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Abstract

Patients suffering from Type 1 Diabetes are not able to secrete insulin, thus,
they have to get it administered externally. Current research is focused on
developing an artificial pancreas, a control system that automatically admin-
isters insulin according to patient’s needs. The work presented here aims to
improve the efficiency and safety of control algorithms for artificial pancreas.

Glucose-insulin models try to mimic the administration of external insu-
lin, the absorption of carbohydrates, and the influence of both of them in
blood glucose concentration. However, these processes are infinitely complex
and they are characterized by their high variability. The mathematical mod-
els used are often a simplified version which does not include all the process
variability and, therefore, they do not always match reality. This deficiency on
the models can be addressed by considering uncertainty on their parameters
and initial conditions. In this way, the exact values are unknown but they can
be bounded by intervals that comprehend all the variability of the considered
process. When the value of the parameters and initial conditions is known,
there is usually just one possible behaviour. However, if they are bounded by
intervals, a set of possible solutions exists. In this case, it is interesting to com-
pute a solution envelope that guarantees the inclusion of all the possible be-
haviours. A common technique to compute this envelope is the monotonicity
analysis of the system. Nevertheless, some overestimation is produced if the
system is not fully monotone. In this thesis, several methods and approaches
have been developed to reduce, or even eliminate, the overestimation in the
computation of solution envelopes, while satisfying the inclusion guarantee.

Another problem found during the use of an artificial pancreas is that only
the subcutaneous glucose concentration can be measured in real time, with
some noise in the measurements. The rest of the system states are unknown,
but they could be estimated from this set of noisy measurements by state ob-
servers, like Kalman filters. A detailed example is shown at the end of this
thesis, where an Extended Kalman Filter is used to estimate in real time insu-
lin concentration based on the food ingested and in periodical measurements
of subcutaneous glucose.
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Resumen

Los pacientes que sufren de diabetes tipo 1 no son capaces de secretar insulina,
por lo que tienen que administrársela externamente. La investigación actual
se centra en el desarrollo de un páncreas artificial, un sistema de control que
administre automáticamente la insulina en función de las necesidades del pa-
ciente. El trabajo que aquí se presenta tiene como objetivo mejorar la eficiencia
y la seguridad de los algoritmos de control para el páncreas artificial.

Los modelos de glucosa-insulina tratan de emular la administración ex-
terna de la insulina, la absorción de carbohidratos y la influencia de ambos
en la concentración de glucosa en sangre. El problema es que estos procesos
son infinitamente complejos y se caracterizan por su alta variabilidad. Los
modelos matemáticos utilizados suelen ser una versión simplificada que no
incluye toda la variabilidad del proceso y, por lo tanto, no coinciden con la rea-
lidad. Esta deficiencia de los modelos puede subsanarse considerando incier-
tos sus parámetros y las condiciones iniciales, de manera que se desconoce su
valor exacto pero sí podemos englobarlos en ciertos intervalos que compren-
dan toda la variabilidad del proceso considerado. Cuando los valores de los
parámetros y de las condiciones iniciales son conocidos, existe, por lo general,
un único comportamiento posible. Sin embargo, si están delimitados por in-
tervalos se obtiene un conjunto de posibles soluciones. En este caso, interesa
obtener una envoltura de las soluciones que garantice la inclusión de todos
los comportamientos posibles. Una técnica habitual que facilita el cómputo
de esta envoltura es el análisis de la monotonicidad del sistema. Sin embargo,
si el sistema no es totalmente monótono la envoltura obtenida estará sobresti-
mada. En esta tesis se han desarrollado varios métodos para reducir, o incluso
eliminar, la sobrestimación en el cálculo de envolturas, al tiempo que se satis-
face la garantía de inclusión.

Otro inconveniente con el que nos encontramos durante el uso de un pán-
creas artificial es que solo es posible medir en tiempo real, con cierto ruido
en la medida, la glucosa subcutánea. El resto de los estados del sistema son
desconocidos, pero podrían ser estimados a partir de este conjunto limitado
de mediciones con ruido utilizando observadores de estado, como el Filtro de
Kalman. Un ejemplo detallado se muestra al final de la tesis, donde se estima
en tiempo real la concentración de insulina en plasma en función de la comida
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ingerida y de mediciones periódicas de la glucosa subcutánea con ayuda de
un Filtro de Kalman Extendido.



Resum

Els pacients que pateixen de diabetis tipus 1 no són capaços de secretar in-
sulina, motiu pel qual han d’administrar-se-la externament. La investigació
actual es centra en el desenvolupament d’un pàncrees artificial, un sistema de
control que administre automàticament la insulina en funció de les necessitats
del pacient. El treball que ací es presenta té com a objectiu millorar l’eficiència
i la seguretat dels algorismes de control per al pàncrees artificial.

Els models de glucosa-insulina tracten d’emular l’administració externa
de la insulina, l’absorció de carbohidrats i la influència d’ambdós factors en
la concentració de glucosa en sang. El problema és que estos processos són
infinitament complexos i es caracteritzen per la seua alta variabilitat. Els mod-
els matemàtics emprats solen ser una versió simplificada que no inclou tota la
variabilitat del procés i, per tant, no coincideixen amb la realitat. Esta defi-
ciència dels models pot esmenar-se considerant incerts els seus paràmetres i
les condicions inicials, de manera que es desconeix el seu valor exacte però
sí podem englobar-los en certs intervals que comprenguen tota la variabilitat
del procés considerat. Quan els valors dels paràmetres i de les condicions ini-
cials són coneguts, existeix, en general, un únic comportament possible. No
obstant, si estan delimitats per intervals s’obté un conjunt de possibles solu-
cions. En este cas, interessa obtindre un embolcall de les solucions que asse-
gure la inclusió de tots els comportaments possibles. Una tècnica habitual que
facilita el còmput d’este embolcall és l’anàlisi de la monotonicitat del sistema.
No obstant, si el sistema no és totalment monòton l’embolcall obtingut estarà
sobreestimat. En esta tesi s’han desenvolupat diversos mètodes per a reduir, o
fins i tot eliminar, la sobreestimació en el càlcul dels embolcalls, al temps que
se satisfà la garantia d’inclusió.

Altre inconvenient amb què ens trobem durant l’ús d’un pàncrees artificial
és que només és possible mesurar en temps real, amb cert soroll en la mesura,
la glucosa subcutània. La resta dels estats del sistema són desconeguts, però
podrien ser estimats a partir d’este conjunt limitat de mesures amb soroll util-
itzant observadors d’estat, com el Filtre de Kalman. Un exemple detallat es
mostra al final de la tesi, on s’estima en temps real la concentració d’insulina
en plasma en funció del menjar ingerit i de les mesures periòdiques de la glu-
cosa subcutània amb ajuda d’un Filtre de Kalman Estés.
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1

Motivation and objectives

Attentive readers will note numerous holes

and contradictions throughout the text;

they will even find blatant lies and exag-

gerations. These have been placed there to

test the reader’s faith.

Flying Spaghetti Monster

1.1 Motivation

We eat food to provide energy to our muscles and other tissues. Most of it is
transformed into glucose, a form of sugar that is transported by blood through
all the body. Insulin, a peptide secreted from the pancreatic β-cells, power the
absorption of glucose by the cells, reducing the blood glucose concentration,
and inhibits glucose production by the liver. Furthermore, glucagon increases
the concentration of glucose in blood. Without them, the body would not be
able to absorb energy from food [34].

Under physiological conditions, insulin and glucagon are balanced in or-
der to maintain plasma glucose concentration in a narrow range (around 70–
140 mg/dl). This process is called homeostasis. In the fasting and post-
absorptive states, insulin regulates plasma glucose concentration mainly by
restraining hepatic glucose production to exactly match peripheral glucose
utilization (predominantly by the brain, muscle and adipose tissue). In the
postprandial state, the increase in the portal glucose concentration stimulates
insulin secretion, which in turn suppresses hepatic glucose production and
increases the disposal of the glucose absorbed from the guts [29].

People that suffer diabetes have a malfunction in the production or effi-
ciency of insulin. Patients with Type 1 Diabetes Mellitus suffer an autoim-
mune destruction of pancreatic β-cells. As these cells are responsive to secrete

1
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insulin, their destruction produce a total lack of insulin in the body. As a
consequence, people that suffer Type 1 Diabetes have a total dependency on
exogenous insulin for survival. In the case of Type 2 Diabetes Mellitus, there
is a reduction of the tissues sensitivity to the insulin effects, in conjunction
with deficiencies in the production of insulin by the pancreas. This is the most
common case of diabetes, and the chances of suffering it increase with obesity,
hypertension or elevated cholesterol. As a consequence, the treatment consists
in a healthy diet, exercise and some drugs [90].

Diabetes affects to more than 285 million people, around 6.6% of the to-
tal world population. The rate is increasing, as every year around 7 million
people develop diabetes. Following this progression, in 20 years around 425
million people will be affected by this disease. Moreover, diabetes also has
a high economical impact. In 2002, American Diabetes Association (ADA)
estimated the health cost of diabetes in 132 billion dollars just in the United
States. Their previsions estimate that it will increase to 192 billion dollars by
2020 [87].

People that suffer any type of diabetes can not obtain efficiently energy
from the food they digest. This failure produces an increase in blood glucose
concentration, what may lead to severe health problems and chronic compli-
cations. Before the discovery of insulin in 1929, this led to fatal acute com-
plications (hyperglycaemia, ketoacidosis, coma and death). Following 1929,
thanks to the development of progressively more sophisticated insulin for-
mulations and devices for glucose measurements, acute diabetic complica-
tions are rare (although not negligible). However, physiological replacement
of insulin secretion remains an elusive goal. This fact results into wide fluctu-
ations of plasma glucose. When the insulin administered is bigger than nec-
essary, blood glucose concentration drops and may produce a life-threatening
hypoglycaemia, as the brain will not receive the necessary glucose. On the
other hand, if the insulin dose is not enough it may produce chronic hyper-
glycaemia, being the cause of significant morbidity (end-stage renal disease,
blindness, neuropathy) and mortality. Nowadays, there is still no cure for di-
abetes. Therefore, advances on its treatment may have a great and significant
impact.

Insulin therapy in Type 1 Diabetes aims to mimic the pattern of the en-
dogenous insulin secretion found in healthy subjects, trying to avoid the risks
of high or low levels of glucose in blood. Patients must try to maintain their
blood glucose levels inside a range safe for their health, set between 70 mg/dl
and 140 mg/dl. In order to maintain blood glucose concentration in this range,
patients will take a basal injection of insulin to maintain the resting level of the
organism. Moreover, at each meal they will follow a three-step process [5]:

Measurement of the current level of glucose. The most common technique
to measure blood glucose is to use a glucometer to perform a capillary
glucose measurement. This test is performed by taking a drop of blood
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from the finger tip and analysing its glucose concentration. Diabetic pa-
tients can perform this measurements at home and by themselves. A
controlled patient may perform around 4 measurements per day (one
before each meal and another one before going to sleep).

Estimation of the ingested glucose in the meal. After a meal, blood glucose
concentration increases. Patients have to estimate the amount of carbo-
hydrates their food has, based on the type of food and on the quantity
ingested.

Estimation of the appropriate dosage of exogenous insulin. Insulin doses
have to compensate the glucose ingestion to maintain the levels of blood
glucose concentration in the adequate range. The most common tech-
nique to administer insulin doses is to use a device called pen. The dose
can be adjusted in the pen, that has a needle to administer the insulin
subcutaneously.

When patients are first diagnosed with diabetes, they are helped by their
physicians. However, diabetes treatment is based on autocontrol, as is the
patient himself the one who take the decisions in his everyday life based on
his previous experiences and periodical indications from his physician. As
a consequence, diabetes patients have to be constantly taking care of their
disease.

Investigation in diabetes treatment has been fuelled in the last decades
following the introduction in the market of portable devices for real-time con-
tinuous glucose monitoring. These devices are subcutaneously inserted in the
abdomen region. Thus, they offer an estimation of plasma glucose from mea-
surements of interstitial glucose every 5 minutes [75].

New external devices have been also developed for the administration
of insulin in a continuous way, known as insulin pumps. These pumps are
equipped with a compartment to allocate the insulin and a needle placed in
the subcutaneous tissue. They are programmed to administrate a basal dose
of insulin continuously through the full day and night. Furthermore, before
each meal the patient can also indicate manually the bolus dose of insulin they
want to receive, avoiding the use of insulin pens.

Research is now focused on using these devices for the development of
an Artificial Pancreas, i.e., a closed-loop glucose control system that automat-
ically dispenses insulin subcutaneously [26]. A closed-loop system is one in
which the input is determined by the system response. In this case, this sys-
tem will take the ’decision’ of how much insulin will be administrated at each
instant based on the measurements from the continuous glucose monitor and,
in some cases, on the food ingested. It would allow diabetic patients to avoid
most of the steps mentioned above, as the device would take care of their daily
glucose control. As a consequence, it will enhance the quality of life of diabetic
patients.



4 Chapter 1. Motivation and objectives

However, the development of an artificial pancreas is complicated by a
large number of uncertainties [7]:

Inter-patient variability. Each patient has a different behaviour based on life-
style and physiological conditions. For example, insulin absorption may
differ around 20–45% in a clinical environment between patients [36].
Hence, model identification has to be individualized for each patient.

Intra-patient variability. Even the same patient may differ significantly from
one day to another. For instance, insulin absorption may vary between
15–25% in a clinical setting [36]. This uncertainty arises, among other
causes, from the different physiological processes involved, such as sub-
cutaneous insulin absorption, circadian rhythms of insulin sensitivity or
action of counter-regulatory hormones [84].

Glucose measurement errors. Continuous glucose monitors provide measure-
ments of glucose concentration every 5 minutes. However, the accuracy
and reliability of current monitors is still insufficient, although signifi-
cant advances are being made in this respect.

Meal estimation and variability. In most of artificial pancreas systems, pa-
tients have to announce their meals. The amount of carbohydrates in-
gested is estimated by the patient, introducing a large error [46]. In
addition, meal ingestion introduces important disturbances in glucose
homeostasis depending, among other things, on the meal composition
and even previous meals [69].

1.2 Objectives

The aim of this thesis is to provide tools and techniques for the treatment of
intra-patient variability and other sources of uncertainty in glycemic control.
This problem will be tackled from the development of glycemic predictors that
include all the sources of uncertainty. These predictors will compute glucose
envelopes that guarantee the inclusion of all the possible behaviours of the
patient. The robustness and security of control strategies will be improved
with the use of these tools.

Furthermore, there is a lack of awareness about the system itself as it is
not possible to measure all its indicators in real time. Only subcutaneous glu-
cose concentration can be measured using a continuous glucose monitor, with
some noise on its measurements.

These are the main specific objectives pursued in this thesis:

1. Compute solution bounds for biological models. Model parameters
and initial conditions of the most common structures in biological mod-
els will be considered as unknown, but bounded by intervals, to com-
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prehend all the variability of real processes. New methods to reduce the
overestimation in the computation of solution bounds for these model
structures will be proposed.

2. Develop new approaches to compute solution envelopes. Different ap-
proaches known in literature to compute solution bounds for systems
under uncertainty will be reviewed in the state of the art. New ap-
proaches will be analysed that guarantee the inclusion of all the pos-
sible solutions, and that reduce the overestimation performed for some
systems.

3. Predict glucose concentration under uncertainty. The work developed
for the previous objectives will be applied to predict blood glucose con-
centration under uncertainty. Computed bounds must guarantee the
inclusion of all the possible behaviours of the patients, and reduce the
overestimation.

4. Estimate plasma insulin concentration in real time. A state observer
will be used to estimate insulin concentration based on the meal ingested
and on noisy measurements of plasma glucose, given by a continuous
glucose monitor. This methodology will be evaluated in-silico and with
clinical data from patients with Type 1 diabetes.

1.3 Outline

A detailed overview of all the chapters of this thesis is described:

• Chapter 2 starts with a description of the most common models used
in Biology and, specifically, in diabetes. It also reviews the different ap-
proaches known in literature to compute solution envelopes that guar-
antee the inclusion of all the possible solutions.

• Common biological model structures are analysed in Chapter 3 (parallel
inputs models) and Chapter 4 (in-series models). New techniques are
developed to compute guaranteed solution envelopes for both model
structures that reduce the overestimation performed.

• In Chapter 5 a new approach to compute guaranteed solution bounds is
proposed. This novel method, based on monotonicity with respect to an
arbitrary cone, is illustrated by the computation of solution envelopes
for a non-linear chemostat model.

• Chapter 6 presents the prediction of plasma glucose concentration un-
der uncertainty. In this chapter, previous results are applied to bound all
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the possible patients behaviours. The computation of guaranteed glu-
cose envelopes has many applications, such as robust model predictive
control, robust fault detection or robust parameter identification.

• Chapter 7 describes the use of a state observer to estimate plasma insu-
lin based on the food ingested and on measurements of glucose concen-
tration from a continuous glucose monitor. The glucose-insulin models
used in the previous chapter is validated for insulin real-time estimation.

• Finally, the conclusions of this thesis, its contributions and future work
are exposed in the last section.



2

Simulation of interval

dynamic systems

Le doute n’est pas un état bien agréable,

mais l’assurance est un état ridicule.

Voltaire

2.1 Modelling reality with Mathematics

Mathematics is amazing by itself, but its real strength is in the fact that it
can be used in conjunction with other knowledge fields, such as Biology, Me-
dicine, Engineering, Economics or Human Sciences. Mathematical systems
have been widely used to simulate real-life situations. The use of mathemat-
ical models can improve the understanding of the processes, and analyse the
consequences of taking different decisions.

For example, one of the most famous and relevant applied mathematical
systems was developed by Ronald Ross to model the transmission of malaria
disease through mosquitoes [15]. Using this model, it was possible to develop
effective techniques to fight against the spread of the disease. As a conse-
quence, he received the Nobel Prize for Physiology or Medicine in 1902.

The structure of a mathematical model may vary depending on if the sys-
tem objective is to mimic the process itself (based on prior knowledge about
it) or its behaviour (based on data measurements) [86]:

Phenomenological models are based on prior knowledge about physical or
physiological principles. This knowledge determines the structure of the
model, while the value of the parameters (speed of the process, degra-
dation, ...) is adjusted based on the observed measurements. This kind
of models, also known as knowledge-based models, has a large validity

7



8 Chapter 2. Simulation of interval dynamic systems

domain as long as the structure used is correct. However, they tend to
be complex and highly non-linear.

Behavioural models try to approximate the observed behaviour of the out-
put, without any knowledge about the process itself. As a consequence,
the parameters of the model may have no concrete meaning at all. These
models, focused on data reproduction, are quick and easy to simulate,
as no prior knowledge of the phenomenon is needed. However, they
can only reproduce similar scenarios to the ones previously shown in
the data, restricting the model validity domain.

In the context of the artificial pancreas, behavioural models have been used
to characterize diabetic patients behaviour [82]. However, most of the mathe-
matical models published are phenomenological, due to the extensive physio-
logical knowledge available from the physicians. In both cases, the modelling
of the glucose-insulin system involves three main sub-processes (represented
in Figure 2.1):

Insulin absorption model. Insulin is injected or infused in the subcutaneous
tissue, producing a delay in its appearance in plasma. Therefore, this
model involves the pharmacokinetics of the insulin diffusion through
different tissues, and natural insulin degradation.

