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Abstract

Let A = (aij) ∈ Rn×m be a totally nonpositive matrix with rank(A) = r ≤
min{n,m} and a11 = 0. In this paper we obtain a characterization in terms
of the full rank factorization in quasi-LDU form, that is, A = L̃DU where
L̃ ∈ Rn×r is a block lower echelon matrix, U ∈ Rr×m is a unit upper echelon
totally positive matrix and D ∈ Rr×r is a diagonal matrix, with rank(L̃) =
rank(U) = rank(D) = r. We use this quasi-LDU decomposition to construct
the quasi-bidiagonal factorization of A. Moreover, some properties about these
matrices are studied.
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1. Introduction

A matrix is called totally nonpositive (negative) if all its minors are nonpo-
sitive (negative) and it is abbreviated as t.n.p. (t.n.) see, for instance, [3, 4, 6, 8,
14, 15, 18]. These matrices can be considered as a generalization of the partially
negative matrices, that is, matrices with all its principal minors negative. The
partially negative matrices are called N-matrices in economic models [2, 16]. If,
instead, all minors of a matrix are nonnegative (positive) the matrix is called
totally nonnegative (totally positive) and it is abbreviated as TN (TP). These
classes of matrices have been studied by several authors [1, 5, 7, 9, 10, 11, 13, 17]
obtaining properties, the Jordan structure and characterizations by applying the
Gaussian or Neville elimination.

The nonsingular t.n.p. matrices with a negative (1, 1) entry have been
characterized in terms of the factors of their LDU factorization in [3]. This
factorization provides a criteria to determine if a matrix is t.n.p. and allows us
to reduce the number of minors to be checked to decide the total nonpositivity
of a nonsingular matrix with a negative (1, 1) entry. When the (1, 1) entry is

Ie-mail: {rcanto,bearibe,amurbano}@mat.upv.es
∗Corresponding author

Preprint submitted to Elsevier November 11, 2013



equal to zero but the (n, n) entry is negative we can obtain a UDL factoriza-
tion of this nonsingular t.n.p. matrix by permutation similarity. Then, we have
studied in [4] the extension of the same characterization to rectangular t.n.p.
matrices, obtaining a full rank LDU factorization in echelon form of this class
of matrices and other characterization by means of its thin QR factorization.
This QR characterization is similar to the one obtained in [5] for rectangular
TN matrices and it is an extension of the result for square TN matrices given
in [10].

When the nonsingular t.n.p. matrix has the (1, 1) and (n, n) entries equal to
zero a characterization, in terms of the signs of minors with consecutive initial
rows or consecutive initial columns, is obtained in [14]. Furthermore, in [6] the
authors characterize the nonsingular t.n.p. matrices with the (1, 1) entry equal
to zero in terms of a quasi-LDU factorization, that is, a L̃DU factorization,
where L̃ is a block lower triangular matrix, U is a unit upper triangular TN
matrix and D is a diagonal matrix. This result holds when the (n, n) entry is
equal to zero or when it is negative but the permutation similarity is not used.

The main goal of this paper is to conclude the characterization of any t.n.p.
matrix A by using a LDU factorization of A or a quasi-LDU factorization in
the cases when the (1, 1) entry of A is equal to zero. To finish this process,
we need to characterize the rectangular t.n.p. matrices with the (1, 1) entry
equal to zero in terms of a L̃DU full rank factorization, where L̃ is a block
lower echelon matrix, U is a unit upper echelon TN matrix and D is a diagonal
matrix (see Theorem 4 when A has full row rank, and Theorem 7 when A
has arbitrary rank). This quasi-LDU factorization will be used to construct a
quasi-bidiagonal factorization of this class of matrices.

We recall that a matrix is an upper echelon matrix if the first nonzero entry
in each row (leading entry) is to the right of all leading entry in the row above
it and all zero rows are at the bottom. If, in addition, each leading entry is
the only nonzero entry in its column it is called upper reduced echelon matrix.
A matrix is a lower (lower reduced) echelon matrix if its transpose is an upper
(upper reduced) echelon matrix. When all of the leading entries are equal to 1,
this matrix is called unit upper (lower) echelon matrix if it is in echelon form,
or unit upper (lower) reduced echelon matrix if it is in reduced echelon form.

We follow the notation given in [1]. For k, n ∈ N, 1 ≤ k ≤ n, Qk,n denotes
the set of all increasing sequences of k natural numbers less than or equal to n.
If A is an n×m matrix, α = (α1, α2, . . . , αk) ∈ Qk,n and β = (β1, β2, . . . , βk) ∈
Qk,m, A[α|β] denotes the k × k submatrix of A lying in rows αi and columns
βi, i = 1, 2, . . . , k. The principal submatrix A[α|α] is abbreviated as A[α]. Note
that, an n × m matrix A is a t.n.p. matrix if detA[α|β] ≤ 0, ∀α ∈ Qk,n and
∀β ∈ Qk,m, with k = 1, 2, . . . , n. Moreover, we represent by Aj , j = 1, 2, . . . ,m,
its jth-column and by A(i), i = 1, 2, . . . , n, its ith-row and we denote by Ei(x)
and Fi(x) bidiagonal matrices which differ from the identity matrix only in its
(i, i− 1) and (i− 1, i) entry x, respectively.

We denote by F
{j1,j2,...,jk}
n (C

{j1,j2,...,jk}
n ) the matrix obtained from the n×n

identity matrix by deleting the columns (rows) j1, j2, . . . , jk [4]. These matrices
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allow us to suppose, without loss of generality, that A ∈ Rn×m has nonzero
rows or columns. In other case, if A has the j1, j2, · · · , js zero rows and the

i1, i2, · · · , ir zero columns, 1 ≤ s ≤ n, 1 ≤ r ≤ m, with F
{j1,j2,··· ,js}
n and

C
{i1,i2,··· ,ip}
m we obtain

A = F {j1,j2,··· ,js}
n SC{i1,i2,··· ,ip}

m

where S ∈ R(n−s)×(m−p) has nonzero rows or columns. If rank(S) = r and S
has a quasi full rank factorization in echelon form S = L̃SDSUS , then A has
the following quasi full rank factorization in echelon form

A =
{
F {j1,j2,··· ,js}
n L̃S

}
DS

{
USC

{i1,i2,··· ,ir}
m

}
= L̃DU

where L̃ ∈ Rn×r is a block lower echelon matrix, D ∈ Rr×r is a nonsingular diag-
onal matrix, U ∈ Rr×m is an upper echelon matrix and rank(L̃) = rank(U) = r.

Therefore, from now on and without loss of generality, we work with matrices
which have nonzero rows and nonzero columns.

2. Properties of the t.n.p. matrices

In this section we study some properties of the row and column entries of
any rectangular t.n.p. matrix without zero rows and columns.

Proposition 1. Let A = (aij) ∈ Rn×m be a t.n.p. matrix with nonzero rows
or columns and a11 = 0.

1. If a1r, 2 < r ≤ m, is the first nonzero entry in the first row of A then,
Aj = αjA1, with αj > 0, for j = 2, 3, . . . , r − 1.

2. If ar1, 2 < r ≤ n, is the first nonzero entry in the first column of A, then
A(i) = βiA

(1), with βi > 0, for i = 2, 3, . . . , r − 1.

