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Abstract

λ probes in turbocharged diesel engines are usually located downstream the turbine, exhibiting
a good dynamic response but a significant delay because of exhaust line transport and hardware
itself. With the introduction of after-treatment systems, new sensors that can measure exhaust
concentrations are required for an optimal control and diagnosis. Zirconia-based potentiomet-
ric (ZrO2) sensors permit measuring NOx and oxygen with the same hardware. However, their
dynamic response is slower and more filtered than traditional λ probes, and in addition, sen-
sor location downstream after-treatment systems even increases this problem. The paper uses
the Kalman filter for the online dynamic estimation of the relative fuel-to-air ratio λ−1 in a tur-
bocharged diesel engine. The combination of a fast drifted fuel-to-air ratio model with an slow
but accurate ZrO2 sensor permits correcting model bias. This bias is modelled with a look-up
table depending on the engine operating point and integrated online on the basis of the Kalman
filter output. Calculation burden is alleviated by using the converged gain of the steady-state
Kalman filter, precalculated offline. Finally, robustness conditions for stopping the bias updat-
ing are included for accounting with sensor and model uncertainties. The proposed algorithm
and sensor layout are successfully proved in a turbocharged diesel engine. Experimental and
simulation results are included to support the algorithm validation.

Keywords: Kalman filter; bias correction; drift correction; look-up table; turbocharged engine;
fuel-to-air; richness; adaptive modelling

1. Introduction

Three decades ago, the introduction of narrow-band or exhaust gas oxygen (EGO) sensors [1]
was the key for the implantation of the three-way catalysts. Afterwards, universal exhaust gas
oxygen (UEGO) or wide-band λ sensors were implemented in diesel engines. λ measurement
in diesel is used for bounding fuel injection and for correcting injector drift. In the case of
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low temperature combustion processes [2], intake charge composition, and hence λ, has a key
influence in the combustion stability and control [3, 4]. In the last 15 years, zirconia-based
potentiometric (ZrO2) NOx sensors [5, 6, 7] have suffered a big development due to the special
attention paid to nitrogen oxides (NOx) emissions in turbocharged diesel engines (see [8]). These
sensors can measure NOx concentration and λ in the exhaust.

Implantation conditions of exhaust concentration sensors significantly depend on the after-
treatment configuration. A wide variety of solutions can be implemented downstream the tur-
bine in turbocharged diesel engines, such as the selective catalyst reduction (SCR) and deNOx
catalyst for NOx reduction, diesel particulate filter (DPF) for soot and PM reduction, and diesel
oxidation catalyst (DOC) for HC and CO oxidation. Manufacturers are struggling for finding the
configuration of systems and sensors that optimises the trade-off between low emissions, efficient
torque production, low cost and robustness. Usual position of UEGO sensor for air-to-fuel ratio
determination is directly downstream the turbine: this way the sensor is near of the source, but
avoids the large range of pressure variation that exists in the exhaust manifold. However, if SCR
or deNOx catalysts are used, a NOx sensor is needed for their control. Such sensor must be placed
downstream the after-treatment devices in order to measure tail-pipe emissions, as sketched in
the options 1, 2 and 3 of Figure 1. Current NOx sensors are based on planar ZrO2 technology,
and fit two ion current pumps, the first of them providing a measurement of the oxygen concen-
tration in the gas (a well explanation on this is in [6]). Hence, it seems possible to avoid the
UEGO sensor and just rely on the NOx sensor information, as depicted in the third exhaust line
of Figure 1.

However, because NOx sensor is located far from the engine, sensor performance must be ex-
amined, since sensor responses are not always enough for control or real-time purposes. UEGO
sensors exhibit fast responses time around 70 ms with a sufficient accuracy [9]; this can be im-
proved, as proposed in [10], moving the O2 sensor upstream the turbine and using a Kalman filter
(KF) [11] for coping with pressure effect on the output signal. NOx sensor response time is about
500 ms, but if placed downstream the after-treatment systems, its response is affected by a con-
siderable transport delay and filtering. Figure 2 compares λ−1 signals for a UEGO sensor located
upstream after-treatment system, and for a NOx sensor located downstream the after-treatment
system in a turbocharged diesel engine. NOx signal is significantly slower and more filtered
than UEGO sensor one, although the steady-state accuracy seems to be sufficiently accurate at a
glance.