Glucose absorption model. The carbohydrates ingested are digested and ab-
sorbed from the intestine into blood. The gastrointestinal model repre-
sents the catabolisation of the meal ingested to glucose.

Glucoregulatory model. Several physiological processes and relations can af-
fect the concentration of blood glucose, such as the hepatic glucose pro-
duction or the glucose uptake by peripheral tissues.

Insulin absorption 

model 

Glucose absorption 

model 

Glucoregulatory 

model 

Insulin dose 

Nutrients 

Plasma 

insulin 

Glucose 

from guts 

Blood glucose 

concentration 

Figure 2.1: Diagram of the glucose-insulin system.
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These processes are usually modelled using compartmental systems, which
consist of a finite number of interconnected subsystems called compartments.
The interactions among compartments are transfers of material according to
the law of conservation of mass [42]. The state variables of these systems rep-
resent the amount of material contained in each compartment. For this rea-
son, compartmental systems belong to the broader class of non-negative sys-
tems [32].

A common structure in compartmental models is composed of a single
linear chain with several compartments connected in series. This structure is
known as compartmental in-series models [42]. The compartments may have
a physiological meaning (phenomenological models), or they may only have
the objective of producing a delay on the output (behavioural models).

In-series models are widely used in insulin and glucose absorption mod-
els, as they aim to reproduce the delay in their appearance in plasma. For
example, Puckett and Lightfoot developed a phenomenological insulin absorp-
tion model [70], in which each compartment represents a physiological region,
as shown in Figure 2.2.

X1 X2

i

Vd

Subcutaneous

tissue
Interstitium

Plasma 

insulin

ka ka

ke

u(t)

Figure 2.2: Diagram of the phenomenological insulin absorption model developed by Puckett

and Lightfoot.

Similar models, but behavioural, were created by Kraegen and Chisholm

[49], represented in Figure 2.3, and by Shimoda et al. [78]. In both models, two
in-series compartments are used to represent the subcutaneous tissue, produc-
ing a delay in the output.

Two or more in-series linear chains can be connected to the output com-
partment, creating a structure known as parallel inputs model [42]. This model
is usually used to mimic processes in which the input shows several effects
on the output with different time delays, as each chain may have a different
number of compartments. For example, Wilinska et al. use this structure to
represent the existence of two channels for the insulin absorption: one of slow
absorption and a fast insulin absorption channel [88], represented in Figure
2.4.
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X1 X2

i

Vd

Subcutaneous tissue
Plasma 

insulin

k21 kps

ke

u(t)

kdkd

Figure 2.3: Diagram of the behavioural insulin absorption model developed by Kraegen and

Chisholm.

Q1a Q2a

Slow channel

ka1
(t)

ka1

LDa

Q1b Q3

ka2
(1- )

keLDb

Fast channel

Plasma

insulin

Figure 2.4: Diagram of the two-channel insulin absorption model developed by Wilinska et al.

However, the mathematical models used to reproduce any biological sys-
tem are usually a simplified version of actual processes, as real-life situations
are infinitely complex and they are presented with much variability. This mis-
match yields parametric uncertainty and non-modelled dynamics. These un-
certainties can be classified in two groups:

Structured uncertainty. In this case, the equations of the model are known,
but the values of their parameters are uncertain.



11

Unstructured uncertainty. This uncertainty arises due to the lack of informa-
tion we have about the processes itself. As a consequence, the equations
that model the system are uncertain.

In both cases, it is not possible the use of models in which the parameters
are known real numbers. Henceforth, uncertainty will be always represented
by interval models, in which the parameters, inputs and initial conditions are
unknown, but bounded by intervals. The set of intervals I(R) is defined as:

I(R) = {[a, b] | a ∈ R, b ∈ R, a ≤ b}.

Under known initial condition and parameters values, there is, generally,
a single possible solution for the model. However, as interval uncertainty is
considered, a set of different possible solutions is achieved, as it is represented
in Figure 2.5.

0.7

Parameters

0.8

0.6

Simulation

Figure 2.5: Under known parameters values, a single solutions is achieved. When interval

uncertainty is considered, a set of possible solutions is obtained.

2.2 Interval dynamic systems

A continuous-time system under uncertainty, also known as a continuous in-
terval dynamic system, can be analysed as an initial-value problem (IVP):

ẋ(t, p) = f(t, x, p, u(t)), x(t0) = x0,

x ∈ Rn, t ∈ R, p ∈ Rnp , u ∈ Rn (2.1)
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where f is the vector function with components fi, x is the state vector, p is the
parameter vector, np is the number of parameters and u(t) is the input vector.
The solution of (2.1) is denoted by x(t; t0, x0, p, u).

Representing intervals in bold, interval vectors p, u(t) and x0 include all
possible values for the parameters p, for the input vector u(t) and for the initial
conditions x0 of the model, respectively. The set of possible solutions derived
from parametric uncertainty is denoted by x(t; t0,x0,p,u(t)):

x(t; t0,x0,p,u(t)) = {x(t; t0, x0, p, u(t)) | x0 ∈ x0, p ∈ p, u(t) ∈ u(t)}.

Several methods are used to analyse the the behaviour of this set.

2.2.1 Monte Carlo simulation

Monte Carlo methods date from the 1940s, and they are still a popular method
to represent the possible behaviours of a model simulation. These methods
consist in performing a large number of different simulations by the variation
of the initial states and parameters values, following a probability distribu-
tion [35]. In this work, interval parameters and initial conditions are repre-
sented in terms of uniform probability distributions. Hence, they assume any
value inside the interval with equal probability. The probability density func-
tion of the continuous uniform distribution U(a, b) is represented in Figure 2.6
and it is given by:

f(x) =







1

b− a
if a ≤ x ≤ b

0 otherwise

1

Figure 2.6: Probability density function of the continuous uniform distribution.

These methods have been widely used to deal with uncertainty due to their
easy computation. They can even be used in situations that are unfeasible or
impossible to compute with deterministic algorithms.
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However, the computational cost of Monte Carlo methods increases pro-
portionally to the number of simulations performed (in the order of thousands
or even millions) to cover the uncertain input space sufficiently. Moreover,
they are not applicable for computing output bounds because, independently
of the number of simulations executed, the bounds obtained do not guarantee
the inclusion of all the possible solutions [11].

2.2.2 Guaranteed solution envelopes

When a model is used as part of a medical decision system, as is the case in
most of the examples of this thesis, the output bounds must ensure that all the
possible responses by the patient are outside of risk levels [11]. Moreover, this
robust prediction is a necessity for several domains:

Robust model predictive control. In Model Predictive Control (MPC), a model
is used to predict the future evolution of the process to optimize the con-
trol signal. Robust MPC is able to account for set bounded disturbance
while still ensuring that state constraints are met [10].

Robust fault detection aims to identify when a fault has occurred, checking
the consistency between the system’s behaviour (obtained from the ob-
servations) and the model’s behaviour [1].

Robust parameter identification consists of finding error-bounded approxi-
mations for the set of parameters of a given model that are consistent
with the measurements [12].

Interval observers compute guaranteed intervals for the unmeasured vari-
ables (or parameters) of an uncertain dynamical system. This estimation
is based on uncertainty intervals and on noisy measurements [31].

Constraint-satisfaction problems like diabetes, as blood glucose concentra-
tion must be inside a safe range. Insulin pump therapies must satisfy
this constraint [73].

Robust insulin dosage optimisation calculates a safer prediction of possible
hyper- and hypoglycemia episodes, based on blood glucose prediction
under uncertainty [26].

Algorithms for computing guaranteed output bounds can be classified as:

Modal interval analysis. A structural, algebraic, and logical completion of
the classical intervals is defined, where a quantifier is attached to a clas-
sical interval [27].

Region-based approaches. The output bounds computation is performed us-
ing one-step-ahead iteration based on previous approximations of the
reachable set [71].
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Trajectory-based approaches. A set of point-wise trajectories is generated by
selecting particular values of the parameters p ∈ p, the input vector
u(t) ∈ u(t), and the initial conditions x0 ∈ x0 using heuristics or optimi-
sation [71].

2.2.3 Modal interval analysis

A modal interval is defined as a pair X = (X ′, ∀) or X = (X ′, ∃), where X ′

is a classical interval that belongs to I(R), and the quantifiers ∀ and ∃ are a
selection modality. The set of modal intervals is denoted by I∗(R) [27, 77]:

I∗(R) = {(X ′, {∃, ∀}) | X ′ ∈ I(R)}.

Modal intervals of the type X = (X ′, ∃) are called proper intervals, while
modal intervals A = (X ′, ∀) are called improper intervals. The canonical nota-
tion of modal intervals is represented in Figure 2.7 and it is introduced by the
following definitions:

• Proper interval: X = [a, b] = ([a, b]′, ∃) if a ≤ b

• Improper interval: X = [a, b] = ([b, a]′, ∀) if a ≥ b

• Point-wise interval: X = [a, b] = ([a, b]′, {∃, ∀}) if a = b

A (proper)

B (improper)

C (pointwise)

Figure 2.7: Diagram of proper and improper intervals.

where the point-wise interval [a, a], also represented as [a], is a proper and a
improper interval.

Example 2.2.1. The proper interval [2, 3] corresponds to ([2, 3]′, ∃), while the im-

proper interval [3, 2] corresponds to ([2, 3]′, ∀).
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Given an interval, the operators Prop, Impr and Dual are defined as

Prop([a, b]) =

{

[a,b] if a ≤ b,

[b,a] if a > b,

Impr([a, b]) =

{

[b,a] if a ≤ b,

[a,b] if a > b,

Dual([a, b]) = [b, a].

Example 2.2.2. Given a modal interval [−2, 3], the operators Prop, Impr and Dual

are:
Prop([−2, 3]) = Prop([3,−2]) = [−2, 3],

Impr([−2, 3]) = Impr([3,−2]) = [3,−2],

Dual([−2, 3]) = [3,−2]

The inclusion among modal intervals is defined as follows

[a1, a2] ⊆ [b1, b2] ⇐⇒ (a1 ≥ b1, a2 ≤ b2),

that satisfies the condition A ⊆ B ⇐⇒ Dual(A) ⊇ Dual(B).

Example 2.2.3. Given the intervals A = [2, 4] = ([2, 4]′, ∃) and B = [4, 2] =

([2, 4]′, ∀):

B ⊆ A ⇐⇒ [4, 2] ⊆ [2, 4].

The less or equal relation is defined as

[a1, a2] ≤ [b1, b2] ⇐⇒ (a1 ≤ b1, a2 ≤ b2).

The pair (⊆, ≤) is represented in Figure 2.8.

E A

A

D A

B A

C A

Figure 2.8: Diagram of inclusion and ’less than’ relations.
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The operator meet (∧) for modal intervals is defined as the ⊆-maximum
interval contained in both intervals, while the operation join (∨) is defined as
the ⊆-minimum interval which contains both intervals. Given A = [a1, a2]

and B = [b1, b2],

A ∧B = [max{a1, b1},min{a2, b2}],

A ∨B = [min{a1, b1},max{a2, b2}].

Example 2.2.4. Given two modal intervals A = [2, 4] and B = [7, 5],

A ∧B = [2, 4] ∧ [7, 5] = [7, 4],

A ∨B = [2, 4] ∨ [7, 5] = [2, 5].

The operators Min and Max for modal intervals are defined as

Min{A,B} = [min{a1, b1},min{a2, b2}],

Max{A,B} = [max{a1, b1},max{a2, b2}].

These operators are represented in Figure 2.9.

A

B A

A

B)A)
Max(A,B)

Min(A, B)

A

Figure 2.9: Diagram of lattice operators: A) Meet and Join. B) Max and Min.

The modal interval arithmetic includes four basic operations: sum, rest,
product and division.

Sum : A+B = [a1, a2] + [b1, b2] = [a1 + b1, a2 + b2]

Rest : A−B = [a1, a2]− [b1, b2] = [a1 − b2, a2 − b1]

For the sake of brevity, the product and division operations are omitted. For
a further understanding of modal interval analysis, the reader is referred to
Gardeñes et al. [27] and Sainz et al. [77]. Modal interval can be applied to
compute solution envelopes that guarantee the inclusion of all the possible
solutions [11].
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However, some overestimation is produced due to the multi-incidence
problem [60], as multiple instances of the same variable appear on the sys-
tem. This phenomenon can be easily understood if x − x is computed with
interval arithmetic, where x ∈ [−1, 1]. The result should be 0, but due to the
multi-incidence problem it is [−2, 2]. A similar effect is produced when some
states or parameters appear with opposite effects in different equations, or
even in the same equation.

2.2.4 Region-based approaches

Region-based approaches are performed in two phases [45, 61], and applying
one-step-ahead iteration based on previous approximations of the reachable
set. The first step consists in finding an a priori enclosure x̃i for an interval
[ti, ti+1], supposing xi has been computed at ti such that

x(ti; t0,x0,p,u(t)) ⊆ xi.

There is a unique solution of the state vector x(t) for each xi ∈ xi, t ∈

[ti, ti+1], such that

x(t; ti,xi,p,u(t)) ⊆ x̃i ∀t ∈ [ti, ti+1].

The second step uses x̃i to enclose the truncation error of the method and
computes a tighter enclosure xi+1 at ti+1 such that

x(ti+1; t0,x0,p,u(t)) ⊆ xi+1 ⊆ x̃i.

Figure 2.10 represent bounds computed in these two phases.

a priori bounds

tight bounds

Figure 2.10: Representation of a priori and tight bounds.

In contrast to traditional ODE solvers, which compute approximate solu-
tions, region-based solvers prove that a unique solution for the problem ex-
ists; afterward rigorous bounds that guarantee the enclosure of the solution
are computed.
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At each iteration, the true solution set is wrapped into a region-based on
outer approximations. This produces an overestimation commonly known as
the wrapping effect [61, 71]. Regions must be feasible to be constructed and
represented on a computer, or the region representation will produce a signif-
icant overestimation. The errors involved can quickly accumulate, and hence,
the solution envelope of the interval system explodes, as it is represented in
Figure 2.11.

Figure 2.11: Representation of the wrapping effect.

Several methods have been proposed to avoid the wrapping effect, or at
least to reduce it, since it was first observed in the early 1960s [60]. These
methods include:

A change of coordinates. Moore [60] proposes to perform a change of coor-
dinates to reduce the overestimation in the interval hull of the reachable
set.

QR-factorisation. This approach puts a box in a moving orthogonal coordi-
nate system, in order to match this box with one of the edges of the
enclosed parallelepiped. Intuitively, if the box matches the longest edge
the overestimation will be smaller, as represented in Figure 2.12. This
method, introduced by Lohner [56], is an evolution of Moore’s algo-
rithm.

Ellipsoids. Instead of using an interval hull of the reachable set, Neumaier
[65] proposes a method, based on interval ellipsoid arithmetic, to com-
pute the smallest ellipsoid that include the reachable set.

Zonotopes. Kühn [50] introduces the idea of using zonotopes to define the
reachable set. Zonotopes are polytopes (geometric objects with flat sides)
with symmetry under rotations through 180 degrees.

Hermite-Obreschkoff method. Nedialkov [64] proposes an algorithm based
on Taylor series that consist on two phases: a predictor and a corrector.
The predictor computes an initial enclosure of the solution, while the
corrector applies Newton-like step to tighten the initial enclosure.
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Figure 2.12: QR-factorisation method to reduce the wrapping effect.

Several interval solvers have been developed to compute guaranteed solu-
tion bounds for an interval IVP following a region-based approach. This soft-
ware allows the development of numerical applications using interval arith-
metic.

AWA. Software package for verified solution of ordinary differential equa-
tions developed by Lohner [57].

COSY. Based on Taylor model and interval methods [58]. It is intended to
compute verified solutions of problems such as ordinary differential equa-
tions, quadrature or range bounding.

VNODE. C++ based Interval Solver for Initial Value Problems in Ordinary
Differential Equations [63].

VNODE-LP. This package is a successor of the VNODE package. A distinc-
tive feature of the VNODE-LP solver [62] is that it is implemented en-
tirely using literate programming [48]. As a result, its correctness can be
verified by a human expert, similarly to how mathematical results are
certified.

ValEncIA-IVP. Software for VALidation of state ENClosures using Interval
Arithmetic for Initial Value Problems [2].

2.2.5 Trajectory-based approaches

Trajectory-based approaches consist in performing a monotonicity analysis of
the states and parameters of the model. Monotone systems have very robust
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dynamical characteristics, since they respond to perturbations in a predictable
way. Figure 2.13 represents a monotone system given by ẋ(t) = −0.5x+1 and
initial conditions x(0) = [0, 1], whose trajectories do not cross, as the relation
order is kept.

0 1 2 3 4 5
0

0.5

1

1.5

2

Time

O
u
tp

u
t

Figure 2.13: Monotone system given by ẋ(t) = −0.5x+1 and initial conditions x(0) = [0, 1]

without crossing of trajectories.

The interconnection of monotone systems may be studied by considering
a flow x(t) = φ(x0, t). A system is monotone if

x0 � y0 ⇒ φ(x0, t) � φ(y0, t)

for all t ≥ 0, where � is a given relation order [45], as represented in Figure
2.14.

x0

y0

Ø(x0,t) Ø(y0,t)

Ø(x0,t*)

Ø(y0,t*)

Figure 2.14: Relation order in the flow of a monotone system.
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Monotone systems may be also studied in an analytical way [45], where
the rate of change of each state is expressed as a function of the rest of states
at that time:

ẋ1(t, p) = f1(t, x1(t), ..., xn(t), p1, ..., pnp
, u(t))

ẋ2(t, p) = f2(t, x1(t), ..., xn(t), p1, ..., pnp
, u(t))

...
ẋn(t, p) = fn(t, x1(t), ..., xn(t), p1, ..., pnp

, u(t))

simplified by dx
dt = f(x,p,u(t)), where f is the vector function with states fi.

A system is monotone if:

∂fi
∂xj

·
∂fj
∂xi

≥ 0, for all i 6= j, t ∈ R+.

Moreover, cooperative systems [79] form a class of monotone dynamical
systems in which

∂fi
∂xj

≥ 0, for all i 6= j, t ≥ 0.

The monotonicity of the system with respect to the parameters of the model
can be analysed by considering the parameters as system states in an extended
model [71], that is, by performing a monotonicity analysis of a new system
with n+ np states given by:

ẋ1(t) = f1(t, x1(t), ..., xn(t), p1(t), ..., pnp
(t), u(t))

...
ẋn(t) = fn(t, x1(t), ..., xn(t), p1(t), ..., pnp

(t), u(t))

ṗi(t) = 0 ∀i ∈ {1, . . . , np}

(2.2)

Thus, a system (2.1) is monotone with respect to a parameter if the ex-
tended system (2.2) is monotone with respect to the corresponding extended
model states.