Proof. 1. Let a1r, r > 2, be the first nonzero entry in the first row. Since
A has nonzero columns, let ai1, 2 ≤ i ≤ n be the first nonzero entry in the first
column. If i > 2, for j = 2, 3, . . . , i− 1, and s = 2, 3, . . . , r − 1, we have that

detA[1, j, i|1, s, r] = det

 0 0 a1r
0 ajs ajr
ai1 ais air

 = −a1rajsai1 ≥ 0,

so, ajs = 0, for j = 2, 3, . . . , i− 1, and s = 2, 3, . . . , r − 1.
For i ≥ 2, t = i+ 1, i+ 2, . . . , n, and s = 2, 3, . . . , r − 1, it is satisfied that

detA[1, i, t|1, s, r] = det

 0 0 a1r
ai1 ais air
at1 ats atr

 = a1r detA[i, t|1, s] ≥ 0,

which implies that detA[i, t|1, s] = 0, for t = i + 1, i + 2, . . . , n and s =
2, 3, . . . , r − 1. That is, As = αsA1, for s = 2, 3, . . . , r − 1.
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2. The result is obtained working with the transpose of A. �
Taking into account the definition of t.n.p. matrices it is easy to prove the

following properties.

Proposition 2. Let A = (aij) ∈ Rn×m be a t.n.p. matrix with nonzero rows
or columns. The following statements are verified.

1. If a12 < 0, then a1j < 0 for j = 3, 4, . . . ,m.
2. If a21 < 0, then ai1 < 0 for i = 3, 4, . . . , n.
3. If anm < 0, then aim < 0 and anj < 0, for i = 1, 2, . . . , n − 1, j =

1, 2, . . . ,m− 1.

Proposition 3. Let A = (aij) ∈ Rn×m be a t.n.p. matrix with nonzero rows
or columns. The following statements are verified.

1. If there exists an index r, 1 < r < m, such that anr = 0, then anj = 0
for j = r + 1, r + 2, . . . ,m. Moreover, Aj = αjAr, with αj > 0, for
j = r + 1, r + 2, . . . ,m.

2. If there exists an index s, 1 < s < n, such that asm = 0, then aim = 0
for i = s + 1, s + 2, . . . , n. Moreover, A(i) = βiA

(s), with βi > 0, for
i = s+ 1, s+ 2, . . . , n.

Proof. 1. Suppose that anr = 0, with 1 < r < m. Since A has nonzero
columns, let i be the first index such that air < 0, 1 ≤ i ≤ n − 1. Then, for
j = r + 1, r + 2, . . . ,m, we have that

detA[i, n|r, j] = det

[
air aij
0 anj

]
= airanj ≥ 0

=⇒ anj = 0, j = r + 1, r + 2, . . . ,m.

Analogously, if i < n− 1, for q = i+ 1, i+ 2, . . . , n and j = r + 1, r + 2, . . . ,m,
we have that

detA[i, q|r, j] = det

[
air aij
0 aqj

]
= airaqj ≥ 0 =⇒ aqj = 0.

Moreover, since A has nonzero rows there exists an entry ant < 0, with
1 ≤ t < r. Therefore, for j = r + 1, r + 2, . . . ,m and s = 1, 2, . . . , n− 1,

detA[s, i, n|t, r, j] = det

 ast asr asj
ait air aij
ant 0 0

 = ant detA[s, i|r, j] ≥ 0,

from which we deduce that detA[s, i|r, j] = 0. So, Aj = αjAr, with αj > 0, for
j = r + 1, r + 2, . . . ,m.

2. The result is obtained working with the transpose of A. �
Consequently, from now on, by the previous propositions we can consider

a t.n.p. matrix A = (aij) ∈ Rn×m with aij < 0, for i = 1, 2, . . . , n and j =
1, 2, . . . ,m, except for a11 = 0 and anm ≤ 0. Furthermore, we can consider
n < m, because otherwise we work with the transpose matrix.
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3. Matrices with full row rank

In this section we characterize the rectangular t.n.p. matrices with the (1, 1)
entry equal to zero and full row rank in terms of their quasi-LDU factoriza-
tion. This characterization is an extension of the decomposition obtained for
nonsingular t.n.p. matrices [6].

Theorem 1. Let A be an n×m t.n.p. matrix with negative entries except for
a11 = 0 and anm ≤ 0, and full row rank. Then, A has a unique factoriza-
tion L̃DU , where U ∈ Rn×m is a unit upper echelon TN matrix with positive
entries from the leading entry in each row and the two first columns linearly
independent, D = diag(−d1,−d2, d3, . . . , dn) with di > 0, for i = 1, 2, . . . , n and
L̃ ∈ Rn×n is a block lower triangular matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,

where the entries in the first column of L̃21 are positive and in the second one
nonpositive, L̃22 is a unit lower triangular TN matrix with positive entries under
the main diagonal, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Proof. Let Ā = A[1, 2, . . . , n|1, 2, s3, . . . , sn] ∈ Rn×n be the matrix formed
by the n first linearly independent columns ofA. Then, there exists a unique unit
upper reduced echelon matrix C such that A = ĀC. Since Ā is a nonsingular
t.n.p. matrix with the (1, 1) entry equal to zero, by [6, Theorem 1] it admits
the unique quasi-LDU factorization Ā = L̃ĀDĀUĀ, where L̃Ā is a block lower
triangular matrix, with l̃i1 > 0 for i = 3, 4, . . . , n and

det L̃Ā[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

DĀ = diag(−d1,−d2, d3, . . . , dn) with di > 0, for i = 1, 2, . . . , n, and UĀ is a
unit upper triangular TN matrix, with positive entries above the main diagonal.
Then, A admits the unique quasi-LDU factorization

A = ĀC =
(
L̃ĀDĀUĀ

)
C = L̃ĀDĀ (UĀC) = L̃DU,

where L = L̃Ā, D = DĀ and by [5, Proposition 2] U = UĀC is a unit upper
echelon TN matrix with positive entries from the leading entry in each row. �

The converse of Theorem 1 is not true in general, as the next example shows.

Example 1. The matrix

A = L̃DU =

 0 1 0
1 0 0
2 −3 1

 −10 0 0
0 −2 0
0 0 1

 1 1 1 1
0 1 2 3
0 0 1 4


=

 0 −2 −4 −6
−10 −10 −10 −10
−20 −14 −7 2

 ,
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is not a t.n.p. matrix although the matrices L̃, D and U satisfy the conditions
of Theorem 1.

Now, we study necessary conditions for a product L̃DU to be a t.n.p. matrix.
Suppose that A = (aij) = L̃DU ∈ Rn×m, with L̃, D and U verifying the
conditions of Theorem 1. In order to apply the results for square matrices given
in [6], we construct from L = PL̃ ∈ Rn×n, where P is the permutation matrix
P = [2, 1, 3, . . . , n], D ∈ Rn×n and U ∈ Rn×m, square matrices L(δ) ∈ Rm×m,
D(δ) ∈ Rm×m and U(δ) ∈ Rm×m satisfying the conditions of [6, Theorem
2], and such that the (m,m) entry of matrix B(δ) = L(δ)D(δ)U(δ) is non
positive and B = B(δ)[1, 2, . . . , n|1, 2, . . . ,m]. Then, by [6, Theorem 2] the
matrix A(δ) = PB(δ) is t.n.p. and A = PB(δ)[1, 2, . . . , n|1, 2, . . . ,m] is also
t.n.p.