Sensor response can be evaluated when a step variation in the injected fuel mass is applied,
as shown in Figure 3, where a sharp variation from 30 to 15 mg/str of injection has been done.
Signal from NOx sensor λ−1

s is compared with the expected variation in λ−1. Because of the
location and sensor characteristics, sensor is not able to reproduce the step.

Models and virtual sensoring techniques [12, 13, 14, 15] may be used as an alternative to sen-
sors, since present fast dynamic responses and offline prediction capabilities. However, models
suffer from bias that varies with time and operating conditions. The inability of standard models
to cope with engine drift is one of the main problems that modelling researchers must challenge.
Back to Figure 3, a model signal λ−1

m , based on the injected fuel mass m f estimated by the elec-
tronic control unit (ECU) and the air mass flow ma determined from a hot wire anemometer, has
been also represented. Comparing to the sensor, model is faster and non-delayed but presents
bias with respect to sensor steady-state value. Furthermore, this bias may vary before and after
the step.

This paper presents a methodology for combining data from models and sensors applied to
the oxygen estimation in the exhaust line of a turbocharged diesel engine. For that, a NOx
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Figure 1: Oxygen sensors configuration setup for a turbocharged diesel engine.

sensor is located downstream the after-treatment systems and a fast simple model is calculated by
using available signals of intake air mass flow and injected fuel quantity in a series turbocharged
diesel engine with after-treatment systems. A look-up table, scheduled by injected fuel mass
and engine speed, is added to the model for correcting the bias and a KF observer is used for
tracking the bias evolution. Fuel-to-air ratio (λ−1) is estimated instead of λ because it presents
a bounded value (ranging from 0 to 1, although slightly higher values can be reached during
engine load transients). The algorithm does not require a special knowledge on after-treatment
systems modelling as proposed model is considered as sufficiently fast for representing actual
λ−1 dynamics.

Paper is structured as follows. Section 2 describes the experimental set-up and the two main
possibilities for inferring λ in diesel engines, as sensors and models. Section 3 depicts the λ
estimation problem, proposing a drift correction algorithm using a Kalman filter and introducing
some robustness condition for coping with signal uncertainties and the use of look-up tables
for modelling drift dependence on engine operating point. Section 4 shows the experimental
validation of the proposed algorithm in a turbocharged diesel engine. More concretely, results on
fuel injection steps and New European Driving Cycle NEDC are shown. Finally, section 5 gives
the conclusions.
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Figure 2: λ−1 measurement from a UEGO sensor located downstream the turbine and from a NOx sensor downstream
the after-treatment systems, with configuration number 2 of Figure 1.

Stroke (S ) 96 mm
Bore ( D ) 85 mm
S/D 1.129
Number of cylinders (z) 4
Displacement 2179 cm3

Turbocharging system Sequential parallel[16]
Valves by cylinder 4
Maximum power 125 kW@4000 rpm
Compression ratio 17:1

Table 1: Engine main characteristics.

2. Experimental set-up and available information on λ

2.1. Experimental set-up
Tests have been performed in a common rail diesel engine with the exhaust line 3 presented in

Figure 1 and with the main characteristics shown in Table 1. The engine is installed on an engine
test bench and coupled to a variable frequency eddy current dynamometer that allows carrying
out dynamic tests. An open ECU permits varying injection parameters, such as injection pres-
sure, start of injection (SOI) and injection duration. Boost pressure and exhaust gas recirculation
(EGR) control set points can also be calibrated.

A real time hardware system is connected via CAN with a rapid prototyping system, capable
of sending to and receiving from ECU channels, both via ETK connection. A commercial NOx
ZrO2 sensor is used for measuring O2 concentration downstream the after-treatment systems
(from which λ−1 was derived). Additionally, a UEGO sensor is installed at the turbine outlet for
comparison. For providing a reference signal, an exhaust gas analyser, whose measurement is
based on the non-dispersive infrared method, is used. The air mass flow signal ma comes from
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Figure 3: λ−1
s , λ−1

m and expected actual λ−1 signals during an injection step from 6 mg/str to 3 mg/str at 1500 rpm.

a hot wire sensor installed upstream the compressor, and fuel injected quantity m f is estimated
by the ECU. A number of 354 steady-state tests are carried out for the static calibration, while a
set of injection steps and homologation cycles are made for dynamic calibration and algorithm
verification.

