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Abstract5

Let T = c1T1 + c2T2 + c3T3 − c4 (T1T2 +T3T1 +T2T3), where T1, T2, T3 are6

three n × n tripotent matrices and c1, c2, c3, c4 are complex numbers with c1, c2, c37

nonzero. In this paper, it is mainly established necessary and sufficient conditions for8

the nonsingularity of such combinations and obtained some formulae for the inverses9

of them. Some of these results are given in terms of group invertible matrices.10
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1 Introduction and Preliminaries14

Let C be the field of complex numbers and C∗ = C \ {0}. For a positive integer n, let15

Mn be the set of all n × n complex matrices over C. The symbols rank(A), A∗, R(A),16

and N (A) stands for the rank, conjugate transpose, the range space, and the null space of17

A ∈ Mn, respectively. Recall that a matrix A ∈ Mn is idempotent if A2 = A and tripotent18

if A3 = A.19

The nonsingularity of linear combinations of idempotent matrices and k-potent matrices20

was studied in, for example, [1, 2, 4, 6, 9, 15]. The nonsingularities of the combinations21

c1P + c2Q − c3PQ and c1P + c2Q − c3PQ−c4QP − c5PQP of two idempotent matrices22

P, Q were investigated in [16] and [17], respectively. The considerations of this paper23

are inspired by Liu et al.[10]. They established necessary and sufficient conditions for the24

nonsingularity of combinations c1T1 + c2T2 − c3T1T2 of two trioptent matrices and gave25

some formulae for the inverse of c1T1 + c2T2 − c3T1T2 under the some conditions.26

Consider a combination of the form27

T = c1T1 + c2T2 + c3T3 − c4 (T1T2 +T3T1 +T2T3) (1.1) lincom

where c1, c2, c3 ∈ C
∗, c4 ∈ C and T1, T2, T3 ∈ Mn are three tripotent matrices. The28

purpose of this paper is mainly twofold: first, to establish necessary and sufficient conditions29

for the nonsingularity of combinations of the form (1.1) and then to give some formulae for30

the inverse of them.31

Now, let us give the following additional concepts and properties. For a given matrix
A ∈ Mn is said to be group invertible if there exists a matrix X ∈ Mn such that

AXA = A, XAX = X, AX = XA

hold. If such an X ∈ Mn exists, then it is unique, customarily denoted by A#[3]. A matrix32

A ∈ Mn is group invertible if and only if there exist nonsingular S ∈ Mn, C ∈ Mr such33

that A = S (C⊕ 0)S−1, r being the rank of A [12, Exercise 5.10.12]. In this situation,34

one has A#= S
(

C−1 ⊕ 0
)

S−1. This latter representation implies that any diagonalizable35
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matrix is group invertible. Moreover, it is well known that A ∈ Mn is nonsingular if and36

only if N (A) = {0}. Furthermore, if A ∈ Mn and k is a natural number greater than37

1, then A satisfies Ak = A if and only if A is diagonalizable and the spectrum of A is38

contained in k−1
√
1 ∪ {0}[5].39

Special types of matrices, such as idempotents, tripotents, etc., are very useful in many40

contexts and they have been extensively studied in the literature. For example, quadratic41

forms with idempotent matrices are used extensively in statistical theory. So it is worth to42

stress and spread these kinds of results. Evidently, if T is a tripotent matrix, then T is43

group invertible and T#= T. Many of the results given in this work will be given in terms44

of group invertible matrices.45

2 Main Results46

Baksalary and Baksalary [1] proved that the nonsingularity of P1 + P2, where P1 and47

P2 are idempotent matrices, is equivalent to the nonsingularity of any linear combinations48

c1P1+c2P2, where c1, c2 ∈ C\{0} and c1+c2 6= 0. This result was further generalized in [8],49

where it was proved the stability of the nullity and rank of c1P1+c2P2 for any c1, c2 ∈ C\{0}.50

In the forthcoming results, we give similar results for two and three commuting tripotent51

matrices. For another related paper concerning this topic, the reader is referred to [15]. We52

need the following simple lemma whose proof is left to the reader53

lemma0 Lemma 2.1. Let A,B ∈ Mn be two group invertible matrices such that there exist nonsin-54

gular matrices S ∈ Mn, A1,B1 ∈ Mr satisfying A = S(A1⊕0)S−1 and B = S(B1⊕0)S−1.55

Then R(A) = R(B) and N (A) = N (B).56

theo_a Theorem 2.1. Let T1,T2 ∈ Mn\{0} be two commuting tripotent matrices and c1, c2 ∈ C∗
57

such that c21−c22 6= 0. Then R(T2
1+T2

2) = R(c1T1+c2T2), N (T2
1+T2

2) = N (c1T1+c2T2),58

c1T1 + c2T2 is group invertible and59

(c1T1 + c2T2)
# =

c22
c1(c21 − c22)

T1T
2
2 +

c21
c2(c22 − c21)

T2T
2
1 +

1

c1
T1 +

1

c2
T2. (2.1) j0

In particular, If T2
1+T2

2 is nonsingular, then c1T1+c2T2 is nonsingular and (c1T1+c2T2)
−1

60

is given by (2.1).61

Proof. Let p = rank(T1T2), q = rank(T1), and r = rank(T2). Since T1 and T2 are62

diagonalizable and commuting, there exists a nonsingular S ∈ Mn such that63

T1 = S(A1 ⊕B1 ⊕ 0⊕ 0)S−1, T2 = S(A2 ⊕ 0⊕B2 ⊕ 0)S−1, (2.2) j1

being A1,A2 ∈ Mp, B1 = Mq−p, B2 ∈ Mr−p, and A1,A2,B1,B2 nonsingular. By using
T3

1 = T1 and T3
2 = T2 one gets A2

1 = A2
2 = Ip, B

2
1 = Iq−p, and B2

2 = Ir−p. Therefore,

T2
1 +T2

2 = S(2Ip ⊕ Iq−p ⊕ Ir−p ⊕ 0)S−1.

By considering the equality64

(c1A1 + c2A2)(c1A1 − c2A2) = (c21 − c22)Ip, (2.3) theo_a_0

we get the nonsingularity of c1A1 + c2A2. Since65

c1T1 + c2T2 = S [(c1A1 + c2A2)⊕ c1B1 ⊕ c2B2 ⊕ 0]S−1, (2.4) theo_a_1

and by applying Lemma 2.1 to matrices T2
1 +T2

2 and c1T1+ c2T2 we obtain the equality of
the range spaces and null spaces of this theorem. Also, B2

1 = Iq−p, B
2
2 = Ir−p, the expression

(2.4), and [12, Exercise 5.10.12] permit assure that c1T1 + c2T2 is group invertible and

(c1T1 + c2T2)
# = S

[

(c1A1 + c2A2)
−1 ⊕ c−1

1 B1 ⊕ c−1
2 B2 ⊕ 0

]

S−1
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Now we use the equality (2.3):66

[

(c1A1 + c2A2)
−1 ⊕ 0⊕ 0⊕ 0

]

=
1

c21 − c22
[(c1A1 − c2A2)⊕ 0⊕ 0⊕ 0]

=
1

c21 − c22
[c1(A1 ⊕ 0⊕ 0⊕ 0)− c2(A2 ⊕ 0⊕ 0⊕ 0)]

=
1

c21 − c22

[

c1S
−1T1T

2
2S− c2S

−1T2
1T2S

]

.