First, for all δ > 0 we extend the diagonal matrix D ∈ Rn×n in the following
way

D(δ) = diag(−d1,−d2, d3, . . . , dn, δ
3, δ4, . . . , δm−n+2)

=

[
D O
O D(δ)22

]
∈ Rm×m.

The next procedures show how to construct the matrices L(δ) and U(δ). We
begin extending the unit lower triangular matrix L = PL̃.

Procedure 1. Let L ∈ Rn×n be a unit lower triangular matrix

L =

[
I2 O
L21 L22

]
where the entries in the first column of L21 are positive, in the second one are
nonpositive, L22 is a unit lower triangular TN matrix with positive entries under
the main diagonal, and for all α = (α1, α2, . . . , αk) ∈ Qk,n, k = 2, 3, . . . , n,

detL[α|1, 2, . . . , k] =
{

≥ 0 if α1 = 1, α2 = 2
≤ 0 if 1 or 2 ̸∈ α.

This procedure allows us to construct an m × m, unit lower triangular matrix
L(δ) such that

L(δ) =

[
L O

L(δ)21 L(δ)22

]
∈ R(n+(m−n))×(n+(m−n))

where the entries l(δ)i1 and l(δ)i2, for i = 3, 4, . . . ,m, are positive and nonpo-
sitive, respectively, and the submatrix L(δ)[3, 4, . . . ,m] is a unit lower triangular
TN matrix with positive entries under the main diagonal.

The matrix L can be written as

L = E−1
(1)E

−1
(2) . . . E

−1
(n−1),
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where E−1
(i) = En(mn,i)En−1(mn−1,i) . . . Ei+1(mi+1,i), for i = 2, 3, . . . , n − 1,

with mij the multipliers of the Neville elimination of L. For i = 1

E−1
(1) = En(mn,1)En−1(mn−1,1) . . . Ẽ3(m3,1),

where the multiplier m3,1 is the (3, 1) entry of Ẽ3.

For i = 1, 2, . . . , n− 1, we construct

E(1)(δ) =



E(1) O O · · · O O
0 · · · −δ 1 0 · · · 0 0
0 · · · 0 −δ 1 · · · 0 0
...

...
...

...
...

...
0 · · · 0 0 0 · · · 1 0
0 · · · 0 0 0 · · · −δ 1


, Ê(i) =

[
E(i) O
O Im−n

]
.

From these matrices and for all δ we compute the m×m unit lower triangular
matrix

L(δ) = E−1
(1)(δ)Ê

−1
(2) · · · Ê

−1
(n−1)

=

[
L O

L(δ)21 L(δ)22

]
∈ R(n+(m−n))×(n+(m−n)).

By construction it is not difficult to see that

L(δ)21 = L(δ)[n+ 1, n+ 2, . . . ,m|1, 2, . . . , n]

=


ln1δ ln2δ · · · lnn−1δ δ
ln1δ

2 ln2δ
2 · · · lnn−1δ

2 δ2

...
...

...
...

ln1δ
m−n ln2δ

m−n · · · lnn−1δ
m−n δm−n

 ,

where [ln1 ln2 . . . lnn−1 1] is the last row of L, and

L(δ)22 = L(δ)[n+ 1, n+ 2, . . . ,m] =


1 0 · · · 0 0
δ 1 · · · 0 0
...

...
...

...
δm−n−2 δm−n−3 · · · 1 0
δm−n−1 δm−n−2 · · · δ 1

 .

Moreover, for all δ > 0, the entries l(δ)i1 and l(δ)i2, for i = 3, 4, . . . ,m, are
positive and nonpositive, respectively, and the submatrix L(δ)[3, 4, . . . ,m] is a
unit lower triangular TN matrix with positive entries under the main diagonal.

Lemma 1. For all δ > 0, α ∈ Qk,n and k = 2, 3, . . . , n, the matrix L(δ) ∈
Rm×m from Procedure 1 verifies that

detL(δ)[α|1, 2, . . . , k] =
{

≥ 0 if α1 = 1, α2 = 2
≤ 0 if 1 or 2 ̸∈ α
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Proof. By construction of the matrix L(δ) and by [6, Remark 1] the result
is straightforward. �

Example 2. Consider the unit lower triangular matrix

L =


1 0 0 0
0 1 0 0
2 0 1 0
6 0 5 1

 =

[
I2 O
L21 L22

]
.

By Procedure 1 we construct a 6× 6 unit lower triangular matrix.

First, we factorize L as

L = E−1
(1)E

−1
(2)E

−1
(3) =


1 0 0 0
0 1 0 0

−2 0 1 0
0 0 −3 1


−1

(I4)
−1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1


−1

=


1 0 0 0
0 1 0 0
2 0 1 0
6 0 3 1

 I4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1

 .

Then, for δ and i = 1, 2, 3, we construct the matrices

E(1)(δ) =


1 0 0 0 0 0
0 1 0 0 0 0

−2 0 1 0 0 0
0 0 −3 1 0 0
0 0 0 −δ 1 0
0 0 0 0 −δ 1

 , Ê(2) = I6,

Ê(3) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 −2 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Finally, from these matrices we compute the 6× 6 unit lower triangular matrix

L(δ) = E−1
(1)(δ)Ê

−1
(2)Ê

−1
(3)

=


1 0 0 0 0 0
0 1 0 0 0 0
2 0 1 0 0 0
6 0 5 1 0 0
6δ 0 5δ δ 1 0
6δ2 0 5δ2 δ2 δ 1

 .
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Let us now extend the matrix U . For that, it is necessary to consider two
cases.

CASE 1. The n first columns of the matrix U are linearly independent.

Procedure 2. Let U = [U11 U12] ∈ Rn×(n+(m−n)) be a unit upper echelon TN
matrix, with positive entries from the leading entry in each row and where U11 is
a unit upper triangular matrix. This Procedure constructs from U a unit upper
triangular TN matrix Û ∈ Rm×m with the following structure

Û =

[
U11 U12

O Û22

]
∈ R(n+(m−n))×n+(m−n))

where Û22 is a unit upper triangular TN matrix.

Matrix U can be factorized as follows

U = [ In×n On×(m−n) ]F
−1
(n)F

−1
(n−1) . . . F

−1
(1) ,

where, for i = 1, 2, . . . , n,

F−1
(i) = Fi+1(mi,i+1)Fi+2(mi,i+2) . . . Fm(mi,m),

with mij the multipliers of the Neville elimination of U .

We construct the unit upper triangular matrix Ũ ∈ Rm×m by the product

Ũ = F−1
(n)F

−1
(n−1) . . . F

−1
(1) .

Note that by construction,

Ũ =

[
U11 U12

O Ũ22

]
∈ R(n+(m−n))×n+(m−n))

is a TN matrix.

Example 3. Consider the unit upper echelon TN matrix

U =

 1 1 1 1 1
0 1 1 1 1
0 0 1 1 1

 = [ U11 U12 ] ∈ R3×(3+2).

By Procedure 2 we construct a 5× 5 unit upper triangular TN matrix Û .

The matrix U can be written as

U = [ I3×3 O3×2 ]F−1
(3)F

−1
(2)F

−1
(1) =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0




1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1


︸ ︷︷ ︸

F−1
(1)

,
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with F−1
(2) = F−1

(3) = I5×5. By Procedure 2, the unit upper triangular TN matrix

Û is

Û = F−1
(3)F

−1
(2)F

−1
(1) =


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 =

[
U11 U12

O Ũ22

]
∈ R(3+2)×5.