2.2. Sensor measurement

NOx sensor provides a very accurate information of λ−1 in steady-state operation. Static mea-
surements of sensor λ−1

s are compared to those of the gas analyser λ−1
g in Figure 4.
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Figure 4: λ−1
s and λ−1

g for different steady operating conditions; linear fit and correlation coefficient are represented.

The slow sensor dynamic response, yet shown in Figure 3 for an injection step, is explained
by several reasons: distance and gas volumes (after-treatment systems, turbine and manifolds)
between engine exhaust and sensor location affect transport delay and distort the signal; the
sensor measurement principle and sensor hardware itself; and the acquisition chain. Although
slow, the sensor is quite precise, since several repetitions of the same test provide similar results.
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This is illustrated in Figure 5, where 2 repetitions of the same fuel step are depicted for 2 different
engine speeds. Top plots show a step up (left) and step down (right) in injection for 1550 rpm
and bottom plots the same for 2250 rpm. Despite the sensor precision, it must be considered that
the dynamic response is significantly affected by the operative conditions (e.g. sensor response
in bottom plots in Figure 5 is always faster than in top plots).
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Figure 5: Two sensor responses (solid lines) for injection steps from 15 mg/str to 30 mg/str (left) and the opposite (right)
at 1550 rpm (top) and 2250 rpm (bottom). λ−1

m is provided for comparison (dashed black).

According with the sensor steady-state accuracy, the measured value λ−1
s can be related with

the actual value of λ−1 by the application of a pure transport delay and a filter:

λ−1
s = λ

−1
f + v =

1 − a
1 − az−1 z−τ/Tλ−1 + v (1)

where z−1 represents the unit delay of the discrete representation and T is the sampling period.
Although other model structures could be used, a delayed linear first order discrete model is
chosen, where the main important parameters are the filtering quantity a and the sensor-to-model
pure delay τ. A noise v has been added to the delayed and filtered value λ−1

f in order to represent
the measurement noise and other uncontrolled effects.

A dynamic characterisation of the sensor is mandatory for identifying (1). Procedures based
on provoking step transitions in gas concentration may be employed [17, 18], although these add
complexity and cannot be easily carried out during normal engine operation. Another option,
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suitable for online purposes, is provoking step-like transitions in the measured variables by mod-
ifying fast actuators such as the injection profile, which are electronically driven parameters and
thus no more than a cycle delay is expected [19]. Then, λ−1 sharp variations can be easily made
in current engines during their normal operation by causing injection steps, and a least-square
fitting may be used for fitting (1) (although robust recursive identification techniques could also
be used [20]).

Figure 6 shows the evolution of the measured λ−1
s and the identified sensor model λ−1

f for two
different operating conditions. Top plot is used for identification while validation is provided by
the lower plot. The fitting is good, even in the bottom plot, although a slight error can be ap-
preciated, which suggests that the dependence of the sensor dynamics with the engine operating
point may be neglected in a first approach.
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Figure 6: Example of identification of the sensor behaviour for two engine speeds, where λ−1
s and λ−1

f are depicted. Top

plot: training data at 1550 rpm where λ−1
f parameters a and τ are identified. Bottom plot: validation data at 2250 rpm,

where parameters a and τ obtained for the top plot situation are used now for obtaining λ−1
f .

2.3. λ−1 modelling

Different λ−1 models can be found in the literature, as those presented in [21, 22]. In this
paper, a simple model is judged to be sufficient to track λ−1 dynamic behaviour. Proposed model
is the following
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λ−1
m = 14.5

m f

ma
(2)

where m f is the injected fuel mass as estimated by the ECU, ma is the air mass as measured using
the series hot wire anemometer and 14.5 stands for the stoichiometric air-to-fuel ratio. Both m f

and ma can be expressed as flows (kg/s) or in a cylinder and cycle basis (mg/stroke). The model
neglects mass accumulation effects along intake and exhaust lines.
λ−1

m presents a significant bias that strongly depends on the operating conditions due to several
facts:

• m f is obtained from internal calculations of the ECU, and response is fast and non-delayed,
but is based on tabulated values which rely on rail pressure measurement and injection
duration. The error of these tables can be significant when short injections or split injection
strategies are applied. On the other hand, injector manufacturing discrepancies and ageing
can create a significant unit-to-unit (and cylinder-to-cylinder [23, 24, 25]) dispersion in the
actual injected quantity.