In addition we have S(0 ⊕ B1 ⊕ 0 ⊕ 0)S−1 = T1(In − T2
2) and S(0 ⊕ 0 ⊕ B2 ⊕ 0)S−1 =

T2(In −T2
1). Therefore

(c1T1 + c2T2)
# =

1

c21 − c22

[

c1T1T
2
2 − c2T

2
1T2

]

+
1

c1
T1(In −T2

2) +
1

c2
T2(In −T2

1).

By simplifying this last equality, one can gets (2.1).67

The proof of Theorem 2.1 permits affirm that if T1T2 = 0, then the first summand in68

the two direct sums appearing in (2.2) are absent and hence we can deduce the following69

corollary:70

Corollary 2.1. Let T1,T2 ∈ Mn \ {0} be two commuting tripotent matrices satisfying
T1T2 = 0 and let c1, c2 ∈ C

∗. Then c1T1 + c2T2 is group invertible and

(c1T1 + c2T2)
# =

1

c1
T1 +

1

c2
T2.

Remark 2.1. Observe that T2
1 + T2

2 is nonsingular if and only if rank(T1) + rank(T2) =
n+ rank(T1T2). In fact, from the representation (2.2) we have

T2
1+T2

2 is nonsingular ⇔ p+(q−p)+(r−p) = n ⇔ rank(T1)+rank(T2) = n+rank(T1T2).

The following simple pair of equalities will be useful to prove next result: If A, B, and71

C ∈ Mn satisfy A2 = B2 = C2 = In and they are mutually commuting, then72

(aA+ bB+ cC)(xA+ yB+ zC+wABC) = (a4+ b4+ c4− 2a2b2− 2b2c2− 2c2a2)In, (2.5) j2

where x = a3 − ab2 − ac2, y = b3 − bc2 − ba2, z = c3 − ca2 − cb2, w = 2abc, and a, b, c are
arbitrary nonzero complex numbers. Furthermore,

a4 + b4 + c4 − 2a2b2 − 2b2c2 − 2c2a2 = (a+ b+ c)(a+ b− c)(a− b+ c)(a− b− c)

holds. In addition, the following simple lemma (whose proof is left to the reader) will help73

us to prove Theorem 2.2 below74

lemma22 Lemma 2.2. Let Bi ∈ Mni
for i = 1, . . . ,m, n = n1 + · · ·+ nm, a nonsingular S ∈ Mn. If

we define Ai = S(0⊕ · · · ⊕ 0⊕Bi ⊕ 0⊕ · · · ⊕ 0)S−1, where the summand Bi is on the ith
position, and A = S(B1 ⊕ · · · ⊕Bm)S−1, then

m
⋂

i=1

N (Ai) = N (A) and

m
∑

i=1

R(Ai) = R(A).

In addition, if B1, . . . ,Bm are group invertible, then A is also group invertible and A# =75

S(B#
1 ⊕ · · · ⊕B#

m)S−1.76

theo_c Theorem 2.2. Let T1,T2,T3 ∈ Mn \ {0} be three mutually commuting tripotent matrices77

and c1, c2, c3 ∈ C∗ such that c22 − c33, c
2
1 − c23, c

2
1 − c22, c1 + c2 + c3, c1 + c2 − c3, c1 − c2 +78
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c3, c1− c2 − c3 6= 0. Then R(T2
1 +T2

2+T2
3) = R(c1T1 + c2T2 + c3T3), N (T2

1 +T2
2 +T2

3) =79

N (c1T1 + c2T2 + c3T3), c1T1 + c2T2 + c3T3 is group invertible, and80

(c1T1 + c2T2 + c3T3)
# = q(T1,T2,T3)T

2
1T

2
2T

2
3 + pc1,c2(T1,T2)T

2
1T

2
2(In −T2

3)

+ pc1,c3(T1,T3)T
2
1(In −T2

2) + pc2,c3(T2,T3)(In −T2
3),

(2.6) j15

where pa,b : C
2 → C and q : C3 → C are the following complex polynomials,

pa,b(z, w) =
b2

a(a2 − b2)
zw2 +

a2

b(a2 − b2)
z2w +

1

a
z +

1

b
w, (a, b ∈ C, a2 6= b2),

q(z, w, u) =
(c31 − c1c

2
2 − c1c

2
3)z + (c32 − c2c

2
3 − c2c

2
1)w + (c33 − c3c

2
1 − c3c

2
2)u

(c1 + c2 + c3)(c1 + c2 − c3)(c1 − c2 + c3)(c1 − c2 − c3)
.

In particular, if T2
1 +T2

2 +T2
3 is nonsingular, then c1T1 + c2T2 + c3T3 is nonsingular and81

(c1T1 + c2T2 + c3T3)
−1 is given by (2.6).82

Proof. By [12, Exercise 5.10.12], there exist nonsingular matrices S1 ∈ Mn and X1 ∈ Mn−t

such that T1 = S1(X1 ⊕ 0)S−1
1 . The tripotency of T1 and the nonsingularity of X1 leads

to X2
1 = In−t. As T1T2 = T2T1 and T1T3 = T3T1, we can write matrices T2 and T3 as

follows

T2 = S1

(

X2 0

0 D2

)

S−1
1 , T3 = S1

(

X3 0

0 D3

)

S−1
1 , D2,D3 ∈ Mt,

with83

X1X2 = X2X1, X1X3 = X3X1. (2.7) j3

Let us notice that matrices X2,X3,D2,D3 are tripotent because T2 and T3 are tripotent.
By applying again exercise [12, Exercise 5.10.12], there exist nonsingular matrices S2 ∈
Mn−t and Y2 ∈ Mn−t−s such that X2 = S2(Y2 ⊕ 0)S−1

2 . From (2.7) we can write

X1 = S2

(

Y1 0

0 C1

)

S−1
2 , X3 = S2

(

Y3 0

0 C3

)

S−1
2 .

Observe that Y2
1 = In−t−s, C

2
1 = Is, Y

3
3 = Y3, and C3

3 = C3.84

Finally, utilize again [12, Exercise 5.10.12] to matrix Y3 to obtain nonsingular matrices
S3 ∈ Mn−t−s and A3 ∈ Mn−t−s−r such that Y3 = S3(A3 ⊕ 0)S−1

3 . By carrying out the
same routine as before, we can write

Y1 = S3

(

A1 0

0 B1

)

S−1
3 , Y2 = S3

(

A2 0

0 B2

)

S−1
3 .

