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Abstract 

Ants constitute an important component of the citrus agroecosystem 
fauna acting simultaneously as predators and as hemipteran mutualists. 
Thus, ants in citrus are in the center of a complex food web affecting the 
composition and the population dynamics of a wide arthropod 
community including honeydew and non-honeydew producing 
herbivores as well as their natural enemies. In eastern Spain the most 
abundant and widespread ant species are the natives Lasius grandis 
Forel and Pheidole pallidula (Nylander), whereas the invasive 
Linepithema humile (Mayr) is also present but not widespread. We have 
conducted ant-exclusion experiments in three commercial citrus 
orchards, each one dominated by one ant species (Pheidole pallidula, 
Lasius grandis or Linepithema humile) during two consecutive growing 
seasons (2011 and 2012) with the aim to disentangle the ecological 
interactions with honeydew and non-honeydew producing pests and 
with natural enemies at the community-level. We discuss the 
implications of the results for biological pest control. 

We quantified the effect of the ant-exclusion on the infestation levels 
and parasitism of three of the most important citrus pests in the area, 
the honeydew producer Aleurothrixus floccosus (Maskell) (woolly 
whitefly) and the non-honeydew producers Aonidiella aurantii (Maskell) 
(California red scale) and Phyllocnistis citrella (Stainton) (citrus 
leafminer). California red scale densities on fruits were significantly 
lower in the two seasons and in the three orchards in the ant-excluded 
treatment. Similarly, the percentage of shoots occupied by A. floccosus 
was significantly lower in the ant-excluded plots in the orchards 
dominated by P. pallidula and L. humile. The percentage of leaf surface 
loss caused by P. citrella was similar on ant-allowed and ant-excluded 
treatments in the three orchards. Interestingly, no significant 
differences were found in the percent parasitism between ant-allowed 
and ant-excluded treatments for the honeydew and non-honeydew 
producing herbivores. These results suggest that factors other than 
parasitoid disruption might explain the increased pest populations 
observed in the presence of ants.  
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Thus, in the same orchards we compared the abundance, species 
richness, diversity and community structure of predators and 
parasitoids between the ant-allowed and ant excluded treatments. A 
total of 176,000 arthropods belonging to 81 taxa were captured and 
identified. Regarding abundance, the response of natural enemies to 
ant-exclusion was species specific. When examining functional groups, 
parasitoids showed higher abundances in the ant-allowed treatment 
whereas most generalist predators were less abundant. The abundance 
of some species from the 4th trophic level (hiperparasitoids) also 
differed between treatments. Similarly, the species richness (S) and the 
Shannon diversity index (H) of parasitoids were higher in the ant-
allowed treatment, whereas the species richness (S) of predators was 
significantly lower. The community structure of predators and 
parasitoids was not significantly different between treatments. Thus, 
ants were not associated with a dramatic and/or general decrease in 
natural enemy abundance or biodiversity; on the contrary we found 
higher parasitoid species richness and diversity in the presence of ants. 
On the other hand, the negative impact of ants on generalist predators 
may have important implications for the regulation of pest populations. 

Finally we tested a novel hypothesis examining the potential 
competition between ants and natural enemies for honeydew produced 
by Hemiptera. Through the use of high performance liquid 
chromatography (HPLC) we related the level of ant activity with the 
energy reserves and feeding history of individual specimens collected in 
the field during representative days of spring, summer and autumn. Out 
of 145 Aphytis chrysomphali (Mercet) parasitoids, 65% were classified 
as sugar-fed and 24.7% as honeydew-fed. A significant negative 
correlation between ant activity and the total sugar content and 
honeydew feeding incidence by A. chrysomphali was found in summer, 
when ant activity peaked. Out of 47 individuals of the predator 
Chrysoperla carnea s.l., 55.3% were classified as sugar-fed. Ant activity 
was negatively correlated with the sugar feeding incidence by C. carnea 
in spring. This is a previously undocumented indirect interaction in food 
webs in which ants interfere with the physiological state of the natural 
enemies. Given that the absence of sugar feeding is detrimental for the 
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fitness of many species of predators and parasitoids, this interaction 
may have important consequences for the arthropod community 
composition and practical implications for biological control.  
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Resum 

Les formigues són un element important de l’agroecosistema dels 
cítrics, en el que poden actuar simultàniament com a insectes 
depredadors i com a mutualistes d’hemípters. Com a conseqüència, les 
formigues es troben al centre d’una complexa xarxa tròfica en la que 
poden afectar a la composició i la dinàmica poblacional d’un ampli grup 
d’artròpodes, incloent herbívors productors i no productors de melassa 
així com els seus enemics naturals. Les espècies de formigues més 
abundants i esteses als cítrics de l’est de la Península Ibèrica són les 
espècies natives Lasius grandis Forel i Pheidole pallidula (Nylander) 
mentre que l’espècie invasora Linepithema humile (Mayr) es troba 
també present però no de forma estesa. S’han dut a terme estudis 
d’exclusió de formigues en tres parcel·les comercials de cítrics en les 
que, en cada una d’elles, predominava una de les tres espècies de 
formigues (Pheidole pallidula, Lasius grandis o Linepithema humile). El 
principal objectiu ha estat el d’esclarir les interaccions ecològiques 
existents entre les formigues i els artròpodes productors i no 
productors de melassa així com els enemics naturals a nivell de 
comunitat. Les implicacions que els resultats obtinguts poden tenir 
sobre el control biològic de plagues són discutides.   

S’ha quantificat l’efecte de l’exclusió de formigues sobre els nivells 
d’infestació i el parasitisme de tres de les plagues més importants dels 
cítrics de la zona, la plaga productora de melassa Aleurothrixus floccosus 
(Maskell) (mosca blanca) i les plagues no productores de melassa 
Aonidiella aurantii (Maskell) (poll roig de California) i Phyllocnistis 
citrella (Stainton) (minador dels cítrics). Les densitats poblacionals del 
Poll roig de Califòrnia en fruits foren significativament menors en el 
tractament d’exclusió de formigues els dos anys i en les tres parcel·les 
de l’estudi. Igualment, el percentatge de brots ocupats per A. floccosus 
fou significativament menor en el tractament d’exclusió de formigues en 
les parcel·les en les que predominava P. pallidula i L. humile. La 
incidència de P. citrella fou similar en exclusió i presència de formigues 
en les tres parcel·les. Curiosament, no es trobaren diferències en el 
percentatge de parasitisme entre els dos tractaments per a ninguna de 
les plagues estudiades. Aquests resultats suggereixen que altres factors, 
més enllà de la interferència amb els parasitoides, podrien explicar els 
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increments poblacionals de plagues observats en presència de 
formigues.  

Davant aquests resultats, es va comparar l’abundància, riquesa 
d’espècies, diversitat i estructura de la comunitat de depredadors i 
parasitoides entre els tractaments d’exclusió i presència de formigues. 
Es capturaren i identificaren un total de 176,000 artròpodes 
pertanyents a 81 taxons distints. En quant a l’abundància, la resposta 
dels enemics naturals a l’exclusió de formigues fou específica per a cada 
espècie. Agrupant els grups funcionals, els parasitoides mostraren 
majors abundàncies en presència de formigues mentre que la majoria de 
depredadors generalistes foren menys abundants. L’abundància 
d’algunes espècies pertanyents al 4t nivell tròfic (hiperparasioides) 
també fou diferent entre tractaments. De la mateixa forma, la riquesa 
d’espècies i l’Índex de diversitat de Shannon (H) dels parasitoides foren 
majors en presència de formigues mentre que la riquesa d’espècies (S) 
dels depredadors fou menor. L’estructura de la comunitat de 
depredadors i parasitoides fou similar entre tractaments. 
Conseqüentment, les formigues no es veuen associades a una reducció 
important i/o generalitzada de l’abundància o la biodiversitat de 
parasitoides en presència de formigues. Per altra banda, l’impacte 
negatiu de les formigues sobre els depredadors generalistes pot tenir 
importants implicacions per a la regulació de les poblacions de plagues.  

Finalment s’estudià una novedosa hipòtesi en la que es va plantejar 
l’existència de competència per la melassa que produeixen els 
hemípters entre les formigues i els enemics naturals. Mitjançant l’ús de 
cromatografia líquida d’alta resolució (HPLC) es va relacionar l’activitat 
de les formigues amb les reserves energètiques i les fonts alimentàries 
utilitzades per espècimens d’enemics naturals recol·lectats al camp 
durant dies representatius de primavera, estiu i tardor. Es va trobar una 
correlació significativament negativa entre  l’activitat de les formigues i 
el contingut total de sucres i l’alimentació a base de melassa del 
parasitoide Aphytis chrysomphali (Mercet) en estiu, moment en el que 
l’activitat de les formigues era màxima. L’activitat de les formigues es va 
correlacionar negativament amb l’alimentació a base de sucres del 
depredador Chrysoperla carnea s.l. en primavera. Aquesta interacció 
indirecta en la que les formigues interfereixen en l’estat fisiològic dels 
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enemics naturals no ha sigut documentada prèviament. Donat que 
l’absència de sucres en l’alimentació de moltes espècies de depredadors 
i parasitoides és perjudicial per al seu estat físic, aquesta interacció pot 
tenir importants implicacions pràctiques per al control biològic de 
plagues.  
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Resumen 

Las hormigas constituyen un elemento importante del 
agroecosistema de los cítricos, en el que actúan simultáneamente como 
insectos depredadores y como mutualistas de hemípteros. Como 
consecuencia, las hormigas se encuentran en el centro de una compleja 
red trófica en la que pueden afectar a la composición y a la dinámica 
poblacional de un amplio grupo de artrópodos, en los que se incluye 
herbívoros productores y no productores de melaza, así como a sus 
enemigos naturales. Las especies de hormigas más abundantes y 
extendidas en los cítricos del este de la Península Ibérica son las 
especies nativas Lasius grandis Forel y Pheidole pallidula (Nylander), 
mientras que la especie invasora Linepithema humile (Mayr) se 
encuentra también presente pero no de forma extendida. Se han llevado 
a cabo estudios de exclusión de hormigas en tres parcelas comerciales 
de cítricos en las que, en cada una de ellas, predominaba una de las tres 
especies de hormigas (P. pallidula, L. grandis o L. humile). El principal 
objetivo ha sido el de esclarecer las interacciones ecológicas existentes 
entre las hormigas y los artrópodos productores y no productores de 
melaza, así como con los enemigos naturales a nivel de comunidad. Se 
discuten las implicaciones que los resultados obtenidos pueden tener 
sobre el control biológico de plagas. 

Se ha cuantificado el efecto de la exclusión de hormigas sobre los 
niveles de infestación y el parasitismo de tres de las plagas más 
importantes de los cítricos de la zona, la plaga productora de melaza 
Aleurothrixus floccosus (Maskell) (mosca blanca) y las plagas que no 
producen melaza Aonidiella aurantii (Maskell) (piojo rojo de California) 
y Phyllocnistis citrella (Stainton) (minador de los cítricos). Las 
densidades poblacionales del piojo rojo de California en frutos fueron 
significativamente menores en el tratamiento de exclusión de hormigas 
en los dos años y en las tres parcelas del estudio. De igual modo, el 
porcentaje de brotes ocupados por A. floccosus fue significativamente 
menor en el tratamiento de exclusión de hormigas en las parcelas en las 
que predominaba P. pallidula y L. humile. La incidencia de P. citrella fue 
similar en exclusión y presencia de hormigas en las tres parcelas. 
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Curiosamente, no se encontraron diferencias en el porcentaje de 
parasitismo entre los dos tratamientos para ninguna de las plagas 
estudiadas. Estos resultados sugieren que otros factores, más allá de la 
interferencia con los parasitoides, podrían explicar los incrementos 
poblacionales de plagas observados en presencia de hormigas.  

Por ello, se comparó la abundancia, riqueza de especies, diversidad y 
estructura de la comunidad de depredadores y parasitoides entre los 
tratamientos de exclusión y presencia de hormigas. Se capturaron e 
identificaron un total de 176,000 artrópodos pertenecientes a 81 
taxones distintos. En cuanto a la abundancia, la respuesta de los 
enemigos naturales a la exclusión de hormigas fue específica para cada 
especie. Analizando los grupos funcionales, los parasitoides mostraron 
mayores abundancias en presencia de hormigas, mientras que la 
mayoría de los depredadores generalistas fueron menos abundantes. La 
abundancia de algunas especies pertenecientes al 4º nivel trófico 
(hiperparasitoides) también fue diferente entre tratamientos. De igual 
modo, la riqueza de especies (S) y el Índice de diversidad de Shannon 
(H) de los parasitoides fueron mayores en presencia de hormigas, 
mientras que la riqueza de especies (S) de los depredadores fue menor. 
La estructura de la comunidad de depredadores y parasitoides no difirió 
entre tratamientos. Consecuentemente, las hormigas no se ven 
asociadas a una reducción importante y/o generalizada de la 
abundancia o la biodiversidad de enemigos naturales; por el contrario 
encontramos una mayor riqueza de especies y biodiversidad de 
parasitoides en presencia de hormigas. Por otro lado, el impacto 
negativo de las hormigas sobre los depredadores generalistas puede 
tener importantes implicaciones sobre la regulación de las poblaciones 
de plagas.  

Finalmente, se estudió una novedosa hipótesis en la que se planteó la 
existencia de competencia por la melaza que producen los hemípteros, 
entre las hormigas y los enemigos naturales. Mediante el uso de 
cromatografía líquida de alta resolución (HPLC) se relacionó la actividad 
de las hormigas con las reservas energéticas y las fuentes alimenticias 
utilizadas por especímenes de enemigos naturales colectados en el 
campo durante días representativos de primavera, verano y otoño. Se 
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encontró una correlación significativamente negativa entre la actividad 
de las hormigas y el contenido total de azúcares y la alimentación a base 
de melaza del parasitoide Aphytis chrysomphali (Mercet) en verano, 
momento en el que la actividad de las hormigas fue máxima. La 
actividad de las hormigas se correlacionó negativamente con la 
alimentación a base de azúcares del depredador Chrysoperla carnea s.l 
en primavera. Esta interacción indirecta en la que las hormigas 
interfieren con el estado fisiológico de los enemigos naturales no ha sido 
documentada previamente. Dado que la ausencia de azúcares en la 
alimentación de muchas especies de depredadores y parasitoides es 
perjudicial para su estado físico, esta interacción puede tener 
importantes consecuencias para la composición de la comunidad de 
artrópodos e implicaciones prácticas sobre el control biológico de 
plagas. 
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1. INTRODUCTION 
 

1.1 The importance of ants 

Ants (Hymenoptera: Formicidae) are among the most abundant 

animals in terrestrial ecosystems and they are present in practically all 

terrestrial biotopes. It is estimated that the number of ants in the world 

is around 1015 individuals (Wilson, 1971). They represent 15-20% of the 

total terrestrial animal biomass, reaching 25% in tropical areas (Schultz, 

2000). Currently, 12,990 species have been identified (Agosti & Johnson, 

2005) and it is estimated that a great number of species still remain to 

be identified. As eusocial insects, ants are organized in colonies in which 

two or more adult generations coexist. They are divided in reproductive 

and non-reproductive castes and they care for the brood cooperatively 

(Hölldobler & Wilson, 1990). 

Ants have evolved various feeding habits and foraging strategies. 

They can be predators of other insects, seed harvesters, scavengers or 

feed directly and indirectly on plants (Carroll & Janzen, 1973; Hölldobler 

& Wilson, 1990; Way & Khoo, 1992). Nevertheless, most ant species are 

omnivorous and combine the protein obtained from predation or 

scavenging with carbohydrates, principally obtained from the honeydew 

produced by plant feeders (Way, 1963; Carroll & Janzen, 1973). 

Due to their abundance, ubiquity and feeding habits, ants may alter 

the environment in which they inhabit, acting as ecosystem engineers 

and playing a great diversity of roles. Ants may act as soil tillers since 

they change the structure and chemical properties of the soil by 
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constructing subterranean galleries or mounds (Folgarait, 1998). They 

are also involved in soil improvement and nutrient cycling (Lobry De 

Bruyn, 1999). The accumulation of plant and animal remains in their 

nests results in an increase of carbon, nitrogen and phosphorus in the 

nest area, resulting in decomposition processes being greater in ant 

mounds (Hölldobler & Wilson, 1990; Folgarait, 1998).  

Ants are involved in numerous mutualistic relationships with plants. 

They play an important role in natural ecosystems as seed dispersers 

and pollinators (Beattie, 1985). Numerous plants have developed seed 

appendages, elaiosomes, to promote dispersal by ants in what is called 

Myrmecochory (Beattie, 1985; Hughes et al., 1994). Ants transport the 

seeds to their nest and after they consume the elaiosome they discard 

the seed in a safe and nutrient rich area (Rissing, 1986; Giladi, 2006). As 

predators, ants may play an important role as plant biotic defenses. 

Since Janzen (1966) demonstrated that ants could protect Acacia trees 

against herbivores and parasites in exchange for food and shelter, 

numerous works have been published evidencing the existence of a 

protective ant-plant mutualism involving numerous ant and plant 

species (Bentley, 1977; Way & Khoo, 1992; Rosumek et al., 2009). As a 

result of this protective mutualism, several ant species are known to 

reduce pest populations and plant damage in natural and managed 

ecosystems (Way & Khoo, 1992; Karhu, 1998; Styrsky & Eubanks, 2007). 

Ants are also involved in a widespread and extensively documented 

mutualism with other insects that produce honeydew (Way, 1963). 

Honeydew is a nutritive excretion, rich in carbohydrates, produced by 

some insects of the Hemiptera Sternorrhyncha (whiteflies, aphids, 

mealybugs and scales) and Auchenorrhyncha (treehoppers and 



Chapter 1 

5 
 

leafhoppers) suborders after feeding on phloem sap (Wäckers, 2001). 

The honeydew produced by these insects is a valuable source of food for 

almost all groups of ants (Carroll & Janzen, 1973; Tobin, 1994). In 

exchange for honeydew, ants offer several benefits to their partners 

such as protection against natural enemies, shelter, transport and 

dispersal and sanitation. As a result, the plant feeders reach higher 

reproductive and developmental rates and eventually increased 

populations under ant attendance (Way, 1963; Buckley, 1987; Stadler & 

Dixon, 1999, 2005). 

 

1.2 Ants in agricultural ecosystems 

The role of ants in agricultural ecosystems may be of high relevance 

due to their impact on the herbivore populations, interactions with the 

wider arthropod community and impact on plant health (Styrsky & 

Eubanks, 2007). 

In most terrestrial habitats ants are top predators of other insects 

(Hölldobler & Wilson, 1990). They can reduce populations of herbivores 

by consuming them as source of protein (Figure 1.1). This protective 

and beneficial role of ants is widespread and has been extensively 

documented in agricultural ecosystems for a great number of ant 

species (Way & Khoo, 1992; Karhu, 1998; Styrsky & Eubanks, 2007; 

Rosumek et al., 2009; Olotu et al., 2013). Species in the genera of 

Oecophylla, Dolichoderus, Anoplolepis, Wasmannia, Azteca, Solenopsis, 

Formica, Tetramorium, Pheidole and Dorymyrmex have been reported to 

offer a good protection against pests, especially Hemiptera and 
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Coleoptera, in coconut, oil palms, coffee and cacao in different regions of 

the world (Way & Khoo, 1992; Philpott & Armbrecht, 2006; Olotu et al., 

2013). For example, the predatory ant, Formica neoclara (Emery) can 

reduce Cacopsylla pyricola (Foerster) populations in pear orchards in 

Washington (Paulson & Akre, 1992). The African weaver ant Oecophylla 

longinoda Latreille effectively controls sap-sucking pests in cashew in 

Tanzania (Olotu et al., 2013). Finally, Oecophylla smaragdina Fabricius 

controls Jarvis’s fruit fly Bactrocera jarvisi (Diptera: Tephritidae) in 

mango orchards in Australia (Peng & Christian, 2006).  

 
Fig. 1.1. Worker of the ant Linepithema humile 

preying on a Prays citri larva. 

However, in agroecosystems, the protective mutualism between ants 

and honeydew producers may have a negative impact on plants, 

especially because many of the ant-tended hemipteran species are 

serious crop pests. Indeed, many of the world’s major pests are 

hemipterans, such as aphids, mealybugs and scale insects, and factors 

influencing their populations have important economic implications 

(Buckley, 1987). One of the best known and studied ant-hemipteran 

mutualism is the existing between ants and certain aphid species 
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(Figure 1.2). Increased populations of aphids in ant-attended colonies 

have been shown in apple (Stewart-Jones et al., 2008; Miñarro et al., 

2010), bean (Banks, 1962), banana (Stechmann et al., 1996) and cotton 

(Kaplan & Eubanks, 2002). Mealybugs are one of the most important 

pests in vineyards (Daane et al., 2008) and ants are strongly associated 

with them. The invasive Argentine ant, Linepithema humile (Mayr) was 

associated with higher mealybug densities and fruit infestation in 

California (Daane et al., 2007) and South Africa vineyards (Mgocheki & 

Addison, 2010). Moreover, ants have been found to induce populations 

increases of pests that do not produce honeydew, such as Aonidiella 

citrina Craw (Hemiptera: Diaspididae) (Flanders, 1945), Aonidiella 

aurantii Murdoch (Hemiptera: Diaspididae) (Moreno et al., 1987; Pekas 

et al., 2010b; Dao et al., 2014) and Panonychus citri (McGregor) (Acari: 

Tetranychidae) (Haney et al., 1987). 

 
Fig. 1.2. Ants tending a colony of aphids.   

Therefore, ants may act as pest predators offering a beneficial 

service, while on the other hand, due to their association with the 

honeydew producers they are considered as indirect pests. In many 

cases both effects coexist. The presence of honeydew producers on a 
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plant attracts ants that boost their populations but, at the same time, 

predate on other more harmful herbivores coexisting on the same host 

plant (Messina, 1981; Floate & Whitham, 1994; Perfecto & Vandermeer, 

2006; Styrsky & Eubanks, 2010). Thus, the net effects of ant-hemipteran 

interactions on host plant health constitutes a balance between the 

benefits obtained from herbivore suppression due to ant predation and 

the costs caused by the increased pest populations (Kaplan & Eubanks, 

2005; Styrsky & Eubanks, 2007).  

 

1.2.1 Ants in citrus agroecosystems 

Ants are a major component of the citrus agroecosystem fauna 

(Bodenheimer, 1951; Samways et al., 1982; Alvis & Garcia-Mari, 2006). 

Haney (1988) recorded 295 ant species in citrus orchards from 50 

countries around the world. In South Africa, Samways et al., (1982) 

recorded 123 ant species in citrus orchards from which 44 foraged in 

the trees and 25 were observed tending honeydew-producers.  

The weaver ant Oecophylla sp. has long been used in citrus to control 

a wide range of potential pests in what is known as the first example of 

biological control, dating from 304 AD (VanMele & Cuc, 2000; VanMele, 

2008). In Hawaii, Wong & McInnis (1984) reported that the Argentine 

ant L. humile predates on the fruit fly Ceratitis capitata (Wiedemann) 

pupae in the soil. However, the presence of ants in citrus ecosystems has 

been generally related with population outbreaks of honeydew-

producing pests. Furthermore, ant activity in citrus has been found to 

increase populations of pests that do not produce honeydew. 
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Fig. 1.3. A. Workers of the ant Lasius grandis tending a colony of 
Aleurothrixus floccosus. B. Workers of the ant Pheidole pallidula tending a 
colony of A. floccosus. C. Linepithema humile on Coccus hesperidium. D. 
Lasius grandis on Saissetia oleae. E. Pheidolle pallidula on Aonidiella aurantii. 
F. Lasius grandis workers foraging on an A. aurantii infested fruit.  