• While ma sensor response is judged to be fast and non-delayed enough for being directly
used as a model input, the accuracy of the sensor is not very high (for example in [26] the
non-systematic error of the air mass flow sensor was quantified with a standard deviation of
3.229%, in part due to flow pulsations in the intake line associated with the engine speed).
On the other hand, during transient processes in which significant variation of the air mass
accumulated in the manifolds exist, the air mass flow measured in the intake line is different
to that entering the engine [27]. This can be corrected accounting pressure variations in the
ma estimation, although this is not considered in the current paper.
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Figure 7: λ−1
m and λ−1

g for different steady operating conditions; linear fit and correlation coefficient is represented.

Figure 7 compares model steady-state results with gas analyser measurements. As it can be
easily noticed, the model provides a lower accuracy than that of the sensor (shown in Figure 4).
Regarding transient behaviour, model has a fast response as shown in Figure 3 for an injection
step, although bias is clearly noticed.
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With this scenery, model output λ−1
m can be related to the actual value of λ−1 considering a bias

θ

λ−1
m = λ

−1 − θ (3)

Model bias is not constant and varies with the operating condition, since ma error significantly
depends on the engine speed, and m f error is affected by the injection profile (and hence torque).
Figure 8 shows bias estimation for the measured steady points and its variation with engine speed
and torque.
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Figure 8: Model bias for the tests in Figure 7.

Additionally, bias varies with time due to the system drift, and a slow variation could be
expected. Model drift may be associated with injection soiling, air mass flow sensor drift, or the
variations of leakage in the intake manifold and blow-by. In order to model that, both effects, the
dependency with the operative conditions, and the drift, must be considered

dθ
dt
=
∂θ

∂t
+
∂θ

∂n
dn
dt
+
∂θ

∂m f

dm f

dt
+ . . . (4)

Although the bias variation associated with the system drift (∂θ/∂t) is expected to be slow, the
actual variation of the bias may be very fast, due to the ability of the engine of performing fast
transition between operating conditions (defined by n and m f ).

3. Fast λ−1 estimation

3.1. Problem set-up and methodology

The goal is providing an estimation λ̂−1 of the actual value of λ−1 combining the information
provided by the sensor λ−1

s and the model λ−1
m . Basic idea is keeping model dynamics while

correcting model bias (and its drift) profiting the sensor steady performance.
Figure 9 summarises an schematic representation of the proposed structure. All calculations

and equations are set-up in discrete form where T represents the sampling period, which corre-
sponds to 20 ms for the results shown in this paper. Main inputs are injected fuel mass m f , air
mass flow ma, speed n and sensor signal λ−1

s .
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Because of the bias strong dependence with the operative conditions, a 2D look-up table Θ is
used for accounting with this variation depending on engine speed and load. Hence current bias
value may be represented as

θk = Θk(nk,m f ,k) + wk (5)

where a noise w is added to the tabulated value Θk(nk,m f ,k) for considering modelling errors, and
for dealing with the system drift.

Through the combination of the sensor and the model information (conveniently delayed for
being comparable), a Kalman filter is used for tracking the value of the bias and of the filtered
value of λ−1, thus providing estimates θ̂ and λ̂−1

f . ’Freezing’ conditions block adds robustness to
the algorithm stopping the integration when sensor signals or model are not reliable.

In order to cope with the system drift, look-up table Θ is updated on a basis of an adaptive
algorithm that uses the estimate θ̂

Θk = f (Θk−1, θ̂k) (6)

Finally, the estimation λ̂−1 is built up from the current model output λ−1
m and the tabulated

value of the bias.
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Figure 9: Schematic view of the proposed procedure for λ−1 estimation.