Let us define m = n− t− s− r. By setting S = S1(S2 ⊕ It)(S3 ⊕ Is ⊕ It), one easily has

T1 = S(A1 ⊕B1 ⊕C1 ⊕ 0)S−1, T2 = S(A2 ⊕B2 ⊕ 0⊕D2)S
−1,

T3 = S(A3 ⊕ 0⊕C3 ⊕D3)S
−1.

and the matrices A1,A2,A3,B1,B2, and C1 are nonsingular. Observe that the tripotency85

of Ti leads to the tripotency of these matrices Ai, Bi, Ci, and Di. Furthermore, since86

A1,A2,A3,B1,B2, and C1 are nonsingular, then A2
i = Im (for i = 1, 2, 3), B2

i = Ir (for87

i = 1, 2) and C2
1 = Is. In addition, the families {Ai}i=1,2,3, {Bi}i=1,2, {Ci}i=1,3, and88

{Di}i=2,3 are commutative.89

Observe that90

T2
1 +T2

2 +T2
3 = S

(

3Im ⊕ (B2
1 +B2

2)⊕ (C2
1 +C2

3)⊕ (D2
2 +D2

3)
)

S−1 (2.8) sum_squares
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and91

c1T1 + c2T2 + c3T3

= S ((c1A1 + c2A2 + c3A3)⊕ (c1B1 + c2B2)⊕ (c1C1 + c3C3)⊕ (c2D2 + c3D3))S
−1.

(2.9) c1t1c2t2c3t3

By the equality given in (2.5) we have that c1A1 + c2A2 + c3A3 is nonsingular and

(c1A1 + c2A2 + c3A3)
−1 = q(A1,A2,A3).

Since c1A1 + c2A2 + c3A3 is nonsingular, then N (c1A1 + c2A2 + c3A3) = N (3Im) and92

R(c1A1 + c2A2 + c3A3) = R(3Im). Theorem 2.1 leads to N (c1B1 + c2B2) = N (B2
1 +B2

2),93

N (c1C1 + c3C3) = N (C2
1 +C2

3), N (c2D2 + c3D3) = N (D2
2 +D2

3), and analogous identities94

for the range space. By considering (2.8), (2.9), and the first part of Lemma 2.2 we get that95

the null space (range space) of c1T1 + c2T2 + c3T3 equals to the null space (range space)96

T2
1 +T2

2 +T2
3.97

By Theorem 2.1 we have the group invertibility of c1B1 + c2B2, c1C1 + c3C3, and
c2D2 + c3D3. Also we get

(c1B1 + c2B2)
# = pc1,c2(B1,B2), (c1C1 + c3C3)

# = pc1,c3(C1,C3),

and
(c2D2 + c3D3)

# = pc2,c3(D2,D3).

The second part of Lemma 2.2 leads to the group invertibility of c1T1 + c2T2 + c3T3 and98

(c1T1 + c2T2 + c3T3)
#

= S [q(A1,A2,A3)⊕ pc1,c2(B1,B2)⊕ pc1,c3(C1,C3)⊕ pc2,c3(D2,D3)]S
−1.

(2.10) j4

Now, observe that99

S [q(A1,A2,A3)⊕ 0⊕ 0⊕ 0]S−1 = q(T1,T2,T3)S(Im ⊕ 0⊕ 0⊕ 0)S−1

= q(T1,T2,T3)T
2
1T

2
2T

3
3. (2.11)

Since S(0⊕ Ir ⊕ 0⊕ 0)S−1 = T2
1T

2
2 −T2

1T
2
2T

2
3 = T2

1T
2
2(In −T2

3), we have100

S [0⊕ pc1,c2(B1,B2)⊕ 0⊕ 0]S−1 = pc1,c2(T1,T2)T
2
1T

2
2(In −T2

3). (2.12) j6

Another two useful idempotents are the following two matrices: S(0 ⊕ 0 ⊕ Is ⊕ 0)S−1 =101

T2
1 −T2

1T
2
1 = T2

1(In −T2
2) and S(0⊕ 0⊕ 0⊕ It)S

−1 = In −T2
1. Thus we have102

S [0⊕ 0⊕ pc1,c3(C1,C3)⊕ 0]S−1 = pc1,c3(T1,T3)T
2
1(In −T2

2) (2.13) j7

and103

S [0⊕ 0⊕ 0⊕ pc2,c3(D2,D3)]S
−1 = pc2,c3(T2,T3)(In −T2

1). (2.14) j8

Considering (2.10)–(2.14) finishes the proof.104

As we already pointed out, in this paper, similar results to the ones obtained in [10] are105

established for three tripotent or group invertible matrices.106

Theone Theorem 2.3. Let T1, T2, and T3 ∈ Mn be three mutually commuting tripotent matrices.107

Then T1 +T2 +T3 is nonsingular if and only if In +T1T2 +T2T3 +T3T1 +T1T2T3 and108

T2
1 +T2

2 +T2
3 are nonsingular.109

Proof. Since T1, T2, and T3 are tripotent and mutually commutating, they are simulta-110

neously diagonalizable (see, e.g., [7, page 52]). Hence there is a single similarity matrix111

S ∈ Mn such that T1 = S diag (λ1, λ2, . . . , λn)S
−1, T2 = S diag (µ1, µ2, . . . , µn)S

−1 and112
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T3 = S diag (γ1, γ2, . . . , γn)S
−1 being {λi}ni=1, {µi}ni=1 and {γi}ni=1 the sets of eigenvalues113

of T1,T2 and T3, with proper multiplicities, respectively. On the other hand,114

T1 +T2 +T3 = S diag (λ1 + µ1 + γ1, . . . , λn + µn + γn)S
−1, (2.15) 1-2-3

115

In+T1T2+T2T3+T3T1+T1T2T3 = S diag (p(λ1, µ1, γ1), . . . , p(λn, µn, γn))S
−1, (2.16) 1-1.2

and116

T2
1 +T2

2 +T2
3 = S diag

(

λ2
1 + µ2

1 + γ2
1 , . . . , λ

2
n + µ2

n + γ2
n

)

S−1, (2.17) 1-1.3

where p : C3 → C is given by p(z, w, u) = 1 + zw + wu + uz + zwu.117

Assume that T1 +T2 +T3 is nonsingular. From (2.15), we get λi + µi + γi 6= 0 for any
i = 1, . . . , n and hence

(λi, µi, γi) ∈ Φ3 \ {(−1, 1, 0), (0,−1, 1), (−1, 0, 1), (0, 0, 0), (1, 0,−1), (0, 1,−1), (1,−1, 0)}

for all i = 1, 2, . . . , n, where Φ = {−1, 0, 1}. Therefore, it is obtained that p(λi, µi, γi) 6= 0118

and λ2
i + µ2

i + γ2
i 6= 0 for all i = 1, 2, . . . , n. In view of (2.16) and (2.17) it is seen that119

In +T1T2 +T2T3 +T3T1 +T1T2T3 and T2
1 +T2

2 +T2
3 are nonsingular.120

Now, assume that In+T1T2+T2T3+T3T1+T1T2T3 andT2
1+T2

2+T2
3 are nonsingular.

From the nonsingularity of the first matrix we get

1 + λiµi + µiγi + γiλi + λiµiγi 6= 0 for all i = 1, 2, . . . , n.

If T1 + T2 + T3 were singular, then there would exist some j ∈ {1, 2, . . . , n} such that121

λj + µj + γj = 0. So, the unique solution satisfying simultaneously these two equations122

would be (λj , µj , γj) = (0, 0, 0). Hence, λ2
j + µ2

j + γ2
j = 0 which would contradict to the123

assumption of the nonsingularity of T2
1 +T2

2 +T2
3. So the proof is complete.124

Remark 2.2. It is evident that for a given X ∈ Mn, then X is tripotent if and only if125

−X is tripotent. Thus, by means of Theorem 2.3, we can characterize the nonsingularity of126

ε1T1+ε2T2+ε3T3, where ε1, ε1, ε1 ∈ {−1, 1} and T1,T2,T3 ∈ Mn are tripotent matrices.127

Remark 2.3. Let p : C3 −→ C be the following complex polynomial:128

p (z, w, t) =

m
∑

i,j,k=0
(i,j,k) 6=(0,0,0)

ci,j,kz
iwjtk, (2.18) pol

wherem ∈ Z+, ci,j,k ∈ C. LetT1, T2, and T3 ∈ Mn be three mutually commuting tripotent
matrices. Then,

p (T1,T2,T3) = S diag [p (λ1, µ1, γ1) , . . ., p (λn, µn, γn)]S
−1.