From the previous procedures we obtain the following result.

Theorem 2. Let A = L̃DU ∈ Rn×m be an n×m matrix, with negative entries
except for a11 = 0 and anm ≤ 0. Consider that U = [U11 U12] ∈ Rn×(n+(m−n))

is an upper echelon TN matrix with positive entries above the main diagonal
and U11 is a unit upper triangular matrix, D = diag(−d1,−d2, d3, . . . , dn) with
di > 0, i = 1, 2, . . . , n and L̃ ∈ Rn×n is a unit lower triangular matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
where the entries in the first column of L̃21 are positive, in the second one are
nonpositive, L̃22 is unit lower triangular TN matrix with positive entries under
the main diagonal, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Then, A is a t.n.p. matrix.

Proof. First of all suppose that anm < 0. Consider the matrix B = PA =
PL̃DU = LDU , where the lower triangular matrix L satisfies the conditions of
Lemma 1.

Consider them×mmatrices L(δ) obtained by Procedure 1,D(δ) = diag(−d1,
−d2, d3, . . . , dn, δ

3, δ4, . . . , δm−n+2) and Û obtained by Procedure 2.
From these matrices we construct

B(δ) = L(δ)D(δ)Û =

[
L O

L(δ)21 L(δ)22

] [
D O
O D(δ)22

] [
U11 U12

O Û22

]
=

[
LDU11 LDU12

L(δ)21DU11 L(δ)21DU12 + L(δ)22D(δ)22Û22

]
.

Note that,
B(δ)(m,m) = anm δm−n + k δm−n+2, k > 0.

Then, since anm < 0, there exists δ0 > 0 such that B(δ)(m,m) < 0 for all
δ < δ0. Hence, by the permutation matrix P̃ = [2, 1, 3, . . . , m] we obtain

A(δ) = P̃B(δ) = (P̃L(δ))D(δ)Û

=

[
L̃DU11 L̃DU12

L(δ)21DU11 L(δ)21DU12 + L(δ)22D(δ)22Û22

]
,

10



which is a t.n.p. matrix by [6, Theorem 2]. Thus, A = A(δ)[1, 2, . . . , n|1, 2, . . . ,m]
is t.n.p.

Suppose now that anm = 0, and consider

Bx = L


−d1

−d2
d3

. . .

dn − x

U,

where its (n,m) entry is −x. Therefore, for 0 < x < dn, we can apply the
results obtained when anm < 0.

Nevertheless, if Ax = PBx we have, for all 0 < x < dr, that

detAx[α|β] = sα,βx+ tα,β ≤ 0, ∀α ∈ Qk,n, β ∈ Qk,m, k = 1, 2, . . . , n,

where
sα,β = detA[α|β] ∀α ∈ Qk,n, β ∈ Qk,m, k = 1, 2, . . . , n.

If tα,β = 0 then detA[α|β] < 0. Otherwise, i.e. tα,β ̸= 0, since detAx[α|β] ≤ 0
for all positive x < dr by continuity sα,β = detA[α|β] ≤ 0. Thus, A is t.n.p. �

CASE 2. The n first columns of U are not linearly independent. Remind that
since a12 < 0, the first and second columns are linearly independent.

Procedure 3. Let U ∈ Rn×m be a unit upper echelon TN matrix, with positive
entries from the leading entry in each row and with the first and second columns
linearly independent. This Procedure constructs for all δ > 0 an upper echelon
TN matrix U(δ) ∈ Rn×m with its n first columns linearly independent and
limδ→0 U(δ) = U .

Consider the matrix Q = UT ∈ Rm×n and suppose that we can apply it the
Neville elimination process with no pivoting until the kth iteration. Then,

E(k)E(k−1) . . . E(2)E(1)Q = Qk =

[
Ik O
O Qk22

]
,

where the first nonzero entry in its (k+1)st column is below the main diagonal.
Now, before applying the (k+1)st iteration of Neville elimination to matrix Qk,
we replace in its (k+1) column the zero entries from the (k+1, k+1) position
to the first nonzero entry by δj−s, where j is the row index of this nonzero entry
and s = k + 1, k + 2, . . . , j − 1. We call the new matrix Q̃k(δ) and apply the
Neville elimination process with no pivoting to obtain E(k+1)Q̃k(δ) = Qk+1(δ).
From Qk+1(δ) we construct, if it is necessary and in a similar way, the matrix
Q̃k+1(δ), and apply Neville to obtain Qk+2(δ) and so on to matrix Qn(δ). Then,

Q(δ) = E−1
(1)E

−1
(2) . . . E

−1
(k)E

−1
(k+1)(δ)E

−1
(k+2)(δ) . . . E

−1
(n)(δ)Qn(δ) ∈ Rm×n

11



is a lower echelon TN matrix with the n first rows linearly independent for all
δ > 0, and

Q(δ) = Q+


0 0 0 · · · 0
0 0 0 · · · 0
0 0
...

... pij(δ)
0 0


where pij(δ) are polynomials in δ with nonnegative coefficients and satisfying

lim
δ→0

pij(δ) = 0 =⇒ lim
δ→0

Q(δ) = Q.

Therefore, U(δ) = Q(δ)T is an upper echelon TN matrix with the n first columns
linearly independent for all δ > 0.

Example 4. Consider the following upper echelon TN matrix

U =


1 1 1 1 1 1
0 1 1 1 1 1
0 0 0 0 1 2
0 0 0 0 0 1

 .

By Procedure 3 we construct an upper echelon TN matrix of size 4 × 6, U(δ),
with its four first columns linearly independent.

Applying Procedure 3 to matrix Q = UT we obtain,

Q =


1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 1 0
1 1 2 1


E(1)−→ Q1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 1


E(2)=I
−→

Q2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 1


column 3−→ Q̃2(δ) =


1 0 0 0
0 1 0 0
0 0 δ2 0
0 0 δ 0
0 0 1 0
0 0 1 1


E(3)(δ)−→

12



Q3(δ) =


1 0 0 0
0 1 0 0
0 0 δ2 0
0 0 0 0
0 0 0 0
0 0 0 1


column 4−→ Q̃3(δ) =


1 0 0 0
0 1 0 0
0 0 δ2 0
0 0 0 δ2

0 0 0 δ
0 0 0 1


E(4)(δ)−→

Q4(δ) =


1 0 0 0
0 1 0 0
0 0 δ2 0
0 0 0 δ2

0 0 0 0
0 0 0 0

 .

The lower echelon TN matrix Q(δ) is

Q(δ) = E−1
(1)E

−1
(2)E

−1
(3)(δ)E

−1
(4)(δ)Q4(δ) (1)

=


1 0 0 0
1 1 0 0
1 1 δ2 0
1 1 δ2 + δ δ2

1 1 δ2 + δ + 1 δ2 + 2δ
1 1 δ2 + δ + 2 δ2 + 4δ + 1



=


1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 1 0
1 1 2 1


︸ ︷︷ ︸

Q

+


0 0 0 0
0 0 0 0
0 0 δ2 0
0 0 δ2 + δ δ2

0 0 δ2 + δ δ2 + 2δ
0 0 δ2 + δ δ2 + 4δ

 .