Graph theory also allows analysing monotone and cooperative systems by
using a species graph [81], in which a node is assigned for each state or param-
eter of the model. If the node xi has no direct effect on node xj , the partial
derivative ∂fj

∂xi
(x) equals zero; thus no edge is drawn from node xi to node

xj . If the effect of the node xi on node xj is positive, the derivative is strictly
positive, an activation arrow (→) is drawn. Finally, if the effect is negative, an
inhibition line (⊣) is drawn. However, if the derivative sign changes depend-
ing on the particular entries, both an activation arrow and an inhibition line
are drawn from node xi to node xj .

A spin assignment is an allocation in which each node has a sign, such
that nodes connected by an activation arrow (→) have the same sign, while
nodes connected by an inhibition line (⊣) have different signs. If at least one
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consistent assignment exists, the dynamical system is monotone. Moreover,
if all nodes are connected by activation arrows (→), the system is coopera-
tive.Figure 2.15 shows an example of a monotone system and a non-monotone
system.

A) B)

?

Figure 2.15: Examples of graph monotonicity analysis. A) A monotone system. B) A non-

monotone system.

Therefore, the states and parameters of a system can be classified [81] as:

Cooperative. They have a positive effect on the output of the system. If their
value is increased, the output will increase (or it will remain the same).
On the other hand, if they are decreased, the output will decrease.

Competitive. They are monotone but non-cooperative states or parameters,
as they have a negative effect on the system. If their value increases or
decreases, the output will decrease or increase, respectively.

Non-monotone. They are generally produced due to a multi-incidence prob-
lem [60]. Their effect on the output is unknown, or may vary from a
positive to a negative effect depending on several factors.

In order to calculate output bounds, two models are considered: an up-
per bounding model and a lower bounding model. In an upper bounding
model, cooperative states and parameters with respect to the solution take
their maximum values, while competitive states and parameters take their
minimum values. On the other hand, a lower bounding model is obtained
by considering the minimum value of cooperative states and parameters, and
the maximum value of competitive states and parameters. Despite parametric
uncertainty, only interval endpoints of monotone states and parameters (co-
operative or competitive) are needed for the computation of the upper and the
lower output bounds, as seen in Figure 2.16.

In the upper bounding model and in the lower bounding model, non-
monotone states and parameters are still considered as intervals, and these
interval uncertainties will produce an overestimation on the computation of
output bounds.
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Figure 2.16: Example of monotonicity in R2 for cooperative states. A) Value for the lower

bound computation. B) Value for the upper bound computation.

2.2.6 Partition of the input space

In order to reduce the overestimation produced by the non-monotone states,
Moore [60] proposes to partition the input space R into smaller spaces Ri,
such that

R =
⋃

i

Ri where Ri ∈ R
n and Ri ∩Rj = ∅, i 6= j,

as represented in Figure 2.17.

A) B)

Figure 2.17: A partition of the non-monotone states of the set of initial state-space conditions

in R2. A) Set of initial state-space conditions. B) Partition of the set of initial state-space

conditions.

Now, defining the lower and the upper trajectories generated by the set of
initial state-space conditions Ri for each time t as

xinf (t; t0, Ri, p, u(t)) = inf {x(t; t0, y0, p, u(t)) | y0 ∈ Ri} ,

xsup(t; t0, Ri, p, u(t)) = sup {x(t; t0, y0, p, u(t)) | y0 ∈ Ri} ,

as well as the lower and the upper trajectories given by R as

xinf (t; t0, R, p, u(t)) = inf {xinf (t; t0, Ri, p, u(t)) | Ri ⊂ R} ,

xsup(t; t0, R, p, u(t)) = sup {xsup(t; t0, Ri, p, u(t)) | Ri ⊂ R} ,

then the set of possible solutions can be bounded:
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xinf (t; t0, R, p, u(t)) ≤ x(t; t0, x0, p, u(t)) ≤ xsup(t; t0, R, p, u(t)) ∀x0 ∈ R.

This method can be applied in conjunction with any of the previous ap-
proaches, with the objective of reducing the overestimation. However, the
computational cost increases drastically with the number of partitions.
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Solution envelopes for

parallel inputs models

I just wanted to write something about

running, but I realized that to write about

my running is to write about my writing.

It’s a parallel thing in me.

Haruki Murakami

3.1 Introduction

Parallel inputs models are a common structure in Biology to represent several
effects from the same input with different time delays, as seen in Section 2.1.
The aim of this chapter is to compute tight solution envelopes for parallel
inputs models that guarantee the inclusion of all possible behaviours of this
system.

Solution bounds have been computed following state-of-the-art methods.
First, a region-based approach has been performed using VNODE-LP soft-
ware [62], trying to avoid the wrapping effect. Moreover, a monotonicity anal-
ysis (trajectory-based approach) has been performed to compute guaranteed
solution envelopes. However, if the model includes non-monotone compart-
ments or parameters, the computation of such a solution envelope may pro-
duce a significant overestimation.

A new method is proposed in which a model reduction is performed in
conjunction with analytical solutions of the input chains and a monotonic-

The work in this chapter has been partially published in the paper On the computation of output

bounds on parallel inputs pharmacokinetic models with parametric uncertainty, published by Diego De
Pereda, Sergio Romero-Vivo and Jorge Bondia in Mathematical and Computer Modelling 57, 7 (2013),
1760–1767.
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ity analysis of model states and parameters. This method allows obtaining
tighter output bounds with low computational cost compared to the current
techniques. The proposed method has been applied to two cases: the study of
the double-peak phenomenon observed for certain drugs, and subcutaneous
insulin absorption for artificial pancreas research.

3.2 Parallel inputs model

This chapter is focused on a parallel inputs model [42], which is based on a
suggestion given by Jacquez, who considered that the single-peak concentration-
time response that usually follows the oral administration of a drug could be
modelled using a single linear chain of compartments connected together in
series. A similar approach is based on two or more parallel linear chains con-
nected to the output compartment, represented by xf , with elimination rate
ef . Each chain is formed by a number (that can vary for each chain) of com-
partments with identical transfer rates, as shown in Figure 3.1.

x1,1
k1 x1,2

xf

ef

x1,n1
…k1 k1

xN,1
kN xN,2 xN,nN

…kN kNuN

u1

Figure 3.1: Diagram of the parallel inputs model.

Each chain produce a different delay in the input effect, characterized by
the number of compartments and the absorption rates of each chain. Longer
chains are used for representing larger delays.

The inputs of each chain can be considered as impulses, continuous func-
tions, or both. As a general case, each chain has an impulsive input Diδ(t),
where Di = xi,1(0) is the initial condition, and a continuous input ui. Each
chain is formed by ni compartments, joined with the same absorption rate ki.

The differential equations for the parallel inputs model composed of N

chains are, for i = 1, ..., N ,
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ẋi,1 = ui − kixi,1 xi,1(0) = Di

ẋi,2 = kixi,1 − kixi,2 xi,2(0) = 0

ẋi,3 = kixi,2 − kixi,3 xi,3(0) = 0
...

...
ẋi,ni

= kixi,(ni−1) − kixi,ni
xi,ni

(0) = 0

ẋf =

N
∑

i=1

kixi,ni
− efxf xf (0) = xf,0

(3.1)

One of the advantages of the parallel inputs model is that, despite the large
number of compartments (1 +

∑N
i=1 ni) that are included in the model, there

are a few inputs (ui), parameters (ki and ef ) and initial conditions (Di and
xf,0) under uncertainty (3N + 2).

Using graph theory to perform a monotonicity analysis, Figure 3.2 shows
a spin assignment of the parallel inputs model in which the parameters are
considered as extended states of the system. The compartments xf and xi,j

are cooperative; thus the initial conditions Di and xf,0 are also cooperative,
according to the definitions given in Section 2.2.5. Furthermore, the parame-
ters ui are cooperative, while the parameter ef is competitive (monotone but
not cooperative). Finally, the parameters ki are not monotone with respect to
the system due to the multi-incidence problem [60], as they appear in several
equations with opposite effects.

xi,1 xi,2 xf
xi,ni

…

ui efki

?

Figure 3.2: Diagram of monotonicity of the parallel inputs model parameters. The parame-

ters Di are cooperative and the parameter ef is competitive, while the parameters ki are not

monotone.

When studying the upper (lower) output bound of the parallel inputs model,
the maximum (minimum) interval value for the cooperative parameters Di,
ui, and xf,0 is considered, while the minimum (maximum) interval value for
the competitive parameter ef is considered. In both cases, the non-monotone
parameters ki are still considered as intervals, and they will produce an over-
estimation on the computation of output bounds.
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3.3 Proposed method

After a monotonicity analysis non-monotone compartments and parameters
still cause an overestimation in the output bounds computation. Therefore,
a new method is proposed from now on based on the use of an equivalent
model to the parallel inputs model. As the parallel inputs model is a linear
ODE system with the form Y ′(t) = AY (t), where A is a square matrix, the
solution is given by Y (t) = eAtY (0) for a constant input. The output solution,
xf (t), is not easy to deal with it analytically. However, the solution xi,ni

of the
last compartment ni of each chain can be studied more easily [8]:

xi,ni
(t) = Die

−kit
(kit)

ni−1

(ni − 1)!
+ ui

1− e−kit

ni−1
∑

j=1

(kit)
j

j!

ki
. (3.2)

Analytical solutions of the last compartment of each chain and the ODE
associated with the output compartment have been combined, transforming
the parallel inputs model into an equivalent and simpler model with just one
compartment where inputs are given by (3.2). The new model has thus one
input for each chain of the parallel inputs model. The differential equation for
the one-compartmental model with N inputs is

ẋf (t) =

N
∑

i=1

kixi,ni
(t)− efxf (t) xf (0) = xf,0 (3.3)

where the unique compartment is xf (t), as represented in Figure 3.3.

xf

ef

x1,n1
(t)

xN,nN
(t)

…

Figure 3.3: Diagram of one-compartment equivalent model.

As the one-compartment model is equivalent to the parallel inputs model,
the monotonicity analysis shows that the parameters Di, ui, and xf,0 are still
cooperative and that the parameter ef is competitive, while the parameters ki
are not monotone. The parameters ki are non-monotone in both models, and
they produce an overestimation in the output bounds computation. In the
parallel inputs model is not possible to analyse these parameters due to their
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multi-incidence. However, in the one-compartment model each ki appears as
a parameter for a unique input of the model. Studying the critical points of
ẋf (t) with respect to ki, there is one non-trivial value:

∂ẋf (t)

∂ki
= 0 ⇒ ki = 0 or ki =

niDi + tui

Dit
. (3.4)

Analysing the second derivative with respect to ki, stability of the non-
trivial critical point is obtained:

∂2ẋf (t)

∂k2i
= −

e
−ni−

uit

Di t(niDi + uit)
ni−1

(ni − 1)!D3
i

.

As the second derivative is negative, ẋf (t) reaches a maximum at that
point. If the critical point (3.4) belongs to the interval ki (if uncertainty is
considered in its value), it is applied to obtain the upper bound on the solu-
tion. Otherwise, the endpoint of the interval ki that maximises the output is
considered. As there is no minimum, both endpoints of the interval ki are
analysed, and the value that minimises the output is considered to compute
the lower bound.

3.4 Examples

Two examples, the double-peak phenomenon and subcutaneous insulin ab-
sorption, are studied to verify the effectiveness of the method proposed pre-
viously.

The starting point is the result of computing output bounds using the
VNODE-LP package [62] for interval analysis. The second computation is per-
formed by using a monotonicity analysis of the parallel inputs model. Finally,
the last computation is carried out by evaluating the critical points for the non-
monotone parameters of the one-compartment equivalent model. These last
two computations are executed by using Matlab with the toolbox IntLab [76]
for interval analysis.

3.4.1 Double-peak phenomenon

After the administration of a single dose of several drugs, there is normally a
peak in the plasma concentration-time response, before it decays away. How-
ever, for certain drugs the plasma concentration rises to a peak, starts to decay,
but then it rises again and a second peak is obtained before decaying away
again. The second peak is usually higher than the first one, but its magnitude
depends on the drug and the means of administration.

Several biological reasons can explain this behaviour, known as the double-
peak phenomenon. The first one is enterohepatic recirculation, which refers to
the process in which bile circulates from the liver to the small intestine and
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back to the liver, producing a smaller second peak [68]. The second possi-
ble reason affects drugs with high water solubility after oral administration,
resulting in part of the dose being delayed in the stomach; this is known as
delayed gastric emptying [66]. Finally, the most common reason is variability of

absorption within different regions of the guts [54].
The parallel inputs model has been used by Godfrey et al. [30] to model the

double-peak phenomenon. Two chains are considered, one for each peak in
plasma concentration. One chain is usually smaller and, indeed, faster than
the other one, so both peaks are clearly differentiable.

In this example, two chains of ten and five compartments with impulse
bolus are considered. The number of compartments of each chain has been
arbitrarily chosen to represent an example with longer chains than the sub-
cutaneous insulin absorption example and to demonstrate the method’s per-
formance in high-order models. Its differential equations are given by (3.1)
with N = 2, n1 = 10, and n2 = 5. As the dose is given as an impulse,
u1 = u2 = 0 mU , while the initial conditions are xf,0 = 0 mU , D1 = 30 mU ,
and D2 = 10 mU . The absorption rates for each chain are k1 = 0.15 min−1

and k2 = 0.40 min−1, while the elimination rate is given by ef = 0.20 min−1.
A 10% uncertainty is considered in all the parameters and in the initial condi-
tions of the model.

The VNODE-LP computation, represented in Figure 3.4A, shows that the
computed output bounds grow exponentially due to the high number (16)
of model compartments, not providing any helpful information. Figure 3.4B
shows that after performing a monotonicity analysis of the parallel inputs
model there is still an overestimation, but the error is much smaller. Finally,
a monotonicity analysis of the equivalent one-compartment model is carried
out, given by (3.2) and (3.3), where the output bounds adjust almost perfectly
to the numerical simulations, as shown in Figure 3.4C.

3.4.2 Subcutaneous insulin absorption

Several models of subcutaneous insulin kinetics have been proposed [49, 70],
but here this work is focused on one of the most used models, formulated by
Wilinska et al. [88]. This subcutaneous insulin absorption model represent two
channels of insulin absorption: the slow and the fast channel. Hence, it is com-
posed by two parallel chains (N = 2) with different number of compartments
(n1 = 2 and n2 = 1, respectively), represented by Figure 3.5.

The differential equations are given by (3.1), where the absorption rates are
k1 = 0.0112min−1 and k2 = 0.021min−1, and the elimination rate is given by
ef = 0.0189 min−1. In order to represent insulin concentration in blood, the
output result is divided by Vi = 0.5645 L kg−1 and by the patient weight BW .

The proposed method is limited to constant inputs, or bolus inputs as ini-
tial conditions. In order to avoid this limitation, the model structure is mod-



31

0 50 100 150
0

2

4

6

Time [min]

D
ru

g
 [

m
U

]

0 50 100 150
-1

0

1
x 10

9

Time [min]

D
ru

g
 [

m
U

]

0 50 100 150
0

2

4

6

Time [min]

D
ru

g
 [

m
U

]

A)

B)

C)

Figure 3.4: Improvements computing double-peak phenomenon bounds. A) VNODE-LP com-

putation. B) Monotonicity analysis of the parallel inputs model. C) Monotonicity analysis of

the equivalent one-compartment model.

x1,2

x2,1
k2 xf

ef

x1,1
k1

k1

Slow

channel

Fast channel

u1

u2

Figure 3.5: Diagram of the parallel inputs model for the Wilinska model.

ified to represent an impulse bolus that occurs at t = tb ≥ 0. While t < tb,
the original Wilinska model is considered. However, after the impulse bolus
at t = tb, two more chains are added to the system with the same absorption
rates k1 and k2 and initial conditions D3 and D4, which depend on the amount
and type of insulin infused. Figure 3.6 shows the new model structure with
four chains.
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x1,1
k1 x1,2

x2,1
k2 xf

x3,2
k1 x3,1

x4,1
k2

Start

at

t=tb

u1

u2

Figure 3.6: Diagram of the parallel inputs model for the extended Wilinska model. Chains 1

and 3 share the parameter k1, while chains 2 and 4 share the parameter k2.

For the simulation, the insulin bolus considered are D1 = x1,1(0) = 445mU ,
D2 = x2,1(0) = 120 mU , D3 = x3,1(0) = 500 mU and D4 = x4,1(0) = 250 mU ,
with a continuous insulin dose of u1 = 5 mU/min and u2 = 2.5 mU/min.
Moreover, the output initial condition is given by xf,0 = 395 mU , while the
patient weight is BW = 70 kg. A 10% uncertainty is considered in all the
parameters and in the initial conditions of the model.

The starting point is given by the VNODE-LP computation in Figure 3.7A,
which shows that the output bounds give a considerable overestimation over
the numerical simulations. The output bounds adjust much better after per-
forming a monotonicity analysis of the parallel inputs model, but there is
still place for improvements, as shown in Figure 3.7B. Finally, the proposed
method is evaluated by computing output bounds on the equivalent one-
compartment model, given by (3.2) and (3.3). Figure 3.7C shows that the out-
put bounds adjust almost perfectly to the numerical simulations.

3.5 Discussion and conclusion

Different approaches have been applied to compute the set of possible so-
lutions for parallel inputs models when interval parametric uncertainty is
considered. In this chapter, a new method is proposed and compared with
state-of-the-art approaches in two cases: subcutaneous insulin absorption for
artificial pancreas research, and the study of the double-peak phenomenon
observed for certain drugs. Each output bounds computation is compared
with several possible numerical simulations executed by varying the param-
eter values inside the intervals. Each numerical simulation takes 0.01 s to be
computed using an Intel(R) 3.2 GHz Pentium(R) processor.

A region-based approach has been considered for the output bounds com-
putation, using VNODE-LP software. This C++ solver computes guaranteed
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Figure 3.7: Improvements computing subcutaneous insulin absorption bounds with impulse

bolus at tb = 50. A) VNODE-LP computation. B) Monotonicity analysis of the parallel

inputs model. C) Monotonicity analysis of the equivalent one-compartment model.

output bounds, but the error seems to increase drastically depending on the
number of model compartments: 4 in Figure 3.7A and 16 in Figure 3.4A. A
large overestimation is produced in both cases.

A trajectory-based approach has also been considered, performing a mono-
tonicity analysis. Due to the existence of non-monotone parameters (ki) in the
system, an overestimation is produced in the computation of output bounds,
as seen in Figure 3.7B and Figure 3.4B. However, this error is much smaller
than the one obtained with the VNODE-LP method.

Finally, the proposed method consists in obtaining an equivalent model
combining analytical solutions of the input chains with a monotonicity anal-
ysis. This approach allows computing critical points of the non-monotone
parameter ki, which helps to compute tighter output bounds, as seen in Fig-
ure 3.7C and Figure 3.4C.

Computing the output bounds with the proposed method takes just 0.02
s, including the computation of the critical point of ki (3.4). Therefore, the
proposed method outperforms previous approaches for the computation of
output bounds on parallel inputs models, as it minimises the overestimation
produced, and also because of its low computational cost.

However, the proposed method has also some limitations, as it can be only
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applied for constant inputs or bolus doses. In order to avoid this limitation,
new chains can be considered, as represented in Figure 3.6. The same tech-
nique could be applied to any other system with multiple bolus over time.