Flanders (1945) reported increased populations of the non-

honeydew producer A. citrina due to the presence of the Argentine ant L. 

humile tending the honeydew producer Coccus hesperidum L. on the 

same trees (Hemiptera: Coccidae). The abundance of the scales, Saissetia 

A B 

C D 

E F 
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oleae Olivier (Hemiptera: Coccidae) and C. hesperidum (Bartlett, 1961), 

and A. aurantii declined after ant removal. Moreno et al. (1987) also 

found that the exclusion of L. humile resulted in lower mealybug and 

whitefly populations and reduced fruit infestation caused by A. aurantii. 

Yoo et al. (2013) confirmed that the exclusion of L. humile from citrus 

canopies resulted generally in decreased populations of Planococcus 

citri (Risso) (Hemiptera: Pseudococcidae), Coccus hesperidium L. 

(Hemiptera: Coccidae), A. floccosus and A. aurantii in an organic lemon 

orchard.  

In South Africa, the brown house ant Pheidole megacephala F. was 

associated with higher infestations of A. aurantii in orange orchards 

(Steyn, 1954). The canopy-foraging ant Iridiomyrmex rufoginer (Lowne) 

stimulated the populations of C. hesperidum and A. aurantii (James, 

1997) and black scale S. oleae (Dao et al., 2014) in citrus orchards in 

Australia. In Japan, the exclusion of Lasius niger L. produced a 94% 

decrease in the populations of the mealybug Pseudococcus citriculus 

Green (Itioka & Inoue, 1996a) and of the wax scale insect Ceroplastes 

rubens Maskell (Hemiptera: Coccidae) (Itioka & Inoue, 1996b) in a 

Satsuma orange orchard. In the same way, Aphis gossypii Glover 

(Hemiptera: Aphididae) colonies were bigger when attended by L. niger 

in a mandarin orchard (Kaneko, 2002). 
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1.3 Mechanisms underlying the increases of the 

herbivore populations induced by ants 

 

1.3.1. Sanitation and stimulation of the herbivores 

The increased populations of honeydew producers induced by ants 

may be a consequence of several mechanisms. The sanitation effect, i.e. 

the elimination of honeydew, has been found to benefit honeydew 

producers by reducing mortality caused by fungal attack (Buckley, 

1987). If not removed by ants, the accumulation of honeydew produced 

by the aphid Chaitophorus populicola Thomas may be one of the causes 

of declined aphid populations in cottonwood (Wimp & Whitham, 2001). 

The exclusion of I. rufoniger caused high mortality of the black scale S. 

oleae through asphyxiation by its own honeydew (Dao et al., 2014).  

Moreover, ants may have direct effects on the reproduction and 

fitness of the attended Hemiptera (Way, 1963). For example, the 

reproductive performance of aphids increased under ant attendance (El‐

Ziady, 1960; McPhee et al., 2012). Flatt & Weisser (2000) showed that 

ant-tended aphids lived longer, matured earlier, and had a higher rate of 

reproduction and a higher expected number of offspring than aphids 

that are not tended by ants. Nevertheless, the aphid-ant mutualism may 

also result in costs for aphids that are detrimental for the colony growth 

(see Stadler & Dixon 1998). 
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1.3.2 Interference of ants with the activity of the natural 

enemies 

The association between ants and honeydew producers is considered 

a protective mutualism given that the major benefit that ants offer to 

their partners is protection against predators and parasitoids (Buckley, 

1987). Numerous studies have shown that the population increases of 

the honeydew and non-honeydew producers are caused by the 

interference of ants with their natural enemies.  

Banks (1962) showed that L. niger protected Aphis fabae Scopoli 

against several coccinellid, chrysopid and sirfid predators on bean 

plants. In Pluchea indica (L.) plants Pheidole megacephala (Fanricius) 

reduced the parasitism and the attacks of the predatory coccinellids of 

Coccus viridis (Green) (Hemiptera: Coccidae) (Bach, 1991). The presence 

of L. humile in oleander (Nerium oleander L.) resulted in lower 

parasitism rates and increased populations of the scale S. oleae 

(Barzman & Daane, 2001). In the case of non-honeydew producers, such 

as A. aurantii, it is supposed that ants disrupt their parasitoids as an 

indirect effect of ant-attendance on honeydew producers present on the 

same tree (Flanders, 1945; Moreno et al., 1987; James, 1997). 

Similarly, in citrus agroecosystems pest outbreaks have been 

associated with the protection of ants against natural enemies (Figure 

1.4). The population increase of the mealybug Pseudococcus citriculus 

Green (Hemiptera: Pseudococcidae) was caused by the aggressive 

behavior of L. niger against Chilocorus kuwanae (Silvestri) (Coleoptera: 

Coccinellidae) and a predatory chrysopid species (Neuroptera: 

Chrysopidae) (Itioka & Inoue, 1996a). The aggressive behavior of L. 
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niger against the coccinellid Harmonia axyridis Pallas resulted in 

increased aphid numbers in A. gossypii colonies (Kaneko, 2002). The 

parasitism of A. aurantii caused by Aphytis melinus DeBach 

(Hymenoptera: Aphelinidae) decreased and the A. aurantii population 

increased with the number of ants ascending to the trees in a lemon 

orchard (Yoo et al., 2013).  

  
Fig. 1.4. Ants attacking the predatory ladybirds Chilocorus bipustulatus (left) 

and Coccinella septempunctata (right). 

Nevertheless, the aggressiveness of ants as well as the tolerance of 

parasitoids and predators to ant attack are highly variable for both ant 

and natural enemy species. Some parasitoid species are highly affected 

by ants while other species can cope effectively with ant-aggression 

(Flanders, 1951, 1958; Way, 1963; Völkl & Mackauer, 1993). In the same 

way, the response of predators to ants varies depending on the species 

involved. Ants impact negatively numerous coccinellid and chrysopid 

species (Bartlett, 1961; Itioka & Inoue, 1996a; Kaplan & Eubanks, 2002) 

while some other coccinellid species are not affected (Flanders, 1958; 

Vanek & Potter, 2010). Some natural enemy species even benefit from 

ants tending hemipterans through elimination of other competitors 

(Flanders, 1951) or via morphological or behavioral adaptations. For 
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example, wax covers in larvae of Scymnus species (Völkl & Vohland, 

1996), myrmecomorphy of Pilophorus sp. (Piñol et al., 2012b; Sánchez & 

Ortín-Angulo, 2012) or chemical mirmicy in Lysiphlebus cardui 

(Marshall) (Hymenoptera: Braconidae) (Völkl & Mackauer, 1993) 

constitute camouflage strategies that allow these species to exploit food 

sources tended by ants.  

All the aforementioned studies reporting an impact of ants on the 

abundance and activity of natural enemies examine mostly pairwise 

interactions. Nevertheless, ants may have wider community-level 

consequences (Styrsky & Eubanks, 2007). Ants may alter 

simultaneously the abundance or spatial distribution of different 

species, affecting therefore the biodiversity and community structure of 

natural enemies. Recently, the community-level consequences of the 

ant-hemipteran mutualism have received more attention and several 

authors have focused on the impact of ants on diversity, community 

structure or abundance of several natural enemies in different 

ecosystems (Table 1, Chapter 4). The results obtained are highly 

context-dependent and differ depending on the ant and natural enemy 

species as well as the ecosystem in which the study took place.  

Whereas some of these studies have demonstrated a negative impact 

of ants on several groups of natural enemies, specially predators (James 

et al., 1999; Eubanks, 2001; Kaplan & Eubanks, 2005; Piñol et al., 

2012a), some other authors do not find any effect (Offenberg et al., 

2005; Philpott et al., 2008; Chong et al., 2010) or even report positive 

effects of ants on the natural enemy abundance and diversity (Stewart-

Jones et al., 2008; Peng & Christian, 2013). It is important to mention 

that many of the above studies include numerous natural enemies often 
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grouped at the order level. Little is known about the impact of ants on 

the community of predators and parasitoids at the species level, 

particularly in the case of parasitoids which are often grouped as a 

single group in Hymenoptera order.  

1.3.3 A new hypothesis: impact of ants on the physiological 

state of the natural enemies? 

The honeydew produced by hemipterans is a valuable source of 

energy not only for ants, but also for many entomophagous arthropods 

in natural and managed ecosystems. Most species of parasitoids and 

numerous predators consume carbohydrates (Jervis & Kidd, 1986; 

Wäckers et al., 2008; Tena et al., 2013c). Honeydew is the most 

prevalent and available sugar source in agricultural ecosystems 

(Wäckers, 2005) and its consumption enhances the longevity and 

fecundity of parasitoids (Wäckers, 2001; Faria et al., 2008; Pekas et al., 

2010c; Tena et al., 2013b). Thus, the presence and availability of 

honeydew in agroecosystems may be a key element for the fitness and 

performance of natural enemies in the field.  

The presence of ants may increase honeydew availability as a result 

of the increased populations of the honeydew-producers. This 

eventually may result in improved sugar feeding opportunities for the 

natural enemies. Evans & England (1996) showed in field experiments 

that the availability of honeydew produced by aphids increased 

parasitism levels by the wasp Bathyplectes curculionis Thomson 

(Hymenoptera: Ichneumonidae) on the alfalfa weevil Hypera postica 

(Gyllenhal) and highlighted the importance of this indirect interactions 

for biological control. However, given that ants, as well as many species 
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of parasitoids and predators, rely on honeydew to fulfil their energetic 

needs, they may interact competitively through the shared honeydew 

exploitation (Figure 1.5). In such an interaction, the access of natural 

enemies to honeydew might be hampered. Thus, their nutritional state 

and eventually their effectiveness as biological control agents may be 

seriously compromised. Nevertheless, this hypothesis has never been 

tested. 

  
Fig. 1.5. A. Linepithema humile feeding on a honeydew droplet. B. Lasius 

grandis feeding on honeydew from an aphid cauda.  

 

1.4 Ants in Mediterranean citrus agroecosystems 
 

1.4.1 Species composition  

Up to 55 ant species have been reported in Mediterranean citrus 

(Pekas, 2011). Nevertheless, the species richness and diversity in citrus 

orchards is poor when compared to natural communities (Cerdá et al., 

2009). Studies performed on the Mediterranean coast of the Iberian 

Peninsula report 26 different species of ants in citrus orchards (Table 

1). 

A B 
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The most abundant and widespread ant species in Mediterranen 

citrus are Lasius grandis and Pheidole pallidula (Figure 1.6). The 

Argentine ant Linepithema humile (Figure 1.6) is present but not widely 

distributed in the Mediterranean citrus. Nevertheless, when present in 

an orchard L. humile is very abundant. 

 

 

 

 
Fig. 1.6. A. A worker of Lasius grandis. B. A worker of 

Pheidole pallidula. C. A worker of Linepithema humile.  

A 

B 

C 
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Table 1. Ant species reported in citrus orchards in the Mediterranean 

coast of the Iberian Peninsula.  

Subfamily Ant species References** 

Dolichoderinae Linepithema humile (Mayr) * 1,2,3,4 
 Tapinoma nigerrimum (Nylander) * 1,3,5 
 Tapinoma erraticum (Latreille) * 2,3,4 
 Tapinoma simrothi Krausse * 3 
Formicinae Camponotus foreli (Emery) * 1,3 
 Camponotus pilicornis (Roger) * 1 
 Camponotus sylvaticus (Olivier) * 2,3,4 
 Formica cunicularia Latreille 1 
 Formica gerardii Bondroit 3 
 Formica rufibarbis Fabricius 2,4 
 Lasius grandis Forel * 2,4,5 
 Lasius niger L. * 1,3 
 Plagiolepis pygmaea (Latreille) * 2,3,4 
 Plagiolepis schmitzii Forel * 1,3,5 
Myrmicinae Aphaenogaster senilis Mayr 1 
 Cardioncodyla batesii Forel 4 
 Cardioncodyla elegans Emery 4 
 Cardiocondyla mauritanica Forel 2,3 

 Cataglyphis gadeai   De haro &          
Collingwood 2,4 

 Diplorhoptrum robusta Bernard 1 
 Messor barbarous L. 1,2,4 
 Myrmica scabrinodis Nylander 1 
 Pheidole pallidula (Nylander) * 1,2,3,4,5 
 Tetramorium caespitum L. 1 
 Tetramorium semilaeve André 3,4 
Ponerinae Hypoponera eduardi (Forel) 1,2,4 

* Canopy-foraging ant species 

** (1) Palacios et al. 1999; (2) Vanaclocha et al. 2005; (3) Alvis 2006; (4) Urbaneja et 
al. (2006); (5) Pekas et al. (2011) 
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In Mediterranean ecosystems interespecific competition and thermal 

tolerance shape ant communities in hierarchies of dominant and 

subordinate species (Cerdá et al., 1997; Retana & Cerdá, 2000). 

Dominant species have larger colonies and defend food sources more 

fiercely than subordinates (Arnan et al., 2012). On the other hand, 

subordinate species can coexist with dominant species since they are 

heat-tolerant and are active in a wider range of temperatures than 

dominant species (Cerdá et al., 1997, 1998). In citrus orchards in 

Valencia (Spain) Pekas et al. (2011) reported that ants also show 

interspecific competition and distribute in what is known as “ant-

mosaic”, in which dominant species maintain exclusive territories and 

subordinate species coexist with the dominant ones. 

Lasius grandis 

This species was identified for the first time by Forel (1909) as a 

“strain” of Lasius niger (Linnaeus). Posteriorly it was separated and 

identified as Lasius grandis Forel by Seifert (1992) who indicated that L. 

grandis is the most abundant species of this genus in the Iberian 

Peninsula. Thus, many studies about L. niger in the Iberian Peninsula 

apparently correspond to L. grandis. Lasius grandis has low tolerance to 

high temperatures and therefore it is found in sheltered and humid 

places avoiding sun-exposed and xerothermic places (Seifert 1992). It is 

a monogenic (i.e. one queen per nest), aggressive and dominant species 

that principally feeds on honeydew (Paris & Espadaler, 2009; Pekas et 

al., 2011) and has been associated with outbreaks of honeydew 

producers (Palacios et al. 1999; Pekas et al. 2011). Interestingly, this 

species was associated with increased population densities of the non-

honeydew producer A. aurantii (Pekas et al., 2010b). 
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Pheidolle pallidula  

The dimorphic species Pheidole pallidula is a native and dominant 

species in Mediterranean ecosystems. It is found in a great variety of 

ecosystems and nests mostly in arid or sunny areas with low vegetation 

(Detrain, 1990). It is an omnivorous species that combines different 

foraging strategies, using an efficient recruitment system when an 

important food source is found (Detrain, 1990; Retana & Cerdá, 1992). 

Its Mediterranean origin makes P. pallidula better adapted to high 

temperatures (Palacios et al., 1999).  

Linepithema humile 

The Argentine ant Linepithema humile is a polygenic (multiple 

queens per nest) and unicolonial invasive ant species from South 

America. It has spread in many parts of the world with Mediterranean-

type climates (Suarez et al., 2001), and has colonized many ecosystems. 

In Spain it was recorded for the first time in 1923 associated with 

honeydew-producing hemipterans in citrus orchards (Font de Mora, 

1923) and nowadays it is distributed over the entire coast of the Iberian 

Peninsula (Espadaler & Gómez, 2003). Its presence however is 

restricted mostly close to disturbed areas and it requires high humidity 

and temperate climate (Palacios et al., 1999; Espadaler & Gómez, 2003). 

Linepithema humile is a dominant and very aggressive species that 

displaces native ants and affects other arthropods (Human & Gordon, 

1997; Holway et al., 2002). Although L. humile is an omnivorous species 

it shows a strong preference for liquid food, especially honeydew from 

hemipterans (Markin, 1970a; Abril et al., 2007) and has been associated 

with population outbreaks of honeydew (Bartlett, 1961; Yoo et al., 2013; 
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Dao et al., 2014) and non-honeydew producers (Flanders, 1945; Moreno 

et al., 1987) in citrus agroecosystems.  

1.4.2. Impact on citrus pests 

In the Mediterranean area, citrus is one of the most important crops 

and several authors have studied the impact of ants on pest populations. 

In Italy, several ant species have been associated with pest outbreaks in 

citrus (Tumminelli et al., 1996). In Israel, (Rosen, 1967) found 13 ant 

species associated with honeydew producers in citrus orchards, 

although the populations of the hemipterans rarely acquired serious 

pest levels. 

In the Iberian Peninsula, field observations indicated that L. niger 

disturbed parasitoids of the citrus mealybug P. citri reducing the 

parasitism levels about 35% in a study conducted in Tarragona, 

(Campos et al., 2006). Pekas et al. (2010b) demonstrated that the native 

ants L. grandis (Forel), P. pallidula (Nylander) and P. schmitzii produced 

increases of A. aurantii in citrus orchards in Valencia. In Tarragona, and 

contrary to the expected, (Piñol et al., 2012a) found lower populations 

of aphids in the presence of ants.  

1.4.3. Impact on natural enemies  

Little is known about the interactions involving ant species and 

natural enemy species in Mediterranean citrus orchards. Piñol & 

Espadaler (2010) showed that almost all arthropod orders they studied 

were more abundant when ants were excluded from the citrus canopies. 

In the same way, in an 8-year study, Piñol et al. (2012a) observed that 

ant-exclusion modified the arthropod community. More specifically, 



Introduction 

22 
 

they showed that ants altered the abundance of predatory Heteroptera 

in four years of the study (out of 8 years) and negatively affected the 

spider assemblages and the abundance of several spider species in some 

years (Mestre et al., 2013). 

Besides the aforementioned studies, there is no information 

regarding the impact of ants in the Mediterranean citrus on predator 

and parasitoid species simultaneously and on the biodiversity and 

community structure of natural enemies.  

 

1.5 Justification and objectives 

Ants constitute an important component of citrus agroecosystems 

given their abundance and ubiquity. Despite the fact that they may 

provide a positive service as generalist predators, ants, due to their 

mutualism with honeydew producers, are often associated with 

population outbreaks of honeydew and non-honeydew producing pests. 

In this context, we proposed the following objectives: 

 

i) Evaluate the influence of ants on pest populations and their parasitism 

rates 

In the western Mediterranean, where we conducted our research, the 

most abundant species foraging in citrus canopies are the native L. 

grandis and P. pallidula. Despite the fact that these species have been 

reported to induce population increases of A. aurantii, little is known 

about their associations with other honeydew and non-honeydew 
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producing herbivores. In the same way, information regarding the 

interference of ants with predators and parasitoids in Mediterranean 

citrus is rather scarce. Therefore, we conducted ant-excluded 

experiments with the objective of determine whether the ants species 

present in Mediterranean citrus, the native L. grandis and P. pallidula 

and the invasive L. humile, may induce population increases of 

honeydew and non-honeydew producing pests. The interference of ants 

with natural enemies has been demonstrated as one of the principal 

mechanisms through which ants increase pest populations. 

Consequently, we examined whether ants interfere with the activity of 

parasitoids of the selected honeydew and non-honeydew producer 

herbivores by comparing the parasitism levels between the ant-allowed 

and ant-excluded treatments.  

ii) Study the impact of ants on predator and parasitoid populations 

The ant-hemipteran mutualism may have wider community-level 

consequences since ants interact directly or indirectly with multiple 

arthropod species. Of particular interest is the impact of ants on natural 

enemy assemblages in citrus agroecosystems given the potential 

practical implications for biological pest control. Most of the studies 

examining the impact of ants on natural enemy communities up to date 

have focused on different natural enemies at the order level and little is 

known about the impact of ants on predator and particularly parasitoid 

species. In Mediterranean citrus, information regarding the impact of 

ants on natural enemy assemblages and concrete species is rather 

scarce. Therefore, another objective of our study was to determine the 

impact of L. grandis, P. pallidula and L. humile on the assemblage of the 

natural enemies by comparing the abundance, diversity, species 
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richness and community structure of predator and parasitoid species 

between ant-allowed and ant-excluded treatments.  

iii) Determine whether ant activity affects the honeydew exploitation 

and energy reserves of natural enemies 

The honeydew produced by hemiptera is the most abundant sugar 

source in agricultural ecosystems and a valuable food for ants as well as 

for natural enemies. Thus, ants and natural enemies may interact 

competitively via the shared honeydew exploitation. In that sense, ant-

tended honeydew sources may be inaccessible for natural enemies and 

consequently their physiological state negatively affected due to ant 

competition. No previous studies have tested this hypothesis. Thus, by 

using High Performance Liquid Chromatography (HPLC) we compared 

the energy reserves, sugar and honeydew feeding incidence of predators 

and parasitoids in the ant-allowed and ant-excluded treatments.  
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Ants affect the infestation levels but not the 

parasitism of honeydew and non-honeydew 

producing pests in citrus 

 

Calabuig, A., Garcia-Marí, F. & Pekas, A. (2013) Ants affect the infestation 

levels but not the parasitism of honeydew and non-honeydew producing pests in 

citrus. Bulletin of Entomological Research, 104, 405–417. 

Doctoral thesis adapted version. 

Abstract: Ants act simultaneously as predators and as hemipteran 
mutualists, and thereby may affect the composition and population 
dynamics of a wide arthropod community. We conducted ant-exclusion 
experiments in order to determine the impact of ants on the infestation 
levels and parasitism of three of the most important citrus pests of 
western Mediterranean citrus: the honeydew producer Aleurothrixus 
floccosus Maskell (woolly whitefly) and the non-honeydew producers 
Aonidiella aurantii Maskell (California red scale; CRS) and Phyllocnistis 
citrella (Staiton) (citrus leafminer). The study was conducted in three 
commercial citrus orchards, each one dominated by one ant species 
(Pheidole pallidula, Lasius grandis or Linepithema humile) during two 
consecutive growing seasons (2011 and 2012). We registered a 
significant reduction of the CRS densities on fruits in the ant-excluded 
treatment in the three orchards and in the two seasons, ranging from as 
high as 41% to as low as 21%. Similarly, the percentage of shoots 
occupied by A. floccosus was significantly lower in the ant-excluded plots 
in the orchards dominated by P. pallidula and L. humile. No significant 
differences were registered in the percentage of leaf surface loss caused 
by P. citrella between ant-allowed and ant-excluded treatments in any 
case. We found no significant differences in the percent parasitism 
between ant-allowed and ant-excluded treatments for honeydew and 
non-honeydew producing herbivores. These results suggest that i) ant 
management should be considered in order to reduce herbivore 
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populations in citrus and ii) mechanisms other than parasitism (e.g. 
predation) might explain the differences in herbivore infestation levels 
between treatments.   
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2.1 Introduction 

Ants (Hymenoptera: Formicidae) are broadly distributed in 

terrestrial ecosystems and they are among the leading predators of 

other insects (Hölldobler & Wilson, 1990). Since Janzen (1966) reported 

that ants could act as biotic defences protecting plants against 

herbivores and parasites, several authors observed that the predatory 

action of ants against phytophagous insects benefited plants (Karhu, 

1998; Styrsky & Eubanks, 2007; Rosumek et al., 2009; Olotu et al., 

2013). However, most ant species are omnivorous and combine the 

protein obtained through predation and scavenging with plant-derived 

carbohydrates. Ants collect carbohydrates from floral and extrafloral 

nectar, food bodies, elaiosomes and especially honeydew produced by 

plant-feeding Hemiptera with which they have evolved mutualistic 

associations (Way, 1963; Carroll & Janzen, 1973; Hölldobler & Wilson, 

1990; Wäckers, 2005). Thus, by acting simultaneously as predators and 

as hemipteran mutualists, ants are at the centre of a complex food web 

affecting the composition and the population dynamics of a wide 

arthropod community (Kaplan & Eubanks, 2005; Styrsky & Eubanks, 

2007). 