Then, the upper echelon TN matrix with its four first columns linearly in-
dependent is

U(δ) = Q(δ)T =


1 1 1 1 1 1
0 1 1 1 1 1
0 0 δ2 δ2 + δ δ2 + δ + 1 δ2 + δ + 2
0 0 0 δ2 δ2 + 2δ δ2 + 4δ + 1

 .

From Procedure 3 and Theorem 2 the following result is deduced.

Theorem 3. Consider A = L̃DU ∈ Rn×m with negative entries except for
a11 = 0 and anm ≤ 0, where U ∈ Rn×m is a unit upper echelon TN matrix with
positive entries from the leading entry in each row and with the first and second
columns linearly independent, D = diag(−d1,−d2, d3, . . . , dn) with di > 0, i =
1, 2, . . . , n and L̃ ∈ Rn×n is a block lower triangular matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
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where the entries in the first column of L̃21 are positive, in the second one are
nonpositive, L̃22 is a unit lower triangular TN matrix with positive entries under
the main diagonal, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Then, A is a t.n.p. matrix.

Proof. From U and by applying Procedure 3 we construct an upper echelon
TN matrix, with positive entries above the main diagonal,

U(δ) = U +


0 0 0 · · · 0
0 0 0 · · · 0
0 0
...

... pij(δ)
0 0


︸ ︷︷ ︸

P (δ)

= [U(δ)11 U(δ)12],

where pij(δ) are polynomials in δ with nonnegative coefficients and such that
limδ→0 pij(δ) = 0 and U(δ)11 is an upper triangular matrix.

Now, we construct

A(δ) = L̃DU(δ) = L̃DU + L̃DP (δ),

whose (n,m) entry is A(δ)(n,m) = anm + ps(δ), being ps(δ) a polynomial in δ,
of degree s ≥ 1, with nonnegative coefficients and such that limδ→0 ps(δ) = 0.

If anm < 0, then there exists δ0 such that A(δ)(n,m) ≤ 0, for all δ ≤ δ0.
Hence, by Theorem 2, A(δ) is a t.n.p. matrix, that is

detA(δ)[α|β] ≤ 0, ∀α ∈ Qk,n, ∀β ∈ Qk,m, k = 1, 2, . . . , n

But, since

detA[α|β] = lim
δ → 0

detA(δ)[α|β] ≤ 0, ∀α ∈ Qk,n, ∀β ∈ Qk,m, k = 1, 2, . . . , n

we have that A is also t.n.p.
On the other hand, when anm = 0, we can suppose, without loss of generality,

that anj < 0, ∀j < m (otherwise, we know that these columns are linearly
dependent) and proceed as in Theorem 2. �

Combining Theorems 1, 2 and 3 we characterize the rectangular t.n.p. ma-
trices with the (1, 1) entry equal to zero and full row rank.

Theorem 4. Let A be an n×m matrix with negative entries except for a11 = 0
and anm ≤ 0, and full row rank. Then, A is a t.n.p. matrix if and only if A
has a unique factorization L̃DU , where U ∈ Rn×m is a unit upper echelon TN
matrix with positive entries from the leading entry in each row and the two first
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columns linearly independent, D = diag(−d1,−d2, d3, . . . , dn) with di > 0, for
i = 1, 2, . . . , n and L̃ ∈ Rn×n is a block lower triangular matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,

where the entries in the first column of L̃21 are positive and in the second one
nonpositive, L̃22 is a unit lower triangular TN matrix with positive entries under
the main diagonal, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

4. Matrices without full row rank

Now, we extend the results obtained in the previous section for rectangular
t.n.p. matrices with the (1, 1) entry equal to zero and full row rank to matrices
A = (aij) ∈ Rn×m with rank(A) = r < n < m.

Theorem 5. Let A be an n × m t.n.p. matrix with negative entries except
for a11 = 0 and anm ≤ 0, and rank(A) = r < n < m. Then, A has a
unique full rank factorization L̃DU , where U ∈ Rr×m is a unit upper eche-
lon TN matrix with positive entries from the leading entry in each row, D =
diag(−d1,−d2, d3, . . . , dr) with di > 0, for i = 1, 2, . . . , r and L̃ ∈ Rn×r is a
block lower echelon matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,

where the entries in the first column of L̃21 are positive and in the second one
nonpositive, L̃22 is a unit lower echelon TN matrix with positive entries under
the leading entry in each column, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , r.

Proof. Let A1 = A[1, 2, i3, . . . , ir|1, 2, . . . ,m] ∈ Rr×m be the matrix formed
by the r first linear independent rows of A. Then, there exists a unique unit
lower echelon matrix F1 such that A = F1A1. Since A1 is a t.n.p. matrix, with
the entry in position (1, 1) equal to zero and full row rank, by Theorem 1 it
has a unique full rank factorization L̃A1DA1UA1 , where UA1 ∈ Rr×m is a unit
upper echelon TN matrix, DA1 = diag(−d1,−d2, d3, . . . , dr) with di > 0, for
i = 1, 2, . . . , r and L̃A1 ∈ Rr×r is a block lower triangular matrix

L̃A1 =

[
L̃A111

O

L̃A121
L̃A122

]
, with L̃A111

=

[
0 1
1 0

]
,

where the entries in the first column of L̃A121
are positive, in the second one are

nonpositive, L̃A122
is a unit lower triangular TN matrix with positive entries

under the main diagonal, and such that

det L̃A1 [α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,r, k = 2, 3, . . . , r.
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Thereby, A admits the unique full rank factorization

A = F1A1 =
(
F1L̃A1

)
DA1UA1 = L̃DU,

where L̃ =

[
L̃11 O

L̃21 L̃22

]
∈ Rn×r, with L̃11 =

[
0 1
1 0

]
and L̃22 is a unit lower

echelon matrix, D = DA1 ∈ Rr×r and U = UA1 ∈ Rr×m. Since a21 < 0 and
a12 < 0, the matrix L̃ satisfies

• For i = 3, 4, . . . , n,

ai1 = detA[i|1] =

n∑
j=1

det L̃[i|j] det(DU)[j|1] = −d1 det L̃[i|1]

= −d1L̃(i, 1) < 0 =⇒ L̃(i, 1) > 0.

• For all {i1, i2} ∈ Q2,n,

detA[i1, i2|1, 2] =
∑

∀γ∈Q2,r

det L̃[i1, i2|γ] det(DU)[γ|1, 2]

= (−d1)(−d2) det L̃[i1, i2|1, 2] ≤ 0

=⇒ det L̃[i1, i2|1, 2] ≤ 0.

In particular, if i1 = 2 we have for i2 = 3, 4, . . . , n, that

det L̃[2, i2|1, 2] = L̃(i2, 2) ≤ 0.

• Since U ∈ Rr×m is an upper echelon matrix with rank r, we suppose that
its linear independent columns are {1, 2, j3, j4, . . . , jr}, with 3 ≤ j3 ≤ j4 ≤
. . . ≤ jr ≤ m. Then, for all α ∈ Qs,n and for 3 ≤ s ≤ r, we have that

detA[α|1, 2, j3, . . . , js] =
∑

∀γ∈Qs,r

det L̃[α|γ] det(DU)[γ|1, 2, j3, . . . , js]

= (−d1)(−d2)d3 . . . ds det L̃[α|1, 2, 3, . . . , s] ≤ 0

=⇒ det L̃[α|1, 2, 3, . . . , s] ≤ 0.

