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Abstract. AHP (analytic hierarchy process) is used to construct coherent
aggregate results from preference data provided by decision makers. Pairwise
comparison, used by AHP, shares a common weakness with other input formats
used to represent user preferences, namely, that the input mode is static. In other
words, users must provide all the preference data at the same time, and the criteria
must be completely defined from the start. To overcome this weakness, we propose
a framework that allows users to provide partial and/or incomplete preference
data at multiple times. Since this is a complicated issue, we specifically focus
on a particular aspect as a first attempt within this framework. For that reason,
we re-examine a mechanism to achieve consistency in AHP, i.e. a linearization
process, which provides consistency when adding a new element to the decision
process or when withdrawing an obsolete criterion under the dynamic input mode
assumption. An algorithm is developed to determine the new priority vector from
the users’ new input. Finally, we apply the new process to a problem of interest in
the water field, specifically, the adoption of a suitable leak control policy in urban
water supply.

Keywords: analytic hierarchy process, dynamic decision-making, leakage con-
trol, water supply systems

1 Introduction

AHP (analytic hierarchy process) is a decision process [18] that involves aggregating various
comparisons to obtain a priority vector that is representative of coherent results. In other
words, AHP generates consolidated priorities about a number of alternatives that represent
the will, likes, or decisions revealed by the preference data provided by one or more actors,
or groups of actors, involved in the decision-making process. Achieving consistency in AHP
has become an important issue [8, 11, 15, 16, 17] and different methods have been proposed
[1, 2, 4, 5, 6, 7, 9, 12, 14, 19, 22].
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AHP uses a specific input format for decision makers to express their preferences regarding
criteria and alternatives, namely, pair-wise comparisons. This format may be not perfect –
yet it expresses user preferences reasonably well in many practical situations. After all the
preference data has been collected, an algorithm is applied to generate consistent consolidated
results.

However, a limitation of pair-wise comparisons is that before applying the decision model
the experts must provide judgment data representing their preference with respect to all the
elements involved. This kind of input is impossible in many practical situations. Consider,
for example, the following two scenarios. Firstly, let us suppose that not all the elements
for comparison are known or evident from the start. In leakage control, for example, only
economic aspects have so far been widely considered. Nevertheless, environmental aspects
have started to be considered as important, and even more recently, social elements have
also started to play important roles in decision making on leakage control policies. A second
scenario is when the consulted actors are unfamiliar with the effects of various items. As a
result, it is difficult to collect complete preference information from decision makers at one
time. It would be reasonable to allow decision makers to express their preferences at multiple
times at their own convenience. In the meanwhile, partial results based on partial preference
data could be generated from the data collected at multiple times – and this data could
eventually be consolidated when the information is complete.

To consider the above mentioned scenarios, the input mode of the traditional AHP needs
to be extended from a static mode to a dynamic mode. The dynamic mode involves the
dimension of time. In other words, it will not be compulsory for users to provide input
preference data at one point in time. A user will be able to input his/her preferences at
multiples times. The user only needs to express his/her preference each time for a subset of
elements, rather than the complete set. A change from static to dynamic mode will probably
have many repercussions in future studies. It is impossible to address all of these issues at
this time. Therefore, in this study we initiate a new approach and focus on a specific sub-
problem. In this paper, we restrict ourselves to the case where a new criterion is added to
the pool of previously considered criteria. This case can obviously be extended to the case of
adding more than one criterion. The withdrawal of an obsolete criterion is readily obtained
as a corollary.

The remainder of this paper is organized as follows. First, a short review of the lineariza-
tion process [4] to achieve consistency is presented. In the methodology section, new results
are presented that enable an efficient calculation of the new consistent matrix and its cor-
responding vector of priority after introducing a new criterion or withdrawing an obsolete
criterion. Finally, the proposed methodology is applied to a real-world case in water leakage
management, and conclusions are presented to close the paper.

2 Related work

In this section, we first review the pertinent literature on AHP and related work for the
proposed methodology. We then provide a summary of our recent work and propose a method
to achieve consistency for a non-consistent matrix based on a linearization procedure [4]. We
have also extended this process to the case where a specific judgment should be changed [3].
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In this paper we provide a new extension to consider the case in which a new decision element
is introduced.