The approaches shown in this chapter are limited to parallel inputs struc-
tures, but the similar ideas can be applied to other systems. Techniques for
other type of models will be analysed in the following chapters.
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Solution envelopes for

in-series model

Life is a series of natural and spontaneous

changes. Don’t resist them - that only cre-

ates sorrow. Let reality be reality. Let

things flow naturally forward in whatever

way they like.

Lao-Tsé

4.1 Introduction

In-series structures are commonly used in Biology to represent a delay on the
output, or to display the relation between physiological compartments. As
seen in Section 2.1, this structure is composed of a single chain with several
compartments connected in series.

The aim of this chapter is to compute solution envelopes for in-series struc-
tures, minimizing the overestimation produced. A novel method is proposed
that consists in performing a change of variables in which the output is un-
altered, and the model obtained is monotone with respect to the uncertain
parameters. The monotonicity of the new system allows us to compute the
output bounds for the original system without overestimation.

The method exposed in this chapter has been compared with state-of-the-
art approaches by the computation of output bounds for two different models:
a linear system for glucose modelling and a non-linear system for an epidemi-
ological model.

The work in this chapter has been partially published in the paper Guaranteed computation

methods for compartmental in-series models under uncertainty, published by Diego De Pereda, Sergio
Romero-Vivo, Beatriz Ricarte and Jorge Bondia in Computers & Mathematics with Applications 66, 9
(2013), 1595–1605.
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4.2 In-series models

A general compartmental in-series model [42], composed of n compartments,
is given by the following equations:

ẋ1(t) = u1(t)− (k1,2(·) + e1)x1(t) + k2,1(·)x2(t)

ẋi(t) = ui(t) + ki−1,i(·)xi−1(t) + ki+1,i(·)xi+1(t)− (ki,i−1(·) + ki,i+1(·) + ei)xi(t)

ẋn(t) = un(t) + kn−1,n(·)xn−1(t)− (kn,n−1(·) + en)xn(t)

x1(0) = x10 , xi(0) = xi0 , xn(0) = xn0

(4.1)
for i ∈ {2, ..., n− 1}, where the states of the model xj(t) ≥ 0, j ∈ {1, ..., n}, are
the in-series compartments. Furthermore, uj(t) ≥ 0, j ∈ {1, ..., n}, represent
the inputs; ej ≥ 0, j ∈ {1, ..., n}, are parameters that denote the elimination
rates for each compartment; while ki,j(·) ≥ 0, i, j ∈ {1, ..., n}, i 6= j, are non-
negative scalar functions that represent the flux from the compartment i to
the compartment j and they may depend on the states of the model and on a
parameter αi,j , i.e., ki,j(·) = ki,j(x1(t), . . . , xn(t), αi,j) ≥ 0, such that ∂ki,j

∂αi,j
≥ 0.

The system will be linear if the fluxes among the compartments are constant,
i.e. ki,i+1(·) = αi,i+1 and ki+1,i(·) = αi+1,i, i ∈ {1, ..., n − 1}. From now on,
xn(t) is considered as the output of the model.

If the fluxes among the compartments of an in-series model go forward
and backward, the structure is called bidirectional. However, if the fluxes just
go forward, the in-series structure is named unidirectional. Bidirectional in-
series structures are shown in Figure 4.1.

x1

k1,2
x2

e1

xn…
k2,1

k2,3

k3,2

kn-1,n

kn,n-1

e2 en

unu1 u2

Figure 4.1: Diagram of a compartmental in-series model.

The extended system (including parameters as constant states) is given by
adding the following equation to the previous system (4.1):

ṗ(t) = 0, p(0) = p0 (4.2)

where p encompasses the parameters of the model, i.e., ei, αj,j+1, αj+1,j ∈

p, ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., n− 1}.
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The monotonicity of a non-linear bidirectional in-series system (4.1) and
its extended system given by (4.2) are analysed. Note that it is not possible to
determine the exact sign of the partial derivatives ∂ẋi(t)

∂xj(t)
, i, j ∈ {1, ..., n}, i 6= j.

Let us see an example:

∂ẋ1(t)

∂x2(t)
= −

∂k1,2(·)

∂x2(t)
x1(t) + k2,1(·) +

∂k2,1(·)

∂x2(t)
x2(t)

Consequently, some states of the model may be non-monotone. Therefore,
the system monotonicity cannot be analysed with respect to the compartments
or the parameters of the model through the extension given in (2.2).

4.3 Proposed method

The in-series system (4.1) is transformed by performing a change of variables:

Si =

n
∑

j=i

xj(t), ∀i ∈ {1, ..., n},

which keeps unaltered the output compartment. This new system is given by:

Ṡ1(t) =
∑n

j=1 uj(t)−
∑n−1

j=1 ej(Sj(t)− Sj+1(t))− enSn(t)

Ṡi(t) =
∑n

j=i uj(t) + ki−1,i(·)(Si−1(t)− Si(t))− ki,i−1(·)(Si(t)− Si+1(t))

−
∑n−1

j=i ej(Sj(t)− Sj+1(t))− enSn(t)

Ṡn(t) = un(t) + kn−1,n(·)(Sn−1(t)− Sn(t))− (kn,n−1(·) + en)Sn(t)

ṗ(t) = 0
(4.3)

for i ∈ {2, ..., n − 1}. It is worth mentioning that all the fluxes ki,j in this
new system may depend on the new states Si, due to the fact that ki,j(·) =

ki,j(x1(t), . . . , xn(t), αi,j) where xi(t) = Si(t) − Si+1(t), i ∈ {1, ..., n − 1} and
xn(t) = Sn(t). Now, for i ∈ {2, ..., n− 1}:







































































































∂Ṡ1(t)
∂Sj(t)

= ej−1 − ej (2 ≤ j ≤ n),

∂Ṡi(t)
∂Sj(t)

=
∂ki−1,i(·)

∂Sj(t)
(Si−1(t)− Si(t))−

∂ki,i−1(·)

∂Sj(t)
(Si(t)− Si+1(t)) (j < i− 1),

∂Ṡi(t)
∂Si−1(t)

=
∂ki−1,i(·)

∂Si−1(t)
(Si−1(t)− Si(t))−

∂ki,i−1(·)

∂Si−1(t)
(Si(t)− Si+1(t))

+ki−1,i(·),
∂Ṡi(t)

∂Si+1(t)
=

∂ki−1,i(·)

∂Si+1(t)
(Si−1(t)− Si(t))−

∂ki,i−1(·)

∂Si+1(t)
(Si(t)− Si+1(t))

+ki,i−1(·) + (ei − ei+1),
∂Ṡi(t)
∂Sj(t)

=
∂ki−1,i(·)

∂Sj(t)
(Si−1(t)− Si(t))−

∂ki,i−1(·)

∂Sj(t)
(Si(t)− Si+1(t))

+(ej−1 − ej) (j > i+ 1),
∂Ṡn(t)
∂Sj(t)

=
∂kn−1,n(·)

∂Sj(t)
(Sn−1(t)− Sn(t))−

∂kn,n−1(·)

∂Sj(t)
Sn(t) (j < n− 1),

∂Ṡn(t)
∂Sn−1(t)

=
∂kn−1,n(·)

∂Sn−1(t)
(Sn−1(t)− Sn(t))−

∂kn,n−1(·)

∂Sn−1(t)
Sn(t)

+kn−1,n(·)

For i ∈ {1, ..., n}:
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∂Ṡi(t)
∂ej(t)

= 0 (1 ≤ j < i),
∂Ṡi(t)
∂ej(t)

= −(Sj(t)− Sj+1(t)) ≤ 0 (i ≤ j ≤ n− 1),
∂Ṡi(t)
∂en(t)

= −Sn(t) ≤ 0







































∂Ṡi(t)
∂αj−1,j(t)

= 0 (i 6= j, 2 ≤ j ≤ n),
∂Ṡi(t)

∂αj,j−1(t)
= 0 (i 6= j, 2 ≤ j ≤ n),

∂Ṡi(t)
∂αi−1,i(t)

=
∂ki−1,i(·)
∂αi−1,i(t)

(Si−1(t)− Si(t)) (i ≥ 2),
∂Ṡi(t)

∂αi,i−1(t)
= − ∂ki,i−1(·)

∂αi,i−1(t)
(Si(t)− Si+1(t)) (2 ≤ i ≤ n− 1),

∂Ṡn(t)
∂αn,n−1(t)

= − ∂kn,n−1(·)
∂αn,n−1(t)

Sn(t)

As ṗ = 0, all the partial derivatives of ṗ are always null. Now, let us try
to ensure the monotonicity of model (4.3). For that, the elimination rates and
the fluxes among compartments must satisfy certain conditions. In addition
to the relation ej ≥ ej+1, ∀j ∈ {1, ..., n− 1}, among the elimination rates, it is
also necessary that ∂ki,i+1(·)

∂Sj
≥ 0 and ∂ki+1,i(·)

∂Sj
≤ 0, ∀i, j : i ∈ {1, ..., n − 1}, j ∈

{1, ..., n}.
If the above conditions are satisfied, the system is monotone with respect

to all the states of the model. The system is cooperative with respect to the
states Si, i ∈ {1, ..., n}, the inputs uj(t), j ∈ {1, ..., n}, and the parameters
αj,j+1, j ∈ {1, ..., n − 1}, while the system is competitive with respect to the
elimination rates ej , j ∈ {1, ..., n} and the parameters αj+1,j , j ∈ {1, ..., n− 1}.

If the conditions are satisfied, the computation of the bounds for all the
new system states is performed without overestimation because the new sys-
tem is monotone with respect to all the states (states and parameters in the
original model). Thus, some specific values of the parameters and the ini-
tial conditions are used to compute the upper bound and the lower bound,
values that are usually different in each bound. Notice that during the com-
bination of equations, the output compartment remains unchanged because
Sn(t) = xn(t). Thus, the output of the original system has the same value as
the output of the new system. Then, if the same parameters values and initial
conditions are applied for the original model, the computation of its output
bounds is performed without overestimation. Therefore, the conclusions ob-
tained by the monotonicity analysis of system (4.3) can be applied to original
in-series system (4.1). Taking into account the correspondence among the flux
derivatives1, all these relations can be formulated in the following lemma:

1

∂k(·)
∂S1

=
n
∑

s=1

∂k(·)
∂xs

∂xs
∂S1

=
∂k(·)
∂x1

∂k(·)
∂Sj

=
n
∑

s=1

∂k(·)
∂xs

∂xs
∂Sj

=
∂k(·)
∂xj

−
∂k(·)
∂xj−1

∀j ∈ {2, ..., n}

where k(·) represents both ki,i+1(·) and ki+1,i(·), i ∈ {1, ..., n− 1}.
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Lemma 4.3.1. Consider a non-linear in-series model (4.1) characterized by:

(a) The elimination rate for each compartment is greater than or equal to the elimi-

nation rate for the next compartment, i.e. ej ≥ ej+1, ∀j ∈ {1, ..., n− 1}.

(b) The forward fluxes among the compartments satisfy that
∂ki,i+1(·)

∂xj
−∂ki,i+1(·)

∂xj−1
≥

0, whereas the backward fluxes satisfy that
∂ki+1,i(·)

∂xj
− ∂ki+1,i(·)

∂xj−1
≤ 0, ∀i, j :

i ∈ {1, ..., n− 1}, j ∈ {2, ..., n}, where
∂ki,i+1(·)

∂x0
=

∂ki+1,i(·)
∂x0

= 0.

Then, system (4.3), with the same output value as (4.1), satisfies the following

properties:

(i) System (4.3) is cooperative with respect to the states Si, i ∈ {1, ..., n}, the

inputs uj(t), j ∈ {1, ..., n}, and the parameters αj,j+1, j ∈ {1, ..., n− 1}.

(ii) System (4.3) is competitive with respect to the elimination rates ej , j ∈ {1, ..., n},

and the parameters αj+1,j , j ∈ {1, ..., n− 1}.

Let us set the fluxes among compartments to be constants, i.e. ki,i+1(·) =

αi,i+1 and ki+1,i(·) = αi+1,i. This kind of systems is called linear in-series
systems. In this case, the partial derivatives of the fluxes are always equal to
zero and the conditions of Lemma 4.3.1 can be simplified.

Corollary 4.3.2. Consider a linear in-series system. If the elimination rate for each

compartment is greater than or equal to the elimination rate for the next compartment,

i.e. ej ≥ ej+1, ∀j ∈ {1, ..., n−1}, then system (4.3) satisfies the following properties:

(i) System (4.3) is cooperative with respect to the states Si, i ∈ {1, ..., n}, the

inputs uj(t), j ∈ {1, ..., n}, and the parameters αj,j+1, j ∈ {1, ..., n− 1}.

(ii) System (4.3) is competitive with respect to the elimination rates ej , j ∈ {1, ..., n},

and the parameters αj+1,j , j ∈ {1, ..., n− 1}.

In the particular case of unidirectional linear in-series systems, where ki,i+1(·)

= αi,i+1 and ki+1,i(·) = 0, i ∈ {1, ..., n − 1}, the conditions can be simpli-
fied even more. Consider a single-input single-output (SISO) system [55] with
ui(t) = 0, i ∈ {2, ..., n}. Its transfer function is given by:

H(s) =
1

en + s

n−1
∏

i=1

αi,i+1

ei + αi,i+1 + s
(4.4)

The transfer function (4.4) will be maintained unaltered [86] if the values of
the binomial (αi,i+1, ei) are exchanged with the values of the binomial (αj,j+1,
ej) for i, j ∈ {1, ..., n − 1}. In consequence, the output value does not change.
Therefore, a compartmental model where ej ≥ en ∀j ∈ {1, ..., n − 1}, can be
transformed in a new in-series model, with the same transfer function, where
the elimination rates satisfy
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ej ≥ ej+1, ∀j ∈ {1, ..., n− 1}.

This new model satisfies the conditions of Corollary 4.3.2. Therefore, the
compartments, the functions uj(t), j ∈ {1, ..., n}, and the parameters αi,i+1 of
the new system are cooperative for all i ∈ {1, ..., n− 1}, while the elimination
rates ej , j ∈ {1, ..., n}, are competitive parameters. Hence, the following result
is straightforward:

Lemma 4.3.3. Consider a SISO unidirectional linear in-series model with input in

the first compartment. If the elimination rate for each compartment is greater than

or equal to the elimination rate for the output compartment, i.e. ej ≥ en, ∀j ∈

{1, ..., n− 1}, then system (4.3) satisfies the following properties:

(i) System (4.3) is cooperative with respect to the states Si, i ∈ {1, ..., n}, the

inputs uj(t), j ∈ {1, ..., n}, and the parameters αj,j+1, j ∈ {1, ..., n− 1}.

(ii) System (4.3) is competitive with respect to the elimination rates ej , j ∈ {1, ..., n}.

We have just seen that by a change of variables, a new system is obtained
with the same output. If Lemma 4.3.1 or Lemma 4.3.3 conditions are satisfied,
the new system is monotone with respect to the states and the parameters of
the model. In consequence, the computation of output bounds for this new
system is performed without overestimation and hence, the output bounds
for the original system. Furthermore, this method produces no limitation in
the type of inputs of the model.

When none of the above lemmas is completely satisfied, the computation
of output bounds has to be performed directly for the original system. As the
non-monotone states and parameters have to be considered as intervals, the
output bounds will include a significant overestimation.

However, some systems nearly satisfy the lemma conditions. These kinds
of systems are known as near-monotone system [81]. In these cases, based on
the theory exposed in [9], a novel method is proposed for the computation
of a solution envelope that consists in obtaining an upper bounding model
and a lower bounding model of the original model that satisfy the lemma
conditions. Then, the computation of the output bounds is performed without
overestimation. The area delimited between the lower bound for the lower
bounding model and the upper bound for the upper bounding model will
guarantee the inclusion of all possible solutions for the original model, and it
will minimize the overestimation.

The conditions for Lemma 4.3.1 and Lemma 4.3.3 include special require-
ments on the elimination rates of the compartmental in-series models. As
the elimination rates are competitive parameters, an upper bounding model
is obtained at the lower bounds for the elimination rates. Similarly, a lower
bounding model is obtained at the upper bounds for the elimination rates.
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For example, Lemma 4.3.3 includes the condition ej ≥ en, ∀j ∈ {1, ..., n −

1}. If the model does not satisfy this requirement, an upper bounding model
can be computed such that the elimination rates are given by ẽj = ej , j ∈

{1, ..., n− 1}, and ẽn = min(e1, ..., en). A lower bounding model is computed
by increasing the elimination rate values to ẽj = max(ej , en), j ∈ {1, ..., n−1},
and ẽn = en. In both models the lemma condition ẽj ≥ ẽn, ∀j ∈ {1, ..., n − 1}

is satisfied.

4.4 Examples

In the sequel, the theory presented above is illustrated through two differ-
ent models. The first example is a linear system for glucose modelling, while
the second one is a non-linear system for an epidemiological model. Further-
more, a death rate is added to the second example to analyse a near-monotone
model. Namely, a change of variables of the non-monotone systems is per-
formed to obtain new monotone systems, in which output bounds are easily
computed without overestimation. Results obtained for both examples are
compared with the computation of output bounds following the traditional
monotonicity approach [45].

4.4.1 Linear glucose model

Cobelli et al. [14, 16] developed a physiological model to describe glucose ki-
netics. This model is composed by three compartments that describe the non-
accessible portion of insulin system, as seen in Figure 4.2.

x2

k2,1

e2

k1,2

e3

x3x1

k3,1

k1,3

EGP

Figure 4.2: Diagram of the linear glucose model developed by Cobelli et al.

The central compartment represents the glucose concentration of the acces-
sible pool. It is the output compartment. The mass balance and measurement
equations are given by:
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ẋ1(t) = −(k1,2 + k1,3)x1(t) + k2,1x2(t) + k3,1x3(t) + EGP

ẋ2(t) = k1,2x1(t)− (k2,1 + e2)x2(t)

ẋ3(t) = k1,3x1(t)− (k3,1 + e3)x3(t)

G(t) = x1(t)
VI

(4.5)

where x1(t) is the accessible pool of the plasma glucose, x2(t) and x3(t) illus-
trate peripheral compartments in rapid and slow equilibrium with the acces-
sible pool, respectively, and the output of the model is given by the plasma
glucose concentration G(t), which depends on the central compartment x1(t).
The parameter VI is the volume of plasma in the accessible compartment, the
parameter EGP denotes the input, the constant parameters k1,2, k1,3, k2,1 and
k3,1 are the fluxes among the compartments, while the parameters e2 and e3
stand for the elimination rates of the peripheral compartments. In this model
there is no elimination rate in the accessible pool.

