < 0. Then, A is a t.n.p. matriz if and only if A admits a
unique quasi-bidiagonal factorization

A:Panan72...FlDGlGQ...anl (2)
where D = diag(—dy, —ds,ds, ..., dy,), with d; > 0 fori=1,2,...,n and P is
the permutation matrix P =1[2, 1,3, ..., n|. Gy, for k=1,2,...,n—1, are the
unit upper bidiagonal TN matrices defined by

1

G = 1 o141 (3)

1 Qp—k—1,n—1
1 Qp—k.n
1

with a1 2 >0,...,01, >0 and if as; =0 then asp =0, Vh > t.

Fork=3,4,...,n—1, F}, are the unit lower bidiagonal TN matrices,
1
1

F, = Bigyr 1 (4)

ﬁn—k:—l,n—l 1
ﬂn—k,n 1
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and

1
0 1
Pz 0 1
F= 1 , (5
Bi—1k4+1 1
5n—3,n—1 1
5n—2,n 1
1
1
—faz 1
= 1 (6)
Brer+1 1
6n—2,n—1 1
/Bn—l,n 1

with f1,3>0,...,51,n >0 and if Bs+ =0 then Bs, =0, Vh > t.

Proof. By [6], A admits a unique factorization LDU, where U € R™*" is a
unit upper triangular TN matrix with positive entries from the leading entry in
each row and the two first columns linearly independent, D = diag(—dy, —ds, d3,
<., dy) with d; >0, fori =1,2,...,n and L € R™" is a block lower triangular
matrix

~ -Z/ll O . = 0 1
L= ~ ~ h L =
{ Loy Loy |’ wit H 1 0|’

where the entries in the first column of E21 are positive and in the second one
nonpositive, Lys is a unit lower triangular TN matrix with positive entries under
the main diagonal, and such that

det L[a]1,2,...,k] <0, VYa € Qun, k=2,3,...,n.

Since U € R™*™ is a unit upper triangular TN matrix, from [9] it admits the
unique nonnegative bidiagonal factorization

U=I[E:(an-1n).. E3 (a23) ... E3 (a12)] ... [Ef (a2n) En_ i (01,n—1)][Ep (01,0)],

where a1 2 >0,...,a1,, >0 and if a5+ =0 then oz, =0, VA > .
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The matrix PL is not a TN matrix but, taking into account its properties,
we can assure that it also admits a unique quasi-bidiagonal factorization in the
following form

PL = [E.(Bi.)En1(Brn-1)En(Bon)]---[E3(B13)FEa(B24) - En(Bn_2.n)]
[E3(—B2,3)Es(B3.4) - - En(Brn-1,n)]

where 813 >0,...,B1, >0 and if 854 = 0 then 855, =0, Vh > t.
Let us define the matrices

Gr = Elan—kn)-. Els(aspi)El (o1 1), k=1,2,...,n—1
Fi, = Eip1(B1h+1)Eri2(Bok+2) - En(Bn—kn), E=3,4,...,n—1
Fy, = E3(B13)Ea(B24)- .. En(Ba-2.n)

Fi = E3(—P23)Ei(B34) - En(Bn-1,n)

which expressions are given by (3), (4), (5) and (6), respectively. Since the
factorization A = LDU is unique, then A admits the unique quasi-bidiagonal
factorization given by (2).

Conversely, if A has the factorization

A= PF, Fy_s...FoF1DG1Gs...Gp2Gn_1,

and we denote by

L = PF, 1 F, o... hbF
U == G1G2 . o Gn_QGn_l

then A = LDU, where U € R™ " is a unit upper triangular TN matrix with
positive entries from the leading entry in each row, D = diag(—dy, —dz,ds, ...,
dy) with d; > 0, for i = 1,2,...,n and L € R™" is a block lower triangular

matrix
F o [~/11 O . z o 0 1
L—[im L] with L“‘[l 0}7

which verifies that
det L[a|1,2,...,k] <0, VYa € Qxn, k=2,3,...,n.

Consequently, by [6, Theorem 2] we conclude that A is a t.n.p. matrix. O

5.2. Rectangular t.n.p. matrices

For rectangular t.n.p. matrix A, its quasi-LDU factorization may be ob-
tained by applying the quasi-Neville elimination process. In general, we do not
know the positions of the zero pivots in the process, hence unfortunately it is
not always possible to obtain a quasi-bidiagonal factorization of A in a compact
form as we get in Theorem 8 for nonsingular t.n.p. matrices. For this rea-
son, from now on, we work with matrices that satisfy the WRC condition, that
is, matrices for which it is possible to apply the complete Neville elimination
process with no pivoting [12].
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Theorem 9. Let A be an n X m matriz with negative entries except for a;; = 0
and apm < 0, and full row rank. If A satisfies the WRC condition then, A is a
t.n.p. matriz if and only if A admits a unique quasi-bidiagonal factorization