• The submatrix L̃22 ∈ R(n−2)×(r−2), with full column rank satisfies ∀α ∈
Qk,n−2 and k = 1, 2, . . . , r − 2,

det L̃22[α|1, 2, . . . , k] = det L̃22[α1, α2, . . . , αk|1, 2, . . . , k]
= −det L̃[1, 2, α1 + 2, α2 + 2, . . . , αk + 2|1, 2, . . . , k + 2] ≥ 0,

which implies that L̃22 is TN [5]. �

The converse of Theorem 5 is not true in general, as the next example shows.
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Example 5. The matrix

A = L̃DU =


0 1 0
1 0 0
2 −1 1
3 −2 3


 −2 0 0

0 −1 0
0 0 2

 1 2 1 1 1
0 1 1 1 1
0 0 0 0 1



=


0 −1 −1 −1 −1

−2 −4 −2 −2 −2
−4 −7 −3 −3 −2
−6 −10 −4 −4 2

 .

is not a t.n.p. matrix although the matrices L̃, D and U satisfy the conditions
of Theorem 5.

To prove the converse of Theorem 5 we need the following procedure.

Procedure 4. Let Q ∈ Rn×r be a unit lower echelon TN matrix, with rank
r < n and the first and second rows linearly independent,

Q =

[
Q11 O
Q21 Q22

]
∈ R(2+(n−2))×(2+(r−2)).

For all δ > 0 , this procedure allows us to construct a lower echelon TN matrix
Q(δ) of size n× p, r ≤ p ≤ n, such that its p first rows are linearly independent
and

lim
δ→ 0

Q(δ) = [Q O] ∈ Rn×(r+(p−r)).

Applying Procedure 3 to matrix Q we obtain Qr(δ). If p > r, matrix Qr+1(δ) is
made up from Qr(δ) adding to this matrix a new column which differs from the
zero column only in its (r+1) entry δn−r. If p > r+1, we proceed in a similar
way, that is, matrix Qr+2(δ) is made up from Qr+1(δ) adding to this matrix a
new column which differs from the zero column only in its (r+2) entry δn−r−1,
and so on to arrive to matrix Qp(δ).

Then,

Q(δ) = E−1
(1)E

−1
(2) · · ·E

−1
(k)E

−1
(k+1)(δ)E

−1
(k+2)(δ) · · ·E

−1
(r)(δ)Qp(δ) ∈ Rn×p

is a lower echelon TN matrix with the p first rows linearly independent for all
δ > 0. Moreover, Q(δ) = [Q(δ)1 Q(δ)2] ∈ Rn×(r+(p−r)) satisfies that

Q(δ)1 = Q+


0 0 0 · · · 0
0 0 0 · · · 0
0 0
...

... pij(δ)
0 0


where pij(δ) are polynomials in δ with nonnegative coefficients and satisfying

lim
δ→0

pij(δ) = 0 =⇒ lim
δ→0

Q(δ)1 = Q
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and

Q(δ)2 =

[
O

Q(δ)22

]
∈ R(r+(n−r))×(p−r)

where Q(δ)22 = [hij(δ)] ∈ R(n−r)×(p−r) is a lower echelon matrix, with its (n−p)
first rows linearly independent and limδ→0 hij(δ) = 0. Therefore,

lim
δ→ 0

Q(δ) = [Q O] ∈ Rn×(r+(p−r))

Example 6. Consider the following lower echelon TN matrix

Q =


1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 1 0
1 1 2 1

 .

Following Procedure 4 we construct a nonsingular lower triangular TN matrix
Q(δ) of size 6× 6.

In example 4, by applying Procedure 3 to Q, we obtained the matrix,

Q4(δ) = E(4)(δ)E(3)(δ)E(2)E(1)Q =


1 0 0 0
0 1 0 0
0 0 δ2 0
0 0 0 δ2

0 0 0 0
0 0 0 0

 ∈ R6×4.

Now, applying Procedure 4 to Q4(δ) we have

Q6(δ) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 δ2 0 0 0
0 0 0 δ2 0 0
0 0 0 0 δ2 0
0 0 0 0 0 δ

 ∈ R6×6.

Then,

Q(δ) = E−1
(1)E

−1
(2)E

−1
(3)(δ)E

−1
(4)(δ)Q6(δ)

=


1 0 0 0 0 0
1 1 0 0 0 0
1 1 δ2 0 0 0
1 1 δ2 + δ δ2 0 0
1 1 δ2 + δ + 1 δ2 + 2δ δ2 0
1 1 δ2 + δ + 2 δ2 + 4δ + 1 2δ2 + δ δ


= [Q(δ)1 Q(δ)2] ∈ R6×(4+2)
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is a nonsingular lower triangular TN matrix, for all δ > 0 and such that
limδ→ 0 Q(δ) = [Q O] ∈ R6×(4+2) .

Note that, Q(δ)1, which is equal to the matrix of the equation (1) given in
Example 4, verifies that limδ→0 Q(δ)1 = Q. Moreover, the matrix

Q(δ)2 =

[
O

Q(δ)22

]
=


0 0
0 0
0 0
0 0
δ2 0

2δ2 + δ δ

 ∈ R(4+(2))×(2)

verifies that limδ→0 Q(δ)2 = O.

Remark 1. Consider the following block lower echelon matrix L̃ ∈ Rn×r

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,

where the entries in the first column of L̃21 are positive and in the second one
nonpositive, L̃22 is unit lower echelon TN matrix with positive entries under the
leading entry in each column, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , r.

By applying Procedure 4 to the matrix

L = PL̃ =

[
I2 O

L̃21 L̃22

]
,

we can obtain a nonsingular lower triangular matrix L(δ) ∈ Rn×n and then the
matrix L̃(δ) = PL(δ) = [L̃(δ)1 L̃(δ)2] ∈ Rn×(r+(n−r)) with

L̃(δ)1 = L̃+


0 0 0 · · · 0
0 0 0 · · · 0
0 0
...

... pij(δ)
0 0

 =

[
L̃(δ)11
L̃(δ)12

]
∈ R(r+(n−r))×r,

and

L̃(δ)2 =

[
O

L̃(δ)22

]
∈ R(r+(n−r))×(n−r), L̃(δ)22 = [hij(δ)].

Moreover, L̃(δ)[3, 4, . . . , n] is a lower triangular TN matrix with positive entries
under the main diagonal and such that

det L̃(δ)[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

and
lim
δ→0

L̃(δ) = [L̃ O].
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Taking into account Procedure 4 and Remark 1 we give the following result.

Theorem 6. Consider A = L̃DU ∈ Rn×m with negative entries except for
a11 = 0 and anm ≤ 0, and rank(A) = r < n < m, where D = diag(−d1,−d2, d3,
. . . , dr), di > 0, i = 1, 2, . . . , r, U ∈ Rr×m is a unit upper echelon TN matrix
with positive entries from the leading entry in each row and L̃ ∈ Rn×r is a unit
lower echelon matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,

where the entries in the first column of L̃21 are positive, in the second one are
nonpositive, L̃22 is unit lower echelon TN matrix with positive entries under the
leading entry in each column and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , r.

and rank(U) = rank(L) = r < n < m. Then, A is a t.n.p. matrix.

Proof. Suppose that anm < 0. Following Remark 1 we construct the
nonsingular lower triangular matrix L̃(δ) = [L̃(δ)1 L̃(δ)2] ∈ Rn×(r+(n−r)), with

L̃(δ)1 = L̃+


0 0 0 · · · 0
0 0 0 · · · 0
0 0
...