2.1 Some basics about consistency

Let us first recall the main facts about consistent matrices.

Let us consider an n × n real matrix A. A is positive if aij > 0 for every i, j; A is
homogeneous if aii = 1 for every i; A is reciprocal if aij = 1/aji, for every i, j. These are the
typical properties of comparison matrices generally found in AHP. In addition, A is consistent
if aik = aijajk, for every i, j, k. Among the different characterizations of consistent matrices,
we recall the following which makes use of the mapping: J , associating to a positive matrix
A = (aij) the matrix whose entry (i, j) is 1/aij . If X is any matrix, then XT denotes the
transpose of X. Throughout this paper, it is assumed that the vectors of IRn are column
vectors.

The following result was established in a slightly different manner in [4].

Theorem 1 (Theorem 2.1, (ii) of [4]). A positive matrix A is consistent if and only if there
is a vector x in IRn such that A = xJ(x)T.

For a consistent matrix, the leading eigenvalue and the principal (Perron) eigenvector of
a comparison matrix provides information to deal with complex decisions, the normalized
Perron eigenvector giving the sought priority vector [17, 18]. In the general case, however, A
is not consistent. The hypothesis that the estimates of these values are small perturbations
of the “right” values guarantees a small perturbation of the eigenvalues (see, e.g., [21]). For
non-consistent matrices, the problem to solve is the eigenvalue problem Aw = λmaxw, where
λmax is the unique largest eigenvalue of A that gives the Perron eigenvector as an estimate of
the priority vector. As a measurement of inconsistency, Saaty proposed using the consistency
index CI = (λmax − n)/(n − 1) and the consistency ratio CR = CI/RI, where RI is the
so-called average consistency index [18]. If CR < 0.1, the estimate is accepted; otherwise, a
new comparison matrix is solicited until CR < 0.1.

2.2 Linearization process

From now on, Mn,m will denote the set of n×m real matrices, M+
n,m the set of n×m positive

matrices, and tr(A) the trace of the matrix A ∈ Mn,n. It is well known that if we define
〈A,B〉 = tr(ATB) for A,B ∈ Mn,m, then 〈·, ·〉 is an inner product. The derived norm from
this inner product is customarily termed the Frobenius norm, and we denote it by ‖ · ‖F, i.e.,
‖A‖2F = tr(ATA). We define the map L : M+

n,m →Mn,m associating it with a positive matrix
A = (aij) whose (i, j) entry is log(aij). Its inverse mapping E : Mn,m → M+

n,m associates a
matrix B = (bij) with the matrix whose entry (i, j) is exp(bij).

The following map d : M+
n,m ×M+

n,m → IR defined by d(A,B) = ‖L(A)− L(B)‖F is easily
proven to be a distance. We propose using this distance in M+

n,m instead of the distance
derived from the Frobenius norm. To motivate this proposal, note that we intend to solve
approximation problems in M+

n,m and not in Mn,m; thus it is more natural to have a distance
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defined in M+
n,m than a distance defined in a larger set. Furthermore, let us consider the

following example,

A1 =
[

1 1
1 1

]
, B1 =

[
1 2

1/2 1

]
, A2 =

[
1 8

1/8 1

]
, B2 =

[
1 9

1/9 1

]
.

We have ‖A1−B1‖F ' 1.118 and ‖A2−B2‖F ' 1.001; which gives the impression that the
gap between A1 and B1 is similar to the gap between A2 and B2. This is not very intuitive
because matrix A1 reflects the fact that the two criteria are equivalent, while B1 reflects that
the second criterion is twice as important as the second criterion. Let us observe that the
importance of the criteria in A2 and B2 are very close. Thus, in an intuitive point of view,
the distance between A1 and B1 must be much greater than the distance between A2 and B2.
Numerically, we have d(A1, B1) ' 0.9803 and d(A2, B2) ' 0.1666.