In the ant-Hemiptera mutualism, the net benefits for each partner are 

context dependent (Stadler & Dixon, 2005; Yoo & Holway, 2011). It is 

typically assumed that ants obtain honeydew, a food source that is 

copious, nutritive and spatiotemporally constant and in exchange, ants 

protect the honeydew producers from their natural enemies or other 

competing herbivores (Flanders, 1951; Bartlett, 1961; Way, 1963; 

Buckley, 1987; Rosumek et al., 2009). Under ant protection, honeydew 
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producers usually perform better and more quickly develop larger 

populations which eventually results in greater plant damage. This is 

particularly evident in agricultural ecosystems, where numerous studies 

have reported decreased populations of ant-attended honeydew 

producers and lower crop damage following ant-exclusion experiments 

(Flanders, 1951; Bach, 1991; Itioka & Inoue, 1996a; James, 1997; Daane 

et al., 2007; Mgocheki & Addison, 2010). In citrus crops, Moreno et al. 

(1987) reported that the exclusion of the Argentine ant Linepithema 

humile (Mayr) was associated with lower densities of the citrus 

mealybug Planococcus citri Risso (Hemiptera: Pseudococcidae) and of 

the woolly whitefly Aleurothrixus floccosus Maskell (Hemiptera: 

Aleyrodidae). Itioka & Inoue (1996) reported that the ant Lasius niger L. 

showed an aggressive behavior towards natural enemies of the 

mealybug Pseudococcus citriculus Green (Hemiptera: Pseudococcidae) 

resulting in a drastic (94%) decrease in a mealybug population when 

ants were excluded. An ant-exclusion experiment revealed that ant-

attendance caused an increase in the population growth rate of 

Ceroplastes rubens Maskell (Hemiptera: Coccidae) due to a decrease in 

the percentage of parasitism by Anicetus beneficus Ishii et Yasumatsu 

(Hymenoptera: Encyrtidae) (Itioka & Inoue, 1996b). 

Surprisingly, ants have been reported to induce population increases, 

and concomitant plant damage, of non-honeydew producing insect 

herbivores (Bartlett, 1961). For example, Flanders (1945) demonstrated 

that the activity of L. humile resulted in higher infestations of the 

diaspidid Aonidiella citrina Coquillet (Hemiptera: Diaspididae). Similar 

population increases were reported for the California red scale 

(hereafter CRS) Aonidiella aurantii Maskell (Hemiptera: Diaspididae) 
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caused by the action of Pheidole megacephala F. in Letaba (South Africa) 

(Steyn, 1954), L. humile in California (Moreno et al., 1987), Iridomyrmex 

rufoniger gp. sp. in Australia (James, 1997) and Lasius grandis (Forel) 

and Pheidole pallidula (Nylander) in Valencia (Spain) (Pekas et al., 

2010b). Finally, Haney et al. (1987) reported a population increase of 

the citrus red mite Panonynchus citri (McGregor) (Acarina: 

Tetranychidae) in the presence of L. humile. In the above studies, it is 

assumed that the underlying mechanism is indirect interference by the 

ants (while searching for honeydew) with the natural enemies of the 

non-honeydew producers.  

The outcome of the interaction among ants, Hemiptera (both 

honeydew and non-honeydew producers) and natural enemies is likely 

to depend on the particular characteristics of the species involved. For 

example, the degree of protection against natural enemies provided to 

hemipterans varies depending on the ant species (Martínez-Ferrer et al., 

2003; Styrsky & Eubanks, 2007; McPhee et al., 2012). Several authors 

attribute these differences among ant species to biological traits such as 

foraging activity, numerical abundance, aggressiveness and territoriality 

(Buckley & Gullan, 1991; Kaneko, 2003a; Paris & Espadaler, 2009; 

McPhee et al., 2012). Likewise, susceptibility of parasitoids and 

predators to ant activity differs greatly among species (Flanders, 1958; 

Bartlett, 1961; Völkl, 1992; Daane et al., 2007).  

The citrus agro-ecosystem, due to its perennial character, provides 

ideal conditions for the proliferation of insect herbivores, many of which 

are honeydew producers (Bodenheimer, 1951; Garcia-Marí, 2012). At 

the same time, ants are among the most abundant arthropods in citrus 

(Bodenheimer, 1951; Samways et al., 1982; Samways, 1983; Alvis & 
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Garcia-Mari, 2006). In western Mediterranean citrus, where we 

conducted our study, the two most abundant and widely distributed ant 

species are the native L. grandis and P. pallidula (Palacios et al., 1999; 

Alvis-Dávila, 2003; Vanaclocha et al., 2005; Cerdá et al., 2009; Pekas et 

al., 2011). Interestingly, Tena et al. (2013c) showed that mixed 

populations of these species were associated with increases in the 

densities of CRS populations. The invasive L. humile has been present in 

Spanish citrus orchards since 1923 (Font de Mora, 1923; García-Mercet, 

1923), but it appears only occasionally here (Alvis & Garcia-Mari, 2006). 

In other citrus-growing areas it is associated with strong increases in 

the abundance of both honeydew and non-honeydew producing 

hemipterans (Steyn, 1954; Moreno et al., 1987; Daane et al., 2007).  

In the present study we conducted ant-exclusion experiments in the 

field in order to determine the impact of three species of ants on the 

infestation levels and parasitism of three of the most important citrus 

pests in western Mediterranean citrus: the honeydew producer A. 

floccosus and the non-honeydew producers A. aurantii and Phyllocnistis 

citrella (Staiton) (Lepidoptera: Gracillaridae). Concretely we asked the 

following questions: i) are ants able to induce population increases of 

herbivores in citrus; ii) is the impact of ants different for honeydew and 

non-honeydew producing herbivores; and iii) is the parasitism of the 

honeydew and non-honeydew producing herbivores affected by ants? 
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2.2  Materials and methods 

Study sites 

The study was conducted during two consecutive growing seasons, 

from April 2010 to November 2011, in three commercial citrus orchards 

located in an extensive citrus-growing region located 30 km south of 

Valencia, eastern Spain (39º 12’ N, 0º 20’ W; 39º 11’ N, 0º 20’ W and 39º 

14’ N, 0º 15’ W). The climate in the study area is Mediterranean, with 

mild winters, and dry, hot summers. From now on we will refer to the 

orchards according to the acronym of the predominant ant species 

present, PP (Pheidole pallidula), LG (Lasius grandis) and LH 

(Linepithema humile). Two orchards (PP and LG) were of sweet orange 

Citrus sinensis L. Osbeck (cv. Navelina) and one (orchard LH) of a 

mixture of two species, sweet orange C. sinensis (cv. Navelina) and 

Clementine mandarin Citrus reticulata Blanco (Cv. Clementina Fina). In 

orchard PP, the most abundant ant species ascending to the citrus 

canopies was P. pallidula, which was present in all of the trees. It was 

frequently found foraging on the canopy of the same tree together with 

Plagiolepis schmitzii (Forel) and to a much lesser extent with Tapinoma 

nigerrimum (Nylander). In orchard LG, the most abundant and 

predominant ant species was L. grandis, coexisting in some trees with P. 

schmitzii and T. nigerrimum, except in one experimental where L. 

grandis and P. pallidula were similarly abundant. Lasius grandis was 

never found foraging on the same tree with P. pallidula, as the two 

species are dominant and mutually exclusive (Pekas et al., 2011). In 

orchard LH, L. humile was the only ant species present and foraging on 

the tree canopies.  
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The three orchards were flood irrigated and weeds were controlled 

by local application of herbicides (Glyphosate®, Bayer CropScience, 

Spain). No chemical treatments for pest control were applied during the 

two years prior to initiation of the experiments, neither during the two 

seasons of the experiments. In the three orchards, the ants were nesting 

in the soil beneath the trees. Orchards were selected based on previous 

studies (Pekas et al., 2010b, 2011) and previous field observations that 

revealed the spatial distribution of the ant species ascending to the tree 

canopies in each orchard.  

Experimental design, ant exclusion and ant activity 

For each orchard, the experimental design was fully randomized with 

four replicates (plots) of two treatments: ant-allowed and ant-excluded, 

with four adjacent repetitions per treatment. Each plot contained 16 

trees (four rows by four trees). Ant-exclusion began in April 2011 in 

orchards PP and LG and in May 2011 in orchard LH and was maintained 

until November 2012 (19 months). During the first season (2011), ant 

exclusion was achieved by applying an insecticidal paint in a micro-

encapsulated formulation (Inesfly FITO© (chlorpyrifos 3%)), Industrias 

Químicas Inesba S.L., Paiporta, Spain) to the trunk. In previous studies in 

the same citrus area Inesfly FITO© effectively excluded ants from citrus 

canopies (Juan-Blasco et al., 2011). Inesfly FITO© was applied by 

painting a 25-cm wide band (starting from the ground) on the tree 

trunks of ant-excluded treatments. To ensure that no ants reached the 

tree canopies, ant-excluded trees were inspected every month and the 

band repainted if ants were observed crossing the band. Due to the fact 

that we observed ants crossing the painted bands in some of the trees 

during the first growing season we changed the ant exclusion method 
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during the subsequent season. Thus, during 2012 ant exclusion was 

conducted by applying Tangle-trap (Tanglefoot, Biagro, Valencia, Spain) 

sticky barriers on the tree trunks. The Tanglefoot was applied using a 

spatula on a 15 cm wide adhesive plastic tape fixed around the trunk 

and starting 30 cm above ground and was renewed every two months. 

No adverse effect on tree development was observed due to trunk 

painting or sticky barriers. In order to ensure that ants could not reach 

the canopies through alternative ways during the two seasons of the 

experiment, all trees were pruned periodically to prevent branches from 

touching the ground and the ground vegetation was trimmed. 

Ant activity was defined as the number of ants moving up and down 

crossing an imaginary horizontal line on the tree trunk during one 

minute. We monitored ant activity monthly from April 2011 until 

November 2012 by observing the trunk of the four central trees on each 

plot between 9:00 and 12:00 a.m., a period of the day where ants are 

actively foraging on the canopies (Pekas et al., 2011). Thus, for each 

sampling date and in each orchard, we sampled ant activity on 16 ant-

allowed and 16 ant-excluded trees.  

Herbivore infestation levels in the ant-allowed and the ant-

excluded treatments  

California red scale 

CRS infestation on twigs was assessed monthly by observing four 

twigs (a 20 cm long terminal part of a 1-2 year-old branch) per tree, 

taken at hand height from the four central trees on each plot. Infested 

twigs were ranked according to the following scale: 0 = 0 scales; 1 = 1-3 
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scales; 2 = 4-10 scales; 3 = 11-30 scales; 4 = 31-100 scales; 5 > 100 

scales per twig. The infestation level was evaluated using the formula 

(Townsend & Heuberger, 1943): 

𝐼 (%) =  
∑(𝑛𝑛)
𝑁𝑁 

 × 100 

 Where  n – levels of infestation according to the scale 

 v – number of twigs or fruits in each level of infestation 

 V – total number of twigs or fruits screened 

 N – highest level of the scale infestation (5 in our case) 

This sampling was performed in the three orchards from May to July 

in 2011 and 2012.  

CRS population densities on fruits were determined monthly by 

applying the same scale to 20 fruits per tree, randomly selected from the 

four central trees on each plot. This sampling was performed in the 

three orchards from August to November 2011 and 2012, i.e. when 

fruits were available.  

Citrus woolly whitefly 

A. floccosus infestation was determined by estimating the percentage 

of shoots occupied by A. floccosus larvae. On each plot we observed 40 

shoots, 10 per tree randomly selected at hand’s height from the 

periphery of the four central trees of the plot, and counted the number 

of shoots with A. floccosus presence. The selected shoots were new and 

tender, with its leaves which had just reached its full size. This sampling 
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was performed once a month from July to October in 2011 and 2012, 

whenever A. floccosus was observed in the orchards.  

Citrus leafminer 

P. citrella infestation was estimated by calculating the percentage of 

leaf area damaged. To do so, we randomly sampled 10 young shoots per 

plot from the four central trees, containing between 5 and 10 leaves 

each. Shoots were transferred to the laboratory, where we scored the 

damage on each leaf by visually estimating the percentage of reduction 

in surface area caused by P. citrella larvae, in 10% intervals from 0 to 

100% (Schaffer et al., 1997). The above process was performed once in 

August and October 2011 and in October 2012 for orchards PP and LG, 

as well as once in August 2011 and October 2012 for orchard LH.  

Percent parasitism in the ant-allowed and the ant-excluded 

treatments  

California red scale  

CRS parasitism was assessed by sampling a minimum of 5 twigs and, 

when available, 5 fruits infested with CRS per tree from the four central 

trees of each plot. The samples were carried to the laboratory where we 

observed under a stereomicroscope 50 to 100 (depending on the 

availability) individuals of CRS stages susceptible to parasitism (second 

instar males, second instar females and third instar females) and 

determined the number of parasitized and unparasitized scales. In the 

cases where CRS population was very low, between 30 and 50 

individuals were considered sufficient. In the study area CRS is 

parasitized by Aphytis chrysomphali (Mercet) and Aphytis melinus 
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DeBach (Hymenoptera: Aphelinidae) (Pekas et al., 2010a; Pina et al., 

2012). Parasitism was identified by the presence of parasitoid eggs, 

larvae, prepupae or pupae. Percent parasitism was established as the 

number of parasitized scales x 100 / (number of parasitized scales + 

number of unparasitized scales) (Pekas et al., 2010a). The above 

procedure was repeated once in June and July 2011, and July 2012 for 

assessing parasitism on twigs. On fruits, the percent parasitism was 

assessed once in September and November 2011 and September and 

October 2012 for orchards PP and LG and once in September and 

November 2011, and September, October and November 2012 for 

orchard LH.  

Citrus woolly whitefly 

Parasitism of A. floccosus was determined by sampling a maximum of 

20 leaves (when available) infested by A. floccosus from the four central 

trees per plot. Samples were placed in plastic bags and transported to 

the laboratory where they were processed within the next 24 hours. 

Under a stereomicroscope, the number of parasitized and unparasitized 

nymphs was counted in a 1 cm2 circular surface randomly selected 

inside the area covered by the whitefly colony on each leaf. In the study 

area A. floccosus is parasitized by Cales noacki Howard (Hymenoptera: 

Aphelinidae) (Soto et al., 2001; Garcia-Marí, 2012). Parasitized 

whiteflies were identified by the presence of swollen nymphs without 

waxy secretion (Soto et al., 2001). Percent parasitism was established as 

number of parasitized x 100 / (number of parasitized + number of 

unparasitized) whiteflies. The above procedure was repeated once in 

July and September 2011 and October 2012 for orchards PP and LG and 
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once in July, August and September 2011 and July and August 2012 for 

orchard LH.  

Citrus leafminer.  

Parasitism of P. citrella was assessed by sampling 10 young shoots 

per tree from the four central trees on each plot. Samples were 

transferred to the laboratory and were processed within the next 24 

hours. Under a stereomicroscope we observed a maximum of 50 (when 

available) leafminer individuals of stages susceptible to parasitism and 

counted the number of parasitized and unparasitized ones. In the study 

area P. citrella is mostly attacked by Citrostichus phyllocnistoides 

(Narayan) (Hymenoptera: Eulophidae) which accounts for more than 

the 97% of the parasitoids (Vercher et al., 2000; Garcia-Marí et al., 2004; 

Karamaouna et al., 2010). Citrostichus phyllocnistoides attacks 

principally the second and third instars of P. citrella. Larval stages and 

parasitism were identified by visual observation, determining the 

presence of eggs, larvae or pupae of C. phyllocnistoides. Percent 

parasitism was calculated as: number of parasitized leafminers x 100 / 

(number of parasitized + number of unparasitized). The above 

procedure was repeated once in September 2011 and 2012 when young 

shoots (the preferred plant substrate by the leafminer) were available. 

Statistical analysis 

The effectiveness of the ant-exclusion methods was tested using 

Repeated Measures analysis of variance (ANOVA) with the data log-

transformed in order to meet normality assumptions. Treatment (ant-

excluded versus ant-allowed) was the fixed factor, sampled tree nested 

into ant-exclusion was the random factor and sampling date was the 
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Repeated Measures factor. The effects of the ant-exclusion on the 

herbivore infestation levels and percent parasitism on each sampling 

date were analyzed using one-way analysis of variance (ANOVA). The 

season-long effects of ant-exclusion on herbivore infestations (CRS on 

twigs, CRS on fruits, citrus woolly whitefly and citrus leafminer) and 

percent parasitism were analyzed using Repeated Measures Analysis of 

Variance (ANOVA). Treatment (ant-excluded versus ant-allowed) was 

the fixed factor, sampled tree nested into ant-exclusion was the random 

factor and sampling date was the Repeated Measures factor. Data were 

[arcsin√𝑥] transformed in order to meet normality assumptions. Means 

were compared by using Fisher’s least significant difference (LSD) test 

with the significance level set at α=0.05. All statistical analyses were 

performed using Statgraphics 5.1 software (Statgraphics, 1994).  

 

2.3 Results 

Ant Activity 

When examining the ant activity registered in each orchard, the 

invasive L. humile, predominant in orchard LH, showed the highest 

activity levels during the two years of the study (Fig. 1). In both years its 

activity peak was registered in July, when 139.8 ± 29.1 (2011) and 118.3 

± 24.4 ants/min/tree (2012) ascended to or descended from the tree 

canopies. The native P. pallidula and L. grandis, predominant in orchards 

PP and LG, respectively, showed considerably lower activity levels than 

L. humile (Fig. 1). Pheidole pallidula showed an activity peak in August in 

both years, with 13.9 ± 1.6 (2011) and 19.8 ± 2.8 ants/min/tree (2012) 
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ascending to or descending from the citrus canopies. Lasius grandis 

exhibited an activity peak in July in 2011 (9.2 ± 2.3 ants/min/tree) and 

in June in 2012 (17.3 ± 2.4 ants/min/tree). It is important to highlight 

that L. humile was active throughout the whole year, whereas almost no 

workers of P. pallidula or L. grandis were observed foraging on the tree 

canopies during the winter months, from December until March. 

 

Fig. 1. Mean (±SE) ant activity (number of ants ascending or descending the tree trunk 
per minute) in ant-allowed and ant-excluded trees in 2011 and 2012 in three citrus 
orchards in eastern Spain, each with presence of Pheidole pallidula, Lasius grandis or 
Linepithema humile. 
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In the ant-excluded treatment, ants were effectively excluded from 

the tree canopies during the two years of the study. From April 2011 to 

March 2012, when we used Inesfly FITO® paint for ant exclusion, ants 

were absent from almost all the tree canopies, except in a few trees for 

the three orchards studied (ant-allowed versus ant-excluded: orchard 

PP: 4.07 ± 0.44 vs. 0.07 ± 0.05; repeated-measures ANOVA: F1, 18 = 

367.74; P < 0.0001; orchard LG: 2.41 ± 0.39 vs. 0.017 ± 0.01; repeated-

measures ANOVA: F1, 18 = 74.46; P = 0.0001; orchard LH: 60.64 ± 5.7 vs. 

0.125 ± 0.05; repeated-measures ANOVA: F1, 18 = 218.71; P < 0.0001)(Fig. 

1). From April 2012 to November 2012 we used Tangle-trap sticky 

barriers for ant exclusion and ants were totally absent from all the tree 

canopies, showing thus 100% effectiveness in ant-exclusion (Fig. 1). 

Herbivore infestation levels 

California red Scale infestation on twigs and fruits 

Overall, CRS infestation on twigs was significantly lower (5% in 2011 

and 18% in 2012) in the ant-excluded than in the ant-allowed trees in 

orchard LG, whereas no significant differences between treatments 

were found for orchards PP and LH (pooled data from all sampling 

dates; Repeated Measures ANOVA: F1, 5 = 4.92; P = 0.035, F1, 5 = 9.30; P = 

0.34 and F1, 5 = 2.94; P = 0.097, respectively) (Fig. 2a). When examining 

each sampling date separately, no significant differences in CRS 

densities were found for any sampling date for the three orchards (Fig. 

2a, Table 1). 
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Table 1. Results of one-way analysis of variance for the effect of ant-excluded and ant-allowed treatments on A) Aonidiella aurantii populations on 
twigs B) A. aurantii populations on fruits, C) percentage of shoots occupied by Aleurothrixus floccosus and D) percentage of leaf loss caused by 
Phyllocnistes citrella in ant-allowed and ant-excluded trees in 2011 and 2012 in three citrus orchards in eastern Spain, each with presence of 
Pheidole pallidula, Lasius grandis or Linepithema humile (n.d. = not determined).  

   Orchard PP (Pheidole pallidula)   Orchard LG (Lasius grandis)   Orchard LH (Linepithema humile) 
Herbivore species  Month/Year df F P  df F P  df F P 
A) Aonidiella aurantii on twigs                May 2011 1, 6 0.08 0.785  1, 6 0.51 0.503  n.d n.d n.d 
  June 2011 1, 6 0.34 0.584  1, 6 0 0.953  1, 6 0.78 0.4125 
  July 2011 1, 6 0.23 0.646  1, 6 0.79 0.408  1, 6 0.08 0.7924 
  May 2012 1, 6 1.99 0.208  1, 6 0.42 0.541  1, 6 0.18 0.6868 
  June 2012 1, 6 0.26 0.626  1, 6 0.89 0.382  1, 6 0.41 0.5454 
  July 2012 1, 6 0.46 0.521  1, 6 5.11 0.065  1, 6 0.3 0.6038 
B) Aonidiella aurantii on fruits                August 2011 1, 6 0.61 0.463  1, 6 7.29 0.036  1, 6 13.83 0.0099 
  September 2011 1, 6 1.23 0.310  1, 6 3.77 0.100  1, 6 9.26 0.0227 
  October 2011 1, 6 6.61 0.042  1, 6 16.36 0.007  1, 6 9.78 0.0204 
  November 2011 1, 6 13.36 0.011  1, 6 25.01 0.002  1, 6 0.89 0.3821 
  September 2012 1, 6 3.77 0.100  1, 6 7.95 0.030  1, 6 1.85 0.2226 
  October 2012 1, 6 0.91 0.377  1, 6 0.97 0.363  1, 6 0.67 0.4437 
  November 2012 n.d n.d n.d  n.d n.d n.d  1, 6 0.39 0.5549 
C) Aleurothrixus floccosus                July 2011 1, 6 3.68 0.104  1, 6 0.01 0.927  1, 6 7.8 0.0315 
  August 2011 1, 6 1.38 0.285  1, 6 0.14 0.718  1, 6 2.74 0.149 
  September 2011 1, 6 3.4 0.115  1, 6 0.01 0.925  1, 6 11.57 0.0145 
  July 2012 n.d n.d n.d  n.d n.d n.d  1, 6 2.21 0.1875 
  August 2012 n.d n.d n.d  n.d n.d n.d  1, 6 4.09 0.0896 
  October 2012 1, 6 7.98 0.030  1, 6 3.62 0.106  n.d n.d n.d 
D) Phyllocnistis citrella                August 2011 1, 6 0.02 0.894  1, 6 0.6 0.438  1, 6 0.65 0.451 
  October 2011 1, 6 0.19 0.682  1, 6 0.09 0.774  n.d n.d n.d 
  October 2012 1, 6 0.09 0.7787  1, 6 0.02 0.8928   1, 6 0.45 0.5286 
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Fig. 2. Mean (± SE) California red scale infestation index on (A) twigs and (B) fruits in 
ant-allowed and ant-excluded treatments in 2011 and 2012 in three citrus orchards in 
eastern Spain, each with presence of Pheidole pallidula, Lasius grandis or Linepithema 
humile. For each sampling date, asterisk indicates significant differences between 
treatments (p <0.05).  

 

CRS infestation on fruits was lower in the ant-excluded treatment for 

the three orchards (pooled data from all sampling dates; Repeated 

Measures ANOVA: orchard PP: F1, 5 = 11.45; P = 0.002; orchard LG: F1, 5 = 

34.91; P < 0.0001; orchard LH: F1, 6 = 10.86; P = 0.003). When examining 
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each sampling date separately, CRS densities on fruits were significantly 

lower in the ant-excluded treatment in 9 out of 19 sampling dates (Fig. 