... pij(δ)
0 0

 =

[
L̃(δ)11
L̃(δ)12

]
∈ R(r+(n−r))×r

lower echelon with the r first rows linearly independent and pij(δ) polynomials
in δ with nonnegative coefficients such that limδ→0 pij(δ) = 0, and

L̃(δ)2 =

[
O

L̃(δ)22

]
∈ R(r+(n−r))×(n−r), L̃(δ)22 = [hij(δ)]

with limδ→0 hij(δ) = 0 and L̃(δ)[3, 4, . . . , n] lower triangular TN matrix with
positive entries under the main diagonal and

det L̃(δ)[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Now, applying Procedure 4 to matrix UT we construct a lower echelon TN
matrix U(δ)T ∈ Rn×m, such that its n first rows are linearly independent.
Then

U(δ) =

[
U(δ)1
U(δ)2

]
∈ R(r+(n−r))×m

where

U(δ)1 = U +


0 0 0 · · · 0
0 0 0 · · · 0
0 0
...

... qij(δ)
0 0

 = [U(δ)11 U(δ)12 ] ∈ Rr×(r+(m−r))
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is an upper triangular matrix, qij(δ) are polynomials in δ with nonnegative
coefficients such that limδ→0 qij(δ) = 0, and

U(δ)2 = [O U(δ)22 ] ∈ R(n−r)×(r+(m−r))

with U(δ)22 = [gij(δ)] upper echelon TN matrix with its (n − r) first columns
linearly independent and limδ→0 gij(δ) = 0.

Consider D(δ) = diag(−d1,−d2, d3, . . . , dr, δ, δ, . . . , δ). Then,

A(δ) = L̃(δ)D(δ)U(δ)

=

[
L̃(δ)11 O

L̃(δ)12 L̃(δ)22

] [
D O
O δIn−r

] [
U(δ)11 U(δ)12

O U(δ)22

]
=

[
L̃(δ)11DU(δ)11 L̃(δ)11DU(δ)12
L̃(δ)12DU(δ)11 L̃(δ)12DU(δ)12 + δL̃(δ)22U(δ)22

]
.

It is not difficult to see that A(δ)(n,m) = anm +Hnm(δ), with Hnm(δ) a poly-
nomial in δ with nonnegative coefficients such that limδ→0 Hnm(δ) = 0. Since
anm < 0, there exists δ0 such that A(δ)(n,m) < 0 for all δ < δ0. By Theorem
2, A(δ) is t.n.p. for all δ < δ0, then

detA(δ)[α|β] ≤ 0 ∀α ∈ Qk,n, β ∈ Qk,m, k = 1, 2, . . . , n.

Since detA[α|β] = limδ→0 detA(δ)[α|β] ≤ 0 for all α ∈ Qk,n, β ∈ Qk,m, k =
1, 2, . . . , n, hence A is t.n.p. and obviously with rank(A) = r.

Finally, in the case anm = 0, proceeding as in the proof of Theorem 2 we
deduce that A is t.n.p. �

Combining Theorems 5 and 6 we characterize the rectangular t.n.p. matrices
with the (1, 1) entry equal to zero and arbitrary rank.

Theorem 7. Let A be an n×m matrix with negative entries except for a11 = 0
and anm ≤ 0, and rank(A) = r < n < m. Then, A is a t.n.p. matrix if and only
if A has a unique full rank factorization L̃DU , where U ∈ Rr×m is a unit upper
echelon TN matrix with positive entries from the leading entry in each row,
D = diag(−d1,−d2, d3, . . . , dr) with di > 0, for i = 1, 2, . . . , r and L̃ ∈ Rn×r is
a block lower echelon matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,

where the entries in the first column of L̃21 are positive and in the second one
nonpositive, L̃22 is a unit lower echelon TN matrix with positive entries under
the leading entry in each column, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , r.
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5. Quasi-bidiagonal factorization of a t.n.p. matrix

In [6] the authors obtain a unique quasi-LDU factorization of nonsingular
t.n.p. matrices with the (1, 1) entry equal to zero. In the previous sections we
have obtained the extension of this factorization for the rectangular case. Now,
from these results we construct a quasi-bidiagonal factorization of nonsingular
and rectangular t.n.p. matrices with the (1, 1) entry equal to zero.

5.1. Nonsingular t.n.p. matrices

Theorem 8. Let A be an n×n nonsingular matrix with negative entries except
for a11 = 0 and ann ≤ 0. Then, A is a t.n.p. matrix if and only if A admits a
unique quasi-bidiagonal factorization

A = PFn−1Fn−2 . . . F1DG1G2 . . . Gn−1 (2)

where D = diag(−d1,−d2, d3, . . . , dn), with di > 0 for i = 1, 2, . . . , n and P is
the permutation matrix P = [2, 1, 3, . . . , n]. Gk, for k = 1, 2, . . . , n−1, are the
unit upper bidiagonal TN matrices defined by

Gk =



1
. . .

1
1 α1,k+1

. . .

1 αn−k−1,n−1

1 αn−k,n

1


(3)

with α1,2 > 0, . . . , α1,n > 0 and if αs,t = 0 then αs,h = 0, ∀ h > t.

For k = 3, 4, . . . , n− 1, Fk are the unit lower bidiagonal TN matrices,

Fk =



1
. . .

1
β1,k+1 1

. . .

βn−k−1,n−1 1
βn−k,n 1


(4)
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and

F2 =



1
0 1
β13 0 1

. . .

1
βk−1,k+1 1

. . .

βn−3,n−1 1
βn−2,n 1


, (5)

F1 =



1
1

−β23 1
. . .

1
βk,k+1 1

. . .

βn−2,n−1 1
βn−1,n 1


(6)

with β1,3 > 0, . . . , β1,n > 0 and if βs,t = 0 then βs,h = 0, ∀ h > t.

Proof. By [6], A admits a unique factorization L̃DU , where U ∈ Rn×n is a
unit upper triangular TN matrix with positive entries from the leading entry in
each row and the two first columns linearly independent, D = diag(−d1,−d2, d3,
. . . , dn) with di > 0, for i = 1, 2, . . . , n and L̃ ∈ Rn×n is a block lower triangular
matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,

where the entries in the first column of L̃21 are positive and in the second one
nonpositive, L̃22 is a unit lower triangular TN matrix with positive entries under
the main diagonal, and such that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Since U ∈ Rn×n is a unit upper triangular TN matrix, from [9] it admits the
unique nonnegative bidiagonal factorization

U = [ET
n (αn−1,n) . . . E

T
3 (α2,3) . . . E

T
2 (α1,2)] . . . [E

T
n (α2,n)E

T
n−1(α1,n−1)][E

T
n (α1,n)],

where α1,2 > 0, . . . , α1,n > 0 and if αs,t = 0 then αs,h = 0, ∀ h > t.
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The matrix PL̃ is not a TN matrix but, taking into account its properties,
we can assure that it also admits a unique quasi-bidiagonal factorization in the
following form

PL̃ = [En(β1,n)][En−1(β1,n−1)En(β2,n)] . . . [Ẽ3(β1,3)E4(β2,4) . . . En(βn−2,n)]

[E3(−β2,3)E4(β3,4) . . . En(βn−1,n)]

where β1,3 > 0, . . . , β1,n > 0 and if βs,t = 0 then βs,h = 0, ∀ h > t.
Let us define the matrices

Gk = ET
n (αn−k,n) . . . E

T
k+2(α2,k+2)E

T
k+1(α1,k+1), k = 1, 2, . . . , n− 1

Fk = Ek+1(β1,k+1)Ek+2(β2,k+2) . . . En(βn−k,n), k = 3, 4, . . . , n− 1

F2 = Ẽ3(β1,3)E4(β2,4) . . . En(βn−2,n)

F1 = E3(−β2,3)E4(β3,4) . . . En(βn−1,n)

which expressions are given by (3), (4), (5) and (6), respectively. Since the
factorization A = L̃DU is unique, then A admits the unique quasi-bidiagonal
factorization given by (2).