The linearization process [4] states that the closest consistent matrix to an n×n comparison
matrix A is given by the orthogonal projection of L(A) onto

Ln = {L(A) : A ∈M+
n,n, A is consistent }. (1)

Obviously, X ∈ Ln if and only if E(X) is consistent. This subset Ln is a linear subspace of
Mn,n whose dimension is n− 1. The orthogonal projection from Mn,n to Ln will be denoted
by pn : Mn,n → Ln and is given by a suitable Fourier expansion. In this expansion, use is
made of the map given by

φn(v) = v1T
n − 1nvT, v ∈ IRn. (2)

We also use the standard inner product in IRn (i.e., 〈u,v〉 = uTv) and the Euclidean norm in
IRn (i.e., ‖u‖2 = (uTu)1/2). The vector of IRn having all its coordinates equal to 1 will play an
important role in the sequel, thus it is displayed with a special symbol: 1n = [1 · · · 1]T ∈ IRn.

For the sake of clarity, we summarize the linearization theorem as follows:

Theorem 2. The subset Ln is a linear subspace of Mn,n satisfying Ln = Imφn and dim Ln =
n− 1. Furthermore, let A ∈M+

n,n.

(i) There exists a unique consistent matrix Y ∈M+
n,n such that

d(A, Y ) ≤ d(A, Y ′) ∀ Y ′ consistent in M+
n,n.

This matrix Y is given by Y = E(pn(L(A))).

(ii) If {y1, . . . ,yn−1} is an orthogonal basis of the orthogonal complement to span{1n}, then
{φn(y1), . . . , φn(yn−1)} is an orthogonal basis in Ln,

‖φn(yi)‖2F = 2n‖yi‖22, ∀i = 1, . . . , n− 1,

and the following matrix

1
2n

n−1∑
i=1

tr(L(A)Tφn(yi))
‖yi‖22

φn(yi)

is the orthogonal projecton of L(A) onto Ln.
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A simple computation shows that from (2), there is [φn(v)]T = −φn(v) for any v ∈ IRn,
which, in view of Theorem 2, shows that any matrix in Ln is skew-Hermitian, in particular,
pn(X) is skew-Hermitian for any X ∈Mn,n.

The following result enables the discovery of an orthogonal basis of span{1n} without any
computations.

Theorem 3 (Theorem 2.6, [4]). Let (Yn)∞n=2 be the sequence of matrices defined as follows:

Y2 =
[

1
−1

]
, Yn+1 =

[
Yn 1n

0 −n

]
, n ≥ 2.

Then for every n ≥ 2, the columns of Yn are orthogonal and belong to (span{1})⊥. Further-
more, if y1,n, . . . ,yn−1,n are the columns of Yn, then ‖yk,n‖22 = k + k2 for 1 ≤ k ≤ n− 1.

3 Methodology

In this section we develop efficient calculation methods of the new consistent matrix and its
corresponding vector of priority - either after introducing a new decision element or with-
drawing an obsolete element.

3.1 Adding a new criterion

Let us consider the following problem: suppose that we have a reciprocal matrix A ∈ M+
n,n

and by means of Theorem 2, we have at our disposal the nearest consistent matrix YA. We
then add an extra judgment corresponding to a new decision element, thus obtaining a new
reciprocal matrix B as follows

B =
[

A v
J(vT) 1

]
∈M+

n+1,n+1, (3)

where v ∈ IRn, all of whose components are positive, and represent the preferences of this new
decision element when compared pairwise with the others. Obviously, the reciprocity of A
leads to the reciprocity of B. The questions are now: how can we find the nearest consistent
matrix to B without again using Theorem 2? Can we take advantage of the computations
made when YA was computed?

Indeed, we shall later see that Theorem 5 will provide a positive answer to those questions.
Before presenting the proof of this theorem, we need some notations and previous results.
Firstly, let us recall the basic properties of the trace, which are collected immediately and
used throughout the proof of Theorem 5.

i) The trace is linear, i.e., if X,Y ∈ Mn,n and α, β ∈ IR, then tr(αX + βY ) = α tr(X) +
β tr(Y ).

ii) For any X ∈Mn,n, one has tr(X) = tr(XT).

iii) If X ∈ Mn,m and Y ∈ Mm,n, then tr(XY ) = tr(Y X). Observe that it is not necessary
that m = n.
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Let us remark that if w ∈ IRn, then wT1n/n is the arithmetic mean of the coordinates of
w. Thus, it is natural to define

mean : IRn → IR, mean(w) =
wT1n

n
. (4)

It is also clear that w−mean(w)1n is the vector w ‘displaced to its arithmetic mean’. We
shall denote

centr : IRn → IRn, centr(w) = w −mean(w)1n. (5)

We shall not use the subscript n for the mappings mean and centr (contrary to the mapping
φn defined in (2)) because it is unnecessary. Some basic and useful properties for these
mappings are collected in the next lemma.