2b, Table 1). Overall, we registered a significant reduction of the CRS 

densities on fruits in the ant-excluded treatment: 41% and 26% in 2011 

and 2012, respectively, for orchard LG (where L. grandis was 

predominant), 28% and 21% for orchard PP (P. pallidula), and 27% and 

21% in orchard LH (L. humile).  

Citrus woolly whitefly 

The percentage of shoots occupied by A. floccosus was significantly 

lower in the ant-excluded treatment in the case of orchards PP and LH. 

On the other hand, no significant differences were found between 

treatments in the case of orchard LG (pooled data from all sampling 

dates; Repeated Measures ANOVA: orchard PP: F1, 3 = 9.43; P = 0.0045; 

orchard LG: F1, 3 = 0.22; P = 0.646; orchard LH: F1, 4 = 18.65; P = 0.0002) 

(Fig. 3).  
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Figure 3. Mean (± SE) percentage of shoots occupied by Aleurothrixus floccosus in ant-allowed 
and ant-excluded treatments in 2011 and 2012 in three citrus orchards in eastern Spain, each 
with presence of Pheidole pallidula, Lasius grandis or Linepithema humile. For each sampling 
date, asterisk indicates significant differences between treatments (p<0.05).  
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When comparing each sampling date separately, the percent 

occupation of shoots was significantly higher in the ant-allowed 

treatment in one of the four dates (October 2012) for orchard PP and in 

2 out of 5 sampling dates for orchard LH (Fig. 3, Table 1). Overall, the 

mean reduction of shoots occupied by A. floccosus in the ant-excluded 

treatment was 35% in 2011 and 43% in 2012 for orchard PP (P. 

pallidula) and 40% in 2011 and 26% in 2012 for orchard LH (L. humile). 

Citrus leafminer 

We found no significant differences in the percent of leaf surface loss 

caused by larvae of P. citrella between ant-allowed and ant-excluded 

treatments for any of three orchards (pooled data from all sampling 

dates; Repeated Measures ANOVA: orchard PP: F1, 2 = 1.6; P = 0.223; 

orchard LG: F1, 2 = 0.01; P = 0.9327; orchard LH: F1, 1 = 0.03; P = 0.8709) 

(Fig. 4). When comparing each sampling date separately, no significant 

differences in the percent of leaf surface loss were found for any 

sampling date for the three orchards (Fig. 4, Table 1).  
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Figure 4. Mean (± SE) percentage of leaf surface loss caused by Phyllocnistis citrella larvae in 
ant-allowed and ant-excluded treatments in 2011 and 2012 in three citrus orchards in eastern 
Spain, each with presence of Pheidole pallidula, Lasius grandis or Linepithema humile. For 
each sampling date, asterisk indicates significant differences between treatments 
(significance level: p<0.05).  
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Percent parasitism 

California red scale on twigs and fruits 

The mean (±SE) percent parasitism of CRS on twigs peaked in July 

and reached 13.4% (± 2.07), 9.6% (± 3.3) and 11.4% (± 3.16) in 

orchards PP, LG and LH respectively. The mean (±SE) percent 

parasitism of CRS on fruits peaked in September and was considerably 

higher than on twigs, reaching 45.6% (± 3.6), 42.7% (± 3.33) and 38.0% 

(± 2.5) in orchards PP, LG and LH respectively. 

On twigs we found no differences in percent parasitism of CRS 

between ant-allowed and ant-excluded treatments in any of the three 

orchards studied when pooling data from all sampling dates (Repeated 

Measures ANOVA; orchard PP: F1, 2 = 1.61; P = 0.2512; orchard LG: F1, 2 = 

2.75; P = 0.1481; orchard LH: F1, 2 = 1.81; P = 0.2271). When comparing 

each sampling date separately, we found significantly higher percent 

parasitism in the ant-excluded treatment in orchard LH in one of three 

dates examined (July 2011) (Table 2).  

Likewise, percent parasitism of CRS on fruits was similar between 

the ant-allowed and the ant-excluded treatments for the three orchards 

(Repeated Measures ANOVA: orchard PP: F1, 3 = 0.26; P = 0.6288; 

orchard LG: F1, 3 = 0.02; P = 0.8970; orchard LH: F1, 4 = 4.54; P = 0.0772). 

Furthermore, no significant differences in percent parasitism on fruits 

between treatments were found when comparing each sampling date 

separately (Table 2). In the orchard LH (L. humile) percent parasitism 

on fruits was consistently higher in the ant-excluded treatment; 

however, differences between treatments were marginal.  
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Citrus woolly whitefly 

No significant differences in percent parasitism of A. floccosus were 

detected between ant-excluded and ant-allowed treatments in any of the 

three orchards studied (pooled data from all sampling dates; Repeated 

Measures ANOVA: orchard PP: F1, 2 = 0.71; P = 0.4053; orchard LG: F1, 2 = 

0.07; P = 0.7951; orchard LH: F1, 4 = 0.65; P = 0.4428). Similarly, no 

significant differences were found between treatments when comparing 

the data separately on each sampling date (Table 2), except on one of 

the five dates examined in orchard LH. On this particular date we found 

significantly higher percent parasitism in the ant-allowed treatment 

(17.73% ± 3.40) than in the ant-excluded treatment (9.46% ± 2.60) 

(Table 2). 

Citrus leafminer 

Percent parasitism of P. citrella was significantly higher in the ant-

excluded plots in orchard LG, whereas no significant differences 

between treatments were found for orchards PP and LH (pooled data 

from all sampling dates; Repeated Measures ANOVA: F1, 1 = 15.11; P = 

0.0081; F1, 1 = 0.07; P = 0.7995; F1, 1 = 0.75; P = 0.4197, respectively). No 

significant differences between treatments were found for any of the 

three ant species when comparing each sampling date separately (Table 

2).  
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Table 2: Results of one-way analysis of variance for the effect of ant-excluded and ant-allowed treatments on mean (±SE) percent parasitism of A) 
Aonidiella aurantii on twigs. B) A. aurantii on fruits. C) Aleurothrixus floccosus and D) Phylocnistes citrella in ant-allowed and ant-excluded trees in 
2011 and 2012 in three citrus orchards in eastern Spain, each with presence of Pheidole pallidula, Lasius grandis or Linepithema humile (n.d. = not 
determined).  

 
   Orchard PP (Pheidole pallidula)  Orchard LG (Lasius grandis)  Orchard LH (Linepithema humile) 

Herbivore species Month/Year  
Ant-

excluded 
Ant-

allowed df F P  
Ant-

excluded 
Ant-

allowed df F P  
Ant-

excluded 
Ant-

allowed df F P 

A) Aonidiella 
aurantii on twigs 

 
                          

Jun 2011  3.23±1.2 4.06±0.7 1, 6 0.6 0.470  1.61±1.6 0 1, 6 1 0.356  2.47±0.8 0.76±0.76 1, 6 2.15 0.193 
Jul 2011  17.7±3 18.92±3.6 1, 6 0.13 0.732  26.16±8.8 6.7±3.0 1, 6 5.63 0.055  16.95±3.6 3.64±2.4 1, 6 8.71 0.026 
Jul 2012  4.96±3.4 12.06±3.4 1, 6 3.35 0.12  1.14±1.1 4.3±2.5 1, 6 0.86 0.388  15.59±10.4 9.38±6 1, 6 0.28 0.614 

B) Aonidiella 
aurantii on fruits 

 
                  

Sep 2011  75.74±8.5 55.62±3.2 1, 6 2.27 0.182  59.28±7.9 56.74±4.7 1, 6 0.09 0.769  57.9±5.7 39.48±6.3 1, 6 4.75 0.072 
Nov 2011  35.22±4.4 24.76±6 1, 6 1.68 0.24  26.7±10.1 31.57±8 1, 6 0.22 0.65  36.43±9.4 29.77±10.8 1, 6 0.32 0.595 
Sep 2012  28.42±6.8 32.44±4.4 1, 6 0.27 0.62  25.98±3.5 31.25±2 1, 6 1.47 0.271  52.72±6.6 41.66±4.7 1, 6 1.8 0.228 
Oct 2012  n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d.  41.4±3.9 35.94±4.1 1, 6 0.9 0.379 
Nov 2012  48.33±7.9 64.03±5.5 1, 6 2.67 0.154  58.32±10.4 51.42±3.8 1, 6 0.38 0.559  25.2±2.7 17.32±2.7 1, 6 4.25 0.085 

C) Aleurothrixus 
floccosus 

 
                  

Jul 2011  14.72±3.0 15±2.4 1, 6 0 0.947  16.46±3.5 10.4±2.4 1, 6 3.76 0,125  32.24±5.2 25.33±3.5 1, 6 0.76 0.416 
Aug 2011  n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d.  9.46±2.6 17.73±3.4 1, 6 10.79 0.017 
Sep 2011  28.3±9.7 41±11.4 1, 6 0.06 0.823  24.6±8.5 25.24±5.6 1, 6 0.41 0,550  23.3±6.8 23.31±7.3 1, 6 0.01 0.941 
Jul 2012  n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d.  8.64±1.6 9.81±2 1, 6 0.45 0.527 

Aug 2012  n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d.  28.38±3.7 20.5±3 1, 6 2 0.207 
Oct 2012  31.76±4.7 33.93±4.6 1, 6 1.02 0.352  24.93±4.7 25.1±4.1 1, 6 0.14 0,723  n.d. n.d. n.d. n.d. n.d. 

D) Phyllocnistes 
citrella 

                   
Sep 2011  57.75±9 63.94±13.7 1, 6 0.33 0.586  62.69±8.3 43.46±6.03 1, 6 3.58 0.1075  40.83±0.6 37.03±3.6 1, 6 0.56 0.481 
Sep 2012  62.26 ±5.9 55.35±5.3 1, 6 0.78 0.411  65.01±6.1 56.4±4.2 1, 6 1.32 0.2936  60±16.6 67.3±2.4 1, 6 0.14 0.720 
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2.4 Discussion 

CRS is one of the worst citrus pests worldwide and its presence on 

fruits is highly undesirable, especially for countries whose production 

goes to fresh fruit market. Our results showed that fruit infestation 

caused by CRS was higher in the ant-allowed treatment in the three 

orchards of the study. These results are in agreement with previous 

studies which showed that ants may induce population increases of CRS 

on fruits (DeBach et al., 1951; Steyn, 1954; Moreno et al., 1987; James, 

1997; Pekas et al., 2010b). CRS does not produce honeydew and 

therefore is not tended by ants. Thus, the CRS population increase 

induced by ants is considered as an indirect effect; ants disrupt 

biological control of CRS when they accidentally encounter the CRS 

natural enemies while foraging on the tree canopies or while tending 

coincident honeydew producers (Steyn, 1954; Samways et al., 1982; 

Murdoch et al., 1995; Dao et al., 2014).  

In most of the aforementioned studies the ant species involved was 

the Argentine ant L. humile, which is known as an aggressive and 

disruptive species for biological control (Holway et al., 2002). In our 

study, it was much more abundant than the native species and moreover 

it remained active throughout the whole year. This result coincides with 

Monzó et al. (2013), who also found L. humile active throughout all the 

season in the same citrus-growing area. In general, invasive ants are 

usually strongly attracted to hemipteran honeydew and are more 

aggressive than native ants (Styrsky & Eubanks, 2007). Given these 

attributes, L. humile would be expected to induce higher CRS 

populations on fruits compared with the native species. On the other 
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hand, native ant species can also differ in their capacity of biological 

control disturbance, which is generally related to their aggressiveness 

and territoriality (Buckley & Gullan, 1991; Kaneko, 2003b; Mgocheki & 

Addison, 2009). We cannot draw definitive conclusions whether native 

or invasive species affect the herbivores differently; however, the 

population increases of herbivores in orchard LH, dominated by the 

invasive L. humile, were not higher but similar or even lower in some 

cases to those of orchards PP and LG, where the native species P. 

pallidula and L. grandis were predominant. It should be taken into 

account that L. grandis and P. pallidula are dominant species in their 

native areas (Pekas et al., 2011; Arnan et al., 2012) and show aggressive 

behaviour as well (Seifert, 1992; Retana & Cerdá, 1994; Katayama & 

Suzuki, 2003). 

CRS infestation on twigs was similar in the ant-allowed and ant-

excluded treatments. Assessments of CRS population densities on twigs 

were done visually without determining whether scales were alive or 

they were old dead scales remaining on the bark from previous 

generations. This fact might have masked the real effect of ant-exclusion 

on CRS population on twigs. In agreement with our results, Moreno et al. 

(1987) also reported no differences in CRS infestation on twigs between 

ant-excluded and ant-allowed citrus trees while they did find significant 

differences on fruits, attributing these different results to the fact that 

the parasitoid A. melinus concentrates its activity on the periphery of the 

trees, where most of the fruits are located.  

The woolly whitefly A. floccosus, as for many other honeydew 

producing Hemiptera, is tended by ants on the citrus canopies (Moreno 

et al., 1987, Pekas et al., 2011). In fact, Moreno et al. (1987) reported 
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lower whitefly densities in citrus trees when L. humile was excluded 

from the canopies. According to our results, the percentage of shoots 

occupied by A. floccosus was significantly lower in the ant-excluded 

treatment in orchards PP and LH dominated by P. pallidula and L. humile 

respectively, whereas no differences were found in the orchard LG 

dominated by L. grandis. Given that A. floccosus is directly tended by 

ants, the outcome of the interaction between the whitefly and the ant 

species in our study is expected to be influenced by the seasonal activity 

pattern of the latter. The activity of L. grandis ascending to the canopies 

peaked in spring and decreased in July, a period when the populations of 

A. floccosus start to increase (Garcia-Marí, 2012). On the other hand, P. 

pallidula and L. humile were active during summer and autumn, the 

months of higher A. floccosus incidence in the field. In fact, in orchard LH 

where L. humile was predominant and exhibited high activity 

throughout most of the year, we found higher A. floccosus infestations in 

ant-allowed trees for all the sampling dates. Interestingly, in the case of 

P. pallidula, significantly higher A. floccosus infestations in the ant-

allowed trees were recorded only on the sampling dates following the 

ant´s peak activity (September and October). 

Regarding the effect of ant exclusion on P. citrella, in the three 

orchards we observed no significant differences in the percent of leaf 

surface loss between the ant-allowed and ant-excluded treatments. 

Similarly, Urbaneja et al. (2004) conducted an ant-exclusion study to 

determine the impact of Lasius niger (Latreille) on P. citrella and 

observed no differences in the number of P. citrella on leaves for ant-

allowed and ant-excluded treatments. P. citrella produces no honeydew 

and moreover develops on young and tender leaves (Garcia-Marí & 
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Granda, 2002) where other honeydew producing hemipterans are 

usually not found. Therefore, although the arboreal and highly 

aggressive weaver ants Oecophylla have been reported as efficient 

biological control agents of the citrus leafminer in Vietnam (Van Mele & 

Van Lenteren, 2002), the activity of the ant species in our study 

apparently is not affecting the citrus leafminer populations directly or 

indirectly.  

In previous studies examining the impact of the ants on populations 

of honeydew producing Hemiptera, lower parasitism rates were 

reported on plants with ants relative to plants without ants (DeBach et 

al., 1951; Bartlett, 1961; Itioka & Inoue, 1996b, 1999). Moreover, in the 

case of non-honeydew producing Hemiptera, several studies showed 

that ants may disrupt parasitoid activity (DeBach et al., 1951; Flanders, 

1958; Murdoch et al., 1995; Heimpel et al., 1997a; Martínez-Ferrer et al., 

2003). Recently, a study conducted on Australian citrus revealed that 

the parasitism of CRS by Encarsia perniciosi (Tower) and Encarsia 

citrina Craw (Hymenoptera: Aphelinidae) was severely reduced in the 

presence of the ant Iridomyrmex rufoniger (Lowne) (Dao et al., 2014). In 

our study, however, we rarely found differences in percent parasitism 

between ant-allowed and ant-excluded treatments, either for the 

honeydew or non-honeydew producing insect herbivores. These results 

were consistent in the three orchards studied, each one of them with a 

different predominant ant species. Only in the case of CRS on fruits we 

did find lower parasitism levels in ant-allowed trees of orchard LH (with 

L. humile) although this reduction only approached statistical 

significance. In the same way, (Pekas et al., 2010b) reported no 

differences in the parasitism of CRS on fruits between ant-excluded and 
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ant-allowed treatments despite the fact that higher numbers of CRS 

were recorded on fruits in the treatment where L. grandis or P. pallidula 

had access to the tree canopies. Murdoch et al. (1995) showed that the 

exclusion of L. humile did not affect CRS parasitism in samples taken 

from the exterior part of trees while they did find differences in the 

inner part and argued that ants were rarely seen in the exterior of trees. 

Urbaneja et al. (2004) showed no differences in percentage parasitism 

of P. citrella between ant-allowed and ant-excluded treatments. Finally, 

regarding A. floccosus, to our knowledge there are no previous studies 

investigating the effect of ants on parasitism of this species.  

Thus, apparently the parasitoid species involved in our study are not 

affected by the presence of ants. However, we might have failed to 

detect differences in percent parasitism between treatments due to the 

fact that the impact of parasitoids on host populations must be 

determined on a generational time scale (Driesche, 1983). This is 

because, depending on the synchronization between parasitoids and 

host populations, the contribution of the former to host population 

mortality may be overestimated or underestimated. Furthermore, other 

important sources of mortality induced by parasitoids such as host 

feeding or probing should be considered when determining percent 

parasitism (Kidd & Jervis, 1996). Especially in the case of A. melinus, the 

mortality caused to CRS through host-feeding is almost equal to that due 

to parasitism (Rosen & DeBach, 1979). 

Alternatively, factors other than parasitism not assessed in our study 

may have contributed to the increased CRS and A. floccosus populations 

in the presence of ants. For instance, predation is an important mortality 

factor which nevertheless is difficult to assess accurately in the field. 
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(Piñol et al., 2012a) during a long-term experiment of ant exclusion in 

citrus in Catalonia, showed that ants had a negative effect on the 

abundance of various groups of predators. In Australian citrus, Dao et al. 

(2014) have recently shown that the predation of CRS by coccinellid 

beetles was significantly increased when the ant I. rufoniger was 

excluded. Bach (1991) reported lower mortality rates of the soft scale 

Coccus viridis (Green) (Hemiptera: Coccidae) in the presence of ants not 

only from parasitism but also from other undetermined causes. 

Interestingly, several studies have reported aggressive ant behavior 

against predators such as coccinellids, neuropterans or dipterans 

(Bartlett, 1961; DeBach & Rosen, 1991; Itioka & Inoue, 1996a, 1999; 

Katayama & Suzuki, 2003; Piñol & Espadaler, 2010). Vanek & Potter, 

(2010) reported that the exclusion of the ant Formica subsericea Say led 

to a reduction of the soft scale Eulecanium cerasorum (Cockerell) 

(Hemiptera: Coccidae) densities caused principally by increased 

predation by Chrysoperla rufilabris (Burmeister) (Neuroptera: 

Chrysopidae), whereas parasitism of adult scales was similar between 

banded and control trees. In an ant-exclusion and predator-exclusion 

field experiment (McPhee et al., 2012) demonstrated that Myrmica 

rubra (L.) induced higher aphid abundance by reducing the impact of 

Chrysoperla carnea (Stephens). Preliminary observations in the same 

three orchards of our study show lower abundance of potential 

predators of CRS and A. flocossus, such as green lacewings in the ant-

allowed treatment (Calabuig et al., unpublished data), which might 

explain the results obtained in the present study.  

The exclusion method was very efficient in preventing the ants from 

ascending to the canopies in the two years of the study. The use of 
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Inesfly FITO© paint during the first year of the exclusion had the 

advantage that one application could last for several months which is 

highly desirable in reducing costs as well as workload. However, we 

observed several trees where the ants managed to sidestep the painted 

barrier and eventually ascend to the canopy. Therefore, in the second 

year we shifted to the Tanglefoot sticky barrier which, although posing 

important practical difficulties to employ, is known to efficiently prevent 

the ants from ascending to the canopies (Pekas et al., 2010a). A potential 

drawback of the use of sticky barriers for ant-exclusion involves the 

possibility of excluding, apart from the ants, other non-flying predators 

such as earwigs and the ant-mimic bug Pilophorus sp., (Heteroptera: 

Miridae), potential predators of plant feeders in the canopy (Piñol et al., 

2012b; Romeu‐Dalmau, 2012). In our study however, we observed no 

earwigs on the tree trunk close to the exclusion zone and only a few 

Pilophorus sp. were obtained in tree samplings in a parallel study on the 

ant-allowed trees (Calabuig et al. unpublished data). Moreover, we are 

not aware of studies reporting earwigs or Pilophorus sp. preying upon A. 

aurantii, A. floccosus or P. citrella.  

In conclusion, consistently higher populations of CRS were registered 

on fruits in the presence of the three ant species, L. grandis, P. pallidula 

and L. humile. Regarding the woolly whitefly A. floccosus, higher 

populations in the ant-allowed treatments were registered in the P. 

pallidula and L. humile orchards. We detected no effect of ants on 

populations of P. citrella for any of the three orchards studied. Overall, 

the increase of herbivore infestation in the orchard dominated by the 

invasive and much more active L. humile, were not higher but similar or 

even lower in some cases than in the orchards where the native P. 
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pallidula and L. grandis predominated. Thus, irrespective of the species 

present, ants have the potential to increase the infestation levels of 

honeydew and non-honeydew producing herbivores in citrus. These 

results suggest that ant management should be considered in order to 

reduce herbivore infestations in citrus orchards. The sticky barriers 

used in the present study proved to be efficient in excluding ants from 

the canopies; nevertheless, this method might suffer practical 

drawbacks, e.g. increased workload when needs to be applied in 

commercial orchards. Alternative and environmental friendly methods 

based on manipulating the ant-hemiptera interaction (Nagy et al., 2013) 

or employing semiochemicals for disrupting ant foraging (Suckling et al., 

2010) seem promising. Regarding the underlying mechanism, 

parasitism alone cannot explain the differences in the herbivore 

population levels between treatments observed in our study. Other 

factors, such as the impact of ants on predators (James et al., 1999; Piñol 

& Espadaler, 2010) or host feeding by parasitoids are important and 

should be further investigated. 
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Ants in citrus: impact on the abundance, species 
richness, diversity and community structure of 
predators and parasitoids  

 
Calabuig, A., Garcia-Marí, F., Pekas, A. (2015) Ants in citrus: impact on 

the abundance, species richness, diversity and community structure of 

predators and parasitoids. Agriculture, Ecosystems & Environment. 