3.2. Observer design
The proper combination of (2) and (1) allows to write the system in the following linear dis-

crete time state space representation
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xk = Axk−1 + Buk +Wk

yk = Cxk + vk
(7)

with the system state xk, measurement yk and input uk defined as

xk =
[
θ λ−1

f

]T
k

; yk = λ
−1
s,k; uk = λ

−1
m,k−τ/T ; (8)

System (7) matrices are

A =
[

1 0
1 − a a

]
; B =

[
0

1 − a

]
; Wk =

[
wk

0

]
; C =

[
0 1

]
(9)

The optimal solution of the estimation problem (i.e. estimating the state x of the system from
the evolution of y and u) was addressed by Kalman [11], and has been applied by different authors
to the automotive domain (see for example [9, 10, 28, 29]). In a first step, the state is estimated
considering the system input and their expected dynamic characteristics

x̂k|k−1 = Ax̂k−1 + Buk (10)

and in a second step the a priori estimate of the state x̂k|k−1 is updated using the error calculation
ek and the Kalman filter gain Kk

ek = yk −Cx̂k|k−1 (11a)
x̂k = x̂k|k−1 + Kkek (11b)

Kalman gain Kk is calculated recursively by solving the Ricatti equation which minimises the
estimation error:

Pk|k−1 = APk−1|k−1A′ +W
Kk = Pk|k−1C′

(
CPk|k−1C′ + v

)−1

Pk|k = (I − KkC)Pk|k−1

(12)

where P matrix defines the estimation error variance. Since current application considers a linear
time invariant (LTI) and a fully observable system, the filter is steady-state [30]. A constant
Kalman gain matrix K∞ is then considered and calculated offline

K∞ = lim
k→+∞

Kk (13)

The use of a constant K∞ leads to a sub-optimal filter neglecting K updating [31]. However,
for the considered case this fact does not really matter because initial P matrix is unknown and
convergence is given after few iterations. Then the use of K∞ alleviates the computational burden
and online implementation, thinking of its use in commercial ECUs. Anyway, if a more complex
sensor model (including the effect of the operating conditions on the sensor dynamics) were
employed, Kalman gain would vary with time, and then Kk should be calculated online.
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3.3. Observer tuning

KF tuning consists on the adequate selection of noises σ2
w and σ2

v that affect process and
sensor. Then, the optimal Kk is calculated from these. Figure 10 shows the different values
of the two elements of K∞ for different values of σ2

w/σ
2
v . Bias gain is the first element of K∞

vector and sensor model gain is the last element of K∞ vector. Note that the lower the sensor
noise is considered (higher σ2

w/σ
2
v), the faster the states’ estimations are updated (because sensor

measurement is propagated to the states).
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Figure 10: Evolution of elements K∞ gain vector when varying σ2
w/σ

2
v .

Hence, the gain selection defines how fast the bias is cancelled, but two issues must be con-
sidered:

• The filter also rejects the sensor noise. Using a very high Kalman gain implies do not
filtering the measurement noise.

• If the sensor dynamics characteristics are not perfectly known, a high value of the gain
causes the system to rely on incorrect information, and then peaks appear in the λ̂−1.

For illustrating the latter issue, synthetic signals of a first order model as (1) are used. A step
transition in λ−1 is simulated, but using a′ = a ± σa, τ′ = ±στ, and initial and final values of
bias θ0, θ1. Since synthetic signals are used, filter performance can be evaluated through the
comparison of λ̂−1 with actual λ−1. Results can be seen in Figure 11. Basic cases correspond to:

1. Sensor perfectly known (a′ = a,τ′ = τ) with an step in the bias (θ0 , θ1). In this case, the
higher K∞ is, the faster the bias is corrected, as depicted in the top plot of Figure 11.

2. Constant bias and uncertainty on the sensor description (a′ , a,τ′ , τ). In this case high
K∞ values yield to rely excessively on the poorly known sensor dynamics, creating artificial
peaks, as shown in bottom plot of Figure 11.

The general error case in the sensor modelling is a (non-linear) superposition of the previous
cases, and it is clear that a trade-off in the selection of the K∞ must be considered according
to the signals uncertainties and the required convergence speed. For the considered application,
sensor exhibits a significant variation in their dynamic properties and a consistent model has not
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Figure 11: λ̂−1 simulation using Kalman filter with three different kalman gain values, where from lighter to darker
lines corresponds from higher to lower kalman gain values. Top plot is for the case of sensor model perfectly known
(a′ = a,τ′ = τ) with an step in θ, meanwhile bottom plot corresponds to the case of (a′ , a,τ′ , τ) with constant θ.

been derived for the whole engine operating range. This would force a low value of K∞ (and
hence a slow correction of the model bias), but several modifications are proposed next.