A=PF, 1F, ... Fi[D Opx(m-m)GiGa... G (7)
where D = diag(—dy, —da,ds,...,dy,), with d; >0 fori=1,2,...,n, P is the
permutation matric P =[2, 1,3, ..., n], F}, forj =1,2,...,n—1, are given by

expressions (4), (5) and (6) and G;, for j =1,2,...,m — 1, are the unit upper
bidiagonal TN matrices
Gj = Ef+n(an7j+n)EJ-T+n_1(an_17j+n_1) o Ef+1(a1)j+1), ji=12....,m—n,
Gj=El(am—jm)EL 1 (@m—j1m-1). Bl (1j41), j=m—n+1,...,m—1,
with a1 2 >0,...,01,, >0 and if asr =0 then asp, =0, Vh > t.

Proof. By Theorem 4, A admits a quasi-LDU factorization, A = LDU.
Although PL € R™ " ig not a TN matrix, it admits the unique quasi-bidiagonal
factorization

PL=F, 1Fy ... FRF
where F;, for i =1,2,...,n — 1, are given by expressions (4), (5) and (6).

Since A satisfies the WRC condition then, the unit upper echelon TN matrix
U also satisfies this condition. Then it can be factorized, without interchange
of its columus, in the following form

U= [Inxn Onx(m—n)}GlGQ cee Gm—la

where G;, for j = 1,2,...,m — 1, are unit upper bidiagonal TN matrices given
by
_ T T T -
Gj = Ej+n(O‘n,j-i-n)Ej-&-n—l(04n—17j+n—1) aE Ej+1(0‘1,j+1)7 J=L12,....m—-n
Gj = E,r’,zr—;(amfj7m)E,;17;71(am7j717m71)c.oE‘;'I_’+1(a1,j+1), j :m—n-i-l,...,m—l

with a1 2 > 0,..., a1, > 0 and if oy = 0 then o, p, =0, VI > ¢. Therefore, A
admits the unique quasi-bidiagonal factorization

A= Panan,Q . F1 [D Onx(,n_n)}Gng e Gmfl.

Conversely, if A has the quasi-bidiagonal factorization given by (7), and we
denote by

L = PF, 1F, o5...F;

U = [I Onx(mfn)]GlGQ cee Gm—l
then, A = LDU, where U € R™ ™ is a unit upper echelon TN matrix with
positive entries from the leading entry in each row and the n first linearly inde-

pendent columns, D = diag(—dy, —da,ds, ...,d,) withd; > 0, fori =1,2,....,n
and L € R™*™ is a block lower triangular matrix

~ -Z/ll O . = 0 1
L= ~ ~ h L =
{ Loy Lo |’ wit H 1 0|’
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such that,
det L[a|1,2,...,k] <0, VYa € Qun, k=2,3,...,n.
Therefore, by Theorem 3, A is a t.n.p. matrix. O
For rectangular matrices with arbitrary rank the following result is obtained.

Theorem 10. Let A be an nxm matriz with negative entries except for a;; = 0
and apm < 0, and rank(A) = r. If A satisfies the WRC condition then, A is a
t.n.p. matriz if and only if A admits a unique quasi-bidiagonal factorization

D Orx(m—r)

A= PF, \F, o...F
! 2 ! O(n—r)xr O(n—r)x(m—r)

G1Gy...Gp 1
where D = diag(—dy, —da,ds, ..., d,), withd; >0 fori=1,2,...,r and P is the
permutation matrizc P = (2,1, 3, ..., n]. Moreover, F;, fori=3,4,...,n—1,
are unit lower bidiagonal TN matrices given by

F, = Eit1(Biiv1)Eiv2(B2iv2) - - - Eigr(Briitr), fori=3,4...,n—r,
Fi = Ei+1(ﬁl,i+1)Ei+2(52,i+2)~~'En(ﬁnfj,n); fO’f'i :TL—?"+1,...71’L— ].,
and

Fy = FE3(B13)Ei(B2a) .- Er(Br_ar)

Fi1 = E3(—P23)Es(Bs34) ... Er(Br-1,r)

with B13 >0, ..., Bin >0 and if B = 0 then B, = 0, for all h > ¢, and G},
forj=1,2,...,m —1, are the unit upper bidiagonal TN matrices defined by

G = EjT+n(an,j+n)EjT+n—1(Oén—l,j+n—1) : -~EJ'T+1(041,3‘+1)7 forj=1,2,....m—r,

Gj = Erz(am*j,m)Eﬁfl(am*jfl’mfl)"‘E]:Crl(al,jﬁq)’ forj=m—r+1,....m—

with a1 2 >0, ..., a1m >0 and if agr =0 then asp =0, for all h > t.
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