IfT2
1+T2

2+T2
3 were singular, then there would exist j ∈ {1, . . . , n} satisfying λ2

j+µ2
j+γ2

j = 0.129

Therefore, λj = µj = γj = 0. So, p(T1,T2,T3) is singular because p(0, 0, 0) = 0.130

Hence, the following corollary can be given.131

Corollary 2.2. Let T1, T2, and T3 ∈ Mn be three mutually commuting tripotent matrices.132

If In +T1T2 +T2T3 +T3T1 +T1T2T3 is nonsingular and there exists a polynomial p as133

in (2.18) such that p (T1,T2,T3) is nonsingular, then T1 +T2 +T3 is nonsingular.134

The next theorem is presented under weaker assumptions than the previous theorem.135

Thetwo Theorem 2.4. Let T1, T2, and T3 ∈ Mn such that T1 is group invertible and In−T
#
1 T2−136

T
#
1 T3 is nonsingular. If one of the below conditions holds,137

(i) if T2T1T
#
1 = T2, T3T1T

#
1 = T3, and there exists a polynomial p in three variables138

not necessarily commutatative such that p(0, 0, 0) = 0 and p(T1,T2,T3) is nonsingu-139

lar,140
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(ii) if T2T1T
#
1 = T1T

#
1 T2, T3T1T

#
1 = T3, and there exists a polynomial p in three141

variables not necessarily commutatative such that p(0, 0, 0) = 0 and p(T1,T1T2,T3)142

is nonsingular,143

(iii) if T2T1T
#
1 = T1T

#
1 T2, T3T1T

#
1 = T1T

#
1 T3, and there exists a polynomial p in three144

variables not necessarily commutatative such that p(0, 0, 0) = 0 and p(T1,T1T2,T1T3)145

is nonsingular,146

then T1 −T2 −T3 is nonsingular.147

Proof. Let x ∈ N (T1 −T2 −T3), i.e.,148

T1x = (T2 +T3)x. (2.19) t1x

(i) Assume that the conditions given in (i) are satisfied. Premultiplying (2.19) by T1T
#
1 ,149

T2T
#
1 , T3T

#
1 , it is obtained T1x = T1T

#
1 (T2 + T3)x, T2x = T2T

#
1 (T2 + T3)x, and150

T3x = T3T
#
1 (T2 +T3)x, respectively. If these equations are reorganized, we get151

T1

(

In −T
#
1 (T2 +T3

)

x = T2

(

In −T
#
1 (T2 +T3

)

x = T2

(

In −T
#
1 (T2 +T3

)

x = 0.

(2.20) T1T3T1T2

There exists three polynomials in three variables not necessarily commutative, say p1, p2,152

and p3, such that p(T1,T2,T3) = p1(T1,T2,T3)T1+p2(T1,T2,T3)T2+p3(T1,T2,T3)T3.153

Thus from (2.20) it is obtained154

p(T1,T2,T3)
[

In −T
#
1 (T2 +T3

]

x

= [p1(T1,T2,T3)T1 + p2(T1,T2,T3)T2 + p3(T1,T2,T3)T3]
[

In −T
#
1 (T2 +T3)

]

x

= 0.

Under the assumption that In −T
#
1 T2 −T

#
1 T3 and p(T1,T2,T3) are nonsingular, the155

above computation yields x = 0, which means that T1 − T2 − T3 is nonsingular. So the156

proof of item (i) is complete.157

(ii) By premultiplying (2.19) by T1T
#
1 , T1T2T

#
1 , and T3T

#
1 it follows that T1x =

T1T
#
1 (T2 + T3)x, T1T2x = T1T2T

#
1 (T2 + T3)x, and T3x = T3T

#
1 (T2 + T3)x, respec-

tively. From these identities we obtain

T1

(

In −T
#
1 (T2 +T3

)

x = T1T2

(

In −T
#
1 (T2 +T3

)

x = T3

(

In −T
#
1 (T2 +T3

)

x = 0.

Since p(0, 0, 0) = 0, there exist three polynomials p1, p2, p3 in three noncommuting variables
such that

p(z1, z2, z3) = p1(z1, z2, z3)z1 + p2(z1, z1z2, z3)z1z2 + p3(z1, z2, z3)z3,

By carrying out as in the proof of item (i), we can prove (ii).158

Item (iii) can be proved in a similar way as in the proofs of items (i) and (ii).159

Remark 2.4. Let T1 ∈ Mn be group invertible and A ∈ Mn. The conditionsAT1T
#
1 = A160

and AT1T
#
1 = T1T

#
1 A appearing in Theorem 2.4 are independent. In fact, we can write161

T1 = S(K ⊕ 0)S−1 for some nonsingular matrices S ∈ Mn, K ∈ Mr, being r = rank(T1).162

By writing163

A = S

(

X Y

Z T

)

S−1, X ∈ Mr (2.21) write_a

and using the nonsingularity of K, one has

AT1T
#
1 = T1T

#
1 A ⇐⇒ Y = 0 and Z = 0,
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and
AT1T

#
1 = A ⇐⇒ Y = 0 and T = 0.

The first of the two above conditions is related to the so-called sharp ordering, introduced
by Mitra [13] in 1987 (for a recent survey of matrix orderings, see [14]) is defined in the
subset of Mn composed of group invertible matrices by

M
#

≤ N ⇐⇒ M#M = M#N and MM# = NM#.

As is easy to see, if T1 is written as T1 = S(K⊕ 0)S−1 and A is written as in (2.21), then

T1

#

≤ A ⇐⇒ X = K, Y = 0, and Z = 0,

which obviously shows that T1

#

≤ A implies AT1T
#
1 = T1T

#
1 A.164

It can be given some kind of the converse of Theorem 2.4 in case that T1,T2,T3 ∈ Mn

are three mutually commuting group invertible matrices satisfying T1T2T3 = T2
1T2 −

T2
2T1 = T2

2T3 +T2
3T2 = T2

1T3 −T2
3T1. Then

(T1 −T2 −T3)T1T2 = (T1 −T2 −T3)T3T1 = (T1 −T2 −T3)T2T3 = 0,

and hence the invertibility of T1 −T2 −T3 leads to T1T2 = T3T1 = T2T3 = 0. Thus it165

can be written c1T1+c2T2+c3T3−c4(T1T2+T3T1+T2T3) = c1T1+c2T2+c3T3, and it166

will be given the explicit expression of (c1T1+c2T2+c3T3)
−1 in terms of (T1−T2−T3)