Performing a monotonicity analysis of the corresponding extended model,
it is deduced that system (4.5) is cooperative with respect to the compartments.
Furthermore, the input EGP is also a cooperative parameter, while VI , and the
elimination rates e2 and e3 are competitive parameters. However, the system
is non-monotone with respect to the fluxes k1,2, k1,3, k2,1 or k3,1, because the
partial derivatives of the compartments with respect to the fluxes take differ-
ent signs. For instance:

∂ẋ1(t)

∂k1,2
= −x1(t) < 0 while

∂ẋ2(t)

∂k1,2
= x1(t) > 0

However, Cobelli et al. model (4.5) can be analysed as two compartmental
in-series models interconnected, where the central compartment is the output
of both in-series models. Following the same idea of the change of variables
presented in the lemmas, a new monotone model can be found:

Ṡ1(t) = −(k1,2 + k1,3)S1(t) + k2,1(S2(t)− S1(t)) + k3,1(S3(t)− S1(t)) + EGP

Ṡ2(t) = −k1,3S1(t)− k2,0(S2(t)− S1(t)) + k3,1(S3(t)− S1(t)) + EGP

Ṡ3(t) = −k1,2S1(t)− k3,0(S3(t)− S1(t)) + k2,1(S2(t)− S1(t)) + EGP

ṗ(t) = 0

G(t) = S1(t)
VI

(4.6)
where S1 = x1, S2 = x1+x2, S3 = x1+x3, and all the parameters are included
in the parameter vector p, i.e., p = [k1,2, k1,3, k2,1, k3,1, e2, k3,0, VI ].

Now, the monotonicity of system (4.6) can be studied:
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∂Ṡ1(t)

∂S2(t)
= k2,1 ≥ 0

∂Ṡ1(t)

∂S3(t)
= k3,1 ≥ 0

∂Ṡ1(t)

∂k1,2(t)
= −S1(t) ≤ 0

∂Ṡ1(t)

∂k1,3(t)
= −S1(t) ≤ 0

∂Ṡ1(t)

∂k2,1(t)
= S2(t) − S1(t) ≥ 0

∂Ṡ1(t)

∂k3,1(t)
= S3(t) − S1(t) ≥ 0

∂Ṡ1(t)

∂e2(t)
= 0

∂Ṡ1(t)

∂k3,0(t)
= 0

∂Ṡ1(t)

∂VI (t)
= 0

∂Ṡ2(t)

∂S1(t)
= e2 − k3,1 − k1,3

∂Ṡ2(t)

∂S3(t)
= k3,1 ≥ 0

∂Ṡ2(t)

∂k1,2(t)
= 0

∂Ṡ2(t)

∂k1,3(t)
= −S1(t) ≤ 0

∂Ṡ2(t)

∂k2,1(t)
= 0

∂Ṡ2(t)

∂k3,1(t)
= S3(t) − S1(t) ≥ 0

∂Ṡ2(t)

∂e2(t)
= −(S2(t) − S1(t)) ≤ 0

∂Ṡ2(t)

∂k3,0(t)
= 0

∂Ṡ2(t)

∂VI (t)
= 0

∂Ṡ3(t)

∂S1(t)
= k3,0 − k2,1 − k1,2

∂Ṡ3(t)

∂S2(t)
= k2,1 ≥ 0

∂Ṡ3(t)

∂k1,2(t)
= −S1(t) ≤ 0

∂Ṡ3(t)

∂k1,3(t)
= 0

∂Ṡ3(t)

∂k2,1(t)
= S2(t) − S1(t) ≥ 0

∂Ṡ3(t)

∂k3,1(t)
= 0

∂Ṡ3(t)

∂e2(t)
= 0

∂Ṡ3(t)

∂k3,0(t)
= −(S3(t) − S1(t)) ≤ 0

∂Ṡ3(t)

∂VI (t)
= 0

As ṗ = 0, the partial derivatives of ṗ are always null. Therefore, system
(4.6) is monotone if the conditions e2−k3,1−k1,3 > 0 and k3,0−k2,1−k1,2 > 0

are satisfied. If these conditions are satisfied, the system is cooperative with
respect to the states S1, S2 and S3. Moreover, the input EGP , and the param-
eters k2,1 and k3,1 are also cooperative, while the parameters k1,2 and k1,3, the
elimination rates e2 and k3,0, and the volume VI are competitive parameters.

The black dashed lines in Figure 4.3 display the computed output bounds,
while the light grey lines represent several numerical simulations executed by
the variation of the parameters and initial conditions values. First of all, the
computation of output bounds is performed following the traditional mono-
tonicity approach [45], where the non-monotone parameters k1,2, k1,3, k2,1 and
k3,1 produce some overestimation, as seen in Figure 4.3A. Nevertheless, if the
monotonicity conditions are satisfied, the system obtained by a change of vari-
ables is monotone with respect to all the states and parameters of the model,
thus none of them have to be considered as intervals. Therefore, as shown in
Figure 4.3B, the computation of output bounds is performed without overes-
timation.

4.4.2 Non-linear epidemiological SIS model

Epidemiological models have been widely used to assist the decision-making
process, which helps to evaluate the consequence of choosing one of the alter-
nate strategies available [3]. Furthermore, epidemic systems have also been
used in non-medical areas to study processes that follow an epidemiological
behaviour. Here, a SIS model [13] has been analysed, composed by a suscep-
tible population, denoted by S(t), and an infected population, denoted by I(t),
as shown in Figure 4.4. Two different cases for the SIS model will be stud-
ied depending on whether death by the disease is considered in the system or
not. The dynamics of the first model are given by the following equations, in
which no disease death rate is considered:

Ṡ(t) = γ − βS(t)I(t) + αI(t)− νS(t)

İ(t) = βS(t)I(t)− αI(t)− νI(t)
(4.7)
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Figure 4.3: Output bounds for the linear glucose model developed by Cobelli et al., where

x1(0) = 40, x2(0) = 90, x3(0) = 90, EGP = 22, VI = 0.5, e2 = 0.6 and e3 =

0.55 under 5% uncertainty, and k1,2 = 0.3, k2,1 = 0.1, k1,3 = 0.15, k3,1 = 0.25 under

15% uncertainty. A) Monotonicity approach. B) Using system (4.6) when the monotonicity

conditions are satisfied.

where the infected population I(t) is the output of the model. The birth rate of
the population is represented by the parameter γ, while the natural death rate
is ν. The parameters β and α denote the infection rate and the recuperation
rate, respectively.

S
I(t)

I

Figure 4.4: Diagram of the non-linear epidemiological SIS model without disease death rate.

Performing a monotonicity analysis of the corresponding extended model,
it is deduced that system (4.7) is non-monotone with respect to the states, as
the sign of the partial derivative ∂Ṡ(t)

∂I(t) = −βS(t) + α cannot be determined.
Consequently, the system monotonicity with respect to the parameters cannot
be evaluated.
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Nevertheless, a change of variables can be performed for system (4.7) to
obtain a monotone system with the same output, given by:

Ṅ(t) = γ − νN(t)

İ(t) = β(N(t)− I(t))I(t)− αI(t)− νI(t)

ṗ(t) = 0

(4.8)

where N(t) = S(t)+I(t), and all the parameters are included in the parameter
vector p, i.e., p = [γ, β, α, ν]. As the output is unaltered, the conclusions
achieved by the computation of the output bounds of (4.8) can also be applied
to system (4.7). System (4.8) is cooperative with respect to the compartments,
the parameter β and the input γ, while it is competitive with respect to α and
the elimination rate ν.

System (4.8), with the same monotonicity properties, can also be obtained
applying Lemma 4.3.1, as the lemma conditions are satisfied. The elimination
rates of both compartments of the original model are equal to ν. Furthermore,
the fluxes between the compartments are given by the function βI(t) and the
constant parameter α, whose partial derivatives satisfy that ∂βI(t)

∂I(t) − ∂βI(t)
∂S(t) =

β − 0 = β ≥ 0 and ∂α
∂I(t) −

∂α
∂S(t) = 0− 0 = 0 ≥ 0.

Figure 4.5 shows two different computations of the output bounds. The
starting point is performed following the traditional monotonicity approach.
Figure 4.5A shows that the solution envelope grows exponentially, produc-
ing a considerable overestimation over the numerical simulations. Neverthe-
less, the overestimation disappears when Lemma 4.3.1 is applied, as shown in
Figure 4.5B. Output bounds are computed without overestimation, as all the
states and parameters of the system (4.8) are monotone.
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Figure 4.5: Improvements on the computation of bounds for the proportion of infected individu-

als during a 500 days period, where I(0) = 0.01, S(0) = 1− I(0), γ = ν = 0.012, β = 0.15

and α = 0.12 under 1% uncertainty. A) Monotonicity approach. B) Using Lemma 4.3.1.
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From now on, a different SIS model will be analysed, in which a death
by the disease rate θ is considered. The dynamic of this model is given by the
following equations:

Ṡ(t) = γ − βS(t)I(t) + αI(t)− νS(t)

İ(t) = βS(t)I(t)− αI(t)− νI(t)− θI(t)
(4.9)

Unfortunately Lemma 4.3.1 cannot be applied to this system, because the
lemma conditions are not completely satisfied, due to the fact that the elimi-
nation rates of the compartments S(t) and I(t) are ν and ν+θ, respectively. To
overcome this trouble, upper and lower bounding models are computed. The
upper bounding model is computed by reducing the elimination rate of I(t) to
ν, while the lower bounding model is obtained by increasing the elimination
rate of S(t) to ν + θ. Thus, both the upper and the lower bounding models
satisfy the Lemma 4.3.1 conditions and guarantee the inclusion of all possible
solutions for system 4.9.

Again, the solution envelope computed following the traditional mono-
tonicity approach grows exponentially, producing a significant overestima-
tion, as seen in Figure 4.6A. The upper bound for the upper bounding model
and the lower bound for the lower bounding model will guarantee the inclu-
sion of all possible solutions of system 4.9 and minimize the overestimation,
as seen in Figure 4.6B.
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Figure 4.6: Improvements on the computation of bounds for the proportion of infected indi-

viduals during a 500 days period considering a death by the disease rate, where I(0) = 0.01,

S(0) = 1 − I(0), γ = 0.015, ν = 0.012, θ = 0.001, β = 0.15 and α = 0.12 under 1%

uncertainty. A) Monotonicity approach. B) Computing an upper bounding model and a lower

bounding model, and applying Lemma 4.3.1 on them.
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4.5 Discussion and conclusion

The problem of computing tight solution envelopes under parametric uncer-
tainty for models with in-series structures has been tackled in this chapter. A
new proposal has been compared with a monotonicity approach in two differ-
ent examples: a linear system for glucose modelling and a non-linear system
for a SIS epidemiological model.

A monotonicity approach of in-series structures exposes the existence of
several non-monotone states and parameters. The non-monotonicity of the
systems produces an overestimation in the computation of solution envelopes,
as seen in Figure 4.3A and Figure 4.5A.

A novel approach is proposed that consists in performing a combination
of the equations of the original model to obtain a new model in which the out-
put compartment is unaltered. This new system is monotone with respect
to all the compartments and parameters of the model, under assumptions
on the elimination rates. As the output of the original model is preserved
in the new model, the computed solutions bounds for the new model can
be applied to the original model. Therefore, the computation of its output
bounds is performed without overestimation, as shown in Figure 4.3B and
Figure 4.5B. These model transformations have been formulated in Lemma
4.3.1 for bidirectional non-linear chains and in Lemma 4.3.3 for unidirectional
linear chains, with more relaxed conditions.

The main limitation of the proposed method is that some necessary lemma
conditions have to be satisfied in order to compute the exact solution bounds,
with no overestimation at all. However, if the lemma conditions are not com-
pletely satisfied it is possible to compute an upper and a lower bounding mod-
els that satisfy these conditions. Thus, the solution envelopes for these upper
and lower bounding models are computed without overestimation. As the
output produced by the model gives smaller values than the upper bounding
model and greater than the lower bounding model, both solution envelopes
can be combined to compute a tight solution envelope for the original model.
This solution envelope guarantees the inclusion of all possible solutions and
minimizes the overestimation, as seen in Figure 4.6.

Up to now, the preceding chapters were focused on models with some
specific structures. However, the following chapter will analyse a method
that can be applied to diverse models.
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Solution envelopes based on

cone monotonicity

The only way of discovering the limits of

the possible is to venture a little way past

them into the impossible.

Arthur C. Clarke

5.1 Introduction

In the preceding two chapters, new techniques were developed to compute
guaranteed solution envelopes for some specific model structures. The aim
of this chapter is to develop a new approach that can be applied to diverse
model structures. The most common method in literature to compute output
bounds is to perform a monotonicity analysis with respect to the ordering
induced by an orthant. However, when the monotonicity conditions are not
satisfied, a significant overestimation is derived from numerical simulations.
To minimize this overestimation, in this chapter a novel approach is proposed
based on monotonicity with respect to an ordering induced by an arbitrary
cone, not necessarily an orthant.

This methodology is illustrated with the computation of solution envelopes
for a non-linear chemostat model. Two scenarios are considered, with and
without the partition of the set of initial state-space conditions.

5.2 Cone monotonicity analysis

In this chapter, a more general definition for monotonicity is used, such that
the monotonicity analysis is performed with respect to the ordering induced
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by an arbitrary cone [41, 53, 85]. This definition corresponds to the mono-
tonicity approach applied in the preceding chapters when the cone used is the
positive orthant. Several basic aspect will be introduced for its application.

Let us recall that a cone K in R
n is a nonempty subset that is closed with

respect to the addition and multiplication by nonnegative scalars. According
to [6], a cone is called proper if it is closed, it has nonempty interior (int(K) 6=

0), it is a convex set, and it is pointed, i.e. K ∩ −K = {0} (or equivalently, it
contains no lines).

A system is monotone with respect to the ordering induced by a cone K

in R
n if for all initial states x1 and x2, for all parameters p1 and p2 and for all

inputs u1 and u2 such that x1 � x2, p1 � p2 and u1 � u2, then

x(t; t0, x1, p1, u1) � x(t; t0, x2, p2, u2)

for all t > 0, where � is the relation order induced by the proper cone K in
the sense that x � y iff y − x ∈ K [51, 52, 81].

Under certain assumptions about a smooth map γ : Rn → R, the differen-
tial equation ẋ = f(t, x, u) is cooperative with respect to a cone K, which is
one component of {x : γ(x) > 0, x ∈ R

n}, if and only if

Dγ(y)D2f(t, x, u)y ≥ 0

for all y ∈ ∂K, where Dγ(y) is the derivative of γ(y), and D2f(t, x, u) denotes
the (partial) derivative of f with respect to the second variable x [85].

Example 5.2.1. Define:

γ(x) = (x1 −
x2

2
)(
−x1

2
+ x2)

and denote by P the component of {x : γ(x) > 0} that is contained in the upper

half-plane. Let a system be given by:

{

ẋ1(t) = −x1 −
x2

2

ẋ2(t) = x1 − 3x2.

The partial derivative of the system is given by:

D2f(t, x) =

(

−1 −1
2

1 −3

)

Then, the system is motonone with respect to the cone P if and only if

Dγ(y)D2f(t, x)y =
1

8
(18y21 − 44y1y2 + 19y22) ≥ 0

Due to the homogeneity of γ, it is sufficient to check the condition for y = ( 12 , 1)
t

and y = (1, 1
2 )

t, which yields to
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Dγ( 12 , 1)D2f(t, x)(
1
2 , 1) =

3
16 ≥ 0

Dγ(1, 1
2 )D2f(t, x)(1,

1
2 ) =

3
32 ≥ 0

Therefore, the system is monotone with respect to the cone P .

5.3 Proposed method

When the system is not monotone with respect to an orthant, a novel approach
is proposed to compute tight solution envelopes without increasing the com-
putational cost. This method is based on a monotonicity analysis with respect
to the ordering induced by an arbitrary cone [41, 85].

As seen in Figure 2.16, under monotonicity induced by an orthant just
two simulations have to be performed to compute the solution bounds, one
for the lower bound and another one for the upper bound. However, under
monotonicity induced by a cone K, a single point of the initial state-space
conditions is able to neither lower-bound nor upper-bound all the set of initial
state-space conditions (and thus, the trajectories generated from them) as seen
in Figure 5.1.

Figure 5.1: Under cone monotonicity, a single endpoint of the set of initial state-space condi-

tions does not cover all the space. Example in R
2.

Nevertheless, simulations considering only the boundary of the set of ini-
tial state-space conditions do it, as Figure 5.2 represents, and it is proved in
the next propositions.

Remark 5.3.1. Likewise as in ordering induced by an orthant, if a cone K contains

an orthant and an IVP system 2.1 is monotone with respect to the ordering induced

by K then, it is enough to carry out two simulations to compute the solution envelope

associated with that system.

Proposition 5.3.2. If a system is monotone with respect to a cone K that contains l

semi-axis where l ∈ N, l < n, then there are two (n − l)-dimension polytopes R̄ and

R of ∂R satisfying that

xinf (t; t0, R, p, u) � x(t; t0, x0, p, u) � xsup(t; t0, R̄, p, u), ∀x0 ∈ R
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Figure 5.2: Under cone monotonicity, simulations considering the boundary of the set of initial

state-space conditions cover all the set of initial state-space conditions. Example in R
2.

where
xinf (t; t0, R, p, u) = inf {x(t; t0, x, p, u) | x ∈ R} ,

xsup(t; t0, R̄, p, u) = sup
{

x(t; t0, x̄, p, u) | x̄ ∈ R̄
}

Proof. Knowing that every component x0i of an initial state x0 is included into
an interval [x−

0i, x
+
0i], let us suppose that

R = [x−
01, x

+
01]× [x−

02, x
+
02]× · · · [x−

0n, x
+
0n1] ⊂ R

n.

In addition, for simplicity, let us assume that the l first (positive) semi-axis
are included into K, that is, the unit vectors e1, e2, . . . , el belong to K. Let
us define the subset providing the necessary initial state-space conditions to
simulate the upper bound as follow:

R̄ :=
{

x+
01

}

×
{

x+
02

}

× · · ·
{

x+
0l

}

× [x−
0l+1, x

+
0l+1]× · · · × [x−

0n, x
+
0n].

Given any x0 = (x01, x02, . . . , x0n) ∈ R, the vector

x̄ = (x+
01, x

+
02, . . . , x

+
0l, x0l+1, . . . , x0n)

is chosen, which obviously belongs to R̄ ⊂ ∂R too. Furthermore, since x+
0i −

x0i ≥ 0, ∀i = 1, . . . , n,

x̄−x0 = (x+
01−x01, . . . , x

+
0l−x0l, 0, . . . , 0) = (x+

01−x01)e1+· · ·+(x+
0l−x0l)el ∈ K

then, x0 � x̄. Hence, using monotonicity, for any x0 ∈ R,

x(t; t0, x0, p, u) � x(t; t0, x̄, p, u) � xsup(t; t0, R̄, p, u), ∀x̄ ∈ R̄.

In the same way but using R where

R :=
{

x−
01

}

×
{

x−
02

}

× · · ·
{

x−
0l

}

× [x−
0l+1, x

+
0l+1]× · · · × [x−

0n, x
+
0n],

it is clear that for any x0 ∈ R,

xinf (t; t0, R, p, u) � x(t; t0, x, p, u) � x(t; t0, x0, p, u), ∀x̄ ∈ R̄.
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Figure 5.3: Under cone monotonicity, when the cone embraces an axis, that subset R̄ (R too) is

reduced to a segment (1-dimension polytope) in R
2.

Proposition 5.3.2 is graphically illustrated in Figure 5.3.
Let us assume now that K contains neither orthants nor any multiple of a

unit vector. Otherwise, reasoning as before, it is obvious that the lower and
upper bounds are constructed respectively from only the two polytopes estab-
lished in the previous proposition. Thus, the cone K can be considered inside
an orthant.

