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A photoresponsive graphene oxide-C60 

conjugate  

M. Barrejón,a M. Vizuete,a M. J. Gómez-Escalonilla,a J. L. G. Fierro,b I. Berlanga,c 
F. Zamora,c G. Abellán,d P. Atienzar,e J.-F. Nierengarten,f H. García*,e and 
Fernando Langa*,a 

An all-carbon donor-acceptor hybrid combining graphene 

oxide (GO) and C60 has been prepared. Laser flash photolysis 

measurements revealed the occurrence of photoinduced 

electron transfer from the GO electron donor to the C60 

electron acceptor in the conjugate. 

Owing to their remarkable electronic properties, the various allotropic 

forms of carbon have attracted an enormous attention in the field of 

materials science.1 For example, photovoltaic devices made with all-

carbon thin films incorporating fullerenes, carbon nanotubes (CNTs) 

and graphene oxide, have shown promising efficiencies for light to 

electrical energy conversion.2 In this particular case, the all-carbon 

nanocomposites have been co-assembled in water to yield stable 

colloidal dispersions for thin film processing.2 On the other hand, 

covalent hybrid nanostructures combining fullerenes and CNTs,3 have 

been prepared and incorporated into photovoltaic3 or optical limiting 

devices.4 C60 has been also grafted onto graphene surfaces.5 

Interestingly, such conjugates, have shown enhanced nonlinear 

optical performances when compared to their individual 

components.5b In another example, graphene oxide (GO) has been 

decorated with both C60 and Zn(II)-phthalocyanines (ZnPc).6a 

Recently, the electron-donating behaviour of few-layer graphene in 

covalent ensembles with electron-eccepting phthalocyanines have 

been shown.6b 

Photophysical studies have revealed the occurrence of photoinduced 

electron transfer (PET) from the ZnPc donor to the C60 acceptor 

suggesting that the GO scaffold is capable of mediating the electron 

transfer events involving the two other partners.6 The possibility to 

use GO as an electroactive component,7,8 namely as electron donor, in 

a GO-C60 conjugate, remains an open question. To answer to this 

question, we now report the synthesis and the photophysical 

properties of a covalent GO-C60 conjugate. Indeed, laser flash 

photolysis investigations revealed effectively the occurrence of PET 

from the modified GO sheets to the fullerene, thus demonstrating the 

possibility to develop covalent photoresponsive nanoconstructs 

exclusively based on carbon materials. 

The preparation of the covalent graphene oxide-60fullerene 

conjugate (GO-C60) is depicted in Fig. 1. The starting GO was 

purchased from Nanoinnova Technologies.9 It was then modified by 

4-(trimethylsilyl)ethynylaniline via an aryl diazonium salt reaction,10 to 

yield GO-TMS. Subsequent cleavage of the TMS groups with tetra-n-

butylammonium fluoride (TBAF) gave GO-CCH. Finally, fullerene 

building block 111 was grafted onto the modified GO scaffold using the 

Cu-catalysed alkyne-azide cycloaddition (CuAAC) reaction under the 

conditions optimized for the grafting of fullerene-containing azide 

onto carbon nanohorns11 CuSO4•5H2O, sodium ascorbate in N-

methyl-pyrrolidone (NMP) (see Electronic Supporting Information, 

ESI). The resulting GO-C60 conjugate forms stable suspensions in 

solvents such as DMF, NMP and CH2Cl2 (Fig. S1). The GO-C60 hybrid 

obtained was characterized by Fourier-transformed infrared 

spectroscopy (FT-IR), Raman spectroscopy, high-resolution 

transmission electron microscopy (HR-TEM), atomic force microscopy 

(AFM) and X-ray photoelectron spectroscopy (XPS).  

As shown in Fig. 2, Raman spectroscopy (exc = 532 nm) of GO shows 

an intense tangential mode (G band) at 1585 cm-1 and a disordered-

induced peak (D band) at 1356 cm-1. These signals are observed at 

1588 cm-1 and 1349 cm-1 in the spectrum of GO-TMS. As a 

consequence of the functionalization, the ID/IG ratio is slightly higher 

for GO-TMS (0.86) when compared to GO (0.73). The spectrum of GO-

C60 shows the signatures of all its constituents: (i) 1594 cm -1 and 1355 

cm-1 (GO sheet),   
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Fig. 1 (left) Preparation of GO-C60. Reagents and conditions: (i) 4-(trimethysilylethynyl)aniline, isoamyl nitrite, NMP, 70 °C, 24 h; (ii) TBAF, THF/NMP, rt, 1 h; (iii) 

CuSO4•5H2O, sodium ascorbate, NMP, 70 °C, 48 h. (right) HR-TEM images of GO-C60 and its corresponding SAED pattern. Insets on the right show spherical C60 units 

highlighted with arrows. 

and (ii) 1486 cm-1 (Ag(2) mode of C60). It is worth noting that no further 

increase of the ID/IG ratio was observed when going from GO-TMS to 

GO-C60, thus confirming that the cycloaddition reaction occurred onto 

the triple bonds of GO-CCH rather than directly onto the GO surface. 