Lemma 1. Let the mappings φn, mean, and centr be defined in (2), (4), and (5), respectively.
Then

i) φn, mean, and centr are linear mappings.

ii) mean[centr(w)] = 0 for all w ∈ IRn.

iii) φn[centr(w)] = φn(w) for all w ∈ IRn.

iv) (n + 1) mean(w)1n + centr(w) = (1n1T
n + In)w for all x ∈ IRn, where In denotes the

identity matrix of order n.

Proof: items i) and ii) are trivial to be proven. The proofs of iii) and iv) follow from the
following computations: for w ∈ IRn, one has

φn[centr(w)] = [w −mean(w)1n]1T
n − 1n[w −mean(w)1n]T = w1T

n − 1nwT = φn(w).

and

(n+ 1) mean(w)1n + centr(w) = (n+ 1) mean(w)1n + w −mean(w)1n

= nmean(w)1n + w

= (1T
nw)1n + w

= 1n(1T
nw) + w

= (1n1T
n + In)w. �

Furthermore, we shall use the following result (which can be found in any standard textbook
of linear algebra, see e.g., [13, Section 5.4]):

Theorem 4. If x1, . . . ,xn is an orthogonal basis of IRn, then any u ∈ IRn can be written as

u =
n∑

j=1

〈u,xj〉
‖xj‖22

xj .
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Now, we shall state and prove the main result of this section.

Theorem 5. Let A ∈M+
n,n. If B is defined as in (3), then pn+1(L(B)) is the following block

matrix:
npn(L(A)) + φn[L(v)]

n+ 1
(1n1T

n + In)L(v) + pn(L(A))1n

n+ 1

∗ 0

 , (6)

being the block denoted with ‘*’ determined, since pn(L(B)) is skew-Hermitian.

Proof: Obviously, one has

L(B) =
[

L(A) L(v)
−L(v)T 0

]
. (7)

Moreover, if {y1, . . . ,yn−1} is the orthogonal basis of (span{1n})⊥ obtained in Theorem 3,
the following vectors of IRn+1

z1 =
[

y1

0

]
, z2 =

[
y2

0

]
, . . . , zn−1 =

[
yn−1

0

]
, zn =

[
1n

−n

]
(8)

form an orthogonal basis of (span{1n+1})⊥. In view of Theorem 2, we have to relate

pn(L(A)) =
1

2n

n−1∑
i=1

tr
[
L(A)Tφn(yi)

]
‖yi‖22

φn(yi) (9)

with

pn+1(L(B)) =
1

2(n+ 1)

n∑
i=1

tr
[
L(B)Tφn+1(zi)

]
‖zi‖22

φn+1(zi). (10)

To this purpose, let us start splitting the set of indexes on the right-hand side of (10) into
two subsets, namely {1, . . . , n− 1} and {n}.

Pick any i ∈ {1, . . . , n− 1}. Since

φn+1(zi) = zi1T
n+1−1n+1zT

i =
[

yi

0

] [
1T

n 1
]
−
[

1n

1

] [
yT

i 0
]

=
[
φn(yi) yi

−yT
i 0

]
(11)

and having in mind (7) we have

L(B)Tφn+1(zi) =
[
L(A)T −L(v)
L(v)T 0

] [
φn(yi) yi

−yT
i 0

]
=

[
L(A)Tφn(yi) + L(v)yT

i ∗
∗ L(v)Tyi

]
.

To simplify the right-hand of (10), we must simplify tr(L(B)Tφn+1(zi)), thus, there is no
need to calculate the entries off the main diagonal of L(B)Tφn+1(zi). Therefore,
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tr[L(B)Tφn+1(zi)] = tr[L(A)Tφn(yi)] + 2L(v)Tyi for 1 ≤ i ≤ n− 1. (12)

Furthermore, if 1 ≤ i ≤ n− 1, then (8) leads to ‖yi‖2 = ‖zi‖2.