Data based methods could be used for estimating the appropriate noise trade-off [32]. Here,
filter tuning is made by the Monte Carlo based method application presented in [33], where sen-
sor knowledge uncertainties, expected working points (n and m f values) and different expected θ
are used for evaluating the filter performance under different σ2

w/σ
2
v values. These variations are

considered with statistical distributions, and the configuration which minimises the total error is
selected.

3.4. Robustness against signals uncertainties

Three main circumstances affect the correct algorithm performance:

• Sensor saturation: NOx sensors exhibit saturation problems for high O2 partial pressures
(low λ−1). Figure 12 shows clearly the saturation point for the tested NOx sensor, where two
units of this model are located downstream the turbo and downstream the after-treatment
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systems. If KF is active, integration would be incorrect in these situations as far as λ−1
s is

not reliable.
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Figure 12: λ−1 measurement from a NOx sensor located downstream the turbine (gray) and a NOx sensor located down-
stream the after-treatment systems (black). Both sensors are the same commercial model and present a saturation in
approximately λ−1 = 0.1.

• Sensor and model uncertainties during highly dynamic transients: Sensor behaviour, de-
fined by a and τ, varies with time, boundary conditions, system conditions and because
of ageing and unit-to-unit dispersion. For avoiding wrong integrations, this must be con-
sidered. Furthermore, sensor model considered in (1) could not be complex enough for
accounting with actual sensor performance. An incorrect sensor model leads to peak errors,
especially when a sharp transient occurs.

• Spurious measurements: Signals involved can present outliers or errors that could be fatal
for the algorithm.

When these occur, integration must stop. A set of deactivation IF-THEN or ’freezing’ rules
have been programmed for that. If some of the following conditions is true, then ek = 0:

ek
1 − z−1

T
> F1 (14a)

λ−1
m

1 − z−1

T
> F2 (14b)

λ−1
s

1 − z−1

T
> F3 (14c)

λ−1
s < F4 (14d)

λ−1
s > F5 (14e)

λ̂−1 < F6 (14f)

λ̂−1 > F7 (14g)
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where (14a) to (14c) deactivate the filter in highly dynamic transients or in the case of spurious
measurements; (14d) if sensor saturation occurs; (14e) if measurement outliers are detected;
finally (14f) and (14g) are included for providing robustness to the estimation. These conditions
make the table update highly insensitive to sensor model errors, sensor output errors and model
output errors.

Setting this kind of rule allows using a much higher Kalman gain because the integration dur-
ing areas where θ is not correctly estimated is avoided. The definition of the rules and thresholds
needs to be done accordingly with the level of uncertainty in the sensor knowledge, the signals
noise level, model reliability and assumptions concerning the dynamic characteristics of the λ−1

evolution.
Figure 14 already showed λ̂−1 in injection steps when using the freezing rules. Figure 13

compares λ̂−1 obtained with two different freezing conditions for one sharp injection transient,
where λ−1 value is drastically varied and the bias is affected by the operating conditions (it varies
from 0 at the beginning of the test to 0.1 after the fuel step). In all cases, a significant error in
the sensor model is assumed (a′ , a and τ′ , τ). It can be also noticed that including freezing
mitigates the overshoot in the correction; although an excessive freezing will result to completely
deactivating the integration of the filter, and then no bias correction would be made during engine
operation. Monte Carlo calibration method presented in [33] can also be used for tuning freezing
thresholds F1 to F7.
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Figure 13: λ̂−1 for two different conditions of freezing for an injection step at 2250 rpm. Thin solid lines represents λ̂−1,
lighter to darker gray is less to more severe freezing condition. λ−1

f models for each λ̂−1 are also included.