−1
167

under some conditions (similar conditions were used in a related context in [11]).168

th_inverse Theorem 2.5. Let c1, c2, c3 ∈ C∗ and T1, T2, and T3 ∈ Mn be three group invertible169

matrices such that T1 +T2 +T3 is nonsingular. If there exists δ ∈ C such that170

c1(c
−1
2 − δ)T1T2T

#
2 + c2(c

−1
1 − δ)T2T1T

#
1 = 0, (2.22) th251

171

c2(c
−1
3 − δ)T2T3T

#
3 + c3(c

−1
2 − δ)T3T2T

#
2 = 0, (2.23) th252

and172

c3(c
−1
1 − δ)T3T1T

#
1 + c1(c

−1
3 − δ)T1T3T

#
3 = 0, (2.24) th253

then (c1T1 + c2T2 + c3T3)
−1 is nonsingular and173

(c1T1 + c2T2 + c3T3)
−1

=
[

(c−1
1 − δ)T1T

#
1 + (c−1

2 − δ)T2T
#
2 + (c−1

3 − δ)T3T
#
3 + δIn

]

(T1 +T2 +T3)
−1

Proof. Let α = c−1
1 − δ, β = c−1

2 − δ, and γ = c−1
3 − δ. The proof of this theorem is

immediately seen from the following equality:

(c1T1 + c2T2 + c3T3)(αT1T
#
1 + βT2T

#
2 + γT3T

#
3 + δIn) = T1 +T2 +T3.

174

The above Theorem 2.5 permits establish many corollaries. As an exemplary list we can175

state two some of them in the foregoing paragraphs:176

Let c1, c2 ∈ C∗ and T1,T2 ∈ Mn be two group invertible matrices such that T1 + T2177

is nonsingular and T1T2T
#
2 = λT2T1T

#
1 for some λ ∈ C. By setting T3 = 0, obviously178

(2.23) and (2.24) hold. If exists δ ∈ C such that (2.22) holds then179

∣

∣

∣

∣

c1(c
−1
2 − δ) c2(c

−1
1 − δ)

−1 λ

∣

∣

∣

∣

= 0. (2.25) determ
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By expanding (2.25), one has λc1c
−1
2 −c2c

−1
1 = (λc1−c2)δ. Thus, if λc1−c2 6= 0, then we can

apply Theorem 2.5 to assure that c1T1 + c2T2 is nonsingular and to find (c1T1 + c2T2)
−1.

If c2 = λc1, then c1T+ c2T2 is nonsingular if and only if T+ λT2 is nonsingular. Now for
arbitrary x, y, z ∈ C and taking into account that T1T2T

#
2 = λT2T1T

#
1 , it follows

(T1 + λT2)(xT1T
#
1 + yT2T

#
2 + zIn) = (x+ z)T1 + λ(y + z)T2 + λ(y + x)T2T

#
1 T

#
1 .

By solving the following linear system (observe that λ 6= 0, since otherwise c2 = λc1 = 0)

x+ z = 1, y + z = λ−1, x+ y = 0,

one has that (T1 +λT2)(
1−λ−1

2 T1T
#
1 + λ−1−1

2 T2T
#
2 + 1+λ−1

2 In) = T1 +T2, which permits180

to find (T1 + λT2)
−1 in terms of (T1 +T2)

−1.181

Let c1, c2, c3 ∈ C∗ and T1,T2,T3 ∈ Mn be three group invertible matrices such that182

T1 + T2 + T3 is nonsingular. Assume that T2T1 = T2T3 = 0. By setting δ = c−1
2 , then183

(2.22) and (2.23) hold. Hence if c3(c
−1
1 − c−1

2 )T3T1T
#
1 + c1(c

−1
3 − c−1

2 )T1T3T
#
3 = 0 (a184

simpler but weaker condition is T1T3 = T3T1 = 0) then c1T1+ c2T2+ c3T3 is nonsingular185

and (c1T1 + c2T2 + c3T3)
−1 can be expressed by using the formula of Theorem 2.5.186

Remark 2.5. In Theorem 2.5, it is not necessary to set the conditions (2.22)–(2.24) in case187

when c1 = c2 = c3.188

Thefour Theorem 2.6. Let c1, c2, c3, r1, r2, r3 ∈ C and T1, T2, and T3 ∈ Mn such that T1T3 =189

T3T1. If c1T1+ c2T2 + c3T3+(r1c1+ r2c2)T1T2+(r1c1+ r3c3)T3T1+(r2c2+ r3c3)T3T2190

is nonsingular, then191

N [T1(In + r1T2 + r1T3)] ∩ N [(In + r2T1 + r2T3)T2] ∩ N [T3(In + r3T1 + r3T2)] = {0}
(2.26) eqnull

and192

R [T1(In + r1T2 + r1T3)] +R [(In + r2T1 + r2T3)T2] +R [T3(In + r3T1 + r3T2)] = C
n.

(2.27) eqrange

Proof. Let α1, α2, and α3 denote r1c1 + r2c2, r1c1 + r3c3, and r2c2 + r3c3, respectively.
Moreover, let us take

x ∈ N [T1(In + r1T2 + r1T3)] ∩ N [(In + r2T1 + r2T3)T2] ∩ N [T3(In + r3T1 + r3T2)] .

Then, T1(In + r1T2 + r1T3)x = (In + r2T1 + r2T3)T2x = T3(In + r3T1 + r3T2)x = 0.
Postmultiplying c1T1 + c2T2 + c3T3 + α1T1T2 + α2T3T1 + α3T3T2 by x, it is obtained

(c1T1 + c2T2 + c3T3 + α1T1T2 + α2T3T1 + α3T3T2)x
= c1T1 (In + r1T2 + r1T3)x+ c2 (In + r2T1 + r2T3)T2x+ c3T3 (In + r3T1 + r3T2)x
= 0,

which leads to x = 0. So, the proof of (2.26) is complete.193

Since c1T1 + c2T2 + c3T3 + α1T1T2 + α2T3T1 + α3T3T2 is nonsingular, then c̄1T
∗
1 +

c̄2T
∗
2 + c̄3T

∗
3 + ᾱ1T

∗
2T

∗
1 + ᾱ2T

∗
1T

∗
3 + ᾱ3T

∗
2T

∗
3 is nonsingular. On the other hand, it can be

written

N [(In + r̄3T
∗
1 + r̄3T

∗
2)T

∗
3]∩N [T∗

2 (In + r̄2T
∗
1 + r̄2T

∗
3)]∩N [(In + r̄1T

∗
2 + r̄1T

∗
3)T

∗
1] = {0} .

In view of this equation and [3, pages 74 and 188], it is clearly seen that (2.27) is true. So,194

the proof is complete.195

In the following theorem, an expression of the inverse of

c1T1 + c2T2 + c3T3 − c4(T1T2 +T3T1 +T2T3),
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where T1,T2,T3 ∈ Mn are tripotent matrices, c1, c2, c3 ∈ C∗, and c4 ∈ C is given under196

some conditions using [10, Theorem 2.5]. It is noteworthy that there is a simple mistake197

with a minus sign in the formula (2.11) in [10, Theorem 2.5 (ii)]. The corrected form of this198

formula is199

[

(c1 + c2)
2 − c23

]

(c1T1 + c2T2 − c3T1T2)
−1

= (c1 + c2)T2 + c3T2T1 + c−1
2 (c21 + c1c2 − c23)(T2 −T2T

2
1).