The formation of GO-C60 was also evidenced by XPS (Figs. S2-6, 

Tables S1-2). In particular, the high-resolution N 1s spectrum of GO-

C60 displays two components, (i) a major one at a binding energy of 

399.9 eV, belonging to the two triazole N-atoms bound to C-atoms as 

nearest neighbors, and (ii) a minor one at 398.6 eV originating from 

the other remaining N-atom. In contrast, only one component is 

observed at 400.2 eV for azide 1. These observations unambiguously 

prove that the azide residue of fullerene 1 is no longer present, thus, 

confirming the formation of triazole rings during the reaction leading 

to GO-C60.11 Based on the Nitrogen content, measured by XPS, it was 

estimated that one fullerene is present per 161 GO atoms. FT-IR 

spectroscopy (Fig. S7) further corroborated the results obtained by 

the previous techniques. Indeed, some of the diagnostic signals of 

precursor 1 were detected for GO-C60. For example, the peaks around 

2926 and 2855 cm-1 assigned to C-H stretching vibrations of alkyl 

chains. Importantly, the characteristic signal of azide groups (2092 

cm-1) could not be detected for GO-C60, confirming again the 

successful functionalization of GO-CCH via the CuAAC reaction.11 

HR-TEM shows that the morphology of GO-C60 was constituted by 

large GO sheets with lateral dimensions of several microns (Figs. 1B 

and field emission scanning electron microscopy showing lateral 

dimensions over micron in Fig. S8). Importantly, electron diffraction in 

selected areas reveals the characteristic GO hexagonal patterns. 

Moreover, the spherical structure of fullerene moieties grafted onto 

GO appears as circles with an inner diameter of ca. 0.7 nm in perfect 

agreement with the size of C60 units (insets of Fig. 1B).11 Additional 

structural data were obtained by AFM investigations. Upon sonication 

of a suspension of GO-C60 in CH2Cl2 (60 min) and drop-casting 

deposition on SiO2, AFM revealed a layered material with typical 

heights in the range of 7-10 nm (Fig. S10). By increasing the sonication 

time, aggregation was further reduced leading to the observation of 

flakes with heights of ca. 4-6 nm (Figs. S9 and S11). 

The areas of the layers observed for GO-C60 are rather similar to those 

observed for the starting GO material thus showing that the 

morphology of GO has been maintained during its functionalization 

(Fig. S13). 

 

Fig. 2  Raman spectra (exc = 532 nm) of GO (dotted line), GO-TMS (dashed line) 

and GO-C60 (solid line). The spectra are normalized to the peak intensity of the G 

band. 

The electrochemical properties of hybrid compound GO-C60 were 

investigated by cyclic voltammetry (CV). For the sake of comparison, 

electrochemical measurements were also carried out with C60 and 1. 

All the experiments were performed at room temperature in 

acetonitrile solutions containing tetra-n-butylammonium 

tetrafluoroborate (TBABF4) as supporting electrolyte. The first 

reduction is observed at -0.60 and -0.67 V for C60 and 1, respectively 

(Fig. S15). Interestingly, this reduction is observed at -0.53 V for GO-

C60 suggesting the existence of interactions between both moieties. A 

similar shift of the reduction potential has been already observed in a 

related carbon nanohorn-C60 hybrid.11 Under similar conditions the 

reduction potential of GO appears at -1.36 V.12 
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As typically observed for fullerene derivatives, compound 1 exhibits a 

weak emission at ca. 720 nm (Fig. 3A). This fluorescence signal is 

dramatically quenched in GO-C60, suggesting the occurrence of 

excited-state interactions between the two forms of carbon in the 

conjugate. In order to elucidate the quenching mechanism, laser flash 

photolysis experiments were carried out on GO-C60 in PhCN solutions 

(Fig. 3B). The results were compared to those obtained with 

compound 1 and GO (see ESI, Fig. S17). Upon 355 nm nanosecond 

laser excitation of a PhCN solution of GO-C60, the transient absorption 

spectra shows a continuous absorption from 360 to 900 nm, peaking 

at 820 nm, as well as a continuous band from 1000 to 1200 nm. While 

the continuous absorption in the 400-800 nm region can be due to the 

combination of the spectra recorded for GO and 1, the most salient 

feature is the intense NIR absorption recorded for GO-C60. 

 

Fig. 3 (A) Fluorescence spectra of 1 (dashed line) and GO-C60 (solid line) recorded 

in PhCN (exc = 438 nm). (B) Transient absorption spectra of an N2-purged 

benzonitrile solution of GO-C60, depicted spectral traces are from 0.01 to 1.82 µs 

after the laser pulse (exc = 355 nm). 

The latter is ascribed to the absorption of fullerene radical anions. 

Similar transient absorptions have been recently observed in the NIR 

region upon PET in a modified GO derivative bearing C60 and ZnPc 

subunits.6 The temporal profile of the signals in the 360-900 nm zone 

was coincident but the signal decay in the NIR region was slower 

indicating the presence of long-lived transient species, namely C60
–.13 

GO is thus acting as an electron donor, however the oxidized GO has 

no characteristic absorption bands14 in the visible region and the 

formation of GO•+ could not be monitored. It is also worth noting that 

no transient absorption was observed in the NIR region during control 

experiments using compound 1 in the absence of GO. Actually, the 

electron donor moiety generating C60
•‒ must be GO and not the 

solvent.14 Finally, the occurrence of photoinduced intramolecular 

electron transfer in GO-C60 deduced from the transient absorption 

experiments with GO-C60 was further confirmed by bimolecular 

quenching experiments performed with mixtures of GO and C60 (see 

ESI, Figs S20 and S21). 

In conclusion, CuAAC chemistry allowed us to efficiently conjugate 

two nanoforms of carbon and photoinduced electron transfer has 

been evidenced in the resulting GO-C60 nanohybrid. Therefore, GO-

C60 nanoconstructs are appealing candidates for the preparation of all-

carbon solar cells. Work in this direction is currently underway in our 

laboratories. 
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