Under review 

Abstract: Ants can act as plant biotic defenses, however, in agricultural 
ecosystems they are often associated with outbreaks of honeydew-
producing pests mainly due to the protection they offer to the plant 
feeders in exchange for honeydew. In this interaction ants may alter the 
abundance, diversity and community structure of predators and 
parasitoids. In the present study, we conducted ant-exclusion 
experiments in three commercial citrus orchards, each one dominated 
by one ant species (Pheidole pallidula, Lasius grandis or Linepithema 
humile) during two consecutive years. We then compared the 
abundance, species richness, diversity and community structure of 
predators and parasitoids between the ant-allowed and ant-excluded 
treatments. A total of 176,000 natural enemies belonging to 81 taxa 
were captured and identified. The abundance of the natural enemies 
showed a species specific response between treatments. When 
examining functional groups of natural enemies the abundance of 
generalist predators decreased while that of parasitoids increased in the 
ant-allowed treatment. The species richness was significantly lower for 
predators and higher for parasitoids in the ant-allowed treatment. The 
Shannon diversity index was not different between treatments for 
predators, whereas parasitoid diversity was significantly higher in the 
ant-allowed treatment. Finally, the community structure of predators 
and parasitoids was not significantly different between treatments. 
These results suggest that ants in citrus are not associated with a 
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dramatic decrease in natural enemy abundance or biodiversity; on the 
contrary ants were associated with increased parasitoid species 
richness and diversity. On the other hand, ants negatively affected the 
abundance of specific natural enemy species, mainly generalist 
predators. The impact on these predators might explain the highest pest 
densities associated with ants in citrus. 
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3.1 Introduction 

Ants are keystone species affecting directly and indirectly the 

ecosystem structure and functioning. Ants may act as soil tillers 

(Folgarait, 1998; Lobry De Bruyn, 1999), seed dispersers (Rico-Gray & 

Oliveira, 2007), pollinators (Beattie, 1985), predators (Way & Khoo, 

1992) and are involved in various mutualisms (Way, 1963; Hölldobler & 

Wilson, 1990; Rico-Gray & Oliveira, 2007). Mutualism has been found to 

have broad effects on the arthropod community affecting eventually 

plant health (Kaplan & Eubanks, 2005; Rosumek et al., 2009; Eubanks & 

Finke, 2014). One of the best studied mutualisms involving ants is the 

relationship with honeydew producing Hemiptera, in which ants use the 

honeydew excreted as an important carbohydrate source and, in turn, 

protect Hemiptera from their natural enemies (Bartlett, 1961; Way, 

1963; Carroll & Janzen, 1973; Hölldobler & Wilson, 1990). As a result, 

ant-tending may have wider community-level consequences by altering 

the abundance and distribution of the third (insect predators & primary 

parasitoids) (James et al., 1999; Styrsky & Eubanks, 2007) and fourth 

trophic levels (primary hyperparasitoids) (Völkl, 1992; Kaneko, 2002). 

These interactions play an important role in agricultural ecosystems 

since biological control provided by the third trophic level  may be 

negatively affected by ant activity (Flanders, 1945; DeBach et al., 1951; 

Heimpel et al., 1997a; Martínez-Ferrer et al., 2003). 

The impact of ants on natural enemy abundance, diversity or 

community structure varies considerably depending on the natural 

enemy species as well as on the species of ants involved or the 

ecosystem where the study took place (Table 1 and references therein). 
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Whereas several studies have demonstrated a negative impact of ants 

on the abundance of natural enemies (James et al., 1999; Eubanks, 2001; 

Kaplan & Eubanks, 2005; Piñol et al., 2012a) others find no effect (Gibb, 

2003; Offenberg et al., 2005; Chong et al., 2010) or even find positive 

effects of ants on the community of natural enemies (Stewart-Jones et 

al., 2008; Peng & Christian, 2013). The same or even greater variability 

is reported at the species level; natural enemies, even species belonging 

to closely related taxa, may be affected differently by ants. For example, 

several studies have shown that ants have a negative impact on certain 

coccinellid species (Bartlett, 1961; Itioka & Inoue, 1996a; Kaplan & 

Eubanks, 2002), while other coccinellids are not affected (Flanders, 

1958; Vanek & Potter, 2010) or even increase their densities under ant 

presence (Völkl & Vohland, 1996; Daane et al., 2007). Likewise, the 

activity of several parasitoid species is disrupted by ants (Bartlett, 1961; 

Martínez-Ferrer et al., 2003; Mgocheki & Addison, 2009) while others 

are able to parasitize hemipterans tended by ants (Flanders, 1958; 

Völkl, 1994; Barzman & Daane, 2001).  
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Table 1. Studies examining the impact of ants on the diversity, community structure or abundance of natural enemies in different ecosystems. 

Reference Ecosystem 
IMPACT OF ANTS  

Diversity index Community structure Natural enemy abundance 

Chong et al., 2010 1 Vineyard Not determined No impact No impact 

Eubanks, 2001 3 Cotton fields Not determined Not determined Negative impact on numerous predator species and 
Hymenoptera (grouped as wasps). 

James et al., 1999 1 Citrus orchard Not determined Not determined Negative impact (in some seasons) on predatory beetles, 
lacewings, parasitic wasps and spiders. 

Human and Gordon, 1997 Variable 
vegetation types No statistical analysis Not determined Slightly negative impact on Araneae, Hemiptera and 

Cynipidae 

Kaplan and Eubanks, 2002 4 Cotton fields Not determined Not determined Negative impact on Chrysopids and Coccinellids  

Kaplan and Eubanks, 2005 2 Cotton fields Not determined Not determined Negative impact on predators 

Mody and Linsenmair, 2004 Pseudocedrela 
kotschyi trees Not determined Not determined Negative impact on Araneae, Coleoptera, and Hymenoptera 

Offenberg et al., 2005 Mangrove trees Not determined No impact (only predators) Negative impact on predators 

Peng and Christian, 2013 1 Cashew and 1 
Mango orchard 

Ants increased 
diversity of natural 
enemies in Cashew 

Not determined No effect of ants in Mango and higher abundances in ant 
presence in Cashew (all natural enemies pooled) 

Piñol et al., 2012 1 Citrus orchard Not determined Impacted (includes herbivores) Negative impact on several orders (analyzed at order level) 

Philpott et al., 2008 3 Coffee farms Not determined Impacted (includes herbivores) No impact (order level) 

Philpott et al., 2004 1 Coffee farm Not determined Impacted depending on the ant 
species (includes herbivores) 

Negative impact on Araneae and Coleoptera, but not other 
orders depending on the ant species 

Stewart-Jones et al., 2007 2 Apple orchards Not determined Not determined Positive impact (all natural enemies pooled) 

Vanek and Potter, 2010 Maple trees and 
Magnolias Not determined Not determined 

Negative impact on Araneae, Crysopa rufilabris Burmeister 
and parasitic wasps (several species grouped) depending on 
the sampling date 

Wimp and Whitham, 2001 Poplar trees 
Ants reduced 
diversity (all 
arthropods) 

Not determined Negative impact on generalist predators; positive impact on 
aphid natural enemies 



Ants and natural enemies in citrus 

68 
 

Ants are among the most abundant arthropods in citrus and it has 

been demonstrated that they may induce population increases of 

honeydew and non-honeydew producing pests as a result of their 

interference with natural enemies (Pekas et al., 2010b, 2011; Calabuig et 

al., 2013; Yoo et al., 2013; Dao et al., 2014). Several studies have 

examined the multitrophic interactions involving ants and natural 

enemies in citrus in different parts of the world (James et al., 1999; Piñol 

& Espadaler, 2010; Piñol et al., 2012a; Yoo et al., 2013; Dao et al., 2014). 

Most of the studies focus on predators from different taxa (James et al., 

1999; Piñol et al., 2012a) but little is known about the impact of ants on 

the diversity and abundance of parasitoids, which are often studied as a 

single group in the order Hymenoptera. Further, there are no studies 

examining the impact of ants simultaneously on the whole community 

of predator and parasitoid species present in citrus orchards. 

Knowledge about the impact of ants on the abundance, diversity and 

community structure of all the arthropod natural enemies in the citrus 

agroecosystem will provide useful insights and can help us to clarify the 

role of ants in biological control. 

Thus, we performed an ant-exclusion experiment during two 

consecutive years in three commercial citrus orchards, each one with a 

different dominant ant species with the following objectives: (1) to 

know, describe and quantify the community of arthropod natural 

enemies, including predators and parasitoids, in the three citrus 

orchards (2) to test whether ants impact the abundance of the different 

species of natural enemies and (3) to test whether ants impact the 

species richness, diversity and community structure of predators and 

parasitoids. 
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3.2 Material and methods 

Study sites 

The study was conducted during two consecutive growing seasons, 

from April 2011 to November 2012, in three commercial citrus orchards 

located in an extensive citrus-growing area 30 km south of Valencia, 

eastern Spain (39º 12’ N, 0º 20’ W; 39º 11’ N, 0º 20’ W and 39º 14’ N, 0º 

15’ W). The climate is Mediterranean, with a rainy spring and autumn 

and a dry winter and summer. The orchards were flood irrigated and 

weeds were controlled by local application of herbicides (Glyphosate®, 

Bayer CropScience, Spain). Two orchards were of sweet orange Citrus 

sinensis (L.) Osbeck (cv. Navelina) and one of a mixture of two species, 

sweet orange C. sinensis (cv. Navelina) and Clementine mandarin Citrus 

reticulata Blanco (Cv. Clementina Fina). Trees were more than 10 years 

old in all orchards. No insecticides were sprayed in the previous five 

years or during the two-year experimental period. In each orchard it 

was present a behaviorally dominant ant species, i.e. ant species that 

attacks and exclude other ant species from food sources (Cerdá et al., 

1997). From now on we will refer to the orchards according to the 

acronym of the predominant ant species present. Thus, in the orchard 

PP the predominant ant species was Pheidole pallidula (Nylander), in the 

orchard LG it was Lasius grandis Forel and in the orchard LH 

Linepithema humile (Mayr) (mixed orchard) was the only ant species 

present and foraging on the tree canopies (for details see Calabuig et al., 

2013). 
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Experimental design 

At each orchard, the experimental design was composed by four 

replicate blocks, to which a single treatment was applied with two levels 

(plots): ants allowed and ants excluded. This was equivalent to 8 plots 

per orchard each one containing 16 trees (four rows by four trees per 

row). Ants were excluded in the 16 trees of the ant-excluded plots and 

left unaffected in the 16 trees of the ant-allowed plots. Only the four 

central trees of each plot were used for the samplings. With that method 

we ensure that arthropods captured came from the trees of the same 

plot and corresponding treatment. Ant-exclusion began in April 2011 

and was maintained until November 2012 (19 months). During the first 

season (2011), ant exclusion was achieved by painting a 25-cm wide 

band of insecticidal paint in a micro-encapsulated formulation (Inesfly 

FITO© (chlorpyrifos 3%)), Industrias Químicas Inesba S.L., Paiporta, 

Spain) on the trunk (Juan-Blasco et al., 2011). To ensure that no ants 

reached the tree canopies, ant-excluded trees were inspected every 

month and the band was repainted if ants were observed crossing the 

band. Due to the fact that we observed ants crossing the painted bands 

in some of the trees during the first growing season we changed the ant 

exclusion method during the subsequent season. Thus, during 2012, ant 

exclusion was conducted by applying Tangle-trap® (Tanglefoot, Biagro, 

Valencia, Spain) sticky barrier on the tree trunks. Sticky barriers were 

inspected every month and, if necessary, the Tanglefoot was renewed; in 

any case, Tanglefoot was renewed routinely every two months. Trees 

were pruned periodically and ground vegetation was trimmed to 

prevent alternative ways for ants to reach the canopies. With both 
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methods ant exclusion was successful in the three experimental 

orchards (see Calabuig et al., 2013). 

Arthropod sampling and classification 

Arthropods on the tree canopies were sampled with yellow sticky 

traps and by using a suction vacuum device. In each plot, one yellow 

sticky trap (Bug-scan, Biobest®), 100 mm x 250 mm, was placed at 1.60 

m high in the middle of the plot by hanging it on a twig. Suction samples 

were taken using a modified vacuum sampler (Komatsu Zenoah Co. 

HBZ2601) consisting on a reversed leaf-blower with a mesh bag to 

retain the sample (Tena et al., 2008). The vacuum sampler was applied 

on the canopies during one minute on each one of the four central trees 

of the plot. The sticky traps were replaced monthly, from April 2011 to 

November 2012 whereas suction samples were taken monthly from 

April to August and bimonthly from September to December in 2011 

and 2012. Samples were transferred to the laboratory and maintained in 

a freezer until their examination. 

All natural enemies captured were counted and identified. Most of them 

were identified to species or morphospecies level, while a few natural 

enemies were identified to genera or families. The use of morphospecies 

is a useful tool for studies that require taxonomic identifications of a 

great number of invertebrates without compromising scientific accuracy 

(Oliver & Beattie, 1996).  
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Predator and parasitoid diversity 

The natural enemy diversity was measured in each sampling date by 

calculating the species richness S (number of species or morphospecies) 

and the Shannon diversity index H’ (Shannon & Weaver, 1949): 

𝐻′ = −�𝑝𝑖 ∙ 𝑙𝑙𝑙𝑒 𝑝𝑖

𝑖=𝑆

𝑖=1

 

where 𝑝𝑖  is the proportion of individuals of each species (up to a total 

of S species) in each sample. In the calculation of species richness and 

diversity we included the natural enemies identified to species or 

morphospecies level.  

In the calculation of species richness and diversity we included the 

natural enemies identified to species or morphospecies level pooling 

data from traps and suction. Species belonging to the fourth trophic 

level were not included in these analyses.  

Statistical analysis 

All analysis were performed pooling data from traps and suction 

samples for each month (i.e. May, June, July, August, October and 

December for 2011 and April, May, June, July, August, September and 

November in 2012). 

To compare the abundance of specific natural enemies in ant-allowed 

and ant-excluded treatments we included only those species accounting 

for more than 0.02% of the total captured during the two seasons of the 

study in the three orchards. For the species richness (S), the Shannon 
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diversity index (H’) and community structure analysis we included all 

natural enemies identified to species or morphospecies.  

We applied repeated measures ANOVA on the abundance of every 

species, the species richness (S) and the Shannon diversity index (H’) 

either at each orchard or globally, i.e. considering the three orchards 

together. Treatment (ant-excluded versus ant-allowed) was the fixed 

factor, orchard (in the global analysis) and block (nested into orchard) 

were random factors and sampling date was the repeated measures 

factor. Data were log-transformed in order to meet normality 

assumptions. All ANOVAS were conducted using Statgraphics 5.1 

software (Statgraphics, 1994). 

To compare the community structure of natural enemies in ant-

allowed and ant-excluded treatments, permutational multivariate 

analyses of variance (PERMANOVA) were applied to predator and 

parasitoid abundances (including all the species and morphospecies 

captured) using the adonis function in the vegan package (Anderson, 

2001; Oksanen et al., 2009) in R (R Development Core Team, 2014). A 

separate PERMANOVA was conducted in each orchard for each year. 

Distance matrices for use in PERMANOVA were constructed using the 

Bray-Curtis index, and P-values were generated using F-tests based on 

sequential sums of squares from 99999 permutations of the raw data.  

 

3.3 Results 

A total of 176,000 natural enemies belonging to 81 taxa were 

captured and identified in all samplings in the three orchards, including 
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sticky traps and suction of the canopies (Appendix A.1 of Supplementary 

data). Of them, 53 taxa contained more than 40 individuals (0.02% of 

the total captured): 18 taxa of predators, 31 of parasitoids and 4 

belonging to the fourth trophic level. These were the taxa included in 

the comparative analyses of abundance (Table 2) (Appendix A.2 of 

Supplementary data). Among predators, the most abundant order was 

Neuroptera and the most abundant species were Semidalis 

aleyrodiformis Stephens and Conwentzia psociformis (Curtis) (both 

Neuroptera: Coniopterygidae). In the case of parasitoids, all of them 

belonging to the order Hymenoptera, the most abundant group was the 

superfamily Chalcidoidea, being Aphytis chrysomphali (Mercet) and 

Cales noacki Howard (Aphelinidae) the most abundant species (Table 2). 
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Table 2. Total arthropods captured, arthropods captured in ant-allowed and ant-excluded trees (mean ± SE) and effect of ants, globally and for the 
three orchards separately, during two years, 2011 and 2012, in three citrus orchards.  

   Global  *Ant effect / 
Orchard 

Arthropods Total 
arthropods Principal prey 

Arthropods / sample *Ant 
 effect 

 
Ant-allowed Ant-excluded  LG LH PP 

PREDATORS          
Coleoptera          

 Cybocephalus sp. 131  0.67 ± 0.12 0.25 ± 0.05 +  0 + 0 
 Ragonycha sp.  235 generalist 0.59 ± 0.23 1.03 ± 0.32 - -  0 n.p. 0 

Coccinellidae          
 Clitosthetus arcuatus Rossi 258 whiteflies 1.57 ± 0.13 2.18 ± 0.18 0  0 0 0 
 Delphastus catalinae Horn 626 whiteflies 2.22 ± 0.38 2.15 ± 0.49 ++  0 0 0 
 Rhizobius lophantae Blaisdell 89 Aonidiella aurantii 0.36 ± 0.10 0.26 ± 0.10 0  n.p. 0 n.p. 
 Rodolia cardinalis (Mulsant) 803 Icerya purchasi 2.54 ± 0.41 3.05 ± 0.50 0  0 0 - - 
 Scymnus subvillosus (Goeze) 1242 aphids 4.85 ± 0.41 3.83 ± 0.32 0  0 ++ 0 
 Stethorus punctillum Weise 82 spider mites 0.26 ± 0.07 0.31 ± 0.05 - -  0 0 0 

Diptera          
 Platypalpus sp.  1338  3.07 ± 0.83 6.20 ± 1.88 0  0 0 0 

Heteroptera          
Campyloneura virgula Herrich-Schäffer 745 generalist 2.04 ± 0.62 3.13 ± 0.71 - -  0 - - - 
Cardiasthetus sp.  368 generalist 1.03 ± 0.15 1.53 ± 0.17 - -  - - 0 0 
Pilophorus sp. 43 generalist 0.21 ± 0.04 0.09 ± 0.02 ++  + 0 0 
Ploearia sp. 78 spider mites 0.27 ± 0.07 0.28 ± 0.06 0  0 0 0 

Neuroptera          
Chrysopidae          

 Chrysopa septempuctata Wesmael 40 generalist 0.07 ± 0.02 0.21 ± 0.04 - -  n.p. -  - - 
 Chrysoperla carnea (Stephens) 591 generalist 1.39 ± 0.19 2.70 ± 0.33 - -  - - - - - - 

Coniopterigidae          
 Coniopteryx sp. 65 generalist 0.20 ± 0.04 0.25 ± 0.06 0  0 n.p. 0 
 Conwentzia psociformis (Curtis) 4395 generalist 14.77 ± 3.65 15.84 ± 3.39 0  0 - 0 
 Semidalis aleyrodiformis Stephens 29987 generalist 107.39 ± 11.37 101.68 ± 10.46 0  0 0 0 

Continue in the next page          
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   Global  *Ant effect / 
Orchard 

Arthropods Total 
arthropods Principal prey 

Arthropods / sample *Ant 
 effect 

 
Ant-allowed Ant-excluded  LG LH PP 

PARASITOIDS          
Hymenoptera          

Ceraphronoidea          
Ceraphronidae 1083  4.26 ± 0.54 3.30 ± 0.34 ++  ++ 0 n.p. 
Megaspilidae 349  1.18 ± 0.18 1.25 ± 0.22 0  0 0 0 

Chalcidoidea          
Ablerus sp.** 645 diaspidid parasitoids 3.65 ± 0.96 0.90 ± 0.23 ++  n.p. ++ n.p. 
Anagyrus sp. 281 pseudococcids 1.43 ± 0.36 0.54 ± 0.11 ++  ++ ++ ++ 
Aphelinus sp.  127 aphids 0.21 ± 0.04 0.09 ± 0.02 0  0 0 0 
Aphytis chrysomphali (Mercet) 50638 Aonidiella aurantii 167.94 ± 20.29 184.64 ± 21.83 0  - ++ 0 
Aphytis hispanicus (Mercet) 7534 Parlatoria pergandii 35.34 ± 6.08 17.47 ± 1.92 ++  ++ ++ ++ 
Aphytis melinus DeBach 11694 Aonidiella aurantii 39.96 ± 5.53 41.50 ± 7.12 0  0 0 0 
Cales noacki 18448 whiteflies 67.66 ± 8.16 61.01 ± 6.71 0  0 + + 
Citrostichus phyllocnistoides 

(Naranayan) 659 Phyllocnistis citrella 2.74 ± 0.86 1.86 ± 0.29 +  0 0 ++ 

Encarsia inquirenda (Silvestri) 3662 Parlatoria pergandii 15.21 ± 2.16 10.39 ± 1.22 ++  - - ++ ++ 
Encarsia sp. 1 1029  4.50 ± 0.63 2.71 ± 0.32 ++  ++ ++ 0 
Encarsia sp. 2 178  0.69 ± 0.34 0.55 ± 0.19 0  n.p. 0 n.p. 
Encarsia sp. 3 59  0.26 ± 0.05 0.15 ± 0.03 ++  0 ++ 0 
Encyrtus sp. 62 coccids 0.33 ± 0.08 0.10 ± 0.04 ++  n.p. ++ n.p. 
Eretmocerus sp. 102 whiteflies 0.35 ± 0.09 0.37 ± 0.09 0  n.p. 0 0 
Marietta sp. ** 313 coccid parasitoids 1.36 ± 0.32 0.83 ± 0.21 ++  0 n.p. ++ 
Metaphycus flavus (Howard) 8005 coccids 29.43 ± 4.32 26.40 ± 4.03 0  0 ++ 0 
Metaphycus helvolus (Compere) 4355 coccids 18.83 ± 3.58 11.64 ± 1.56 ++  0 ++ ++ 
Metaphycus lounsburyi (Howard) 75 coccids 0.35 ± 0.12 0.17 ± 0.05 0  n.p. 0 n.p. 
Microterys nietneri  (Motschulsky) 184 coccids 0.54 ± 0.11 0.73 ± 0.13 0  0 + 0 
Mymaridae 4932 cicadellidae 19.65 ± 2.09 14.80 ± 1.81 ++  + 0 + 
Pachyneuron sp.** 65 aphid parasitoids 0.22 ± 0.08 0.23 ± 0.07 0  n.p. 0 n.p. 
Trichogramma sp.  75 lepidoptera 0.29 ± 0.05 0.23 ± 0.05 0  + 0 0 

Continue in the next page          
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   Global  *Ant effect / 
Orchard 

Arthropods Total 
arthropods Principal prey 

Arthropods / sample *Ant 
 effect 

 
Ant-allowed Ant-excluded  LG LH PP 

Chrysidoidea          
Chrysis sp. 62 hymenoptera 0.21 ± 0.09 0.22 ± 0.07 0  n.p. 0 n.p. 

Cynipoidea 286  1.03 ± 0.17 0.97 ± 0.18 0  0 0 0 
Ichneumonoidea          

Alysinae: Alysinii 172 leaf miners 0.59 ± 0.08 0.69 ± 0.08 0  0 0 0 
Aphidius sp. 45 aphids 0.15 ± 0.04 0.17 ± 0.05 0  - 0 - - 
Binodoxys sp. 3451 aphids 11.94 ± 3.33 12.11± 3.09 0  0 0 0 
Ichneumonidae 1038  3.70 ± 0.44 3.54 ± 0.43 0  ++ 0 0 
Lysiphlebus sp. 93 aphids 0.42 ± 0.13 0.24 ± 0.08 0  0 0 ++ 
Microgastrinae 587 lepidoptera 1.82 ± 0.23 2.26 ± 0.30 0  0 0 - - 
Other Braconidae 270  1.01 ± 0.17 0.87 ± 0.14 0  0 0 0 

Platygastroidea          
Scelionidae 10897  39.73 ± 4.00 36.27 ± 3.11 0  0 0 0 

Proctotrupoidea          
Helorus sp.** 309 crisopids 0.80 ± 0.14 1.34 ± 0.18 - -  0 - - 0 

 
* Repeated measures analysis of variance (ANOVA) was used, with treatment as fixed factor, block as random factors and time 
as repeated measures factor. In the global analysis, orchard was set as random factor as well. The + indicates a slightly positive 
effect of ants on the abundance of the natural enemy (P<0.1); ++ indicates a significant positive effect of ants (P<0.05); - 
indicates a slightly negative effect of ants (P<0.1); - - indicates a significant negative effect of ants (P<0.05); n.p. indicates no 
presence of the natural enemy. LG: Lasius grandis orchard; LH: Linepithema humile orchard; PP: Pheidole pallidula orchard.  

** Species belonging to the 4th trophic level. 
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Abundance of parasitoids and predators 

When comparing the abundance of specific species or arthropod taxa 

between treatments we observed different responses depending on the 

functional group and species of natural enemy examined. From the 53 

comparisons of particular taxa of natural enemies between ant-allowed 

and ant-excluded trees, 21 (40%) showed a significant difference 

between treatments. When separated according to functional groups, 

44% of the predator and 37% of the parasitoid taxa were affected by 

ants (Table 2). Further, in the comparisons obtained considering 

orchards individually, the percentage of taxa of natural enemies 

significantly affected by ants was 38% in orchard LH, 31% in orchard PP 

and 27% in orchard LG (Table 2).  