Now, we simplify the last summand on the right-hand side of (10): Since

φn+1(zn) = zn1T
n+1 − 1n+1zT

n =

=
[

1n

−n

] [
1T

n 1
]
−
[

1n

1

] [
1T

n −n
]

=
[

0 (1 + n)1n

−(1 + n)1T
n 0

]
, (13)

by using (7), one has (again, we mark with an asterisk the entries that we are not interested
in)

L(B)Tφn+1(zn) =
[
L(A)T −L(v)
L(v)T 0

] [
0 (1 + n)1n

−(1 + n)1T
n 0

]
=

[
(1 + n)L(v)1T

n ∗
∗ (1 + n)L(v)T1n

]
.

Therefore,

tr[L(B)Tφn+1(zn)] = 2(n+ 1)L(v)T1n. (14)

Furthermore, (8) leads to ‖zn‖2 = n(1 + n).

Now, we express pn+1(L(B)) in terms of pn(L(A)). To this end, we use (10), (11), (12),
(13), (14), ‖zn‖2 = n(1 + n), and ‖zi‖2 = ‖yi‖ for 1 ≤ i ≤ n− 1.

pn+1(L(B)) =
1

2(n+ 1)

n∑
i=1

tr
[
L(B)Tφn+1(zi)

]
‖zi‖22

φn+1(zi)

=
1

2(n+ 1)

(
tr
[
L(B)Tφn+1(zn)

]
‖zn‖22

φn+1(zn)+

+
n−1∑
i=1

tr
[
L(B)Tφn+1(zi)

]
‖zi‖22

φn+1(zi)

)

=
L(v)T1n

n

[
0 1n

−1T
n 0

]
+

+
1

2(n+ 1)

n−1∑
i=1

tr[L(A)Tφn(yi)] + 2L(v)Tyi

‖yi‖22

[
φn(yi) yi

−yT
i 0

]
. (15)

By focusing our attention to the “north-west” block of pn+1(L(B)) in (15) and using (9), one
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has

1
2(n+ 1)

n−1∑
i=1

tr[L(A)Tφn(yi)] + 2L(v)Tyi

‖yi‖22
φn(yi)

=
1

2(n+ 1)

(
2npn(L(A)) + 2

n−1∑
i=1

L(v)Tyi

‖yi‖22
φn(yi)

)

=
n

n+ 1
pn(L(A)) +

1
n+ 1

n−1∑
i=1

L(v)Tyi

‖yi‖22
φn(yi). (16)

Since {1n,y1, . . . ,yn−1} is an orthogonal basis of IRn, by applying Theorem 4, one has

L(v) =
n−1∑
i=1

L(v)Tyi

‖yi‖22
yi +

L(v)T1n

‖1n‖22
1n, (17)

Let us remark ‖1n‖2 = n. By recalling the definition of the mapping centr made in (5), the
expression (17) can be equivalently written as

n−1∑
i=1

L(v)Tyi

‖yi‖22
yi = centr(L(v)). (18)

Now we use the definition of φn made in (2), (18) and Lemma 1:

n−1∑
i=1

L(v)Tyi

‖yi‖22
φn(yi) =

n−1∑
i=1

L(v)Tyi

‖yi‖22
(yi1T

n − 1nyT
i )

=

(
n−1∑
i=1

L(v)Tyi

‖yi‖22
yi

)
1T

n − 1n

(
n−1∑
i=1

L(v)Tyi

‖yi‖22
yi

)T

= φn[centr(L(v))]
= φn[L(v)], (19)

hence, the “north-west” block of pn+1(L(B)) in (15), by using (16) and (19), is,

n

n+ 1
pn(L(A)) +

1
n+ 1

φn[L(v)].

The “north-east” block of pn+1(L(B)) in (15) is

L(v)T1n

n
1n +

1
2(n+ 1)

n−1∑
i=1

tr[L(A)Tφn(yi)] + 2L(v)Tyi

‖yi‖22
yi.