3.5. Look-up table adaptation and λ−1 estimation

Look-up table in Figure 9 is used for coping with the bias dependence with the operative
conditions. The look-up table interpolation principle is based on a 2D bilinear interpolation
considering the 4 neighbours. If some point is beyond the defined table scheduling points, the
value is saturated to the closest one for avoiding incorrect calculations. At every iteration, the
initial estimation of the bias is interpolated from the table Θ

θ̂k|k−1 = Θk−1(nk−τ/T ,m f ,k−τ/T ) (15)
15



where table scheduling inputs engine speed n and injected fuel mass m f are conveniently delayed
in order to consider the sensor delay. The Kalman filter provides an updated value of the bias (at
the delayed input conditions) that is used for updating the table with a learning method. There
are several possibilities for the table adaptation in the literature [34, 35, 36]; here the method
explained in [37], a KF-based algorithm for updating look-up tables, is used. While considering
the table as an independent block, the system keeps simple. At every iteration, only the equation
(11b) must be solved as far as Kk has been precalculated offline. The main benefit of this is that
the converged K∞ obtained for the filter remains constant although the table changes its elements,
without affecting the calculation burden.

Once the table has been adapted, an updated value of the bias is obtained for the current
operative conditions, which is used for building the final estimation:

λ̂−1
k = λ

−1
m,k + Θk(nk,m f ,k) (16)

where current values of the inputs and the model are used, in order to provide the more updated
information.
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Figure 14: λ̂−1 without table (top) and using adaptive table (bottom) changing the operating point condition of the engine
repeating two times a cycle using simulation data. Black line is λ−1

s , dashed black line is λ−1
m and gray line is λ̂−1.

Deactivation freezing rules are applied.

For illustrating the look-up table performance, Figure 14 shows the simulation of λ−1 for a
repetition of the same profile. τ is known and null and a has a certain error. Top plot represents
the evolution if the adaptive table is not used. In the case of using the adaptive table (bottom
plot), first part of the cycle serves for bias identification (initially all elements of the table are set
to zero), and in the second part of the cycle the estimation is significantly improved because of
the stored values. Note that during transients integration, error integration starts slightly after the
step because of deactivation freezing rules.

Different tables may also be used in case of using different combustion modes (split injection,
exhaust system regeneration) or coolant temperature, in order to cope with the different bias in
the m f estimate when the injection settings change. Each table is updated only when the mode
is activated and can add more accuracy to the estimate although incrementing the programming
burden.
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4. Experimental validation

This section covers the experimental validation of the algorithm.In order to provide a reference
signal for assessing the algorithm, injection steps are performed in the engine and λ̂−1 calculated.
Since injection is a fast acting control variable, actual λ−1 response is judged to be instantaneous
and no more than one engine cycle delay is expected, being able to generate a reference for
comparison. Furthermore, this signal is available online, making that algorithm may be tuned
and proved without an specific test rig beyond the engine and ECU itself.

Layout is the same of section 2, sensor model parameters are identified beforehand as in sec-
tion 2.2 with values a = 0.96 and τ = 0.4s. K∞ is precalculated offline for all cases as Kalman
filter is steady-state. Sample frequency is 50 Hz. Figure 15 shows the results for a set of different
injection steps for a constant engine speed n = 1500 rpm. ZrO2 sensor is located downstream
the after-treatment systems and a significant bias 0.05 times its own value has been added for
exaggerating the correction; i.e λ−1

m,dri f ted = 1.05 × λ−1
m . Furthermore, λ−1

m presents a significant
variable bias depending on the operating point with respect to λ−1

s . Drift correction algorithm
is employed for estimating λ−1. Freezing conditions are relaxed because sensor model is well-
known. Top plot shows an example with low correction where integration is quite slow. Bottom
plot shows the opposite situation where integration is quite fast, provoking some peaks but get-
ting before the steady-state value of the sensor. Here, no model or table is used for bias. This
makes that after every step, bias must be integrated for coping with its variation.
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Figure 15: λ̂−1 performing injection steps at 1500 rpm without using look-up table. Top plot: Slow correction, with
σ2

w/σ
2
v = 1/80. Bottom plot: Fast correction, with σ2

w/σ
2
v = 1/30. Legend: Thick black is λ−1

s , thin black is λ−1
m and

gray is λ̂−1.

Bias is modelled using an adaptive look-up table (16) depending on the operating point con-
ditions. This smoothes bias integration when operating point changes once that table has been
learnt. Then, Figure 16 shows same situation of Figure 15 but now using a look-up table. Table
grid has a density for n of one point every 500 rpm between 500 and 5000 rpm and for m f of one
point every 1 mg/str.
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Figure 16: λ̂−1 performing injection steps at 1500 rpm using look-up table. Legend: Thick black is λ−1
s , thin black is λ−1

m
and gray is λ̂−1. Values for Kalman filter tuning are σ2

w/σ
2
v = 1/80.