In those cases where we detected significant differences between 

treatments we observed that in the ant-allowed treatment predator 

(concretely generalist predator) abundance was usually lower (seven 

species decreased and four increased in at least one orchard), whereas 

parasitoid abundance was usually higher (four species decreased and 18 

increased in at least one orchard) (Table 2).  

Differences in abundance between ant-allowed and ant-excluded 

treatments occurred in some of the most abundant species of natural 

enemies all along the sampling period and in the three orchards, as can 

be seen by examining their seasonal population trend (Fig. 1). For 

example, the abundance of the generalist predator Chrysoperla carnea 

sensu lato (Stephens) (Neuroptera: Chrysopidae) was consistently 

lower in the ant-allowed trees. On the contrary, the abundance of 

parasitoids such as Aphytis hispanicus (Mercet), parasitoid of Parlatoria 
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pergandii Comstock (Hemiptera: Diaspididae), and Anagyrus sp. 

(Girault) (Hymenoptera: Encyrtidae), parasitoid of pseudococcids, 

remained usually higher in the ant-allowed trees during the sampling 

period (Fig. 1). Conversely, the response of other species was not so 

consistent and several taxa showed similar abundance in ant-allowed 

and ant-excluded treatments (Table 2).  

Among true bugs (Heteroptera) the abundance of the 

myrmecomorphic Pilophorus sp. (Heteroptera: Miridae) was 

significantly higher in the ant-allowed treatment, especially in the 

orchard dominated by L. grandis (LG), whereas the abundance of other 

true bug species such as Cardiasthetus sp. (Heteroptera: Anthocoridae) 

or Campyloneura virgula (Herrich-Schäffer) (Heteroptera: Miridae) (Fig. 

1) was significantly lower in the ant-allowed treatment (Table 2).  
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Figure 1. Abundance of C. carnea s.l., Cardiasthetus sp., A. hispanicus and Anagyrus 
sp. in ant-allowed and ant-excluded trees during 2011 and 2012. Abundance is 
measured as the mean number of individuals captured in one sticky trap and four 
aspirations (one/tree) in each experimental plot (each plot consisted in 16 trees and 
only the four central trees were sampled; each orchard contained 8 plots, 4 ant-
allowed and 4 ant-excluded). 

Species belonging to the 4th trophic level (most of them identified as 

morphospecies) showed mixed responses to ant presence. Marietta sp. 

(Hymenoptera: Aphelinidae), hyperparasitoid of coccid parasitoids, and 
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Ablerus sp. (Hymenoptera: Aphelinidae), hyperparasitoid of diaspidid 

parasitoids, were significantly more abundant in the ant-allowed 

treatment. The abundance of Pachyneuron sp. (Hymenoptera: 

Pteromalidae), hyperparasitoid of aphid parasitoids, was not 

significantly different between treatments. Helorus sp. (Hymenoptera: 

Heloridae), a parasitoid of chrysopid eggs, was less abundant in the ant-

allowed treatment. 

Species richness, diversity and community structure of predators 

and parasitoids 

Overall, in the ant-allowed treatment the species richness (S) was 

significantly lower for predators and higher for parasitoids when 

compared with the ant-excluded trees. The impact of ants was, 

nevertheless, significant only in one orchard for predators and two 

orchards for parasitoids when examining the three orchards separately 

(Table 3). 

The Shannon diversity index (H) was not different between the ant-

allowed and ant-excluded treatments in the case of predators, whereas 

in the case of parasitoids diversity was significantly higher in the ant-

allowed treatment both in the global analysis and in the three orchards 

analyzed individually (Table 3). 
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Table 3. Impact of ants on Species richness (S) (mean ± SE) and Shannon diversity index (H) (mean ± SE) of predators and parasitoids, globally and 
for the three orchards separately. 

Species richness (S) 

 Predators  Parasitoids 

Orchard Ant-excluded Ant-allowed d.f. F P  Ant-excluded Ant-allowed d.f. F P 

LG 7.61 ± 0.37 6.96 ± 0.35 1,71 4.34 0.059*  11.02 ± 0.30 11.76 ± 0.33 1,71 5.50 0.037** 
LH 8.42 ± 0.43 8.55 ± 0.42 1,56 0.05 0.828  13.54 ± 0.56 15.50 ± 0.60 1,56 14.08 0.003** 
PP 7.35 ± 0.34 7.10 ± 0.38 1,75 0.76 0.401  11.58 ± 0.30 11.27 ± 0.31 1,75 0.78 0.396 

Global 7.77 ± 0.22 7.44 ± 0.23 1,250 4.93 0.045**  12.03 ± 0.24 12.59 ± 0.28 1,250 14.02 0.003** 

 
Shannon diversity (H) 

 Predators  Parasitoids 

Orchard Ant-excluded Ant-allowed d.f. F P  Ant-excluded Ant-allowed d.f. F P 

LG 0.66 ± 0.06 0.62 ± 0.07 1,71 0.16 0.699  1.41 ± 0.04 1.51 ± 0.03 1,71 5.98  0.031** 
LH 1.32 ± 0.08 1.45 ± 0.06 1,56 1.99 0.183  1.40 ± 0.05 1.54 ± 0.04 1,56 6.67  0.022** 
PP 0.69 ± 0.06 0.60 ± 0.06 1,75 1.50 0.245  1.37 ± 0.05 1.45 ± 0.05 1,75 5.28  0.040**  

Global 0.88 ± 0.04 0.84 ± 0.05 1,250 0.09 0.773  1.39 ± 0.03 1.49 ± 0.02 1,250 33.58 <0.001** 
 
Repeated measures analysis of variance (ANOVA) was used, with treatment as fixed factor and time and block as random 
factors. In global analysis, orchard was set as random factor as well. ** indicates a significant effect of ants (P<0.05) and * 
indicates a marginally significant effect (P<0.1). LG: Lasius grandis orchard; LH: Linepithema humile orchard; PP: Pheidole 
pallidula orchard.  
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The multivariate test showed that the community of parasitoids 

changed significantly in the ant-allowed treatment only in 2012 in the 

orchard LH (Table 4). In the other orchards and/or years the 

community structure was not different between treatments.  

Table 4. Summary of the PERMANOVA results of the effect of ants on the predators and 
parasitoids communities in 2011 and 2012 in orchards LG, LH and PP.  

  
 Predators  Parasitoids 

Year Orchard  R2 P  R2 P 
2011 LG  0.077 0.742  0.105 0.630 

LH  0.301 0.059  0.210 0.288 
PP  0.372 0.057  0.199 0.200 

2012 LG  0.050 0.828  0.107 0.544 
LH  0.166 0.371  0.332   0.029** 
PP  0.395 0.085  0.043 0.943 

 

 

3.4 Discussion 
Our results show that the overall community structure of predators 

and parasitoids was not significantly different between the ant-allowed 

and the ant-excluded treatments. When analyzing the effect of ants on 

the abundance of particular species of natural enemies, there are many 

cases of significant differences across taxa or species. In general terms, 

we observed lower numbers of generalist predators and higher 

numbers of parasitoids in the ant-allowed treatment compared to the 

ant-excluded treatment. Most crucially, the species richness and 

diversity of parasitoids was higher in the ant-allowed treatment 

whereas the diversity of predators was not different between 

treatments.  
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Abundance of predators and parasitoids 

The abundance of most parasitoid species in our study was either not 

affected by ants or higher in the ant-allowed treatment. This is of 

particular interest especially if we consider the widely held assumption 

that ant-attendance offers hemipterans a protective service against 

parasitoids (Flanders, 1951; Steyn, 1954; Buckley, 1987). This effect 

seems to be related, at least in some cases, with the impact of ants on 

the parasitoid host populations, the relaxation of intraguild predation 

and/or with the ability of the particular species to cope with ant 

aggression (Barzman & Daane, 2001). Often, honeydew producing pests 

are more abundant under ant protection and eventually this might 

explain the higher abundance of their parasitoids in the ant-allowed 

treatment. In our study, parasitoids of honeydew producing pests, such 

as the soft scale parasitoids Metaphycus helvolus Compere, Metaphycus 

flavus Howard and Encyrtus sp. (Hymenoptera: Encyrtidae) or the 

mealybug parasitoid Anagyrus sp. were in general more abundant in the 

ant-allowed treatment, especially in the orchard LH. Additionally, the 

lower abundance of predators in ant-allowed trees may result in lower 

intraguild predation upon parasitized hosts, resulting in increased 

populations of some parasitoid species.  

It was surprising to see that Encarsia inquirenda Silvestri and A. 

hispanicus (Hymenoptera: Aphelinidae), parasitoids of P. pergandii, an 

armored scale that does not produce honeydew and therefore is not 

tended by ants, were more abundant in the ant-allowed treatment both 

globally and on each orchard analyzed individually (except in the 

orchard LG for E. inquirenda). Apparently, ant presence is associated 

with increased abundances of P. pergandii, as already found for other 
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armored scales (DeBach et al., 1951; Pekas et al., 2010b; Calabuig et al., 

2013; Yoo et al., 2013). Other parasitoids of non-honeydew producers 

did not follow this trend. In the case of Aphytis melinus DeBach 

(Hymenoptera: Aphelinidae) and A. chrysomphali, parasitoids of 

Aonidiella aurantii Maskell (Hemiptera: Diaspididae), we observed no 

differences in their abundance between treatments except in the 

orchard LH where the populations of A. chrysomphali were significantly 

higher in the ant-allowed treatment. 

One of the most important findings in our study is the fact that the 

abundance of the generalist predators was lower in the ant-allowed 

treatment. It is important to highlight the case of the chrysopids (green 

lacewings) C. carnea sensu lato and C. septempunctata. These species are 

considered relevant biological control agents in many agroecosystems 

(Senior & McEwen, 2001) and are among the most abundant predators 

in Mediterranean citrus orchards, preying upon a wide range of pests 

(Garcia-Marí, 2012). Our results are in agreement with other studies 

which have also found lower densities of chrysopids in ant-allowed 

treatments (James et al., 1999; Kaplan & Eubanks, 2002; Vanek & Potter, 

2010; McPhee et al., 2012). Several authors reported aggressive 

behavior of different ant species against chrysopids (Bartlett, 1961; 

Vanek & Potter, 2010) or ant predation on chrysopid eggs (Dreistadt et 

al., 1986; Morris et al., 1998) which may result in lower chrysopid 

populations. For the two most abundant species of predatory 

Heteroptera (true bugs) Cardiasthetus sp. and Campyloneura virgula we 

also registered lower populations in the ant-allowed treatment. In an 8-

year study, Piñol et al. (2012b) also found lower abundance of predatory 

Heteroptera, especially Cardiasthetus fasciiventris, in the ant-allowed 
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trees. It is interesting to mention the higher populations of Pilophorus 

sp. in the ant-allowed treatment. This species exhibits mirmecomorphy 

that allows it to benefit from ant presence as was already reported in 

other studies between the ant L. grandis and Pilophorus sp. (Piñol et al., 

2012b; Sánchez & Ortín-Angulo, 2012).  

Regarding the impact of ants on coccinellids (ladybirds), which are 

mostly specialists, our results show great variability depending on the 

species examined. The response of coccinellids to ant attacks differs 

between species (Jiggins et al., 1993) as some species can cope with ant 

aggression through morphological, behavioural or chemical adaptations. 

For example, Völkl and Vohland (1996) found higher populations of 

Scymnus sp. in ant attended resources due to the protective wax cover of 

the Scymnus larvae which allow them to predate upon honeydew 

producers tended by ants. Wimp and Whitham (2001) found that the 

aphid-ant mutualism had a negative impact on generalist predators and 

a positive effect on specialist enemies of aphids. Apparently, specialist 

predators have evolved the mechanisms necessary in order to deal with 

ant aggressiveness (Way, 1963; Völkl, 1995) which is not the case for 

the generalists. 

The use of ant-exclusion barriers on the trunk might potentially 

exclude other non-flying predators from climbing on the citrus canopies. 

In the study area the only predators that could have been excluded by 

the barriers are earwigs; concretely the species Forficula auricularia L. 

(Dermaptera: Forficulidae). However, this species is of very low 

abundance in citrus in the study area (Alvis & Garcia-Mari, 2006; Bru & 

Garcia-Marí, 2008). In addition we observed no earwigs or other 

predators on the trunks of the ant-allowed treatment. Thus, our ant-
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exclusion method did not affect the abundance of the natural enemies 

on the canopies. 

The abundance of some species from the 4th trophic level was also 

found to be different between the ant-allowed and ant-excluded 

treatments. This was apparently related with the abundance of their 

primary hosts. Ablerus sp., hyperparasitoid of A. chrysomphali, as well as 

Marietta sp., hyperparasitoid of encyrtids, was more abundant in the 

ant-allowed treatment. On the other hand, Helorus sp., parasitoid of 

chrysopid eggs, was less abundant in the ant-allowed trees. Several 

studies have demonstrated that some parasitoids benefit from ant 

attendance because ants may reduce hyperparasitism by disturbing 

hyperparasitoids (Völkl, 1992; Sanders & Frank Van Veen, 2010). 

Additionally, intraguild predation caused by higher abundance of 

predators in the ant-excluded trees, may result in a decrease of the 

hyperparasitoid populations (Novak, 1994; Kaneko, 2002, 2006). 

Species richness, diversity and community structure of 

predators and parasitoids 

To our knowledge, the present study is the first to demonstrate a 

significant increase on species richness as well as on the Shannon 

diversity index for parasitoids in the ant-allowed treatment. Previous 

studies in several ecosystems show usually a decrease of arthropod 

diversity as a result of ant activity (Human & Gordon, 1997; Wimp & 

Whitham, 2001). Nevertheless, it is difficult to compare these results 

with ours given that the previous studies focused on overall arthropod 

communities including different guilds such as herbivores. On the other 

hand, Peng and Christian (2013) found that weaver ants either had no 
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impact or increased the diversity of natural enemies in cashew and 

mango trees.  

Our results show that the community structure of predators and 

parasitoids on the citrus canopies was similar between treatments. 

Previous studies also found that ants did not affect the overall arthropod 

communities in vineyards (Chong et al., 2010), peaches (Mathews et al., 

2009) or coffee (Philpott et al., 2008). Conversely, Piñol et al. (2012a), in 

an 8-year exclusion experiment, reported that ants changed the 

arthropod community in a citrus orchard in some years of their study. 

Differences in the results obtained in the different studies might be 

attributed to the species of ants present and/or the characteristics of the 

experimental orchards.  

The present study was not designed to compare the effects of specific 

ant species on the natural enemy community. Perhaps more replicates, 

i.e. orchards dominated from each ant species, should take place in 

order to make any inferences about the effect of the ant species. This 

however would be logistically very complex to undertake in a field 

study. Nevertheless, and despite the fact we cannot draw any definitive 

conclusions when it comes to comparison of species it is interesting to 

highlight that the impact of the three ant species on the community 

structure of natural enemies was quite similar. Despite L. humile having 

been described as an aggressive and very disruptive ant species for 

biological control (Markin, 1970b), in our study we found no significant 

effects of this invasive species on the community structure of natural 

enemies. The same can be said of the native species, L. grandis and P. 

pallidula. In a previous study it was found that the three ant species 
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induced similar population increases of the herbivore A. aurantii and A. 

floccosus (Calabuig et al., 2013).  

Conclusion 

In conclusion, our ant exclusion study revealed that ants in citrus 

were not associated with a dramatic and overall decrease in natural 

enemy abundance or biodiversity at the community level. The impact of 

ants on the natural enemies depended mostly on the species of natural 

enemy; even closely related species showed different or opposite 

responses to ant activity. In spite of the species specific response of 

natural enemies, we detected a general tendency related to functional 

groups: generalist predator abundance decreased whereas parasitoid 

abundance and diversity increased in the ant-allowed treatment. These 

results may have practical implications for biological pest control. 

Despite the fact that ants had no negative impact on the abundance and 

diversity of predators and parasitoids at the community level their 

impact on specific natural enemy species may explain the highest pest 

densities associated with ant presence in citrus (Pekas et al., 2010b; 

Calabuig et al., 2013; Yoo et al., 2013; Dao et al., 2014).  
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3.6 Supplementary material 

Appendix A.1. Total arthropods captured and arthropods captured in ant-allowed and ant-
excluded trees (pooling data from sticky traps and suction samples) during two years, 2011 
and 2012, in three citrus orchards.  

 Arthropods captured 
Arthropods TOTAL Ant-allowed Ant-excluded 
PREDATORS    
Araneae 673 381 292 
Coleoptera    

Cybocephalus sp. 131 95 36 
Ragonycha sp.  235 84 151 

Coccinellidae    
Clitosthetus arcuatus Rossi 258 124 134 
Coccinella septempunctata Linnaeus 7 0 7 
Cryptolaemus montrouzieri Mulsant 1 1 0 
Delphastus catalinae Horn 626 312 314 
Nephus bipunctatus (Kugelann) 2 1 1 
Propylaea quatuordecimpunctata (Linnaeus) 19 8 11 
Rhizobius lophantae Blaisdell 89 51 38 
Rhyzobius litura (Fabricius) 7 4 3 
Rodolia cardinalis (Mulsant) 803 358 445 
Scymnus interruptus Goeze 32 16 16 
Scymnus rufipes (Fabricius) 2 1 1 
Scymnus subvillosus (Goeze) 1242 684 558 
Stethorus punctillum Weise 82 37 45 

Diptera    
Platypalpus sp.  1338 433 905 

Heteroptera    
Campyloneura virgula Herrich-Schäffer 745 288 457 
Cardiasthetus sp.  368 145 223 

 Arthropods captured 
Arthropods TOTAL Ant-allowed Ant-excluded 

Orius spp. 24 8 16 
Pilophorus sp. 43 29 14 
Ploearia sp. 78 38 40 

Neuroptera    
Chrysopidae    

Chrysopa septempuctata Wesmael 40 10 30 
Chrysoperla carnea (Stephens) 591 196 395 

Coniopterigidae    
Coniopteryx sp. 65 28 37 
Conwentzia psociformis (Curtis) 4395 2082 2313 
Semidalis aleyrodiformis Stephens 29987 15142 14845 
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PARASITOIDS    
Hymenoptera    

Ceraphronoidea    
Ceraphronidae 1083 601 482 
Megaspilidae 349 167 182 

Chalcidoidea    
Ablerus sp. 645 514 131 
Anagyrus sp. 281 202 79 
Aphelinus sp.  127 62 65 
Aphytis chrysomphali (Mercet) 50638 23680 26958 
Aphytis hispanicus (Mercet) 7534 4983,53 2550,08 
Aphytis melinus DeBach 11694 5635 6059 
Cales noacki Howard 18448 9540 8908 
Cheiloneurus sp. 4 3 1 
Citrostichus phyllocnistoides (Naranayan) 659 387 272 
Elasmus sp. 6 2 4 
Encarsia inquirenda (Silvestri) 3662 2145 1517 
Encarsia sp. 1 1029 634 395 
Encarsia sp. 2 178 98 80 
Encarsia sp. 3 59 37 22 
Encarsia sp. 4 9 5 4 
Encyrtus sp. 62 47 15 
Eretmocerus sp. 102 49 53 
Homalotylus flaminius Dalman 33 19 14 
Isodromus flaviscutum Hoffer & Trjapitzin 20 14 6 
Leptomastidea sp.  40 21 19 
Leptomastix sp. 1 1 0 
Marietta sp.  313 192 121 
Metaphycus flavus (Howard) 8005 4150 3855 
Metaphycus helvolus (Compere) 4355 2655 1700 
Metaphycus lounsburyi (Howard) 75 50 25 
Microterys nietneri  (Motschulsky) 184 77 107 
Mymaridae 4932 2771 2161 
Pachyneuron sp. 65 31 34 

 Arthropods captured 
Arthropods TOTAL Ant-allowed Ant-excluded 

Scutellista caerulea (Foscolombe) 31 16 15, 
Tetranecmoidea sp. 13 1 12 
Trichogramma sp.  75 41 34 
Other Encyrtidae 1475 879 596 
Other Eulophidae 343 195 147 
Other Pteromalidae 294 186 108 

Chrysidoidea    
Chrysis sp. 62 30 32 

Cynipoidea 286 145 141 
Ichneumonoidea    

Alysinae: Alysinii 172 83 89 
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Aphidius sp. 45 21 24 
Binodoxys sp. 3451 1683 1768 
Diaeretiella sp. 4 2 2 
Ephedrus sp. 5,00 1 4 
Ichneumonidae 1038 521 517 
Lipolexis sp. 37 18 19 
Lysiphlebus sp. 93 59 34 
Microgastrinae 587 257 330 
Praon sp. 4 1 3 
Other Braconidae 270 143 127 

Platygastroidea    
Scelionidae 10897 5602 5295 

Proctotrupoidea    
Helorus sp. 309 113 196 
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Appendix A.2. Results of repeated measures ANOVA for the effect of ants on the abundance of natural enemies, globally and for the three 
orchards separately, during two years, 2011 and 2012, in three citrus orchards.  