Proposition 5.3.3. If a system is monotone with respect to a cone K that it is in-

cluded into an orthant, then there is a partition of ∂R into two subsets R̄ and R such

that for each t > 0,

xinf (t; t0, R, p, u) � x(t; t0, x0, p, u) � xsup(t; t0, R̄, p, u), ∀x0 ∈ R

where
xinf (t; t0, R, p, u) = inf {x(t; t0, y0, p, u) | y0 ∈ R} ,

xsup(t; t0, R̄, p, u) = sup
{

x(t; t0, z0, p, u) | z0 ∈ R̄
}

.

Proof. Let us suppose again that R = [x−
01, x

+
01]×[x−

02, x
+
02]×· · · [x−

0n, x
+
0n1] ⊂ R

n.
For the sake of brevity and without losing of generality, let us take the positive
orthant as the orthant in which the cone K is included.

Given any x0 ∈ R and any vector v ∈ K then, the half-line x0 + λv in-
tersects ∂R for a large enough λ ≥ 0. By assumptions about K, such an
intersection point x̄0 is located in the subset defined as R̄ = R+

1 ∪ · · · ∪ R+
n

where R+
i = [x−

01, x
+
01]× · · · ×

{

x+
0i

}

× · · · [x−
0n, x

+
0n1] for all i = 1, 2, . . . , n. Fur-

thermore, x � x̄0 since, by the definition of cone, x̄0 − x0 = λv ∈ K. Thus,
using monotonicity, x(t; t0, x0, p, u) � x(t; t0, x̄0, p, u), ∀t > 0. Therefore, since
this procedure is valid for every initial state-space condition, the upper bound
covering all trajectories is derived from simulations computed from the set of
initial state-space conditions belonging to R̄. More specifically, for each t > 0,

x(t; t0, x0, p, u) � x(t; t0, z0, p, u) � xsup(t; t0, R̄, p, u), z0 ∈ R̄.

Similarly but using the cone −K (i.e., λ ≤ 0), it can be deduced that the
lower bound enveloping all solutions is derived from simulations computed
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from the initial state-space conditions belonging to R := R−
1 ∪ · · · ∪R−

n where
R−

i = [x−
01, x

+
01]× · · · ×

{

x−
0i

}

× · · · [x−
0n, x

+
0n1] or equivalently, for each t > 0:

xinf (t; t0, R, p, u) � x(t; t0, y0, p, u) � x(t; t0, x0, p, u), y0 ∈ R.

Finally, notice that ∂R = R̄ ∪ R and int(R̄) ∩ int(R) = ∅, which together
with the following order-relation

xinf (t; t0, R, p, u) � x(t; t0, x0, p, u) � xsup(t; t0, R̄, p, u), ∀x0 ∈ R, ∀t > 0,

completes the proof.

Moreover, in order to further reduce the overestimation committed, the
boundary of the set of initial state-space conditions (∂R) can be divided into
smaller spaces Ri [60], such that

∂R =
⋃

i

Ri where Ri ∈ R
n−1 and Ri ∩Rj = ∅, i 6= j

as seen in Figure 5.4.

A) B)

Figure 5.4: A partition of the boundary of the set of initial state-space conditions under cone

monotonicity in R
2. A) Boundary of the set of initial state-space conditions. B) Division of the

boundary of the set of initial state-space conditions.

Similarly to the orthant monotonicity approach (see Figure 2.17), the lower
and the upper bounds will be computed with the infimum and the supremum
of all the initial state-space conditions simulations:

xinf (t; t0, ∂R, p, u) � x(t; t0, x0, p, u) � xsup(t; t0, ∂R, p, u) ∀x0 ∈ R.

where
xinf (t; t0, ∂R, p, u) = inf {xinf (t; t0,Ri, p, u), ∀Ri} ,

xsup(t; t0, ∂R, p, u) = sup {xsup(t; t0,Ri, p, u), ∀Ri} .
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5.4 Example: non-linear chemostat model

The cone monotonicity approach presented in the previous section has been
applied to compute guaranteed bounds on the solutions of a non-linear chemo-
stat model. Results obtained have been compared with the computation of
solution bounds following the traditional orthant monotonicity approach.

A chemostat is an important laboratory device used in microbial ecology
for the continuous culture of microorganisms [80]. It models the competition
of several organisms for a single, essential, growth-limiting nutrient supplied
at a constant rate [37]. The modeling of a chemostat for a single species of
microorganisms is represented by the following equations:

ẋ1(t) = r · (k − x1)− β · x1 · x2

ẋ2(t) = −r · x2 + x1 · x2
(5.1)

where x1 ≥ 0 denotes the substrate concentration and x2 ≥ 0 the microbes
concentration. The parameter r = 5 stands for the elimination rates, while the
parameter k = 5 represents the input rate. Finally, the parameter β = 0.05

denotes the consumption of the substrate.
Note that there is not orthant monotonicity between the states as the deriva-

tives between the states x1 and x2

∂ẋ1(t)

∂x2(t)
= −β · x1

∂ẋ2(t)

∂x1(t)
= x2

have opposite signs. Nevertheless, a general function can be defined

γ(x) = (a · x1 + b · x2) · (c · x1 + d · x2)

and a cone K given by {x : γ(x) > 0}, and then to analyze the monotonicity
of the system with respect to K. The partial derivative of (5.1) with respect to
the variable x is given by:

D2f(t, x) =

(

−r − β · x2 −β · x1

x2 −r + x1

)

Assuming two points of the boundary of K (for example, y1 = (−b, a)t

and y2 = (−d, c)t), the system is monotone with respect to the cone K if the
following results are nonnegative:

{

Dγ(y1)D2f(t, x)y1 = (b · c− a · d) · (b− a · β) · (−a · x1 + b · x2)

Dγ(y2)D2f(t, x)y2 = −(b · c− a · d) · (d− c · β) · (−c · x1 + d · x2])

for a, b, c, d ∈ R [85]. Hence, it is possible to select a = −1, b = 0, c = 1 and
d = β. Then,

{

Dγ(y1)D2f(t, x)y1 = β2 · x1

Dγ(y2)D2f(t, x)y2 = 0
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Note that both results are greater than or equal to zero for x1 ≥ 0, thus
the monotonicity of the system with respect to cone K is proven. Then, just
the boundaries of the initial state-space conditions have to be considered for
the computation of guaranteed solution envelopes. In fact, as cone K em-
braces the vertical axis by Proposition 5.3.2, the solution envelope is obtained
by computing just two segments of the initial state-space conditions:

{x1 ∈
[

x−
1 , x

+
1

]

, x2 = x−
2 } ∪ {x1 ∈

[

x−
1 , x

+
1

]

, x2 = x+
2 }

First of all, the computation of solution bounds is performed following the
traditional orthant monotonicity approach, in which the system is not mono-
tone. It takes around 0.06 seconds to compute the solution envelope repre-
sented with black dotted lines in Figure 5.5, that illustrates the overestimation
produced on the substrate and the microbes concentrations. The light grey
lines represent several numerical simulations executed for different values of
the set of initial state-space conditions. When cone monotonicity approach is
applied, the overestimation of the solution bounds computation is reduced in
a 74%, although it remains high, as seen in Figure 5.5 with black dashed lines.
The overestimation is computed with respect to the bounds of the Monte Carlo
simulations. The computational time is around 0.10 seconds.
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Figure 5.5: Computation of solution envelopes for a non-linear chemostat model with the initial

conditions x1(0) = 10 and x2(0) = 30 under 20% uncertainty. Solution envelopes are

computed following different approaches: Orthant monotonicity (black dotted line) and cone

monotonicity (black dashed line). The grey lines represent several numerical simulations.

Moreover, in order to further reduce the overestimation committed, Figure
5.6 represents the solution envelopes computed when the initial state-space
conditions (Figure 2.17) or the boundary of the initial state-space conditions
(Figure 5.4) are divided into smaller fragments, respectively. In both cases 36
simulations have been executed, with a computational time of around 1.47
and 1.43 seconds, respectively. The solution envelope computed based on the
cone monotonicity approach (black dashed line) is much tighter (81% reduc-
tion of the overestimation with respect to the Monte Carlo bounds) than when
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it is computed based on the orthant monotonicity approach (black dotted line),
for a similar or even smaller computational cost.
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Figure 5.6: Computation of solution envelopes for a non-linear chemostat model with the initial

conditions x1(0) = 10 and x2(0) = 30 under 20% uncertainty. The black dotted lines repre-

sent the orthant monotonicity approach when there is a partition of the set of initial state-space

conditions into 36 segments (according to Figure 2.17). The black dashed lines represent the

cone monotonicity approach with a partition of the boundary of the set of initial state-space

conditions into 36 segments (in accordance with Figure 5.4).

All the simulations have been executed with Matlab software using an In-
tel(R) 3.2 GHz Pentium(R) processor.

5.5 Discussion and conclusion

In this chapter, a novel approach for the computation of guaranteed solution
envelopes has been addressed. This new method has been compared with
previous approaches in a non-linear chemostat model.

Traditionally, monotonicity approaches with respect to an orthant have
been applied to compute guaranteed solution envelopes under interval un-
certainty. Under orthant monotonicity, the exact solution bounds can be com-
puted. However, if there is at least one state without orthant monotonicity, an
overestimation will be produced in the solution envelope computation.

For this reason, a novel approach is proposed when the system does not
satisfy orthant monotonicity. It is based on performing a monotonicity anal-
ysis of the model by taking the ordering induced by an arbitrary cone, not
necessarily an orthant. If the system is monotone with respect to a cone K

then just the boundary of the set of initial state-space conditions has to be sim-
ulated to compute a guaranteed solution envelope, instead of considering all
the set of uncertain initial state-space conditions. As the space simulated is
reduced, the overestimation committed is also reduced in a 74%, as seen in
Figure 5.5.
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The overestimation can also be reduced by the partition of the set of ini-
tial state-space conditions (Figure 2.17) or the boundary of the set of initial
condition space (Figure 5.4) into smaller fragments. For a similar computa-
tional work, the overestimation of the solution envelopes computed applying
the cone monotonicity approach is reduced a 81% compared with the orthant
monotonicity approach, as seen in Figure 5.6.

In the previous chapters, several changes of variables have been proposed
to transform non-monotone systems into monotone systems, which can be
computed without overestimation. In those cases, the outputs of the models
were unaltered, hence, it was not necessary to undo the changes of variables
to compute them. Otherwise, a high overestimation would be produced in
this step. Based on a similar idea to the change of variables, a cone approach
is proposed in this chapter. For example, a change of variables could be ap-
plied in the chemostat model, similar to the cone used. However, doing and
undoing the change of variables would create a huge overestimation in the
solution bounds computation.

The potential of cone monotonicity analysis is limited, as it is not possible
to use it to compute exact output bounds. However, if the system is mono-
tone with respect to any cone, this approach minimises significantly the over-
estimation produced with respect to the orthant monotonicity analysis for a
similar computational cost.
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Prediction of glucose

concentration under

variability

Nothing in life is to be feared, it is only to be

understood. Now is the time to understand

more, so that we may fear less.

Marie Curie

6.1 Introduction

In the previous chapters, several techniques and approaches have been pre-
sented to deal with non-monotone parameters and compute guaranteed so-
lution envelopes, such as analysis of critical points, state transformations or
application of differential inequalities. The aim of this chapter is to apply
these techniques to compute tight solution bounds for glucose-insulin models
to predict the glucose concentration under intra-patient variability in subjects
with type 1 diabetes. As a result, it is possible to compute a tight glucose con-
centration envelope that bounds all the possible patient’s glycemic responses.

A preceding contribution by Calm et al. [11] has applied modal interval
analysis [27] to compute tight envelopes of glucose concentration under para-
metric uncertainty. However, only some specific parameters of the glucose-
insulin model were considered uncertain. In this chapter, parametric uncer-
tainty is considered in all the parameters and initial conditions of the model.

The work in this chapter has been partially published in the paper On the prediction of glucose

concentration under intra-patient variability in type 1 diabetes: A monotone systems approach, published
by Diego De Pereda, Sergio Romero-Vivo, Beatriz Ricarte and Jorge Bondia in Computer Methods

and Programs in Biomedicine 108 (2012), 993–1001.
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6.2 Glucose-insulin model

The glucose-insulin model is composed of four systems: the carbohydrate
digestion and absorption system, the subcutaneous insulin absorption sys-
tem, the insulin action system, and the glucose metabolism system. Figure 6.1
shows the input-output relationship among these system parts.

Subcutaneous 

insulin 

absorption

Carbohydrate 

digestion and 

absorption

Glucose 

metabolism
Insulin action

Insulin Meal

Glucose concentration

Figure 6.1: Diagram of the systems interaction.

All the systems used in this work are introduced in the glucose-insulin
model developed by Hovorka et al. [39], with reported experimental validation
results [40]. This is one of the relevant models in literature and it has been
chosen to illustrate the technique, although the method could be extended to
other models.

6.2.1 The carbohydrate digestion and absorption system

This system describes the carbohydrate digestion and its catabolism to glu-
cose. The gut absorption rate UG(t) (mmol/min) is given by

UG(t) =
DG AG t e−t/tmax,G

t2max,G

(6.1)

where DG (mmol) is the amount of carbohydrates digested, AG (unitless) is
the carbohydrate bioavailability, and tmax,G (min) is the time-of-maximum
appearance of glucose in the accessible glucose compartment.
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6.2.2 The subcutaneous insulin absorption system

This system calculates how the administered insulin appears in the blood. It is
composed by a two-compartment chain with identical transfer rates 1/tmax,I

(min) between the two subcutaneous insulin compartments S1 and S2:

Ṡ1(t) = u(t)−
S1(t)

tmax,I

Ṡ2(t) =
S1(t)

tmax,I
−

S2(t)

tmax,I

(6.2)

where u(t) (mU/min) represents the administration of insulin (basal and bo-
lus), and tmax,I (min) is the time-to-maximum insulin absorption. The appear-
ance of insulin in the plasma UI(t) (mU/min) is given by

UI(t) =
S2(t)

tmax,I
. (6.3)

The plasma insulin concentration I(t) (mU/L) is represented by

İ(t) =
UI(t)

VI
− keI(t) (6.4)

where VI (L) is the insulin distribution volume, and ke (1/min) is the fractional
elimination rate.

6.2.3 The insulin action system

The plasma insulin concentration affects the glucose transportation from the
plasma to the tissues, the disposal of peripheral glucose, and the production
of hepatic glucose. These actions are represented by

ẋ1(t) = −ka1x1(t) + kb1I(t)

ẋ2(t) = −ka2x2(t) + kb2I(t)

ẋ3(t) = −ka3x3(t) + kb3I(t)

(6.5)

where x1(t) (1/min) represents the effects of insulin on the distribution and
transport of glucose, x2(t) (1/min) stands for the effect on the glucose dis-
posal, while x3(t) (unitless) symbolises the effect on the production of endoge-
nous glucose. The parameters kai (1/min), i = 1, 2, 3, are the deactivation rate
constants, while kb1, kb2 (1/min2 per mU/L) and kb3 (1/min per mU/L) are
the activation rate constants.

6.2.4 The glucose metabolism system

Finally, the glucose kinetics are represented by a two-compartment system, as
follows:
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Q̇1(t) = −x1(t)Q1(t) + k12Q2(t)− F c
01(t)− FR(t) + UG(t)

+EGP0(1− x3(t))

Q̇2(t) = x1(t)Q1(t)− (k12 + x2(t))Q2(t)

G(t) =
Q1(t)

VG

(6.6)

where Q1(t) and Q2(t) (mmol) are the glucose masses in the accessible com-
partment and the non-accessible compartment, respectively, while G(t) (mmol/L)
is the glucose concentration in the accessible compartment. The parameter k12
(1/min) is the transfer rate from the non-accessible compartment to the acces-
sible compartment, the parameter VG (L) denotes the distribution volume of
the accessible compartment, and the parameter EGP0 (mmol/min) stands for
the endogenous glucose production extrapolated to the zero insulin concen-
tration. The function F c

01(t) (mmol/min) and the parameter F01 represent the
total non-insulin-dependent glucose disposal, while the function FR(t) is the
renal glucose clearance above the glucose threshold of 9 mmol/L:

F c
01(t) =







F01G(t)

4.5
if G(t) < 4.5mmol/L

F01 if G(t) ≥ 4.5mmol/L
(6.7)

FR(t) =

{

0 if G(t) < 9mmol/L
0.003(G(t)− 9)VG if G(t) ≥ 9mmol/L

(6.8)

6.3 Solution envelopes under parametric uncertainty

In this section, the systems presented in the previous section are analysed by
trajectory-based approaches, focusing on the parameters monotonicity. Un-
certainty is considered for all the parameters, as well as for all the initial con-
ditions of the states.

6.3.1 The carbohydrate digestion and absorption system

The gut absorption rate UG(t) is given by (6.1), in which the parameters DG

and AG are cooperative with respect to UG(t), as seen in Figure 6.2. This means
that the maximum value of UG is reached only if the maximum values of DG

and AG are computed.
On the other hand, tmax,G is a non-monotone parameter, but the critical

points of UG(t) with respect to tmax,G can be obtained for a fixed t:

∂UG(t)

∂tmax,G
= 0 ⇒ tmax,G =

t

2

The sign of the second derivative of UG(t) with respect to tmax,G deter-
mines the stability of the critical point t/2:
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Figure 6.2: Parameters monotonicity of the carbohydrate digestion and absorption system.

∂2UG(t)

∂t2max,G

|tmax,G=t/2= −
32 AG DG

e2 t3

As the second derivative is negative, UG(t) reaches its maximum value at
tmax,G = t/2. However, t/2 is not always a possible value for the interval
tmax,G, depending on the value of t at each time step. If t/2 is not a possible
value for the interval tmax,G, the maximum value for UG(t) will be attained
computing both interval bounds of tmax,G and taking into account the one that
maximizes UG(t). On the other hand, the inferior bound of UG(t) is always
obtained computing both interval bounds of tmax,G and adopting the one that
minimises UG(t).

6.3.2 The subcutaneous insulin absorption system

Insulin can be administered in bolus or basal doses, being cooperative with
respect to the model in both cases. Bolus are computed as the initial value of
the S1 compartment (6.2), while u(t) denotes the basal doses (6.2):

S1(0) = ubolus and u(t) = ubasal

The problem to solve is a linear ODE system given by (6.2) and (6.3), whose
solution [18] is given by

UI(t) = ubasal +
e−(t/tmax,I)t(−tmax,Iubasal + ubolus)

t2max,I

+e−(t/tmax,I)(−ubasal + UI(0))

with two critical points with respect to the parameter tmax,I . In order to obtain
UI(t) envelope, instead of working with tmax,I as an interval, both critical
points (if these values are inside the tmax,I interval) and interval bounds are
computed.
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The plasma insulin concentration I(t), given by (6.4), is cooperative with
respect to UI(t), while the parameters VI and ke are competitive, as seen in
Figure 6.3.

ubasal 

ubolus 

UI 
tmaxI 

?
 

VI 
I
 

ke 

Figure 6.3: Parameters monotonicity of the subcutaneous insulin absorption system.