Figure 17 shows final results for three different injection steps of the previous cycle once that
bias has been perfectly learnt and for the actual λ−1

m (no extra bias is added). λ̂−1 keeps fast
dynamics but converges to the steady-state value of λ−1

m , in contrast to the biased model and the
slow sensor.

20



180 200 220 240 260
0.4

0.5

0.6

0.7

0.8

0.9

1

λ−
1  [−

]

time [s]

180 190 200 210
0.75

0.8

0.85

0.9

0.95

time [s]

λ−
1

 

 

λ
−1

s

λ
−1

m

λ̂
−1

Figure 17: λ̂−1 using table and freezing conditions performing injection steps at 1500 rpm. Top picture presents three
injection steps, while bottom one shows a zoom in the first injection step.

Finally, algorithm is proven with the NEDC and shown in Figure 18 for a window of the
cycle. Described conditions and data for previous tests are still valid here. λ̂−1 keeps model
dynamics but evolves correcting the drift relying on the steady-state value of the sensor. This test
is representative of real driving conditions and procedure demonstrates its feasibility for being
used in commercial vehicles.
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Figure 18: λ̂−1 using table and freezing conditions in NEDC cycle.

5. Conclusions

λ−1 fast estimation in a turbocharged diesel engine is addressed. For that, two different infor-
mation sources are used: a fast model based on the fuel-to-air ratio calculation, whose dynamic
performance is good but suffers from bias; and a slow NOx sensor that provides λ−1 with defi-
cient dynamic response but good steady-state accuracy. Model and sensor are combined building
a bias model by means of a LTI linear state space model. State estimation is done by means of a
Kalman filter. Three main modifications are done to the classical KF solution:

1. In order to cope with sensor uncertainties (because the sensor behaviour is non-linear and
depends on the operating conditions, and it is also affected by ageing and manufacturing
discrepancies) some deactivating conditions, referred in this paper as freezing conditions,
are used. These rules literally freeze the integration of the Kalman filter, rejecting the bias
integration in the cases some signal information is not trustful.

2. Bias is modelled by means of using an adaptive look-up table for coping with operating
point dependence. Table output acts as a prepositioning input for the Kalman filter, avoiding
integration work, and improving the estimate. Table parameters are identified with a KF-
based method.

3. In order to alleviate the computational cost, and because of the system is time-invariant, the
steady-state Kalman gain is computed beforehand.

The system is tested on a turbocharged diesel engine with good results, obtaining a reliable
and fast λ̂−1 estimation. Although the algorithm is directly applied to the λ−1 estimation with a
certain model, this can be easily applied to other variables with similar characteristics, such as
NOx estimation and other models.
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[27] J. Galindo, H. Climent, C. Guardiola, and J. Doménech, “Strategies for improving the mode transition in a sequen-
tial parallel turbocharged automotive diesel engine,” International Journal of Automotive Technology, vol. 10 (2),
pp. 141–149, 2009.

[28] A. Schilling, A. Amstutz, C. H. Onder, and L. Guzzella, “A real-time model for the prediction of the NOx emissions
in DI diesel engines,” in Proceedings of the 2006 IEEE International Conference on Control Applications, Munich,
Germany, October 4-6, 2006.

[29] J. M. Desantes, J. M. Luján, C. Guardiola, and D. Blanco-Rodriguez, “Development of NOx fast estimate using
NOx sensors,” in EAEC 2011 Congress, Valencia, 2011.

[30] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” Journal of Basic Engineering,
pp. 95–108, March 1961.

[31] D. Simon, “Kalman filtering,” Embedded Systems Programming, vol. 14, no. 6, pp. 72–79, 2001.
[32] M. R. Rajamani and J. B. Rawlings, “Estimation of the disturbance structure from data using semidefinite program-

ming and optimal weighting,” Automatica, vol. 45, pp. 142–148, 2009.
[33] F. Payri, C. Guardiola, D. Blanco-Rodriguez, A. Mazer, and A. Cornette, “Methodology for design and calibration

of a drift compensation method for fuel-to-air ratio estimation,” SAE paper 2012-01-0717, 2012.
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