Let us recall that

pn(L(A)) =
1

2n

n−1∑
i=1

tr[L(A)Tφn(yi)]
‖yi‖22

φn(yi) =
1

2n

n−1∑
i=1

tr[L(A)Tφn(yi)]
‖yi‖22

(yi1T
n −1nyT

i ), (20)

9



1T
n1n = n, and yT

i 1n = 0 (since yi ∈ (span{1n})⊥). Postmultiplying (20) by 1n leads to

pn(L(A))1n =
1

2n

n−1∑
i=1

tr[L(A)Tφn(yi)]
‖yi‖22

(yi1T
n −1nyT

i )1n =
1
2

n−1∑
i=1

tr[L(A)Tφn(yi)]
‖yi‖22

yi. (21)

By (18) and (21), the “north-east” of pn+1(L(B)) reduces to

L(v)T1n

n
1n+

pn(L(A))1n + centr(L(v))
n+ 1

= mean(L(v))1n+
pn(L(A))1n + centr(L(v))

n+ 1
. (22)

By means of item iv) of Lemma 1, equality (22) yields that the “north-east” block of
pn+1(L(B)) is

(1n1T
n + In)L(v) + pn(L(A))1n

n+ 1
.

The proof of this theorem is finished since pn+1(L(B)) is skew-Hermitian. �

In formula (6) the original matrix of pairwise comparisons, A, is used to obtain the new
consistent matrix corresponding to the enlarged decision problem. Nevertheless, it is quite
likely for that original matrix to have already been overridden by its associated consistent
matrix. It is, thus, more natural to use the latter instead of the original matrix to build the
consistent matrix for the enlarged problem. The next corollary shows that identical results
are obtained in both cases. Before establishing this result, let us introduce the following
notation: for a given reciprocal matrix X, let us denote by YX the consistent matrix closest
to X in the sense of Theorem 2.

Corollary 1. Let A ∈M+
n,n be a reciprocal matrix and v ∈M+

n,1. If

B =
[

A v
J(vT) 1

]
and D =

[
YA v

J(vT) 1

]
,

then YB = YD

Proof: Item (i) of Theorem 2 leads to L(YA) = pn(L(A)). Having in mind that p2
n = pn

(because pn is a projection), one has pn(L(YA)) = pn[pn(L(A))] = pn(L(A)). On the other
hand, Theorem 5 yields

pn+1(L(B)) =


npn(L(A)) + φn[L(v)]

n+ 1
(1n1T

n + In)L(v) + pn(L(A))1n

n+ 1

∗ 0


and

pn+1(L(D)) =


npn(L(YA)) + φn[L(v)]

n+ 1
(1n1T

n + In)L(v) + pn(L(YA))1n

n+ 1

∗ 0

 .
Since pn(L(A)) = pn(L(YA)) one gets pn+1(L(B)) = pn+1(L(D)). Item (i) of Theorem 2 leads
to YB = YD. �
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3.2 Withdrawing an obsolete criterion from a comparison process

Now, we shall consider the inverse problem to that studied in the previous section. Imagine
that we have an (n + 1) × (n + 1) reciprocal matrix B and its closest consistent matrix YB.
Now, let us suppose that a concrete judgment, say i ∈ {1, . . . , n, n + 1}, becomes obsolete
and thus, we obtain a new matrix A by deleting the ith row and ith column to B. How can
we obtain the closest consistent matrix to A making use of our knowledge of YB? We can
assume without loss of generality that i = n+ 1 (by making a suitable permutation).

To solve the problem stated in the previous paragraph, let us write B as in (3). We have
at our disposal the matrix given in (6). Our purpose is to find the matrix pn(L(A)). If P is
the ’north-west’ block of the matrix given in (6), then

pn(L(A)) =
1
n

[(n+ 1)P − φn(L(v))] .

4 Incorporating social and environmental costs to leakage control

In this section, we discuss how the algorithm given by Theorem 5 is used in a decision process
and then evaluate the effectiveness of the method.

The application uses the opinions of a group of experts from a water company in Valencia
(Spain) about the relative importance of various criteria regarding the adoption of a certain
leakage control policy. The main goal is the minimization of water loss by means of suitable
leakage control. In a simplified setting, two main alternatives are considered: ALC (active
leakage control) and PLC (passive leakage control). The former involves taking a priori
actions in the supply system in a preventive manner, while the latter consists in just repairing
reported or evident leaks [10]. Various criteria, involving both tangible factors and intangible
or qualitative factors, may be used to decide on the alternatives. To illustrate the application
of Theorem 5, we first consider a set of four criteria, namely:

C1: planning development cost and its implementation;

C2: budget and credits;

C3: investment retrieval;

C4: environmental cost;

and then we add a fifth criterion:

C5: social cost.