 Global Orchard LG Orchard LH Orchard PP 
Arthropods df F P df F P df F P df F P 

PREDATORS             
Coleoptera             

 Cybocephalus sp. 1, 9 4.71 0.0581 1, 6 2.49 0.1652 1, 7 5.29 0.0533 1, 6 1.92 0.2148 
 Ragonycha sp.  1,3 1.17 0.3573 1, 3 0.52 0.5211 n.p. n.p. n.p. 1, 3 1.21 0.3522 

Coccinellidae             
 Clitosthetus arcuatus Rossi 1, 12 2.10 0.1721 1, 6 0.97 0.3622 1, 10 0.46 0.5096 1, 6 0.35 0.5746 
 Delphastus catalinae Horn 1,11 6.08 0.0309 1, 6 0.42 0.5415 1, 11 0.79 0.3393 1, 6 0.42 0.5429 
 Rhizobius lophantae Blaisdell 1, 9 1.93 0.1962 n.p. n.p. n.p. 1, 9 1.93 0.1962 n.p. n.p. n.p. 
 Rodolia cardinalis (Mulsant) 1, 10 1.22 0.2937 1, 7 0.49 0.5076 1, 7 0.56 0.4720 1,6 6.82 0.0400 
 Scymnus subvillosus (Goeze) 1, 12 1.89 0.1934 1, 9 0.23 0.6407 1, 11 4.81 0.0473 1, 9 1.21 0.3008 
 Stethorus punctillum Weise 1, 8 5.48 0.0472 1, 3 1.83 0.2688 1, 5 0.07 0.8069 1, 5 0.01 0.9189 

Diptera             
 Platypalpus sp.  1, 7 2.02 0.1964 1, 4 0.00 0.9532 1, 5 2.73 0.1558 1, 5 3.07 0.1403 

Heteroptera             
Campyloneura virgula Herrich-

Schäffer 1, 5 16.36 0.0072 1, 3 2.98 0.1826 1, 2 26.14 0.0586 1, 4 6.47 0.0637 

Cardiasthetus sp.  1,12 5.75 0.0334 1, 11 6.03 0.0317 1, 9 2.08 0.1803 1, 10 2.39 0.1530 
Pilophorus sp. 1, 5 11.86 0.0171 1, 5 4.57 0.0855 1, 2 1.66 0.2246 1, 6 0.14 0.7464 
Ploearia sp. 1, 6 0.26 0.6302 1, 4 0.00 0.9794 1, 1 1.37 0.4498 1, 2 0.36 0.6101 

Neuroptera             
Chrysopidae             

 Chrysopa septempuctata Wesmael 1, 11 5.67 0.0363 n.p. n.p. n.p. 1, 4 6.51 0.0548 1, 3 118.54 0.0017 
 Chrysoperla carnea (Stephens) 1, 12 19.26 0.0009 1, 11 9.06 0.0118 1,9 16.79 0.0025 1, 9 8.50 0.0172 

Coniopterigidae             
 Coniopteryx sp. 1, 10 0.37 0.5576 1, 5 0.22 0.6621 n.p. n.p. n.p. 1, 4 0.50 0.5167 
 Conwentzia psociformis (Curtis) 1, 12 2.19 0.1634 1, 8 1.35 0.2769 1, 5 4.95 0.0536 1, 10 0.33 0.5774 
 Semidalis aleyrodiformis Stephens 1, 11 1.06 0.3254 1, 11 2.62 0.2859 1, 9 0.16 0.6978 1, 11 0.00 0.9678 
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 Global Orchard LG Orchard LH Orchard PP 
Arthropods df F P df F P df F P df F P 

PARASITOIDS             
Hymenoptera             

Ceraphronoidea             
Ceraphronidae 1, 12 5.97 0.0301 1, 11 11.88 0.054 1, 10 1.94 0.1917 1, 12 0.31 0.5878 
Megaspilidae 1, 10 0.01 0.9088 1, 8 0.35 0.5718 1, 3 0.95 0.3995 1, 9 0.68 0.4317 

Chalcidoidea             
Ablerus sp. 1, 8 24.98 0.0004 n.p. n.p. n.p. 1, 5 24.98 0.0004 n.p. n.p. n.p. 
Anagyrus sp. 1, 10 18.96 0.0014 1, 10 6.27 0.0309 1, 10 7.25 0.0204 1, 10 4.79 0.0536 
Aphelinus sp.  1, 11 0.12 0.7403 1, 1 0.20 0.7324 1, 5 1.55 0.2636 1, 2 0.00 1,0000 
Aphytis chrysomphali (Mercet) 1, 12 0.10 0.7602 1, 12 3.54 0.0840 1, 11 5.62 0.341 1, 12 0.01 0.9187 
Aphytis hispanicus (Mercet) 1, 12 24.64 0.0000 1, 12 4.63 0.0522 1, 11 25.94 0.0002 1, 12 13.36 0.0033 
Aphytis melinus DeBach 1, 12 2.47 0.1414 1, 12 1.83 0.2007 1, 11 1.40 0.2553 1, 12 1.22 0.2917 
Cales noacki 1, 12 0.75 0.4019 1, 11 0.81 0.3870 1, 11 4.45 0.0520 1, 10 3.66 0.0847 
Citrostichus phyllocnistoides 

(Naranayan) 
1, 10 3.57 0.0864 1, 8 0.39 0.5502 1, 9 0.71 0.4143 1, 7 9.56 0.0175 

Encarsia inquirenda (Silvestri) 1, 12 5.17 0.0415 1, 11 6.90 0.0234 1, 10 30.15 0.0001 1, 11 6.60 0.0261 
Encarsia sp. 1 1, 12 7.22 0.0195 1, 10 5.71 0.0375 1, 11 20.24 0.0007 1, 10 0.74 0.4089 
Encarsia sp. 2 1, 5 1.55 0.2636 n.p. n.p. n.p. 1, 5 1.55 0.2636 n.p. n.p. n.p. 
Encarsia sp. 3 1, 10 9.93 0.0097 1, 2 3.95 0.1854 1, 5 8.20 0.0328 1, 3 0.00 0.9847 
Encyrtus sp. 1, 9 15.21 0.0035 1, 9 1.76 0.2169 1, 9 10.57 0.0083 n.p. n.p. n.p. 
Eretmocerus sp. 1, 8 0.01 0.9070 n.p. n.p. n.p. 1, 7 0.24 0.6328 1, 2 0.25 0.6667 
Marietta sp.  1, 10 15.71 0.0250 1, 6 1.44 0.2808 n.p. n.p. n.p. 1, 10 13.55 0.0042 
Metaphycus flavus (Howard) 1, 12 1.01 0.3350 1, 12 0.01 0.9248 1, 11 5.58 0.0347 1, 12 0.01 0.9440 
Metaphycus helvolus (Compere) 1, 11 21.76 0.0005 1, 11 2.72 0.1272 1, 10 9.48 0.0097 1, 11 21.14 0.0008 
Metaphycus lounsburyi (Howard) 1, 5 3.93 0.1034 1, 5 1.89 0.2273 1, 5 2.20 0.1937 1, 5 0.24 0.6466 
Microterys nietneri  (Motschulsky) 1, 11 2.92 0.1147 1, 11 3.49 0.0885 1, 10 0.15 0.7076 1, 11 0.92 0.3570 
Mymaridae 1, 12 12.47 0.0039 1, 12 4.73 0.0501 1, 11 3.57 0.0820 1, 12 3.90 0.0717 
Pachyneuron sp. 1, 3 0.76 0.4474 1, 3 1.95 0.2574 1, 3 0.72 0.4582 1, 3 8.80 0.0592 
Trichogramma sp.  1, 9 1.13 0.3159 1, 9 3.24 0.1054 1, 9 0.25 0.6303 1, 9 0.00 1.0000 

Chrysidoidea             
Chrysis sp. 1, 6 0.02 0.8998 n.p. n.p. n.p. 1, 5 0.02 0.9063 n.p. n.p. n.p. 
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 Global Orchard LG Orchard LH Orchard PP 
Arthropods df F P df F P df F P df F P 

Cynipoidea 1, 12 1.32 0.2723 1, 5 1.15 0.3307 1, 8 0.84 0.3839 1, 5 0.75 0.4260 
Ichneumonoidea             

Alysinae: Alysinii 1, 12 0.01 0.9437 1, 9 0.01 0.9275 1, 4 4.12 0.1057 1, 10 0.18 0.6793 
Aphidius sp. 1, 2 0.46 0.5606 1, 3 8.95 0.058 1, 3 0.75 0.4496 1, 3 3.81 0.2707 
Binodoxys sp. 1, 6 0.00 0.9491 1, 3 1.77 0.2747 1, 5 2.02 0.2136 1, 5 3.00 0.1433 
Ichneumonidae 1, 12 1.84 0.1990 1, 11 5.27 0.0422 1, 11 0.10 0.7595 1, 11 0.42 0.5196 
Lysiphlebus sp. 1, 2 2.44 0.2584 1, 3 2.66 0.2011 1, 1 1.18 0.4739 1, 3 16.89 0.0261 
Microgastrinae 1, 12 2.60 0.1321 1, 8 0.13 0.7307 1, 10 0.10 0.7599 1, 8 5.48 0.0473 
Other Braconidae 1, 11 0.46 0.5115 1, 9 0.01 0.9230 1, 9 1.62 0.2309 1, 9 0.86 0.3785 

Platygastroidea             
Scelionidae 1, 12 0.22 0.6441 1, 12 0.05 0.8264 1, 11 0.46 0.5102 1, 12 0.00 0.9829 

Proctotrupoidea             
Helorus sp. 1, 10 13.66 0.0039 1, 8 0.05 0.8242 1, 9 7.73 0.0197 1, 8 2.41 0.1591 
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Ants impact the energy reserves of natural 
enemies through the shared honeydew 
exploitation 
 

Calabuig, A., Tena, A., Wäckers, F. L., Fernández-Arrojo, L., Plou, F.J., 
Garcia-Marí, F., Pekas, A. (2015) Ants impact the energy reserves of 
natural enemies through the shared honeydew exploitation. Submitted 
to Ecological Entomology. Decision: Minor revision 

Abstract: Ants as well as many species of parasitoids and predators rely 
on sugar-rich foods such as honeydew to fulfil their energetic needs. 
Thus, ants and natural enemies may interact through the shared 
honeydew exploitation. Here we performed ant-exclusion experiments 
in a citrus orchard to test the hypothesis that ants may impact the 
energy reserves of predators and parasitoids through the competition 
for honeydew sources. Through the use of high performance liquid 
chromatography (HPLC) we related the level of ant activity with the 
energy reserves and feeding history of individual specimens collected in 
the field during representative days of spring, summer and autumn. Out 
of 145 Aphytis chrysomphali parasitoids captured in the field, 65% were 
classified as sugar-fed and 24.7% as honeydew-fed. In summer, when 
ant activity peaked, there was a significant negative correlation between 
the level of ant activity and the total sugar content and honeydew 
feeding incidence by A. chrysomphali. Out of 47 individuals of the 
predator Chrysoperla carnea s.l., captured in the field, 55.3% were 
classified as sugar-fed. We found a significant negative effect of the level 
of ant activity on the sugar feeding incidence by C. carnea in spring.This 
study provides evidence that ants can interfere with the energy reserves 
of natural enemies. This interaction may be widespread in various 
ecosystems with important consequences for the arthropod community 
composition and with practical implications for biological control given 
that absence of sugar feeding is detrimental for the fitness of many 
species of predators and parasitoids. 
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4.1 Introduction 

Ecological communities are complex systems that consist of species 

interacting directly and indirectly (Miller, 1994; Bascompte et al., 2006; 

Ohgushi, 2008; Eubanks & Finke, 2014). It has been long known that 

sugar rich food sources, such as floral and extrafloral nectar or 

honeydew excreted by plant feeders, mediate species interactions over 

several trophic levels. For example, pollinators interact with birds 

(Laverty & Plowright, 1985) or ants (LeVan et al., 2014) when they 

share a common nectar source. Extrafloral nectar sources may affect the 

plant, the herbivore and the herbivore´s natural enemies abundance at 

the community level (Rudgers & Gardener, 2004). Lately, the 

importance of honeydew in shaping multitrophic interactions has 

gained increased attention (Kaplan & Eubanks, 2005; Styrsky & 

Eubanks, 2007; Yoo et al., 2013). Honeydew can be involved in a 

protective mutualism; ants protect the plant feeders from their natural 

enemies in exchange for honeydew (Way, 1963; Carroll & Janzen, 1973; 

Hölldobler & Wilson, 1990). Honeydew is a valuable energy source for 

numerous organisms including the third trophic level, i.e. natural 

enemies such as predators and parasitoids, in natural (Zoebelein, 1956) 

and agricultural ecosystems (Hogervorst et al., 2007; Wäckers et al., 

2008; Tena et al., 2013b, 2013c). In this context, ants and natural 

enemies may interact through the shared energy sources in the form of 

honeydew. Understanding this interaction will provide useful insights 

from an ecological but also applied perspective given that it may impact 

the fitness of the natural enemies and eventually the efficacy of 

biological control. However, no studies have examined the potential 

impact of ants on the energy reserves of predators and parasitoids. 
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Honeydew is a sugar-rich fluid excreted by plant feeders (mostly 

hemipteran species) after feeding on phloem sap. Honeydew is 

especially relevant in agricultural ecosystems where it is the principal 

carbohydrate source since the presence of other sugar sources, such as 

nectar, is limited and variable in space and time, being available almost 

exclusively during the flowering season (Wäckers et al., 2008). 

Honeydew contains a mixture of phloem sugars, such as sucrose, 

fructose and glucose, and oligosaccharides synthesized by the plant 

feeders, such as erlose and melezitose (Völkl et al., 1999; Wäckers, 

2000). Its composition makes honeydew an important carbohydrate 

source for a wide range of insects in the field, among which ants hold a 

predominant position (Hölldobler & Wilson, 1990; Wäckers, 2005). 

Most ant species are omnivorous and obtain protein from animal matter 

and carbohydrates from plant products such as floral and extrafloral 

nectar, food bodies, plant sap and above all honeydew (Way, 1963; 

Carroll & Janzen, 1973; Tobin, 1994). Honeydew is crucial for the ant 

colony growth and, usually, honeydew producers thrive when ant-

tended (Hölldobler & Wilson, 1990). In fact, honeydew exploitation is an 

indication of behavioural dominance in ants: dominant ant species 

exclude subordinate species and monopolize the honeydew sources 

(Blüthgen et al., 2004; Pekas et al., 2011).  

Honeydew is not only crucial for ants. A broad range of 

entomophagous arthropods, including parasitoids and predators, uses 

honeydew as an energy source (Jervis & Kidd, 1986; Jervis et al., 1993; 

Wäckers, 2001; Steppuhn & Wäckers, 2004; Tena et al., 2013c). 

Honeydew consumption enhances the longevity (Wäckers, 2001; 

Wäckers et al., 2008) and fecundity of parasitoids (Faria et al., 2008; 
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Tena et al., 2013b), eventually resulting in increased efficacy of 

biological control (Faria et al., 2008; Wäckers et al., 2008). Therefore, it 

is likely that honeydew, due to its availability, nutritional quality and 

impact on fitness, may mediate direct and indirect competitive 

interactions between ants and parasitoids or predators. For example, 

ants may negatively affect the natural enemies by excluding them from 

the honeydew sources in the same way ants have been found to exclude 

floral visitors from nectar sources (Lach, 2007). On the other hand, 

predators and parasitoids may benefit if the probabilities for sugar 

feeding increase due to the higher abundance of the honeydew 

producers under ant-attendance.  

The citrus agro-ecosystem provides a suitable environment for 

several honeydew producers (Garcia-Marí, 2012) that are usually ant-

attended (Pekas et al., 2011; Tena et al., 2013a) and also harbours a 

complex of naturally occurring parasitoids and predators (Garcia-Marí, 

2012). In the present study, we test the hypothesis that ants might 

impact the energy reserves of predators and parasitoids through the 

exploitation of honeydew: positively, by increasing the opportunities for 

honeydew feeding due to the positive feedback between the ants and 

the abundance of the honeydew producers or negatively, due to the 

direct competition ants exert by monopolizing the honeydew sources. 

To test our hypothesis we carried out an ant-exclusion experiment in a 

citrus agroecosystem where we related the level of ant activity with the 

energy reserves and feeding history (sugar and/or honeydew feeding 

incidence) of individual natural enemies. We included in the study two 

of the most important entomophagous arthropods in terms of 
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abundance and biocontrol potential on the citrus canopy belonging to 

two different guilds, one parasitoid and one predator species. 

Study system: 

We conducted our study in the main Mediterranean citrus-growing 

area (Valencia, Spain), where the two most abundant and widely 

distributed ant species are the native Lasius grandis (Forel) and Pheidole 

pallidula (Nylander) (Cerdá et al., 2009; Pekas et al., 2011). Both species 

are behaviourally dominant and are in close association with honeydew 

producers; they are active from March until November, with L. grandis 

peaking its activity in June and P. pallidula in July-August (Pekas et al., 

2011). The most abundant honeydew producers present in 

Mediterranean citrus orchards are the citrus aphid Aphis spiraecola 

Patch (Hemiptera: Aphididae) in early spring, soft scales such as Coccus 

hesperidium L. and Saissetia oleae Olivier (Hemiptera: Coccidae), and the 

citrus mealybug Planoccocus citri (Risso) (Hemiptera: Pseudococcidae) 

during summer, whereas the most abundant honeydew producer in 

autumn is the woolly whitefly Aleurothrixus floccosus (Maskell) 

(Hemiptera: Aleyrodidae) (Pekas et al., 2011; Tena et al., 2013c). 

Parasitoids of genus Aphytis (Hymenoptera: Aphelinidae) are the 

most important natural enemies of the California red scale (CRS) 

Aonidiella aurantii Maskell (Hemiptera: Diaspididae), a major pest in 

citrus worldwide (Rosen & DeBach, 1979). Aphytis are synovigenic 

ectoparasitoids that engage in host-feeding for egg maturation (Heimpel 

& Collier, 1996; Heimpel et al., 1997b); however, host feeding cannot 

substitute sugar feeding because CRS contains very low amounts of 

sugar (Tena et al., 2013c). In the lab, in the absence of sugar feeding, 
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Aphytis fecundity and longevity are seriously compromised and survival 

does not exceed three days (Avidov et al., 1970; Heimpel et al., 1997b; 

Tena et al., 2013b). Furthermore, Tena et al. (2013c) demonstrated that 

honeydew is the main sugar source for Aphytis melinus DeBach 

(Hymenoptera: Aphelinidae) in the field, despite the fact that its host 

does not produce honeydew. Honeydew feeding enhances the longevity 

and realized-fecundity of A. melinus (Tena et al., 2013b). The species of 

our study, Aphytis chrysomphali Mercet (Hymenoptera: Aphelinidae), is 

native to the Mediterranean and is one of the most important 

parasitoids of CRS (Pekas et al., 2010a). Most probably it also feeds on 

honeydew in the field, though this has never been demonstrated.  

Neuroptera belonging to the family Chrysopidae are among the most 

abundant generalist predators present in Mediterranean citrus (Garcia-

Marí, 2012). Chrysoperla carnea sensu lato (Stephens) (Neuroptera: 

Chrysopidae) is the most important species in agricultural ecosystems 

(Stelzl & Devetak, 1999). Chrysoperla carnea larvae prey upon aphids 

(Hemiptera: Aphididae), tetranychid mites (Acari: Tetranychidae), 

whiteflies (Hemiptera: Aleyrodidae) and the citrus leaf miner 

(Lepidoptera: Gracillariidae) in citrus (Garcia-Marí, 2012), whereas 

adults are non-predaceous and consume nectar, pollen and honeydew 

(Principi & Canard, 1984; Hogervorst et al., 2007). Sheldon and 

MacLeod (1971) reported that honeydew is a major food source for 

adult C. carnea in the field. Honeydew enhances fecundity (Finney, 

1948; Neumark, 1952) and acts as an arrestment stimulus for C. carnea 

(McEwen et al., 1993).  
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4.3. Materials and Methods 

Study site and experimental design 

The study was conducted in a commercial citrus orchard of sweet 

orange Citrus sinensis L. Osbeck (cv. Navelina) of approximately 0.7 ha, 

located in an extensive citrus-growing area 30 km south of Valencia, 

eastern Spain (39º 12’2” N, 0º 20’52” W). The climate is Mediterranean, 

with a rainy spring and autumn and a dry winter and summer. The 

orchard was flood irrigated and weeds were controlled by local 

application of herbicides (Glyphosate®, Bayer CropScience, Spain). No 

weeds or other plant species potential hosts for honeydew producers 

were present in the understory or in the periphery of the orchard. No 

insecticides were sprayed in the previous nine years, or during the 

experiment. According to previous studies, the ant species foraging on 

the tree canopies were P. pallidula, Plagiolepis schmitzii and L. grandis 

(Pekas et al., 2010b, 2011). Details about the seasonal activity and 

spatial distribution of the ant species can be found in the 

aforementioned studies as well as in Calabuig et al. (2013). 

The experimental design was a randomized block with eight 

replicates (blocks) of two adjacent treatments (plots): ant-allowed and 

ant-excluded trees. Each treatment contained 16 trees (four rows by 

four trees). Ants were excluded in the 16 trees of each plot in the ant-

allowed treatment. In both treatments only the four central trees were 

sampled. Ant-exclusion began in January 2013 and was maintained until 

November 2013 by placing sticky barriers based on Tangle-trap® 

(Tanglefoot, Biagro, Valencia, Spain) on the tree trunks at 30 cm above 

ground. Tanglefoot was applied using a spatula on a 15 cm wide 
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adhesive plastic tape fixed around the trunk. Sticky barriers were 

inspected every month and if necessary the Tanglefoot was renewed; in 

any case, Tanglefoot was renewed routinely every two months. Trees 

were pruned periodically and ground vegetation was trimmed to 

prevent alternative ways for ants to reach the canopies. 

Ant activity 

Ant activity was defined as the number of ants (all species) moving 

up and down crossing an imaginary horizontal line on the tree trunk 

during one minute. We monitored ant activity by observing the trunk of 

the four central trees on each plot between 10:00 and 14:00 h, a period 

of the day when ants are actively foraging on the canopies (Pekas et al., 

2011). Ant activity was monitored on the same day that the natural 

enemies were collected (see below) in spring (3 June), summer (10 

August), and autumn (5 November).  

Honeydew producers 

To determine the honeydew sources present in the orchard, a 0.52 

m-diameter ring was randomly thrown on the four compass directions 

(N, S, E and W) of the canopy of the sampled. The number of honeydew 

producers in the ring was counted from the outer part of the canopy to 

the centre of the trunk (Tena et al., 2013c). The sampling unit consisted 

of the four rings thrown per tree. Honeydew producers were sampled 

within the same week that ant activity was monitored. 
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Sampling parasitoids and predators  

Adult parasitoids and predators were collected between 11.00 and 

14.00 hours by sampling the whole canopy of the four central trees of 

each plot until at least four individuals were captured per plot. To 

collect adult Aphytis spp., the branches were hand-beaten in order to 

make arthropods fall onto the white surface. Aphytis were then captured 

with a brush soaked in ethanol and transferred to an Eppendorf tube 

with 70% ethanol to preserve them individually. To collect the 

predators, we actively searched on the canopies. When adult C. carnea 

were detected, we captured them within a small plastic pot and 

transferred them individually into an Eppendorf tube with 70% ethanol. 

No C. carnea individuals were captured in the autumn sampling.  

In the laboratory, the hind tibia length of each individual used in the 

HPLC analyses, was measured under a stereomicroscope in order to 

adjust the results to arthropod size (Tena et al., 2013c). Each arthropod 

was maintained individually in Eppendorf tubes with 70% ethanol and 

stored at 5oC until HPLC analysis.  

HPLC sugar analysis  

Prior to the analysis, the samples were homogenized in the ethanol 

solution using a pestle. Then, the ethanol was evaporated in a vacuum 

centrifuge for 60-120 min. After that, the samples were rehydrated by 

adding 20µl of 70% ethanol and 80µl of Milli-Q water for A. 

chrysomphali and 200µl of 70% ethanol and 800µl of Milli-Q water for C. 

carnea The samples were mixed by vibration and filtered (0.2 µm PVDF 

membrane). Analysis was carried out by high performance anion-
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exchange chromatography coupled with pulsed amperometric detection 

(HPAEC-PAD). 25µl of each sample were injected into a ICS3000 Dionex 

system (Dionex Corp., Sunnyvale, CA) consisting of a SP gradient pump, 

an AS-HV autosampler and an electrochemical detector with a gold 

working electrode and Ag/AgCl as reference electrode. All eluents were 

degassed by flushing with helium. A pellicular anion-exchange 4 x 250 

mm Carbo-Pack PA-1 column (Dionex) connected to a CarboPac PA-1 

guard column was used at 30 °C. For eluent preparation, MilliQ water 

and 50% (w/v) NaOH (Sigma-Aldrich) were used. Daily reference 

curves were obtained for sorbitol, mannitol, trehalose, galactose, 

glucose, sucrose, mannose, fructose, melezitose, raffinose, erlose and 

maltose by injecting calibration standards with concentrations of 2.5, 5, 

7.5 and 10 ppm of each of these sugars. The peaks were analysed using 

Chromeleon software. Identification of the different carbohydrates was 

done based on standards commercially available.  

A total of 46 (spring), 44 (summer) and 55 (autumn) A. chrysomphali 

were analysed. The total number of C. carnea analysed was 25 (spring) 

and 22 (summer). 

Interpretation of HPLC data 

The “total sugar content” for each insect was obtained from the sum 

of the concentrations of all the sugars detected and adjusted to the 

parasitoid size by the hind tibia length, expressed as µg/mm hind tibia 

length (Tena et al., 2013c).  

In order to determine whether an insect had fed on sugar, we used 

the total sugar content and the glucose-fructose ratio as classification 

parameters (Steppuhn & Wäckers, 2004). The total sugar content 
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indicates the current nutritional state of an individual whereas the 

glucose-fructose ratio becomes fructose dominated after sugar feeding. 