Of course, this expression is used in the foregoing theorem.200

Thefive Theorem 2.7. Let c1, c2, c3 ∈ C∗, c4 ∈ C, T1, T2, and T3 ∈ Mn be nonzero tripotent
matrices such that T2

1T2 −T2
2T1 = T2

2T3 +T2
3T2 = T2

1T3 −T2
3T1 = 0 and let us say, for

the sake of simplicity, α = (c1 + c3)
2 − c24, β = (c1 + c2)

2 − c24, γ = (c2 − c3)
2 − c24,

T− = c1T1 + c2T2 + c3T3 − c4(T1T2 +T3T1 +T2T3),

and
T+ = c1T1 + c2T2 + c3T3 + c4(T1T2 +T3T1 +T2T3).

(i) Let T1 be nonsingular and α 6= 0. If β = 0, then T− or T+ is singular. If β 6= 0, then201

T− is nonsingular and202

αβT−1
−

= α

[

(c1 + c2)T1T
2
2 + c4T1T2 +

c4

c1
(c1 + c2)(T

2
2 −T1T2) +

c24
c1
(T2 −T1T

2
2)

]

+ β

[

c4T1T3 +
α

c1
(T1 −T1T

2
2 −T1T

2
3) + (c1 + c3)T1T

2
3

]

.

(2.28) eqfiveone

(ii) Let T2 be nonsingular and β 6= 0. If γ = 0, then T− or T+ is singular. If γ 6= 0, then203

T− is nonsingular and204

βγT−1
−

= β

[

(c2 − c3)T2T
2
3 + c4T2T3 +

c4

c2
(c2 − c3)(T

2
3 +T2T3)−

c24
c2

(T3 +T2T
2
3)

]

+ γ

[

c4T2T1 +
β

c2
(T2 −T2T

2
3 −T2T

2
1) + (c1 + c2)T2T

2
1

]

.

(2.29) eqfivetwo

(iii) Let T3 be nonsingular and α 6= 0. If γ = 0, then T− or T+ is singular. If γ 6= 0, then205

T− is nonsingular and206

αγT−1
− = α

[

(c3 − c2)T3T
2
2 + c4T3T2

]

+
γ

c3

[

α(T3 −T3T
2
2) + c4(c1 + c3)T

2
1 − c1c4T3T1 − c1(c1 + c3)T3T

2
1 + c24T1

]

.

(2.30) eqfivethree

Proof. First, let us prove the following claim:207

Claim: Let X,Y,Z ∈ Mn be nonzero tripotent matrices such that X is nonsingular and208

Y = Y2X, Y2Z+ Z2Y = 0, Z = Z2X. (2.31) claim_a

Then X,Y,Z can be represented as follows:209

X = S

(

A 0

D E

)

S−1, Y = S

(

A 0

0 0

)

S−1, Z = S

(

0 0

0 K

)

S−1, (2.32) represent_xyz

where S ∈ Mn is nonsingular, A ∈ Mr, K ∈ Mn−r, and210

KD = 0, K2E = K, A2 = Ir, E2 = In−r, DA = −ED. (2.33) claim_b
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Proof of the claim. Since Y is tripotent, there exists a nonsingular S ∈ Mn such that Y =
S(A ⊕ 0)S−1, where A ∈ Mr and r = rank(A). Since A is nonsingular and Y3 = Y, we
have A2 = Ir. Let us write

X = S

(

B C

D E

)

S−1, Z = S

(

F G

H K

)

S−1, B, F ∈ Mr.

From the first equality of (2.31) it follows that211

B = A, C = 0. (2.34) eqmatrices_a

The middle equality of (2.31) together with A2 = Ir lead to212

F2A+ F = 0, G = 0, HF+KH = 0. (2.35) eqmatrices_b

The last equality of (2.31) in conjunction with (2.34), G = 0, and HF+KH = 0 yield213

F = F2A, H = K2D, K = K2E. (2.36) eqmatrices_c

The first equalities of (2.35) and (2.36) imply F = 0. Premultiplying by Z the second214

equality of (2.31) and using the tripotency of T3 lead to ZY2Z + ZY = 0, and this latter215

equality yields HA = 0, and having in mind the nonsingularity of A we can deduce H = 0.216

Thus, the representations given in (2.32) are proven.217

Furthermore, the tripotency of Z and G = 0 imply K3 = K, and thus, from the second218

equality of (2.36) it follows that KD = 0. Thus we have proved the first equality of (2.33).219

The second equality of (2.33) was deduced in (2.36), while the remaining equalities of (2.33)220

follow from X2 = In.221

(i) Let us assume that T1 is nonsingular and α 6= 0. The condition T2
1T2 − T2

2T1 =
T2

2T3 +T2
3T2 = T2

1T3 −T2
3T1 = 0 turns into

T2 = T2
2T1, T2

2T3 +T2
3T2 = 0, T3 = T2

3T1

since T2
1 = In. By applying the claim, we can write222

T1 = S

(

A 0

D E

)

S−1, T2 = S

(

A 0

0 0

)

S−1, T3 = S

(

0 0

0 K

)

S−1, (2.37) eqT1T2T32

and in addition, the relations (2.33) hold. Observe that K must be a nonzero tripotent223

matrix since T3 is nonzero and tripotent. On the other hand, using (2.37), it can be written224

T− = S

(

(c1 + c2)A− c4Ir 0

c1D− c4DA c3K+ c1E− c4KE

)

S−1. (2.38) eqnewcom

According to [10, Theorem 2.5 (ii)], the matrix c3K+ c1E− c4KE is nonsingular and

(c3K+ c1E− c4KE)−1 = α−1
[

(c1 + c3)E+ c4EK+ c−1
1 (c23 + c3c1 − c24)(E−EK2)

]

,

which having in mind α = (c1 + c3)
2 − c24, becomes to225

(c3K+ c1E− c4KE)−1 = α−1
[

c4EK+ αc−1
1 (E−EK2) + (c1 + c3)EK2

]

. (2.39) eqtwoinv

From (2.38) it is obtained that T−1
− is nonsingular if and only if (c1 + c2)A− c4Ir is non-226

singular (recall that the first row in the block matrix appearing in (2.38) must be present,227

since otherwise, T2 = 0). The following equality is evident:228

[(c1 + c2)A− c4Ir] [(c1 + c2)A+ c4Ir] = βIr , (2.40) eqbetaone

If β = 0, then (2.40) implies that (c1+c2)A−c4Ir or (c1+c2)A+c4Ir is singular. Hence229

T− or T+ is singular by (2.38).230
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If β 6= 0, from (2.40) the matrix (c1 + c2)A− c4Ir is nonsingular and231

[(c1 + c2)A− c4Ir]
−1

= β−1 [(c1 + c2)A+ c4Ir] . (2.41) eqbetatwo

Using [18, Problem 19 (c), p.42], the inverse of matrix in (2.38) is obtained as232

T−1
− = S

(

[(c1 + c2)A− c4Ir]
−1

0

M [c3K+ c1E− c4KE]
−1

)

S−1, (2.42) invnewcom

where233

M = −[c3K+ c1E− c4KE]−1(c1D− c4DA) [(c1 + c2)A− c4Ir]
−1

. (2.43) invnewcom_bis

Observe that by (2.33), and (2.39), one has234

[c3K+ c1E− c4KE]−1(c1D− c4DA) = ED+ c−1
1 c4D (2.44) part_of_x

By using (2.33), (2.41), and (2.44), the matrix M defined in (2.43) can be simplified:235