The hierarchical structure for the first problem is presented in Figure 1.

For this problem, Table 1 gathers the experts’ opinions according to the Saaty nine-point
scale.

For this matrix, the consistency index and the consistency ratio are, respectively:

CI = 0.3677, and CR = 41.31%.
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Figure 1: Initial hierarchical structure of the decision-making problem

C1 C2 C3 C4

C1 1 1/3 3 5
C2 3 1 1/3 3
C3 1/3 3 1 5
C4 1/5 1/3 1/5 1

Table 1: Matrix of criteria comparison, A4×4

As a consequence, the matrix in Table 1 is not consistent, and consistency improvement is
necessary. After applying the linearization process described in [4] the consistent matrix in
Table 2 is obtained; this matrix, after feedback with the experts, is accepted.

This matrix uses the same Saaty nine-point scale, and the only difference is that intermedi-
ate values are shown in the calculations. Given that this is the result of a numerical process,
the entries for this matrix do not strictly follow the integer semantics inherent in the Saaty
nine-point scale. Nevertheless, both matrices share the same verbal scale and enable us to
find a reliable vector of priorities:

Z4 = [0.35 0.23 0.35 0.07]T,

that shows a clear preponderance of economic criteria, especially C1 and C3.

However, based on a number of reasons irrelevant for this study, it was decided to include
a new criterion that could take into consideration a new category of costs, in our case, so-
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C1 C2 C3 C4

C1 1.00 1.50 0.98 4.87
C2 0.67 1.00 0.66 3.25
C3 1.02 1.52 1.00 4.96
C4 0.21 0.31 0.2 1.00

Table 2: Consistent matrix closest to A4×4

cial costs. The hierarchical structure of the new decision-making problem is represented in
Figure 2.

Figure 2: Enlarged decision-making problem

Accordingly, the 4×4 matrix in Table 2 must be enlarged to a new 5×5 matrix incorporating
the pairwise comparisons between C3 and the other four criteria. After consulting the team
of experts, comparison values in the last column of the matrix in Table 3 are produced, with
reciprocal values in the last row, and these have been pasted to the consistent matrix in
Table 2, according to Corollary 1.

This matrix again does not pass the test of consistency (CI = 0.1714 and CR = 15.44).
The new consistent matrix corresponding to this new problem, Table 4, may be accomplished
without starting calculations from scratch by using Formula (6) in Theorem 5.

It is worth noting that this formula is clearly explicit, involving just a few simple matrix
calculations. As a consequence, its implementation does not involve any computation burden
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C1 C2 C3 C4 C4

C1 1.00 1.50 0.98 4.87 5
C2 0.67 1.00 0.66 3.25 3
C3 1.02 1.52 1.00 4.96 1/2
C4 0.21 0.31 0.2 1.00 1/5
C5 1/5 1/3 2 5 1

Table 3: Enlarged criteria comparison Matrix, D5x5

at all. In fact, it can be straightforwardly implemented in just one expression within a
computational environment that includes matrix computation functions.

C1 C2 C3 C4 C4

C1 1.00 1.53 1.26 5.83 1.99
C2 0.65 1.00 0.82 3.80 1.30
C3 0.79 1.22 1.00 4.62 1.58
C4 0.17 0.26 0.22 1.00 0.34
C5 0.50 0.77 0.63 2.93 1.00

Table 4: Consistent matrix closest to D5x5

The priority vector for this matrix, the normalized (so that the components add 1) Perron
eingenvector, is

Z5 = [0.32 0.21 0.25 0.06 0.16]T.