The combination of both parameters allows to classify an individual that 

has recently fed as “sugar-fed”(Hogervorst et al., 2007). The glucose-

fructose ratio was calculated as the glucose fraction of the sum of both 

monosaccharides. An insect was classified as “sugar-fed” when the total 

sugar content was above an established threshold and the glucose-

fructose ratio was below an established threshold. The thresholds used 

to classify an insect as “sugar-fed” were obtained from previous studies 

with laboratory insects. For A. chrysomphali, we used the thresholds 

obtained for the sibling species A. melinus established at 1.5 µg/mm 

hind tibia length for total sugar content and 0.63 for glucose-fructose 

ratio (Tena et al., 2013c). For C. carnea s.l., we used the thresholds 

obtained by Hogervorst et al. (2007) for the total sugar content and 

glucose-fructose ratio, established at 59.2 µg/lacewing and 0.85 

respectively. Individuals with total sugar content below or glucose-

fructose ratio above the established thresholds were considered as 

“unfed or starved”. 

Erlose and melezitos are considered honeydew “signature sugars”. 

Nevertheless, the species in our study can synthesize erlose and 

melezitose after feeding on sucrose and therefore the mere presence of 

these sugars cannot be used to identify honeydew-feeding. Instead, the 

erlose-melezitose ratio allow us to determine recent honeydew 

consumption for some species (Hogervorst et al., 2007; Tena et al., 

2013c). We used the erlose-melezitose ratio to determine “honeydew 

consumption” by A. chrysomphali using the threshold obtained in 

laboratory by Tena et al. (2013c) for A. melinus, which was established 
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at 0.32. In the case of C. carnea it is not possible to apply this method 

since this species synthesizes erlose and malezitose in a ratio similar to 

that found in honeydew (Hogervorst et al. 2007). 

Statistical analysis  

We used a one-way ANOVA to check for differences in ant activity 

and abundance of honeydew producers among seasons. Normality 

assumption was assessed using Shapiro test, and homoscedasticity 

assumption was assessed with Levene test. When necessary, data were 

log transformed in order to fulfil normality and homoscedasticity 

assumptions. 

In the ant-excluded treatment the tanglefoot barriers were very 

effective in completely excluding the ants from climbing to the canopy, 

however, ant activity was null or very low in some of the ant-allowed 

trees. Therefore, for the analysis average ant activity per plot was used 

as explanatory variable in place of the categorical treatment variables 

ant-exclusion and ant-allowed (see Yoo et al. 2013).  

We applied generalized linear mixed modeling techniques assuming 

Gamma error variance to construct a model with the abundance of 

honeydew producers as depended variable, ant activity as the 

explanatory variable and block as random factor. Abundance of 

honeydew producers from the four sampled trees was averaged to 

obtain a mean for each plot.  

We also applied generalized linear mixed modeling techniques 

assuming Gamma error variance for the total sugar content and 

binomial error structure for sugar-feeding or honeydew-feeding 



Chapter 4 

111 
 

occurrence to construct models with ant activity as the explanatory 

variable and block as random factor using the glmer function (Bates, 

2010). In all models, ant activity from the four sampled trees in the ant–

allowed treatment was averaged to obtain a mean for each plot. 

Different models were constructed for each sampling date given that ant 

activity as well as the composition of species of the honeydew producers 

was significantly different among seasons. All statistical analyses were 

conducted with R (R Development Core Team, 2014). 

 

4.3. Results 

Ant activity 

In the ant-excluded treatment, the sticky barriers excluded the ants 

from climbing to the canopy; ant activity was null in all the trees and 

samplings dates. In the ant-allowed trees, three ant species were 

identified foraging on the canopies: P. pallidula (accounting for the 56% 

of the total ants counted), P. schmitzii (31%) and L. grandis (13%). Ant 

activity was different among seasons (F 2, 21 = 44.42; P < 0.0001), being 

significantly higher in summer (11.7 ± 1.8 ants/min) than in spring (6.4 

± 1.1 ants/min) or autumn (1.5 ± 0.3 ants/min) (Fig. 1a). 
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Fig. 1. (a) Mean (±SE) ant activity (number of ants per minute) in representative days of 
spring, summer and autumn. Means with different letter differ significantly at P < 0.05. 
(b) Mean (± SE) number of hemipteran honeydew producers per sampling unit in 
representative days of spring, summer and autumn. Means with different letter differ 
significantly at P < 0.05.  

 

Abundance of honeydew producers 

Honeydew producers were present in the three seasons in the ant-

allowed and ant-excluded treatments. The abundance of the honeydew 

producers was different among seasons, being significantly higher in 

summer than spring and autumn (F 2, 45 = 19.1; P < 0.0001) (Fig. 1b). 



Chapter 4 

113 
 

Honeydew producer abundance increased with ant activity in summer 

(χ2 = 7.93, P = 0.005), whereas no relationship was found in spring (χ2 = 

0.26, P = 0.607) or autumn (χ2 = 0.001, P = 0.965). 

The species composition of the honeydew producers differed among 

seasons. In spring, the principal honeydew producers were Ceroplastes 

sinensis Del Guercio (Hemiptera: Coccidae) (accounting for the 40% of 

the total honeydew producers) and Icerya purchasi Maskell (Hemiptera: 

Monophlebidae) (36%), whereas the whitefly Aleurothrixus floccosus 

(Maskell) (Hemiptera: Aleyrodidae) was the most abundant species in 

summer (90%) and autumn (70%) (Fig. 1b). 

Sugar spectrum of natural enemies 

The sugar spectrum revealed that glucose and fructose were the 

predominant sugars detected in A. chrysomphali and C. carnea (Table 1). 

In addition, both species contained the honeydew specific sugars erlose 

and melezitose.  
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Table 1. Total amount of sugars (µg/mm tibia length) of Aphytis chrysomphali and 
Chrysoperla carnea captured in the field (number of individuals is shown in 
parentheses). 

 Total sugar (µg/mm tibia length) 

Sugar Aphytis chrysomphali (145) Crysoperla carnea (47) 
Erlose 0.170 ± 0.041 1.351 ± 0.471 
Fructose 1.100 ± 0.099 19.728 ± 3.797 
Galactose 0.005 ± 0.002 0.050 ± 0.040 
Glucose 1.105 ± 0.073 22.146 ± 1.847 
Maltose 0.183 ± 0.017 3.477 ± 0.891 
Mannitol 0.068 ± 0.008 1.250 ± 0.204 
Mannose 0 0.157 ± 0.034 
Melezitose 0.511 ± 0.099 7.381 ± 1.824 
Melibiose 0.021 ± 0.003 2.856 ± 0.503 
Raffinose 0.002 ± 0.001 0.576 ± 0.133 
Sorbitol 0.011 ± 0.004 1.307 ± 0.223 
Sucrose 0.716 ± 0.107 4.885 ± 1.190 
Trehalosae 0.045 ± 0.018 0.381 ± 0.130 
Total 3.936 ± 0.290 66.687 ± 9.389 

 

Effect of ants on total sugar content 

Pooling all the captured individuals, the total sugar content of A. 

chrysomphali in the field ranged from 0.15 to 17.12 µg/hind tibia length, 

with a mean value of 3.94 ± 0.29 µg/hind tibia length. A significant 

negative relationship between ant activity and the total sugar content of 

A. chrysomphali was found in summer (χ2 = 5.88, P = 0.015) (Fig. 2). Ant 

activity had a marginally significant effect on the total sugar content of 

A. chrysomphali in spring (χ2 = 3.55, P = 0.059) whereas no significant 

relationship between ant activity and the total sugar content was found 

in autumn (χ2 = 0.168, P = 0.682).  
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Fig. 2. Relationship between the level of ant activity (ants/minute) and the total sugar 
content (µg/mm tibia length) of Aphytis chrysomphali in representative days of summer. 
(Open circles, ant-allowed trees; solid circles, ant-excluded trees).  

 

The total sugar content of C. carnea ranged from 1.6 to 337.8 µg/hind 

tibia length, with a mean value of 66.7 ± 9.4 µg/hind tibia length 

(pooling all the captured individuals). The relation between ant activity 

and total sugar content of C. carnea was non-significant in spring (χ2 = 

2.58, P = 0.108) or summer (χ2 = 0.05, P = 0.82). It is also important to 

highlight the (4 times) higher total sugar content in C. carnea individuals 

captured in summer in comparison with the ones captured in spring.  

Effect of ants on sugar-feeding occurrence 

Overall, out of 146 A. chrysomphali captured in the field in the three 

seasons, 65% were classified as sugar-fed. Ant activity had a marginally 
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negative significant effect on the occurrence of “sugar-fed” individuals of 

A. chrysomphali in summer (χ2 = 3.64, P = 0.056) whereas no significant 

relationship between ant activity and sugar feeding occurrence was 

found in spring (χ2 = 0.23, P = 0.630) or autumn (χ2 = 0.26, P = 0.607). 

Overall, out of 47 C. carnea captured in the field in the three seasons, 

55.3% were classified as sugar-fed. The effect of ant activity on the 

sugar feeding occurrence for C. carnea was negative in spring (χ2 = 4.82, 

P= 0.028) (Fig. 3) whereas it was non-significant in summer (χ2 = 1.12, P 

= 0.290). 

 

Fig. 3. Relationship between ant activity (ants/minute) and sugar-feeding occurrence by 
Chrysoperla carnea in representative days of spring. Data are slightly displaced from 
their originally binary positions in order to better represent sample size. (Open circles, 
ant-allowed trees; solid circles, ant-excluded trees). 
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Effect of ants on honeydew-feeding occurrence 

Overall, out of 146 A. chrysomphali captured in the field in the three 

seasons, 24.7% was classified as honeydew-fed. Honeydew-feeding in A. 

chrysomphali was negatively correlated with ant activity in summer (χ2 = 

4.99, P = 0.026) (Fig. 4), whereas no relationship was found in spring (χ2 

= 0.06, P = 0.808) or autumn (χ2 = 2.13, P = 0.144).  

 

Fig. 4. Relationship between ant activity (ants/minute) and honeydew-feeding 
occurrence by Aphytis chrysomphali in representative days of summer. Data are slightly 
displaced from their originally binary positions in order to better represent sample size. 
(Open circles, ant-allowed trees; solid circles, ant-excluded trees).  

 

Despite the fact that the mere presence of erlose and melezitose 

cannot be used for determination of honeydew feeding, we detected a 

considerable percentage of C. carnea (63.8% of individuals captured in 

spring and summer) with presence of honeydew signature sugars. 
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4.5 Discussion 

Our study delves into the understanding of indirect, multi-trophic 

interactions mediated by honeydew excreted by plant feeders. 

Concretely, we tested the hypothesis that the mutualistic relationship 

between ants and honeydew producers may impact positively or 

negatively the energy reserves and access to honeydew of natural 

enemies. Herein, for the first time we provide evidence that ants can 

have a negative impact on the energy reserves and access to honeydew 

of the parasitoid A. chrysomphali, and the predator C. carnea. The impact 

of ant activity on the energy reserves of natural enemies is likely to be 

widespread in natural and managed ecosystems with potential effects 

for the arthropod community composition and biological control.  

When examining the interference of ants with the total sugar content 

of A. chrysomphali, we found a negative relationship in summer, the 

period when both ant activity and abundance of honeydew producers 

peaked. Similarly, the sugar and honeydew-feeding incidence by A. 

chrysomphali were also negatively affected by ant activity in summer. 

Apparently, Aphytis spp. are highly susceptible to ant aggression. In fact, 

there are studies demonstrating that ants prey upon them in the field 

(Heimpel et al., 1997a) or disturb them during host-feeding and 

oviposition (Martínez-Ferrer et al., 2003). Aphytis melinus females spend 

more than 300 seconds per honeydew feeding bout (Tena et al., 2013b). 

Assuming that A. chrysomphali behaves similarly feeding on honeydew, 

it is likely that ants may interfere with the sugar acquisition by A. 

chrysomphali during that feeding time. The impact of ant activity on the 

feeding history and energy reserves may be more significant for small 
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parasitoids such as Aphytis species because of their limited capacity to 

engage in long flights (Campbell, 1976; Zappalà et al., 2012; Tena et al., 

2015) to exploit other non-tended honeydew sources. Honeydew 

sources in citrus orchards are commonly ant tended. Therefore, Aphytis 

spp. should avoid ant-tended honeydew sources to prevent attacks by 

ants. Finally, our results show that the effect of ants on the energy 

reserves of parasitoids depended on the level of ant activity. Therefore, 

we expect that this interference may be more pronounced when 

honeydew producers are tended by aggressive ant species and with high 

levels of activity, as is the case of many invasive ant species (Holway et 

al., 2002). All this being said, we propose that ant interference might be 

more detrimental for those parasitoid species that are not tolerant to 

ant aggression, have limited dispersion capacity and/or whose host 

does not excrete honeydew. 

Overall, the energy reserves of the predator C. carnea were not 

affected by ant activity either in spring or in summer. On the other hand, 

sugar-feeding occurrence was negatively correlated with ant activity in 

spring. We suggest that this result may be interpreted in terms of 

honeydew availability in combination with the behavior of C. carnea. As 

the populations of the honeydew producers were very low in spring, 

sugar availability was scarce. Under this scenario, adult C. carnea may 

find occasional honeydew droplets in absence of ants which would 

slightly increase their sugars levels but would be enough to distinguish 

them as sugar-fed. Nevertheless, under conditions of increased ant 

activity, it is likely that most honeydew sources would be occupied by 

ants, leaving very little chance to C. carnea adults to feed on sugars. In 

summer, the higher availability of honeydew allows lacewings to feed 
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and reach high energy reserves, despite the presence of ants. The flight 

behavior, in particular the migration flights of C. carnea might give an 

additional explanation for the results obtained in our study. In the first 

three nights after emergence, the lacewings fly downwind in adaptive 

dispersal flights, irrespective of the availability of food (Duelli, 1980a, 

1980b). This behavior implies that young adults captured after these 

flights will show very low levels of energy reserves regardless of the 

availability of honeydew or the disturbance of ants. Later, the sexually 

mature adults respond to kairomones signaling honeydew and perform 

a stepwise flight against the wind to approach the source of attractant 

(Duelli, 1980b). Although larvae and adults of green lacewings are 

heavily attacked by ants and the adults show a strong tendency to avoid 

ants (Bartlett, 1961) the capacity of adults for dispersion apparently 

plays an important role in overcoming the disturbance by ants in 

summer since they can search for non-ant tended honeydew sources. 

For example, adult C. carnea may move up to 1 km away from the 

release point after one day (Duelli, 1980b). Consequently, the energy 

reserves of C. carnea are less susceptible to be influenced by the level of 

local ant activity compared to Aphytis parasitoids. 

It is also important to highlight that the energy reserves and 

incidence of sugar or honeydew feeding were never enhanced in the 

presence of ants neither for A. chrysomphali nor for C. carnea This is 

even more surprising if we consider the fact that the present as well as 

other studies conducted in citrus (Moreno et al., 1987; Yoo et al., 2013) 

have demonstrated that under increased ant activity levels there are 

greater numbers of honeydew producers on the citrus canopies. This 

means that predators and parasitoids should have higher probabilities 
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of accessing honeydew sources in the presence of ants. However, this 

was not the case in our study. Possibly the direct ant competition might 

explain this result given that in citrus orchards colonies of honeydew 

producers are usually ant tended (Pekas et al., 2011). Moreover, 

competition with other honeydew feeders such as pollinators and other 

unintended consumers might also have an influence (Wäckers & 

Fadamiro, 2005).  

All in all, we report a novel interaction between ants and natural 

enemies mediated by the shared honeydew exploitation. As already 

known, honeydew collecting ants may modify natural enemy abundance 

(Bartlett, 1961; James et al., 1999), enhance hemipteran populations 

(Bartlett, 1961; Samways, 1990) and, eventually, impact plant health 

(Rosumek et al., 2009). In a previous study it was shown that red 

imported fire ants indirectly affected the fecundity of native ants by 

excluding them from aphid-provided carbohydrates (Wilder et al., 

2013). Herein, for the first time we quantify the effects that ants can 

have on the energy reserves, sugar and honeydew feeding of 

entomophagous arthropods. This type of interaction may be widespread 

in various ecosystems with important consequences at the community-

level and with practical implications for the biocontrol services that 

natural enemies provide (Eubanks & Finke, 2014). Absence of sugar 

feeding has been found to be detrimental for the fitness of many species 

of predators and parasitoids and is likely to affect also their abundance, 

the abundance of the herbivores and ultimately plant quality resulting 

in top-down trophic cascades (Pace et al., 1999). These trophic cascades 

may be particularly important in agroecosystems, where the availability 

of sugar sources is usually limited in space and time (Wäckers et al., 
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2008) resulting in a deficient pest control. Ideally, this lack of sugar 

sources may be compensated by means of artificial sugar sprays (Wade 

et al., 2008; Tena et al., 2015) and/or habitat management to enhance 

the functional biodiversity that will support the beneficial organisms to 

maximize the ecosystem services provided (Olson & Wäckers, 2006).  
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General discussion 

Our ant-exclusion experiments revealed that the three most 

abundant ant species in Mediterranean citrus orchards are able to 

induce higher populations of California red scale and wooly whitefly, i.e. 

populations of honeydew and non-honeydew producing pests. In order 

to disentangle the underlying mechanisms explaining the increased pest 

populations we examined various hypotheses: the interference of ants 

with the activity of parasitoids, the impact of ants on natural enemy 

abundance and community structure, and the competition between ants 

and natural enemies for honeydew. 

Interestingly, the increased pest populations observed were not 

apparently the result of ant interference with the activity of the 

parasitoids given that parasitism was similar in ant-allowed and ant-

excluded treatments in the three orchards studied. It is important to 

highlight that previous studies in the same area reported higher 

populations of A. aurantii on citrus fruits in the ant-allowed treatment 

while finding no differences in the percent parasitism between the ant-

allowed and ant-excluded treatments (Pekas et al., 2010b). Thus, factors 

other than parasitoid disruption might explain the increased pest 

populations induced by ants. 

Crucially, in chapter 2 we report that, overall, ants did no impact the 

community structure of natural enemies in citrus. However, ants altered 

the abundance of many natural enemy species revealing a previously 

undocumented pattern: the abundance of most parasitoid species 

increased while the abundance of most generalist predators decreased 

in the ant-allowed treatment. Especially for parasitoids we also 
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registered higher species biodiversity in the ant-allowed treatment, 

apparently as a result of the higher populations of their hosts under ant-

attendance. These results suggest that the role of generalist predators 

may be highly relevant for pest control in citrus and thus the decrease in 

predator abundance as a consequence of ant interference might explain 

the higher pest populations in the ant-allowed treatment. According to 

Symondson (2002) native generalist predators are efficient biological 

control agents which eventually could be more important than 

parasitoids The capacity of generalist predators to regulate pest 

populations in Mediterranean citrus has received little attention. Their 

non-specificity poses a serious technical difficulty when designing an 

experiment and might explain the lack of studies quantifying their 

biocontrol potential in the field. This fact highlights the need for future, 

detailed research on the role of generalist predators in citrus 

agroecosystems as biological control agents and the potential of ants to 

disturb their activity.  

Finally, we showed that ants interact indirectly with predators and 

parasitoids through the common honeydew exploitation. High level of 

ant activity was negatively associated with the total sugar content and 

the sugar and honeydew feeding occurrence of the parasitoid A. 

chrysomphali and the predator C. carnea s.l. at certain times of the year. 

Absence of sugar feeding is detrimental for the fitness of predators and 

parasitoids. Therefore, the reported interaction is expected to have 

consequences for the wider arthropod community, affecting the 

abundance and biocontrol potential of the natural enemies. To our 

knowledge, this study is the first to report these indirect effects in food 

webs, in particular the impact on the physiological state of the impacted 
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species. Application of artificial sugar sprays may alleviate the sugar-

deprived parasitoids and increase their populations as well as the 

parasitism rates as recently demonstrated for Aphytis melinus in citrus 

(Tena et al., 2015).  

Ants are generalist predators and can act as biocontrol agents in 

various ecosystems (Hölldobler & Wilson, 1990). In our study, the 

native ant species L. grandis and P. pallidula may act as predators to 

some extent (Cerdá & Retana, 1988; Paris & Espadaler, 2009), however, 

no data exist demonstrating their biocontrol potential which seems to 

be rather low. Similarly, there are no studies quantifying their potential 

contribution to biological pest control in Mediterranean citrus. Thus, in 

view of the increased pest populations and the negative impact on the 

abundance of the generalist predators observed in the ant-allowed 

treatment, the exclusion of ants may be recommended in citrus 

orchards. Several methods can be used to exclude ant populations from 

citrus canopies. In this study we have used sticky barriers and micro-

encapsulated insecticidal paint applied to the trunk. Both methods have 

been found to be adequate to exclude ants from tree canopies. 

Unfortunately the use of sticky barriers is a very laborious and 

expensive method, whereas the insecticidal paint shows some 

constrains that are limiting its use (Juan-Blasco et al., 2011). A 

sustainable alternative might be the provisioning of artificial sugar 

sources to distract the ants from tending the honeydew producing 

herbivores. Thus the effectiveness of the natural enemies is expected to 

be enhanced, increasing additionally ant predation on herbivores, when 

ants are satiated with sugars. The supply of artificial sugar sources has 

been found to be effective in altering ant attendance and eventually 
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reducing aphid populations in apple (Nagy et al., 2013) and citrus 

orchards (Sánchez-Alberola et al., 2013).  

The mutualistic relationship between ants and honeydew-producing 

hemiptera has broad effects and community-level consequences in the 

citrus agroecosystem. Ants impact direct or indirectly the second 

(herbivores), third (natural enemies) and fourth trophic levels 

(hiperparasitoids). Although not directly quantified in the present study, 

ants apparently also impact the first trophic level (primary producers) 

since the increased herbivore populations in the ant-allowed treatment 

are expected to affect negatively the plant health and productivity. 
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Ants affect the infestation levels but not the 

parasitism of honeydew and non-honeydew 

producing pests in citrus 

 
i) The infestation level of Aonidiella aurantii on twigs was lower 

in the ant-excluded treatment in the orchard dominated by L. 

grandis whereas in the orchards dominated by P. pallidula 

and L. humile it was similar in ant-allowed and ant-excluded 

treatments. 

 

ii) Ant-exclusion resulted in decreased A. aurantii densities on 

fruits in the three orchards of the study, ranging from as high 

as 41% to as low as 21%. 

 

iii) The percentage of shoots occupied by A. floccosus in the 

orchards dominated by P. pallidula and L. humile was lower in 

the ant-excluded treatment.  

 

iv) The incidence of P. citrella was similar on ant-allowed and 

ant-excluded treatments in the three orchards of the study.  

 

v) Parasitism levels were similar in the ant-allowed and the ant-

excluded treatments for both the non-honeydew producing A. 

aurantii and the honeydew producing A. floccosus. These 

results suggest that mechanisms other than parasitism (e.g. 
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predation) might explain the differences in herbivore 

infestation levels between treatments. 

 

Ants in citrus: impact on the abundance, 

species richness, diversity and community 

structure of predators and parasitoids  

i) The impact of ants on the abundance of natural enemies 

showed a species specific response.  

 

ii) We observed a general pattern related to functional groups: 

there were lower numbers of generalist predators and higher 

numbers of parasitoids in the ant-allowed treatment 

compared to the ant-excluded treatment. 

 

iii) In the ant-allowed treatment the species richness (S) of 

predators was significantly lower whereas the species 

richness (S) and the Shannon diversity index (H) of 

parasitoids were higher. 

 

iv) The community structure of predators and parasitoids was 

not significantly different between treatments.  

 

v) The negative impact of ants on specific generalist predators 

may explain the increases of hemipteran populations 

observed.  
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Ants impact the energy reserves of natural 

enemies through the shared honeydew 

exploitation 

i) We detected a significant negative correlation between the 

ant activity and the total sugar content and honeydew feeding 

incidence by A. chrysomphali in summer.  

 

ii) The sugar feeding incidence by C. carnea was negatively 

correlated with the level of ant activity in spring.  

 

iii) Our study provides the first evidence that ants can interfere 

with the energy reserves of natural enemies through the 

common honeydew exploitation. 
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