6.3.3 The insulin action system

The effects of insulin on the glucose transport from the plasma to the tis-
sues, the disposal of the peripheral glucose, and the production of hepatic
glucose are given by (6.5). Analysing the equations of the system, it is clear
that I(t) and xi, i = 1, 2, 3 are all cooperative. Furthermore, the parameters
kbi, i = 1, 2, 3, are also cooperative, while the parameters kai, i = 1, 2, 3, are
competitive, as seen in Figure 6.4.

6.3.4 The glucose metabolism system

The equations of the glucose metabolism system (6.6) are modified to avoid
the parameters multi-incidence in different equations. First of all, the non-
insulin-dependent glucose disposal (6.7) and the renal glucose clearance (6.8)
are transformed such that F c

01(t)+FR(t) = FC(t)G(t)+FR(t), as done in [11],
where

FC(t) =















F01

4.5
if G(t) < 4.5mmol/L

0.003 · VG if G(t) ≥ 9mmol/L
0 otherwise
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Figure 6.4: Parameters monotonicity of the insulin action system.

FR(t) =







0 if G(t) < 4.5mmol/L
F01 − 0.027 · VG if G(t) ≥ 9mmol/L

F01 otherwise

As G(t) is given by G(t) = Q1(t)/VG, then Ġ(t) = Q̇1(t)/VG. Thus, by
expression (6.6):

Ġ(t) = −x1(t)G(t)

+
k12Q2(t)− FC(t)G(t)− FR(t) + UG(t) + EGP0(1− x3(t))

VG

Q̇2(t) = x1(t)VGG(t)− (k12 + x2(t))Q2(t)

To avoid the parameter VG multi-incidence in both equations, a new state
H(t) = Q2(t)/VG is defined. Hence:

Ġ(t) = −x1(t)G(t) + k12H(t)

+
−FC(t)G(t)− FR(t) + UG(t) + EGP0(1− x3(t))

VG

Ḣ(t) = x1(t)G(t)− (k12 + x2(t))H(t)

Finally, to avoid the multi-incidence of the state x1(t) and the parameter
k12, another new state S(t) = H(t) +G(t) is computed:

Ġ(t) = −x1(t)G(t) + k12(S(t)−G(t))

+
−FC(t)G(t)− FR(t) + UG(t) + EGP0(1− x3(t))

VG

Ṡ(t) = −x2(t)(S(t)−G(t))

+
−FC(t)G(t)− FR(t) + UG(t) + EGP0(1− x3(t))

VG

(6.9)
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The condition sign(∂Ġ(t)/∂S(t)) = sign(∂Ṡ(t)/∂G(t)) is necessary to prove
the monotonicity between the states G(t) and S(t). As ∂Ġ(t)/∂S(t) = k12 ≥ 0,
both states are cooperative if ∂Ṡ(t)/∂G(t) = x2(t)−FC(t)/VG is non-negative.

As this condition is not always true, two models are computed [19, 21]:
an upper bounding model and a lower bounding model, in which elimina-
tion rates are modified to satisfy x2(t) − FC(t)/VG ≥ 0. In the lower bound-
ing model, the state x2(t) is replaced by max(x2(t), FC(t)/VG), increasing its
value. As x2(t) is a competitive state, the model obtained is a lower bounding
model [9] of the model (6.9), and such that

Ġ1(t) = −x1(t)G1(t) + k12(S1(t)−G1(t))

+
−FC(t)G1(t)− FR(t) + UG(t) + EGP0(1− x3(t))

VG

Ṡ1(t) = −max(x2(t),
FC(t)

VG
)(S1(t)−G1(t))

+
−FC(t)G1(t)− FR(t) + UG(t) + EGP0(1− x3(t))

VG

(6.10)

For the upper bounding model, FC(t)/VG is replaced by min(x2(t), FC(t)/VG),
decreasing its value. As FC(t)/VG is competitive, an upper bounding model
of (6.9) is obtained, such that

Ġ2(t) = −x1(t)G2(t) + k12(S2(t)−G2(t))−min(x2(t),
FC(t)

VG
)G2(t)

+
−FR(t) + UG(t) + EGP0(1− x3(t))

VG

Ṡ2(t) = −x2(t)(S2(t)−G2(t))−min(x2(t),
FC(t)

VG
)G2(t)

+
−FR(t) + UG(t) + EGP0(1− x3(t))

VG
(6.11)

where (6.10) ≤ (6.9) ≤ (6.11), and Gi(t) and Si(t), i = 1, 2, are cooperative sys-
tems. The system (6.10) is used to calculate the lower bound of G(t), and the
system (6.11) for the upper bound. In both systems, the states xi(t), i = 1, 2, 3,
are competitive, while the state UG(t) is cooperative. Furthermore, the param-
eter k12 is cooperative and F01 is competitive. Finally, the parameter EGP0 is
monotone for all instant t, but it can be cooperative if (1− x3(t)) > 0, or com-
petitive otherwise. Also, the parameter VG is always monotone for all instant
t, but can be cooperative or not depending on whether it divides a positive or
a negative quantity, respectively. Thus both intervals bounds for the parame-
ters EGP0 and VG have to be computed depending on the condition, as seen
in Figure 6.5.
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Figure 6.5: Parameters monotonicity of the glucose metabolism system.

6.4 Results

The glucose-insulin model developed by Hovorka et al. [39] has been analysed
under parametric uncertainty. The parameter values used in all the systems of
the model have been taken from [39]. As an illustration of the overestimation
made, 5% uncertainty has been considered in all the parameters and initial
conditions of the model. The simulations have been performed for a patient
weight of 80kg, during the 5 hour period that follows a meal of 60 g and an
insulin dose of 3 U, taking into account an insulin basal infusion of 0.32 U/h.

All the simulations have been executed with Matlab software (version R2007b)
using an Intel(R) 3.2 GHz Pentium(R) processor. Solution envelopes have been
computed for two types of situations: long-term predictions during a 5-hour
postprandial period, and short-term predictions in which the glucose concen-
tration is measured every 15 minutes.

6.4.1 Long-term glucose prediction

In the long-term prediction examples a unique glucose measurement is per-
formed, at time zero. Different scenarios have been computed by varying
the initial blood glucose in each simulation. The resulting solution envelope
has been compared with numerical simulations to estimate the overestima-
tion produced. The light grey lines represent several Monte Carlo simulations
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performed by varying the parameters and initial conditions values, while the
black dashed lines represent the computed output bounds.

In the first simulation, a safe initial condition of 150 mg/dL was computed,
as seen in Figure 6.6. In the second scenario, the initial condition was near hy-
poglycemia with 80 mg/dL, as seen in Figure 6.7. Finally, an initial condition
near hyperglycemia with 250 mg/dL was computed, as seen in Figure 6.8.
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Figure 6.6: Solution envelope obtained for the first scenario.
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Figure 6.7: Solution envelope obtained for the second scenario.
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Figure 6.8: Solution envelope obtained for the third scenario.
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In the case of long-term predictions, the computed envelope is almost per-
fect during the first 200 minutes, and then only a small overestimation is made
in the lower bound. The total error is smaller than 1.85%, and it is measured
by comparing the area of the numerical simulations with the area of the com-
puted solution envelope. The computational cost does not depend on the
number of uncertain parameters, and it takes around 0.027 seconds to obtain
the solution envelope, using an explicit Runge-Kutta method for the numeri-
cal simulation of the bounding systems. It is noteworthy that the considera-
tion of only 5% uncertainty in all the parameters translates into a wide range
of possible patient responses from hypoglycemia to hyperglycemia. Note that
this is not due to the simulation overestimation, since the same effect is ob-
served in the Monte Carlo simulations. This fact illustrates the difficulty of
glycemic control in clinical practice.

6.4.2 Short-term glucose prediction

In the previous example, the glucose level is only measured initially. How-
ever, continuous glucose monitoring allows for the frequent measurement of
the glucose level in sensor-augmented pumps and the artificial pancreas. In
this case, short-term predictions are used at each sample period to predict
hypoglycemia or decide the optimal insulin infusion. In this short-term sim-
ulation, 30-minutes-ahead predictions are performed every 15 minutes, after
each glucose level measurement (generated from a random nominal value for
the parameters inside the given intervals). As glucose measurements may in-
clude an error, 5% uncertainty is considered in all the glucose values.
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Figure 6.9: Solution envelope for 30-minute-ahead predictions with glucose measurements ev-

ery 15 minutes.

In the case of short-term predictions (Figure 6.9), the solution envelope
includes all the possible responses for the glucose level as expected. As the
glucose measurements are performed every 15 minutes, the range of the glu-
cose envelope is much smaller than in the long-term predictions. If the glu-
cose measurements include less uncertainty, or if they are performed with
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a higher frequency, the range of the glucose envelope will be reduced even
more. Observe that the computed glucose range is bigger around the glucose
peak value and it reduces as euglycemia is reached again. This is due to the
high influence of the uncertainty induced by the meal intake, which vanishes
when the equilibrium point is attained. Compared to traditional approaches,
a worst-case analysis can be carried out to produce more robust and safer de-
cisions at each sample period.

6.5 Discussion and conclusion

The simulations carried out in the previous section are illustrative of the com-
putational needs in a variety of problems where long- or short-term glucose
predictions are used. The computation of tight glucose envelopes for long-
term predictions is important for the parameter identification [12], to develop
new insulin pump therapies using set-inversion techniques [73], and to per-
form insulin dosage optimisation [26] minimising a compound index of hy-
poglycemia and hyperglycemia risk. These tools are fundamental in reducing
the risks of hyperglycemic and hypoglycemic episodes, which can be delete-
rious for patients health. Furthermore, tight glucose envelopes for short-term
predictions may produce more robust and safer insulin infusion algorithms,
including robust fault detection [1] or Model Predictive Control [39]. Consid-
eration of intra-patient variability into the simulation allows to increase the
robustness of these methodologies, yielding to safer systems.

In this work, a monotonicity and critical points analysis of all the model pa-
rameters has been proven as a successful tool to compute solution envelopes
of the glucose-insulin model considering parametric uncertainty. Neverthe-
less, as not all the compartments and parameters of the model satisfy the
monotonicity conditions, an upper bounding model and a lower bounding
model have been considered, which satisfy the monotonicity conditions, to
compute a tight glucose envelope for the original glucose-insulin model.

A preceding contribution by Calm et al. [11] has tackled the same problem.
However, some model parameters cannot be considered uncertain, which makes
not possible a direct comparison with the proposed method.

Finally, one of the strengths of the method proposed is that, although it has
been applied to compute tight solution bounds of the glucose-insulin model
developed by Hovorka et al. [39], it can also be applied to other glucose-insulin
models, or even for compartmental models that mimic other type of processes.
In addition, the method computes guaranteed bounds with few overestima-
tion and low computational cost, which make it suitable for real-time compu-
tation. The limitation of this approach is that, as the dynamic model structures
differ, each model has to be analysed independently. Complexity of the analy-
sis of critical points (when required) will also increase with the complexity of
the model.
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In conclusion, monotone systems approach is an efficient tool to compute
tight solution envelopes for glucose-insulin models under intra-patient vari-
ability. These tools may foster the development of more robust and safe algo-
rithms for glycemic control in type 1 diabetes.





7

Real-time estimation of

plasma insulin concentration

The observer, when he seems to himself to

be observing a stone, is really observing the

effects of the stone upon himself.

Bertrand Russell

7.1 Introduction

Continuous glucose monitors can measure interstitial glucose concentration in
real-time for the artificial pancreas. These closed-loop glucose control systems
use an insulin feedback to maintain plasma glucose concentration within a
narrow and safe range, and thus to avoid health complications. As insulin is
administered subcutaneously, there is a big delay between the insulin therapy
action and its effect in blood glucose. For this reason, it is crucial to know the
levels of blood insulin to predict short-term glucose concentrations.

As it is not possible to measure plasma insulin concentration in real-time,
insulin models have been used in literature to estimate them. Nevertheless,
the significant inter- and intra-patient variability of insulin absorption jeopar-
dizes the accuracy of these estimations. In order to reduce these limitations,
the aim of this chapter is to perform a real-time estimation of plasma insulin
concentration from continuous glucose monitoring.

Hovorka’s glucose-insulin model has been incorporated in an Extended
Kalman Filter in which different selected time-variant model parameters have
been considered as extended states. The observability of the original Hov-
orka’s model and of several extended models has been evaluated by their Lie
derivatives. This methodology has been evaluated with an in-silico study with

73
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100 patients with Type 1 diabetes during 25 hours. Furthermore, it has been
also validated using clinical data from 12 insulin pump patients with Type
1 diabetes who underwent four mixed meal studies. Real-time insulin esti-
mations have been compared to plasma insulin measurements to assess per-
formance showing the validity of the methodology here used in comparison
with that formerly used for insulin models. Hence, real-time estimations for
plasma insulin concentration based on subcutaneous glucose monitoring can
be beneficial for increasing the efficiency of control algorithms for the artificial
pancreas.

7.2 Extended Kalman filter

Mathematical models try to mimic real-life processes, which are characterized
by their variability. Uncertainty can arise due to the lack of information we
have about the process itself, as it is not possible to measure efficiently all
its indicators in real-time. As a consequence, we may have noisy measure-
ments about some states, and a total deficit of information about the rest of
the model. However, the limited set of measurements can be overcome with
the conjunction of a model and a state observer [22].

One of the most popular observers is the Kalman Filter [22, 44], that can be
used in continuous or discrete time, or combining discrete measurements in
continuous time [17]. It is a stochastic filter that allows the estimation of the
states of a system based on a linear state-space model. This observer estimates
system states in a two-step process: the prediction and the correction steps.
In the prediction step, the Kalman filter estimates the current state variables.
Once a new measurement (with noise) is observed, the state estimations are
updated using a weighted process [22, 44]. The extended Kalman filter (EKF)
uses a local linearisation to extend the scope of the Kalman filter to systems
described by non-linear ordinary differential equations [59, 43].

High variability processes may be represented by systems with noise in
their dynamic and measurements. These systems can be expressed by:

ẋ(t) = f(x(t), u(t)) + w(t), w(t) ∼ N(0, Q(t))

z(t) = h(x(t)) + v(t), v(t) ∼ N(0, R(t))
(7.1)

where h(x(t)) denotes the measurement function and z(t) is the output of the
model. Furthermore, w(t) and v(t) represent the process and the observation
noises, while Q(t) and R(t) denote the variances of these noises, respectively.

The estimation of the system state vector x(t) is represented by x̂(t):

˙̂x(t) = f(x̂(t), u(t)) +K(t)(z(t)− h(x̂(t)))

where K(t) is the gain matrix.
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The linearized transition matrix, F , with elements defined by f(x(t), u(t)),
is given by:

F (t) =
∂f

∂x

∣

∣

∣

∣

x̂(t),u(t)

,

with the covariance matrix, P , forward in time, that is:

Ṗ (t) = F (t)P (t) + P (t)F (t)⊺ −K(t)H(t)P (t) +Q(t)

where H(t) is the measurement matrix:

H(t) =
∂h

∂x

∣

∣

∣

∣

x̂(t)

.

Finally, the gain matrix is updated:

K(t) = P (t)H(t)⊺R(t)−1.

However, it is not always possible to estimate all the system states from a
limited set of measurements. Observability analysis proves if the model states
in x(t) can be theoretically estimated from measurements of z(t). This analysis
can be assessed by the Lie derivatives [28, 38] of the glucose-insulin model.
The Lie derivative of h(x) with respect to f(x, u) is defined as Lf(x,u)h(x) =

▽h(x) · f(x, u), and it is calculated recursively, as follows:

Li
f(x,u)h(x) = Lf(x,u)(L

(i−1)
f(x,u)h(x)) if i = 1, 2, ...

L0
f(x,u)h(x) = h(x)

A function h(x) is considered observable if the following Jacobian matrix

∂

∂x











h(x)

Lf(x,u)h(x)

· · ·

Ln−1
f(x,u)h(x)











(7.2)

has rank n, where n is the system order.

7.3 Real-time estimation of plasma insulin

Since insulin cannot be measured in real-time, insulin models have been used
to estimate such concentration [67, 83]. However, variability of pharmacoki-
netic dynamics jeopardizes the accuracy of the estimation [20]. This variability
is due to the distribution of the injection and the characteristics of the subcu-
taneous tissue, and it is basically focused on two parameters: time-to-peak
plasma insulin concentration and metabolic clearance rate of insulin [33, 72].
This question limits the performance of any artificial pancreas potentially,
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leading to either over- or under-insulinization and posing patient’s safety at
risk. Effective closed-loop glucose control requires the design of robust strate-
gies integrating patient’s variability into tools for an accurate plasma insulin
estimation.

Kalman Filters have been used to enhance the accuracy of continuous glu-
cose monitors [25, 47] in humans. Furthermore, they have been used to esti-
mate insulin concentration from intravenous glucose tolerance tests (IVGTT)
in non-diabetic humans [23], and from subcutaneous (SC) glucose measure-
ments in diabetic and non-diabetic pigs [24].

In this section, several approaches for an estimation of plasma insulin con-
centration in real-time are presented. A specific model has been chosen to il-
lustrate these techniques, although they could be easily extended to any other
model.

7.3.1 Estimation from an insulin model

A common approach in literature to estimate plasma insulin concentration is
to simulate the insulin intakes in an insulin model [67, 83]. The simulation of
an insulin model acts like an open-loop, as the glucose measurements are not
used to adjust the states or the parameters of the system. Nevertheless, these
adjustments could be necessary, especially in processes with high variability.
In general, this system can be represented by:

ẋ(t) = f(x(t), u(t))

where u(t) is the input of the model, x(t) is the system state vector, and f(x(t), u(t))

defines the system’s dynamics.
The insulin model considered in this work is the model developed by Hov-

orka et al. [39], described in Section 6.2. System’s dynamics f(x(t), u(t)) are
given by the subcutaneous insulin absorption model (Section 6.2.2), while the
system’s state vector x(t) is given by:

x(t) = [S1, S2, I].

7.3.2 State observation of a glucose-insulin model

The glucose-insulin model developed by Hovorka et al. [39] describes the blood
glucose dynamics based on carbohydrate ingestion and insulin infusion. How-
ever, only interstitial glucose concentration can be measured by SC glucose
monitors. Therefore, a new equation that describes the relation between blood
glucose concentration and interstitial glucose concentration (mmol/L) [47, 89]
is added in the system:

˙IG(t) =
1

τ

(

Q1(t)

VG
− IG(t)

)
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where VG (0.16∗Patient_weight L) denotes the volume of the accessible com-
partment, and τ (16 min) represents the time delay.

The system state vector x(t) is given by:

x(t) = [S1, S2, I, x1, x2, x3, Q1, Q2, IG]

Note that UG(t) is not included in the state vector since it is explicitly ex-
pressed in Section 6.2.1, and not as a dynamical equation. Function f(x(t), u(t))

is described by the dynamical equations exposed in Section 6.2. The measure-
ment matrix H(t) is given by:

H(t) =
∂h

∂x

∣

∣

∣

∣

x̂(t)

= [0, 0, 0, 0, 0, 0, 0, 0, 1]

as only interstitial glucose concentration (IG) can be measured by SC glucose
monitors, i.e., h(x(t)) = IG(t).