Among other problem-specific interpretations that the experts could produce, let us remark
on the following. The consistency improvement process has managed to detect some bias in
the experts’ opinions regarding the newly introduced social costs. In fact, a few days before
the experts provided the new comparison values a couple of major accidents (producing
casualties) were caused by water leaks in two Spanish towns. These accidents had angered
public opinion. As a consequence, the importance given to social costs were (unconsciously)
magnified by the experts, as they responded a posteriori. Observe, for example, that the social
impact was initially considered five times more important than the environmental impact and
even twice as important as investment retrieval. After achieving consistency, these values are
suitably placed in their true position. In addition, neither social nor environmental costs seem
to unbalance this group of experts towards criteria less related to economic aspects. This can
be observed from the fact that the new priority vector, Z5 exhibits values very close to Z4

with respect to the first three components, while the environmental and social criteria only
manage to get a couple of tenths from the others. Yet, this fact is worthwhile emphasizing:
environmental and social costs have taken more than 20% of the total importance placed on
the five criteria.

The next step in AHP, as a multi-criteria decision-making process, consists in comparing
the alternatives in relation with all the criteria. The values provided by the experts, together
with the associated priority vectors, are compiled in Table 5.
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C1 eig
ALC PLC

ALC 1 1/3 0.25
PLC 3 1 0.75

C2 eig
ALC PLC

ALC 1 5 0.83
PLC 1/5 1 0.17

C3 eig
ALC PLC

ALC 1 5 0.83
PLC 1/5 1 0.17

C4 eig
ALC PLC

ALC 1 3 0.75
PLC 1/3 1 0.25

C5 eig
ALC PLC

ALC 1 5 0.83
PLC 1/5 1 0.17

Table 5: Alternative comparisons for each criterion together with their priority vectors (eig)

Finally, the main target is accomplished by aggregating these scores - a synthesis of pri-
orities - to determine the best decision. A decision score is computed for any alternative by
multiplying its priority value by the priority of a given criterion and then summing for all the
criteria:

W = [0.64 0.36]T.

In this case, according to [20], the largest coordinate of W , corresponding to active leakage
control, is clearly preferred over passive leakage control due to the fact that ALC is considered
more important than PLC for all except the first criteria. In fact, ALC, which hinges on having
a project (with all its associated costs), is less preferred than PLC (no project consideration)
regarding C1 = planning development cost and its implementation. Moreover, the other
criteria (including environmental and social costs, but especially the prospective of investment
retrieval) drag the decision towards ALC.

5 Conclusions

In this work, we consider a new dimension in the traditional AHP methodology by consider-
ing that input may be either static or dynamic, depending on whether actors provide their
preferences all at once or at multiple times. We think that this will open a window to various
new variants of AHP methodology in the future. However, since it is not possible to ad-
dress all potential related issues at once, in this paper we aim to solve a particular variant in
which the introduction of a new criterion or the withdrawal of an obsolete criteria are allowed
while avoiding the need for repeating all the calculations from scratch. This novel method
is computationally inexpensive and is based on a linearization process previously introduced
by the authors [4]. To check the performance of the algorithm, an experiment is performed
that considers a decision-making problem in water supply regarding the adoption of either an
active or a passive leakage control policy.

Many future extensions regarding dynamic AHP may be devised. For example, in the
second scenario considered in the introduction the consulted actors are unfamiliar with the
effects of various items. In this case, collecting complete and quality preference information
from decision makers at the same time cannot be expected. It is necessary to allow user

15



preference data to be input at multiple times at their own convenience. As a result, the static
input mode could be changed in such a way that partial results based on partial preference
data could be generated from the data collected at multiple times, and new results could
eventually be obtained when all the information is complete. Allowing for this dynamic input
mode in traditional approaches would open the door to a large array of future research issues.
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consistency in AHP through linearization, Appl. Math. Model. 35 (2011) 4449-4457.

[5] N. Bryson, A goal programming method for generating priorities vectors, J. Oper. Res.
Soc. 46 (5) (1995) 641-648.

[6] D. Cao, L.C. Leung, J.S. Law, Modifying inconsistent comparison matrix in analytic
hierarchy process: A heuristical approach, Dec. Supp. Syst. 44 (2008) 944-953.

[7] A.T.W. Chu, R.E. Kalaba, K. Springarn, A comparison of two methods for determining
the weights of belonging to fuzzy sets, J. Optim. Theor. Appl. 27 (4) (1979) 531-541.

[8] G. Crawford, C. Williams, A note on the analysis of subjective judgement matrices, J.
Math. Psychol. 29 (4) (1985) 387-405.
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