Conversely, if A has the factorization

A = PFn−1Fn−2 . . . F2F1DG1G2 . . . Gn−2Gn−1,

and we denote by

L̃ = PFn−1Fn−2 . . . F2F1

U = G1G2 . . . Gn−2Gn−1

then A = L̃DU , where U ∈ Rn×n is a unit upper triangular TN matrix with
positive entries from the leading entry in each row, D = diag(−d1,−d2, d3, . . . ,
dn) with di > 0, for i = 1, 2, . . . , n and L̃ ∈ Rn×n is a block lower triangular
matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,

which verifies that

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Consequently, by [6, Theorem 2] we conclude that A is a t.n.p. matrix. �

5.2. Rectangular t.n.p. matrices

For rectangular t.n.p. matrix A, its quasi-LDU factorization may be ob-
tained by applying the quasi-Neville elimination process. In general, we do not
know the positions of the zero pivots in the process, hence unfortunately it is
not always possible to obtain a quasi-bidiagonal factorization of A in a compact
form as we get in Theorem 8 for nonsingular t.n.p. matrices. For this rea-
son, from now on, we work with matrices that satisfy the WRC condition, that
is, matrices for which it is possible to apply the complete Neville elimination
process with no pivoting [12].
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Theorem 9. Let A be an n×m matrix with negative entries except for a11 = 0
and anm ≤ 0, and full row rank. If A satisfies the WRC condition then, A is a
t.n.p. matrix if and only if A admits a unique quasi-bidiagonal factorization

A = PFn−1Fn−2 . . . F1[D On×(m−n)]G1G2 . . . Gm−1 (7)

where D = diag(−d1,−d2, d3, . . . , dn), with di > 0 for i = 1, 2, . . . , n, P is the
permutation matrix P = [2, 1, 3, . . . , n], Fj, for j = 1, 2, . . . , n−1, are given by
expressions (4), (5) and (6) and Gj, for j = 1, 2, . . . ,m− 1, are the unit upper
bidiagonal TN matrices

Gj = ET
j+n(αn,j+n)E

T
j+n−1(αn−1,j+n−1) . . . E

T
j+1(α1,j+1), j = 1, 2, . . . ,m− n,

Gj = ET
m(αm−j,m)ET

m−1(αm−j−1,m−1) . . . E
T
j+1(α1,j+1), j = m− n+ 1, . . . ,m− 1,

with α1,2 > 0, . . . , α1,n > 0 and if αs,t = 0 then αs,h = 0, ∀ h > t.

Proof. By Theorem 4, A admits a quasi-LDU factorization, A = L̃DU .
Although PL̃ ∈ Rn×n is not a TN matrix, it admits the unique quasi-bidiagonal
factorization

PL̃ = Fn−1Fn−2 . . . F2F1

where Fi, for i = 1, 2, . . . , n− 1, are given by expressions (4), (5) and (6).
Since A satisfies the WRC condition then, the unit upper echelon TN matrix

U also satisfies this condition. Then it can be factorized, without interchange
of its columns, in the following form

U = [In×n On×(m−n)]G1G2 . . . Gm−1,

where Gi, for j = 1, 2, . . . ,m− 1, are unit upper bidiagonal TN matrices given
by

Gj = ET
j+n(αn,j+n)E

T
j+n−1(αn−1,j+n−1) . . . E

T
j+1(α1,j+1), j = 1, 2, . . . ,m− n

Gj = ET
m(αm−j,m)ET

m−1(αm−j−1,m−1) . . . E
T
j+1(α1,j+1), j = m− n+ 1, . . . ,m− 1

with α1,2 > 0, . . . , α1,n > 0 and if αs,t = 0 then αs,h = 0, ∀ h > t. Therefore, A
admits the unique quasi-bidiagonal factorization

A = PFn−1Fn−2 . . . F1[D On×(m−n)]G1G2 . . . Gm−1.

Conversely, if A has the quasi-bidiagonal factorization given by (7), and we
denote by

L̃ = PFn−1Fn−2 . . . F1

U = [I On×(m−n)]G1G2 . . . Gm−1

then, A = L̃DU , where U ∈ Rn×m is a unit upper echelon TN matrix with
positive entries from the leading entry in each row and the n first linearly inde-
pendent columns, D = diag(−d1,−d2, d3, . . . , dn) with di > 0, for i = 1, 2, . . . , n
and L̃ ∈ Rn×n is a block lower triangular matrix

L̃ =

[
L̃11 O

L̃21 L̃22

]
, with L̃11 =

[
0 1
1 0

]
,
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such that,

det L̃[α|1, 2, . . . , k] ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Therefore, by Theorem 3, A is a t.n.p. matrix. �

For rectangular matrices with arbitrary rank the following result is obtained.

Theorem 10. Let A be an n×m matrix with negative entries except for a11 = 0
and anm ≤ 0, and rank(A) = r. If A satisfies the WRC condition then, A is a
t.n.p. matrix if and only if A admits a unique quasi-bidiagonal factorization

A = PFn−1Fn−2 . . . F1

[
D Or×(m−r)

O(n−r)×r O(n−r)×(m−r)

]
G1G2 . . . Gm−1

where D = diag(−d1,−d2, d3, . . . , dr), with di > 0 for i = 1, 2, . . . , r and P is the
permutation matrix P = [2, 1, 3, . . . , n]. Moreover, Fi, for i = 3, 4, . . . , n − 1,
are unit lower bidiagonal TN matrices given by

Fi = Ei+1(β1,i+1)Ei+2(β2,i+2) . . . Ei+r(βr,i+r), for i = 3, 4 . . . , n− r,

Fi = Ei+1(β1,i+1)Ei+2(β2,i+2) . . . En(βn−j,n), for i = n− r + 1, . . . , n− 1,

and

F2 = Ẽ3(β1,3)E4(β2,4) . . . Er(βr−2,r)

F1 = E3(−β2,3)E4(β3,4) . . . Er(βr−1,r)

with β1,3 > 0, . . . , β1,n > 0 and if βs,t = 0 then βs,h = 0, for all h > t, and Gj,
for j = 1, 2, . . . ,m− 1, are the unit upper bidiagonal TN matrices defined by

Gj = ET
j+n(αn,j+n)E

T
j+n−1(αn−1,j+n−1) . . . E

T
j+1(α1,j+1), for j = 1, 2, . . . ,m− r,

Gj = ET
m(αm−j,m)ET

m−1(αm−j−1,m−1) . . . E
T
j+1(α1,j+1), for j = m− r + 1, . . . ,m− 1,

with α1,2 > 0, . . . , α1,m > 0 and if αs,t = 0 then αs,h = 0, for all h > t.
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