M = −β−1
[

ED+ c−1
1 c4D

]

[(c1 + c2)A+ c4Ir]

= −β−1
[

(c1 + c2)EDA+ c4ED+ c−1
1 c4(c1 + c2)DA+ c−1

1 c24D
]

= −β−1
[

(c−1
1 c24 − c1 − c2)D+ c−1

1 c4c2DA
]

. (2.45)

Combining (2.39), (2.41), (2.42), and (2.45), it is obtained236

αβT−1
− = S

{

α

[

(c1 + c2)

(

A 0

D 0

)

+ c4

(

Ir 0

−ED 0

)

+c−1
1 c4(c1 + c2)

(

0 0

ED 0

)

+ c−1
1 c24

(

0 0

−D 0

)]

+β

[

c4

(

0 0

0 EK

)

+ αc−1
1

(

0 0

0 E−EK2

)

+(c1 + c3)

(

0 0

0 EK2

)]}

S−1. (2.46)

Then, considering the following equalities in (2.46)

T1T3 = S

(

0 0

0 EK

)

S−1, T1T
2
3 = S

(

0 0

0 EK2

)

S−1,

T2
2 −T1T2 = S

(

0 0

ED 0

)

S−1, T1T
2
2 = S

(

A 0

D 0

)

S−1,

T1 −T1T
2
2 −T1T

2
3 = S

(

0 0

0 E−EK2

)

S−1,

and

T1T2 = S

(

Ir 0

−ED 0

)

S−1, T2 −T1T
2
2 = S

(

0 0

−D 0

)

S−1

leads to the formula (2.28). So the proof of part (i) is complete.237

(ii) Let us assume that T2 is nonsingular and β 6= 0. The condition T2
1T2 − T2

2T1 =238

T2
2T3 +T2

3T2 = T2
1T3 −T2

3T1 = 0 turns into239

T2
1T2 = T1, T3 +T2

3T2 = 0, T2
1T3 = T2

3T1 (2.47) eqconii

since T2
2 = In. We can apply the claim for X = −T2, Y = T3, and Z = −T1 obtaining240

that T1,T2,T3 can be written as241

T1 = S

(

0 0

0 K

)

S−1, T2 = S

(

−A 0

D E

)

S−1, T3 = S

(

A 0

0 0

)

S−1 (2.48) eqnewmat
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(we rename K ↔ −K, D ↔ −D, and E ↔ −E). The blocks appearing in (2.48) satisfy the242

following relations derived from the corresponding ones in (2.33):243

KD = 0, K2E = K, A2 = Ir, E2 = In−r, DA = ED. (2.49) claim_c

Matrix K must be nonzero tripotent since T1 is nonzero tripotent. Observe that from (2.49)244

it follows that E is nonsingular and D = EDA. On the other hand, using (2.48) and (2.49),245

it can be written246

T− = S

(

(−c2 + c3)A+ c4Ir 0

c2D− c4DA c1K+ c2E− c4KE

)

S−1. (2.50) eqnewcomii

According to [10, Thorem 2.5 (ii)], the matrix c1K+ c2E− c4KE is nonsingular and247

(c1K+ c2E− c4KE)
−1

= β−1
[

c4EK+ βc−1
2

(

E−EK2
)

+ (c1 + c2)EK2
]

. (2.51) eqtwoinvii

From (2.50), it is obtained that T− is nonsingular if and only if (−c2 + c3)A+ c4Ir is248

nonsingular. The following equality is obvious:249

[(−c2 + c3)A− c4Ir] [(−c2 + c3)A+ c4Ir] = γIr, (2.52) eqgammaone

If γ = 0, then (2.52) implies that (−c2 + c3)A− c4Ir or (−c2 + c3)A + c4Ir is singular.250

Hence T− or T+ is singular, by (2.50).251

Now, let γ 6= 0. From (2.52), the matrix (−c2 + c3)A+ c4Ir is nonsingular and252

[(−c2 + c3)A+ c4Ir]
−1

= γ−1 [(−c2 + c3)A− c4Ir] . (2.53) eqgammatwo

Using [18, Problem 19 (c)], the inverse of the matrix T− written in (2.50) is obtained as253

T−1
− = S

(

[(−c2 + c3)A+ c4Ir]
−1

0

M [c1K+ c2E− c4KE]
−1

)

S−1, (2.54) invnewcomii

where
M = − [c1K+ c2E− c4KE]

−1
(c2D− c4DA) [(−c2 + c3)A+ c4Ir]

−1
.

By the first equality of (2.49) and (2.51)

[c1K+ c2E− c4KE]
−1

(c2D− c4DA) = ED− c−1
2 c4D.

By doing some elementary algebra and using (2.49 and (2.53) we can simplify M obtaining254

M = γ−1
[

(c2 − c3 − c−1
2 c24)D+ c−1

2 c3c4DA
]

. (2.55) define_m

Combining (2.51), (2.53), (2.54), and (2.55) it is obtained255

βγT−1
− = S

{

β

[

(−c2 + c3)

(

A 0

−D 0

)

+ c4

(

−Ir 0

ED 0

)

+c−1
2 c4(−c2 + c3)

(

0 0

ED 0

)

− c−1
2 c24

(

0 0

D 0

)]

+γ

[

c4

(

0 0

0 EK

)

+ βc−1
2

(

0 0

0 E−EK2

)

+(c1 + c2)

(

0 0

0 EK2

)]}

S−1. (2.56)

On the other hand, the following equalities can be written:

T2T3 = S

(

−Ir 0

ED 0

)

S−1, T2T
2
1 = S

(

0 0

0 EK2

)

S−1,

13



T2
3 +T2T3 = S

(

0 0

ED 0

)

S−1, T2T1 = S

(

0 0

0 EK

)

S−1,

T2T
2
3 = S

(

−A 0

D 0

)

S−1, T3 +T2T
2
3 = S

(

0 0

D 0

)

S−1,

and

T2 −T2T
2
3 −T2T

2
1 = S

(

0 0

0 E−EK2

)

S−1.