In this approach, the variances of the process and observation noises (Q(t)

and R(t), respectively) have been heuristically adapted to:

Q(t) = diag(20, 20, 0.01, 10−6, 10−8, 10−5, 1, 1, 1)

R(t) = 0.45 mmol/L [= 8mg/dl].

7.3.3 State observation of an extended model

The main problem with simulations and state observers is that they are often
developed assuming perfect knowledge of the system dynamics, in particular
of the parameter values. However, this is not true due to the high variability
of the processes, which leads to uncertain parameters.

State observers can be used to estimate these uncertain parameters by
building new extended models in which these parameters are considered as
new states with no dynamics [22, 24]. For this reason, extended Hovorka’s
models have been defined such that different parameters have been consid-
ered as extended states of the model:

d

dt

[

x(t)

p(t)

]

=

[

f(x(t), u(t))|p=p(t)

0

]

The parameters with the greatest impact in plasma insulin concentration
are ke (plasma insulin elimination rate) and tmax,I (time to maximum insulin
absorption), as seen in literature [33, 72] and it has been verified experimen-
tally in this work (modification on other model parameters do not produce
significant variations in insulin estimation). Hence, the main interest is to
estimate these parameters, so they have been selected as uncertain states in
extended Hovorka’s models, where one or both parameters have been consid-
ered as extended states. The observability of these models has been evaluated
by their Lie derivatives.
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Figure 7.1: Diagram of the adjustment of uncertain parameters.

Then, the extended models have been incorporated in an EKF, such that
the parameters ke and/or tmax,I are adapted along time, as seen in Figure 7.1.
During each study, the system states are estimated based on punctual mea-
surements of plasma glucose concentration. The initial value of the uncertain
parameters (ke0 and tmax,I

0) has been set at their nominal value [39] for all
the studies. The value of these parameters at the end of the study is ke

∗
i and

tmax,I
∗
i , i = 1, ..., s, where s is the number of studies. The variance of the pro-

cess noise of the extended states ke and tmax,I has been added to the matrix
Q(t), exactly the heuristically selected values 10−4 and 1, respectively.

7.4 Validation of insulin estimations

In this section, insulin estimations are validated in both an in-silico study and
using real data from patients.

7.4.1 In-silico validation

In-silico patients with Type 1 diabetes have been simulated during 1500 min-
utes (25 hours), including a meal of 300mmol (54 grams) of glucose every 300
minutes, for a total of five meals. Five equal meals do not represent a realistic
scenario, but it allows to analyse the behaviour of the estimations with vary-
ing parameters in the same scenario. Each meal is compensated with a bolus
of 2300 mU of insulin. Furthermore, each patient receives a basal insulin in-
fusion of 10 mU/min. During the simulation, the values of the parameters ke
and tmax,I vary along time based on their variability. The rest of the parame-
ters assume their nominal value.

Real-time insulin estimations of 100 in-silico patients have been computed
based on interstitial glucose measurements every 15 minutes. Insulin esti-
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mations (ẑ) have been compared to plasma insulin simulation (z(t)) to assess
the methodology introduced. The performance of the different approaches
has been quantitatively evaluated by computing the Root Mean Square Error
(RMSE) and the Mean Absolute Relative Deviation (MARD):

RMSE =

√

√

√

√

1

m

m
∑

t=1

(zt − ẑt)
2 (7.3)

MARD =
1

m

m
∑

t=1

|zt − ẑt|

zt
(7.4)

where m is the number of measurements.

7.4.2 Validation with real data

State observers need several data values to adapt the system states (including
the extended parameters). However, continuous glucose monitors only pro-
vide a new glucose concentration value every 1–15 minutes. Thus, the state
observer is not able to adapt the system states during the first minutes of the
experiment. The initial value of the system states is crucial during the first
minutes of the insulin estimation, as the EKF needs some time to be able to
perform an accurate estimation. If the values are under- or over-estimated,
large errors may be produced in an insulin estimation. For this reason, chang-
ing the initial values of the extended states, i.e. parameters ke and tmax,I , for
more realistic values is proposed.

Study 1

Initial

values

,

#

,
#

Value at 

the end
EKF

Study 2

Study s

…,

,

#

,
#

#

,
#

Figure 7.2: Diagram of the adjustment of uncertain parameters.

These new initial values are determined by a cross-validation of the esti-
mated values of the uncertain parameters at the end of the rest of the studies:
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ke
0
i = 1

s−1

∑s
j=1(1− δi,j)ke

∗
j

tmax,I
0
i = 1

s−1

∑s
j=1(1− δi,j)tmax,I

∗
j

where s is the number of studies, and the function δi,j is defined as:

δi,j =

{

1 if i = j

0 if i 6= j

These new initial values are represented in Figure 7.2. During each study,
the value of the uncertain parameters ke and tmax,I is adapted through time.

Insulin estimations have been compared using real data from 12 insulin
pump patients with Type 1 diabetes who underwent four mixed meal studies
(9 women; 41.8±7.3 years old; diabetes duration 20.2±10.3 years; body mass
index: 25.1±2.8 kg/m2) [74]. The performance of insulin estimations has been
evaluated by a comparison with plasma insulin measurements, computing
RMSE (7.3) and MARD (7.4).

7.5 Results

Different estimations of plasma insulin concentration have been performed
according to the approaches presented in the previous sections. All the sim-
ulations have been executed with Matlab software (version R2013a) using an
Intel(R) Core i7-3770K 3.5 GHz Pentium(R) processor. The obtained results
are included hereinafter and commented with detail in the discussion section.

7.5.1 Observability

The observability of the original Hovorka’s model and of the extended models
with the following state vectors:

x(t) = [S1, S2, I, x1, x2, x3, Q1, Q2, IG]

x(t) = [S1, S2, I, x1, x2, x3, Q1, Q2, IG, ke]

x(t) = [S1, S2, I, x1, x2, x3, Q1, Q2, IG, tmax,I ]

x(t) = [S1, S2, I, x1, x2, x3, Q1, Q2, IG, ke, tmax,I ]

has been evaluated by their Lie derivatives [28, 38]. In all the cases, the jaco-
bian matrices (7.2) have full-rank (rank 9, 10, 10 and 11, respectively). There-
fore, all the systems are observable, and it is theoretically possible to estimate
all the states from IG(t) interstitial glucose measurements.

7.5.2 In-silico results

In the original Hovorka’s model all the model parameters are considered con-
stant along time. However, during the in-silico simulation, parameters ke and
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Model RMSE (mU/L) MARD (%) Computational Time (s)
Hovorka’s Insulin Model 5.6± 2.9 50%± 26% 3 · 10−6 s

Original Hovorka’s EKF 5.5± 2.0 51%± 26% 0.095 s

ke Parameter EKF 3.2± 1.7 19%± 5% 0.098 s

tmax,I Parameter EKF 3.9± 1.0 40%± 18% 0.097 s

ke-tmax,I Parameters EKF 2.4± 0.6 16%± 4% 0.100 s

Table 7.1: Results for in-silico estimation of plasma insulin concentration applying different

approaches. The results shows the RMSE and MARD errors committed (and their standard

deviation) in the estimation of plasma insulin concentration with respect to insulin simulation.

tmax,I vary along time. These differences lead to large values for RMSE and
MARD in the plasma insulin estimation, as seen in Table 7.1. The estimations
performed through the EKF are represented with a solid line in Figure 7.3,
while the square dots represent the values of the in-silico simulation.
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Figure 7.3: Example of in-silico estimations of plasma insulin concentration. The square dots

represent measurements from the in-silico simulation, while the lines represent several estima-

tion approaches: Original Hovorka EKF (solid line) and ke-tmax,I Parameters EKF (dotted

line).

The model parameters ke and tmax,I (one or both) can be considered as
extended states in the Hovorka’s model, and incorporated in an EKF. The re-
sults obtained are represented in Table 7.1, showing that the best results are
achieved when both parameters are considered as extended states. This es-
timation is shown with a dotted line in Figure 7.3. This approach improves
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significantly (p < 0.001) the results obtained with the simulation of Hovorka’s
insulin model. The computational time for each approach is shown in Table
7.1.

7.5.3 Results with real data

Simulation of Hovorka’s insulin model overestimates the plasma insulin con-
centration in all the patients, as parameters ke and tmax,I may be underesti-
mated. Almost the same overestimation is obtained when the estimation of all
the system states is performed through an EKF, represented with a solid line
in Figure 7.4, while the square dots represent real measurements of plasma
insulin and glucose concentration. The plasma insulin overestimation leads
to large values for RMSE and MARD, as shown in Table 7.2. Table 7.3 shows
the results when an outlier patient is omitted.
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Figure 7.4: Example of estimations of plasma insulin concentration with real data. The square

dots represent real measurements, while the lines represent several estimation approaches: Orig-

inal Hovorka EKF (solid line), ke-tmax,I Parameters EKF (dotted line) and Cross-Validation

ke-tmax,I EKF (dashed line).

In the above estimations, the parameters of Hovorka’s model have been
considered constant along time. However, the model parameters ke and tmax,I

can be adapted if they are considered as extended states in the Hovorka’s
model. Each extended model has been incorporated in an EKF. The best re-
sults are obtained when both parameters are considered as extended states,
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Model RMSE (mU/L) MARD (%) Computational Time (s)
Hovorka’s Insulin Model 24.5± 16.5 179%± 158% 3 · 10−6 s

Original Hovorka’s EKF 24.4± 16.4 177%± 156% 0.095 s

ke Parameter EKF 15.3± 7.6 87%± 90% 0.098 s

tmax,I Parameter EKF 18.7± 11.1 133%± 134% 0.097 s

ke-tmax,I Parameters EKF 14.9± 7.7 85%± 100% 0.100 s

Cross-Valid. ke-tmax,I EKF 6.6± 3.9 49%± 72% 0.100 s

Table 7.2: Results for real data estimation of plasma insulin concentration applying different

approaches. The results shows the RMSE and MARD errors committed (and their standard

deviation) in the estimation of plasma insulin concentration for the 12 patients with respect to

real insulin measurements.

Model RMSE (mU/L) MARD (%) Computational Time (s)
Hovorka’s Insulin Model 23.5± 14.9 145%± 103% 3 · 10−6 s

Original Hovorka’s EKF 23.4± 14.9 141%± 101% 0.095 s

ke Parameter EKF 14.7± 6.8 66%± 25% 0.098 s

tmax,I Parameter EKF 17.8± 9.9 101%± 66% 0.097 s

ke-tmax,I Parameters EKF 14.3± 6.9 61%± 28% 0.100 s

Cross-Valid. ke-tmax,I EKF 6.4± 3.9 33%± 14% 0.100 s

Table 7.3: Results for real data estimation of plasma insulin concentration applying different

approaches. The results shows the RMSE and MARD errors committed (and their standard

deviation) in the estimation of plasma insulin concentration for 11 patients (excluding the

outlier patient) with respect to real insulin measurements.

as seen in Tables 7.2 and 7.3. These results are represented in Figure 7.4 with
a dotted line. This approach improves significantly (p < 0.001) the results
obtained with the simulation of Hovorka’s insulin model.

Finally, the estimations further improve after a cross-validation of the esti-
mated values at the end of the studies of the uncertain parameters ke (0.32 ±
0.10 min−1) and tmax,I (115 ± 33 min), as shown in Tables 7.2 and 7.3, and in
Figure 7.4 with a dashed line. The computational time for each approach is
shown in Tables 7.2 and 7.3.

7.6 Discussion and conclusion

The experiments carried out in the previous section illustrate several approaches
to estimate plasma insulin concentration through SC interstitial glucose mea-
surements in Hovorka’s model. This model has been chosen to illustrate the
techniques, although they could be extended to other models.

In both the in-silico and the real data studies, a large error is committed
when the Hovorka’s insulin model is simulated (a common approach in liter-
ature), as seen in Tables 7.1, 7.2 and 7.3. In this model, a perfect knowledge
of the system parameters is assumed, as they remain constant along time. Pa-
rameters ke and tmax,I may be underestimated, producing an overestimation



84 Chapter 7. Real-time estimation of plasma insulin concentration

on insulin concentration. On the other hand, insulin estimation would be un-
derestimated if these parameters were overestimated. Hence, it is crucial to
adjust parameters ke and tmax,I to perform an estimation of plasma insulin
concentration.

Insulin estimation is significantly improved when parameters ke and tmax,I

are considered as extended states. Once the parameters are adjusted, plasma
insulin estimations are also adjusted. Consequently, time variations in both
parameters may be responsible, at least in part, of intra- and inter-patient
variability in insulin stacking, leading to inaccurate plasma insulin estima-
tions. When these parameters are considered as extended states, it is possible
to perform individualized estimations of plasma insulin concentration.

However, the EKF need several glucose measurements to adapt the sys-
tem parameters. In most of real-data cases, the nominal values of parameters
ke and tmax,I [39] are underestimated, producing a large overestimation of
plasma insulin concentration. After the cross-validation, the errors decrease
(Tables 7.2 and 7.3), specially those during the first minutes of the estimation
(Figure 7.4). When this final approach is applied, both RMS and MARD er-
rors are reduced in a 73% with respect to the simulation of Hovorka’s insulin
model. Therefore, this approach is proposed for the estimation of plasma in-
sulin concentration through interstitial glucose measurements.

Observing Figure 7.4, it may seem that once the parameters are adapted,
they do not vary much along time. However, these parameters may vary sig-
nificantly during long-term estimations. In Figure 7.3, the initial values of
parameters ke and tmax,I are similar to the one used in the estimations. Both
the Original Hovorka’s EKF and the ke − tmax,I EKF accomplish an accurate
estimation of insulin concentration during the first meal. However, once the
parameters values have varied, only the ke − tmax,I EKF is able to adapt itself
and perform much better estimations of plasma insulin concentration than
the Original Hovorka’s EKF. Hence, in long-term estimations it is important
to consider ke and tmax,I parameters as extended states to adapt them along
time.

Nevertheless, there is still a significant error, but it is not totally inevitable.
This is, in part, a consequence of the error committed in the interstitial glucose
measurements, as the SC continuous glucose monitors do not accomplish ac-
curate measurements [4]. Errors in plasma insulin estimations may decrease
if continuous glucose monitors improve their performance. Furthermore, in
exception of ke and tmax,I , the rest of the parameters of Hovorka’s model as-
sume their nominal value during the estimations. However, some of these
parameters, such as the insulin sensitivity, have large variability. An individ-
ualization of these parameter values may improve plasma insulin estimations.

Most of the error committed (Table 7.2) is accumulated in a single outlier
patient, in which insulin measurements do not represent reliable values. If
this outlier patient is not considered in the calculations, the metrics improve
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significantly, specially the MARD value (Table 7.3).
Previous studies have carried out insulin estimations in non-diabetic hu-

mans after intravenous glucose injections [23], and in diabetic and non-diabetic
pigs [24]. In this work, the behaviour of diabetic human patients after a meal
ingestion has been analysed, based on SC glucose measurements. In conclu-
sion, this study approaches us to the real operation of the artificial pancreas,
and improves the performance of real-time estimations for plasma insulin con-
centration, with respect to insulin models used in literature. From these results
based on SC glucose monitoring, the proposed approach may be beneficial for
increasing the efficiency and safety of control algorithms for the artificial pan-
creas.

In this work, Hovorka’s glucose-insulin model has been validated as part
of an insulin observer system, based on subcutaneous glucose measurements.
A natural extension of this work would be the inclusion of this model in an
interval observer, in which the methods exposed in the previous chapters can
be applied. However, this combination is not straightforward, as interval ob-
servers require hard restrictions on the observer monotonicity that are only
satisfied in selected systems [31]. As a consequence, this problem is remained
open as a future research line.





Conclusions of this thesis

Lo urgente puede esperar.

Lo importante no debería.

Anónimo

This thesis presents new approaches and methodologies in order to over-
come some of the problems of model uncertainty: the computation of guar-
anteed solution envelopes and real-time state estimation. The main contri-
butions of this work are summarized on the particular section Discussion and

conclusion that closes each chapter.
These are the main problems tackled in this thesis:

1. The Computation of guaranteed solution envelopes is generally per-
formed in literature by an orthant monotonicity analysis approach. When
the monotonicity conditions are satisfied, it is possible to compute the
exact solution bounds. Otherwise, some overestimation is obtained. In
order to overcome (or minimize) this problem, several approaches have
been developed to eliminate or reduce the overestimation.

1.1. Common structures for biological models have been analysed in
Chapter 3 (parallel inputs models) and Chapter 4 (in-series mod-
els). Solution envelopes have been computed using several meth-
ods, such as model reduction, analysis of critical points, change of
variables or application of differential inequalities. These techni-
ques have been applied in conjunction to the classical monotonic-
ity analysis for the computation of tight guaranteed solution en-
velopes, minimizing the overestimation.

1.2. A novel approach based on cone monotonicity is introduced in
Chapter 5, which is specially useful when the classical orthant mono-
tonicity conditions are not satisfied. This new method is based on
monotonicity with respect to an ordering induced by an arbitrary
cone, not necessarily an orthant. After a cone monotonicity anal-
ysis, the input space used for computation of guaranteed solution
envelopes is reduced to just the boundary of the initial conditions

87
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space. Therefore, the overestimation produced is reduced signifi-
cantly.

1.3. Application: Prediction of blood glucose concentration in sub-
jects with type 1 diabetes. Intra-patient variability has been consid-
ered in all the parameters and initial conditions of the model. Tight
glucose envelopes that bound all possible glycemic responses have
been computed in Chapter 6.

2. Real-time estimation of uncertain states and parameters is performed
using state observers and partial measurements from the process.

2.1. Application: Real-time insulin concentration estimation. In Chap-
ter 7, an Extended Kalman Filter has been incorporated in a model
in which different selected time-variant model parameters have been
considered as extended states. Plasma insulin concentration is esti-
mated in real-time from noisy measurements of a continuous glu-
cose monitor.
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Future work lines

The research lines exposed here may be continued following different work
lines:

Solution envelopes for common biological structures has been computed in
this thesis. A deep analysis of other model structures could bring more
techniques to compute guaranteed solution envelopes in some specific
situations. Furthermore, other approaches could be developed to avoid
some of the limitations of the proposed methods, as the constant or im-
pulse inputs restriction in parallel inputs structures.

General approaches to compute solution envelopes could be created. In this
thesis, a novel approach based on monotonicity with respect to an or-
dering induced by an arbitrary cone has been exposed. This technique
reduce the overestimation when the classical orthant monotonicity con-
ditions are not satisfied. However, the system must be monotone with
respect to any cone and it do not remove the overestimation completely.
As a consequence, there is still place for improvement.

Interval observers for glucose-insulin systems could be developed applying
the techniques developed for guaranteed computation. The main limi-
tation of interval observers is that they require hard conditions that only
selected systems satisfy. These systems have normally 2 or 3 equations
only, while the glucose-insulin system created by Hovoka et al. has 9 dif-
ferential equations. This research line is currently under development.

Application to more topics. The examples used in this thesis are from bio-
logical systems. In fact, most of them are glucose-insulin systems, appli-
cable to the diabetes disease. However, the techniques exposed herein
could be applied to any other dynamical system under uncertainty.
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