Substituting these equalities in (2.56) leads to the formula (2.29) which is the desired result.256

(iii) Let us assume that T3 is nonsingular and α 6= 0. The condition T2
1T2 − T2

2T1 =
T2

2T3 +T2
3T2 = T2

1T3 −T2
3T1 = 0 turns into

T2
1T2 = T2

2T1, T2
2T3 +T2 = 0, T2

1T3 = T1

since T2
3 = In. By applying the claim for X = T3, Y = −T2, and Z = T1, we can write257

T1 = S

(

0 0

0 K

)

S−1, T2 = S

(

−A 0

0 0

)

S−1, T3 = S

(

A 0

D E

)

S−1, (2.57) eqTis2

where S ∈ Mn is nonsingular, A ∈ Mr, K ∈ Mn−r, and blocks A,D,E,K satisfy (2.33).258

Using (2.57), it can be written259

T− = S

(

(−c2 + c3)A+ c4Ir 0

c3D c3E+ c1K− c4EK

)

S−1. (2.58) eqnewcom3

Observe that K 6= 0, since otherwise T1 = 0. Also, E is nonsingular because T3 is non-260

singular. According to [10, Thorem 2.5 (i)], the matrix c3E+ c1K− c4EK is nonsingular261

and262

(c3E+ c1K− c4EK)−1

= α−1c−1
3

[

αE+ c4(c3 + c1)K
2 − c1c4EK− c1(c3 + c1)EK2 + c24K

]

. (2.59)

From (2.58), it is obtained that T− is nonsingular if and only if (−c2 + c3)A + c4Ir is263

nonsingular. It is evident that264

[(−c2 + c3)A+ c4Ir] [(−c2 + c3)A− c4Ir] = γIr. (2.60) eqgamtwo

If γ = 0, then (2.53) yields that (−c2 + c3)A+ c4Ir or (−c2 + c3)A− c4Ir is singular.265

Hence T− or T+ is singular, by (2.58).266

Now, let γ 6= 0. From (2.60) the matrix (−c2 + c3)A+ c4Ir is nonsingular and267

[(−c2 + c3)A+ c4Ir]
−1

= γ−1 [(−c2 + c3)A− c4Ir] . (2.61) eqgam2

Using [18, Problem 19 (c)], the inverse of matrix in (2.58) is obtained as268

T−1
− = S

(

[(−c2 + c3)A+ c4Ir]
−1

0

M [c3E+ c1K− c4EK]
−1

)

S−1, (2.62) invnewcomiii

where
M = − [c3E+ c1K− c4EK]−1

c3D [(−c2 + c3)A+ c4Ir]
−1

.

Since K and D satisfy (2.33), then (2.59) implies [c3E+ c1K− c4EK]
−1

D = c−1
3 ED.269

Therefore, (2.60) and (2.33) lead to270

M = −γ−1ED[(−c2 + c3)A− c4Ir] = γ−1 [(−c2 + c3)D− c4ED] . (2.63) eqmatrices3
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Combining (2.59), (2.61), (2.62), and (2.63) it is obtained271

αγT−1
− = S

{

α

[

(−c2 + c3)

(

A 0

D 0

)

+ c4

(

−Ir 0

ED 0

)]

+γc−1
3

[

α

(

0 0

0 E

)

+ c4(c1 + c3)

(

0 0

0 K2

)

− c1c4

(

0 0

0 EK

)

−c1(c1 + c3)

(

0 0

0 EK2

)

+ c24

(

0 0

0 K

)]}

S−1. (2.64)

On the other hand, by employing (2.57) and the relations given in (2.33), the following
equalities can be written

T3T
2
1 = S

(

0 0

0 EK2

)

S−1, T2
1 = S

(

0 0

0 K2

)

S−1,

T3T2 = S

(

−Ir 0

ED 0

)

S−1, T3T
2
2 = S

(

A 0

D 0

)

S−1,

and

T3 −T3T
2
2 = S

(

0 0

0 E

)

S−1, T3T1 = S

(

0 0

0 EK

)

S−1.

Substituting these equalities in (2.64) leads to the formula (2.30) which is desired result. So272

the proof is complete.273

In case when c4 = 0, we get the following corollary.274

Corollary 2.3. Let c1, c2, c3 ∈ C∗, T1,T2, and T3 ∈ Mn be nonzero tripotent matrices275

such that T2
1T2 −T2

2T1 = T2
2T3 +T2

3T2 = T2
1T3 −T2

3T1 = 0.276

(i) If T1 is nonsingular, c1 + c3 6= 0, and c1 + c2 6= 0, then

(c1 + c2) (c1 + c3) [c1T1 + c2T2 + c3T3]
−1

= (c1 + c3)T1T
2
2 + (c1 + c2)

[

c−1
1 (c1 + c3)

(

T1 −T1T
2
2 −T1T

2
3

)

+T1T
2
3

]

,

(ii) If T2 is nonsingular, c1 + c2 6= 0, and c2 − c3 6= 0, then

(c1 + c2) (c2 − c3) [c1T1 + c2T2 + c3T3]
−1

= (c1 + c2)T2T
2
3 + (c2 − c3)

[

c−1
2 (c1 + c2)

(

T2 −T2T
2
3 −T2T

2
1

)

+T2T
2
1

]

,

(iii) If T3 is nonsingular, c1 + c3 6= 0, and c2 − c3 6= 0, then

(c1 + c3) (c3 − c2) (c1T1 + c2T2 + c3T3)
−1

= (c1 + c3)T3T2
2 + (c3 − c2) c3

−1
[

(c1 + c3)
(

T3 −T3T2
2
)

− c1T3T1
2
]

.

Next theorem shows that the nonsingularity of

c1T1 + c2T2 + c3T3 − c4(T1T2 +T3T1 +T2T3)

is also related to the nonsingularity of a combination of
(

T2
2 +T2

3

)

T1,
(

T2
1 +T2

3

)

T2 and277

(

T2
1 +T2

2

)

T3 or T1

(

T2
2 +T2

3

)

, T2

(

T2
1 +T2

3

)

and T3

(

T2
1 +T2

2

)

.278

Thesix Theorem 2.8. Let c1, c2, c3 ∈ C∗, c4 ∈ C, and T1,T2,T3 ∈ Mn be tripotent matrices.279

The following statements are equivalent:280

(i) c1
(

T2
2 +T2

3

)

T1 + c2
(

T2
1 +T2

3

)

T2 + c3
(

T2
1 +T2

2

)

T3 − c4
((

T2
2 +T2

3

)

T1T2281

+
(

T2
1 +T2

2

)

T3T1 +
(

T2
1 +T2

3

)

T2T3

)

is nonsingular.282
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(ii) c1T1

(

T2
2 +T2

3

)

+ c2T2

(

T2
1 +T2

3

)

+ c3T3

(

T2
1 +T2

2

)

− c4
(

T3T1

(

T2
2 +T2

3

)

283

+T2T3

(

T2
1 +T2

2

)

+T1T2

(

T2
1 +T2

3

))

is nonsingular.284

(iii) c1T1+c2T2+c3T3−c4(T1T2+T3T1+T2T3) and T2
1+T2

2+T2
3−In are nonsingular.285

The proof of this theorem is followed immediately from the equalities286

(

T2
1 +T2

2 +T2
3 − In

)

[c1T1 + c2T2 + c3T3 − c4(T1T2 +T2T3 +T3T1)]

= c1(T
2
2 +T2

3)T1 + c2(T
2
3 +T2

1)T2 + c3(T
2
1 +T2

2)T3

− c4
[

(T2
2 +T2

3)T1T2 + (T2
3 +T2

1)T2T3 + (T2
1 +T2

2)T3T1

]

and287

[c1T1 + c2T2 + c3T3 − c4(T1T2 +T2T3 +T3T1)]
(

T2
1 +T2

2 +T2
3 − In

)

= c1T1(T
2
2 +T2

3) + c2T2(T
2
3 +T2

1) + c3T3(T
2
1 +T2

2)

− c4
[

T1T2(T
2
1 +T2

3) +T2T3(T
2
1 +T2

2) +T3T1(T
2
2 +T2

3)
]

.

Observe that setting c4 = 0 in the last result, we get a characterization of the nonsingu-288

larity of a linear combination of three tripotent matrices without any further restriction on289

these matrices.290
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